
Timed Petri Nets and Timed Automata:
On the Discriminating Power of Zeno Sequences⋆

Patricia Bouyera Serge Haddadb Pierre-Alain Reyniera

aLSV, CNRS& ENS Cachan, France
bLAMSADE, CNRS& Université Paris-Dauphine, France

Abstract

Timed Petri nets and timed automata are two standard models for the analysis of real-
time systems. We study in this paper their relationship, andprove in particular that they
are incomparable w.r.t. language equivalence. In fact, we study the more general model
of timed Petri nets with read-arcs (RA-TdPN), already introduced in [17], which unifies
both models of timed Petri nets and of timed automata, and prove that the coverability
problem remains decidable for this model. Then, we establish numerous expressiveness
results and prove thatZenobehaviours discriminate between several sub-classes ofRA-
TdPNs. This has surprising consequences on timed automata, for instance on the power of
non-deterministic clock resets.

Key words: Timed Automata, Timed Petri Nets, Expressiveness

1 Introduction

Timed automata(TA) [3] are a well-accepted model for representing and analyzing
real-time systems: they extend finite automata with clock variables which give tim-
ing constraints on the behaviour of the system. Another prominent formalism for
the design and analysis of discrete-event systems is the model of Petri nets(PN) [8].
An important interest ofPNs lies in their applicability to the verification of infinite-
state systems because some standard problems are decidablefor this model (bound-
edness, coverability, reachability, action-based linear-time formula checking, etc.).

⋆ A preliminary version of this work has been published in [6].
Email addresses:bouyer@lsv.ens-cachan.fr (Patricia Bouyer),

haddad@lamsade.dauphine.fr (Serge Haddad),reynier@lsv.ens-cachan.fr
(Pierre-Alain Reynier).

Preprint submitted to Elsevier Science 18 October 2007

Thus, in order to model concurrent systems with constraintson time, several timed
extensions ofPNs have been proposed as a possible alternative toTA.

Time Petri nets(TPN), introduced in the 70’s, associate with each transition a time
interval [4]. A transition can be fired if it is enabled (everyinput place contains
the required number of tokens) and if the time since it has been enabled lies in the
specified interval. Time can elapse only if it does not disable some transition: thus,
the decision to wait some amount of time and then fire a transition cannot be done
locally, but requires to check globally that no other transition is disabled during the
delay, even though this transition does not share any input or output place with the
transition we plan to fire. This restricts a lot applicability of partial order methods
for this model. Moreover, because of this “urgency” requirement, all significant
problems are undecidable for unboundedTPNs.

Timed Petri nets(TdPN), also calledtimed-arc Petri nets, associate with each arc
an interval [18]. InTdPNs, each token has an age. This age is initially set to a value
belonging to the interval of the arc which has produced it or set to zero if it be-
longs to the initial marking. Afterwards, ages of tokens evolve synchronously with
time. A transition may be fired if tokens with age belonging tothe intervals of its
input arcs may be found in the current configuration. Note that “old” tokens may
die (i.e., they cannot be used anymore for firing a transition but they remain in the
place), and that conditions for firing transitions are hencelocal and do not depend
on the global configuration of the system, unlike inTPNs. This “lazy” behaviour
has important consequences. Whereas the reachability problem is undecidable for
TdPNs [18], the coverability problem [2] and some significant other ones are de-
cidable [1]. Furthermore,TdPNs cannot be transformed into equivalentTA (for the
language equivalence), since the untimed languages of the latter model are regular.
However the question whether (bounded)TdPNs are more expressive thanTA w.r.t.
language equivalence was not known.

Read-arc timed Petri nets(RA-TdPN) extendTdPNs with read-arcs,i.e. arcs that
check the presence of a token (with an age as specified on the arc), without con-
suming it. This model has been first introduced by Jiří Srba in [17] in order to
compareTA with 1-boundedTdPNs (and its extension with read-arcs). Moreover,
this feature has already been introduced in the untimed framework [14] in order to
define a more refined concurrent semantics for the nets. For semantics taking into
account fairness, it has been shown in [19] that read arcs addexpressive power. For
the interleaving semantics, they however do not add any expressive power in the
untimed framework as they can be replaced by two arcs which check that a token
is in the place and replace it immediately.

Our contributions. We first investigate the decidability of the coverability prob-
lem for theRA-TdPN model, and we prove that, as forTdPNs, it is decidable.

2

We then focus on the expressiveness of read-arcs, and prove quite surprising results.
Indeed, we show that read-arcs add expressiveness to the model of TdPNs when
considering languages of (possiblyZeno) infinite timed words. On the contrary,
we also prove that when considering languages of finite or non-Zenoinfinite timed
words, read-arcs can be simulated and thus don’t add any expressiveness toTdPNs.

Furthermore we investigate the relative expressiveness ofseveral subclasses ofRA-
TdPNs, depending on the following restrictions: boundedness ofthe nets, integral-
ity of constants appearing on the arcs, resets labelling post-arcs. We give a complete
picture of their relative expressive power, and distinguish between three timed lan-
guage equivalences (equivalence over finite words, or infinite words, or non-Zeno
infinite words) which, as before, lead to different results.

We finally establish that timed automata and boundedRA-TdPNs are language
equivalent. From this result and former ones, we deduce several worthwhile ex-
pressiveness results, for instance we prove that non-determinism in clock resets
adds expressive power to timed automata with integral constants over (possibly
Zeno) infinite timed words, which contrasts with the finite or non-Zeno infinite
timed words case [5]. If rational constants are allowed, this is no more the case: it
should be emphasized that this latter result implies that the granularity of the au-
tomaton has to be refined if we want to remove non-deterministic updates while
preserving expressiveness.

Organisation of the paper. In Section 2, we define theRA-TdPN model and
its different subclasses. We show in Section 3 that the coverabilityproblem is de-
cidable for that model. In Sections 4, 5, 6 and 7 we establish our numerous ex-
pressiveness results onRA-TdPNs and their subclasses. We present an overview of
these results in Section 8. In Section 9, we give expressiveness results for timed
automata.

2 Read-Arc Timed Petri Nets

Preliminaries. If A is a set,A∗ denotes the set of all finite words overA whereas
Aω denotes the set of infinite words overA. Given a functionf over some setX,
we may extend wordlesslyf to the set of subsets ofX, by f (Y) = { f (y) | y ∈ Y},
for every subsetY of X. An interval I of R≥0 is aQ≥0-(resp.N≥0-)interval if its left
endpoint belongs toQ≥0 (resp.N≥0) and its right endpoint belongs toQ≥0 ∪ {∞}

(resp.N≥0 ∪ {∞}). We denote byI (resp.IN≥0) the set ofQ≥0-(resp.N≥0-)intervals
of R≥0.

Bags.Given a setE, Bag(E) denotes the set of mappingsf from E toN≥0 such that

3

the setdom(f) = {x ∈ E | f (x) , 0} is finite. Given such an elementf ∈ Bag(E),
we use the notationf =

∑
x∈dom(f) f (x) · x (omitting f (x) when f (x) = 1). We note

size(f) =
∑

x∈E f (x). Let x, y ∈ Bag(E), theny ≤ x iff ∀e ∈ E, y(e) ≤ x(e). If y ≤ x,
thenx− y ∈ Bag(E) is defined by:∀e ∈ E, (x− y)(e) = x(e) − y(e). Ford ∈ R≥0 and
x ∈ Bag(R≥0), x+d ∈ Bag(R≥0) is defined by∀τ < d, (x+d)(τ) = 0 and∀τ ≥ d, (x+
d)(τ) = x(τ−d). We finally define the operation of projection. Letx ∈ Bag(E1×. . .×

En), and letI = {i1, . . . , ik} be a set of indices such that 1≤ i i < . . . < ik ≤ n. The
bagπi1,...,ik(x) ∈ Bag(Ei1 × . . . × Eik) is defined by: for all (ei1, . . . ,eik) ∈ Ei1 × . . . ×

Eik, πi1,...,ik(x)(ei1, . . . ,eik) =
∑

ej1 ,...,ejn−k∈E j1×...×E jn−k
x(e1, . . . ,en), where{ j1, . . . , jn−k}

is the unique set of indices such that 1≤ j1 < . . . < jn−k ≤ n satisfying{i1, . . . , ik} ∩
{ j1, . . . , jn−k} = ∅. Finally, note that ifA is a finite set andB a set, thenBag(B)A, the
set of applications fromA to Bag(B), is isomorphic toBag(A× B).

Timed words and timed languages.Let Σ be a fixed finite alphabet such thatε < Σ
(ε is the silent action), we denoteΣε = Σ ∪ {ε}. A timed word woverΣε (resp.Σ)
is a finite or infinite sequencew = (a0, τ0)(a1, τ1) . . . (an, τn) . . . such that for every
i ≥ 0,ai ∈ Σε (resp.ai ∈ Σ), τi ∈ R≥0 andτi+1 ≥ τi. The valueτk gives the time point
at which actionak occurs. We writeDuration(w) = supk τk for the duration of the
timed wordw. Sinceε is a silent action, it can be removed in timed words overΣε,
and it naturally gives timed words overΣ. An infinite timed wordw overΣ is said to
beZenowheneverDuration(w) is finite. We denote byTW∗(Σ) (resp.TWω(Σ),
TW

ωnz(Σ)) the set of finite (resp. infinite, non-Zenoinfinite) timed words overΣ.
A timed language of finite (resp. infinite, non-Zeno infinite) words is a subset of
TW

∗(Σ) (resp.TWω(Σ), TWωnz(Σ)).

The Model of RA-TdPNs. Thequalitativecomponent of aRA-TdPN is a Petri
net extended with read-arcs. A read-arc checks for the presence of tokens in a place
without consuming them. Thequantitativepart of aRA-TdPN is composed of tim-
ing constraints on arcs. Informally, when firing a transition, tokens are consumed
whose ages satisfy the timing constraints specified on the input-arcs (they are speci-
fied using bags), and it is checked whether the constraints specified by the read-arcs
are satisfied. Tokens are then produced according to the constraints specified on the
output-arcs.

Definition 1 A timed Petri net with read-arcs(RA-TdPN for short)N is a tuple
(P,m0,T,Pre,Post,Read, λ,Acc) where:

• P is a finite set of places;
• m0 ∈ Bag(P) denotes the initial marking of places;
• T is a finite set of transitions with P∩ T = ∅;
• Pre, the backward incidence mapping, is a mapping from T toBag(I)P;
• Post, the forward incidence mapping, is a mapping from T toBag(I)P;
• Read, the read incidence mapping, is a mapping from T toBag(I)P;
• λ : T → Σε is a labelling function;

4

• Acc is an accepting condition defined as a finite set of formulas, each of which
is generated by the grammar

acc ::=
n∑

i=1

pi ⊲⊳ k | acc ∧ acc

where pi ∈ P, k∈ N≥0 and⊲⊳ ∈ {≤,≥}.

SinceBag(I)P is isomorphic toBag(P× I), Pre(t), Post(t) andRead(t) may also
be considered as bags. Given a placep and a transitiont, if the bagPre(t)(p) (resp.
Post(t)(p), Read(t)(p)) is non null then it defines apre-arc (resp.post-arc, read-
arc) of t connected top.

A configurationν of a RA-TdPN is an item ofBag(R≥0)P (or equivalentlyBag(P
×R≥0)). Intuitively, a configuration is a marking extended with age information for
the tokens. We will write (p, τ) for a token which is in placep and whose age is
τ. A configuration is then a finite sum of such pairs. A token (p, τ) then belongs to
the configurationν whenever (p, τ) ≤ ν (in terms of bags). Theinitial configuration
ν0 ∈ Bag(P×R≥0) is defined asν0 =

∑
p∈P m0(p)·(p,0), where it means that for each

p, there arem0(p) tokens of age 0 in placep. Given a configurationν ∈ Bag(P×R≥0)
and a bagf ∈ Bag(P× I), we say thatν satisfiesf , and writeν |= f , if and only if
there exists a bagx ∈ Bag(P× R≥0 × I) verifying the following conditions.

π1,2(x) = ν,

π1,3(x) = f ,

∀(p, τ, I) ∈ dom(x), τ ∈ I .

We now describe the semantics of aRA-TdPN as a transition system.

Definition 2 (Semantics of aRA-TdPN) Let N = (P,m0,T,Pre,Post,Read, λ,
Acc) be anRA-TdPN. Its semantics is the transition system(Q, ν0,Σε,→) where
Q = Bag(R≥0)P, ν0 =

∑
p∈P m0(p) · (p,0), and the transition relation→ is com-

posed of delay and discrete transitions as follows:

• For each d∈ R≥0, there is a delay transitionν
d
−→ ν + d where the configuration

ν + d is defined by(ν + d)(p) = ν(p) + d for every p∈ P.
• Given a transition t∈ T and two configurationsν, ν′ ∈ Bag(P×R≥0), there exists

a discrete transition fromν to ν′ labelled byλ(t), denoted byν
λ(t)
−−→ ν′, if and only

5

if there exist three bags•ν, ◦ν, ν• ∈ Bag(P× R≥0) such that:

•ν |= Pre(t),

◦ν |= Read(t),

ν• |= Post(t),

•ν + ◦ν ≤ ν,

ν′ = ν − •ν + ν•.

The intuition of the previous definition is as follows:•ν is the set1 of tokens which
is removed from the configurationν when firing transitiont, whereas◦ν is the set
of tokens that needs to be inp for transitiont to be fired (note that these two sets
of tokens need to be disjoint, hence the fourth condition•ν + ◦ν ≤ ν); finally ν• is
the set of tokens that are created by the transition firing. Moreover, the ages of all
these tokens need to satisfy the constraints specified by thevarious arcs (conditions
written using the|= operator defined above). Finally, all tokens used by a read-
arc are not removed, that’s why the new configuration is givenby ν′ computed as
ν′ = ν − •ν + ν•.

To reason about the behaviour of the net, we also consider thetransition system

obtained whenλ is the identity mapping. We then writeν
t
−→ ν′ when transitiont is

fired, according to the previous definition.

A pathin theRA-TdPNN is a sequenceν0
d1
−→ ν′1

t1
−→ ν1

d2
−→ ν′2

t2
−→ ν2 . . . in the above

transition system, which alternates between delay and discrete transitions. Atimed
transition sequenceis a (finite or infinite) timed word over alphabetT, the set of
transitions ofN . A firing sequenceis a timed transition sequence (t1, τ1)(t2, τ2) . . .

such thatν0
τ1
−→ ν′1

t1
−→ ν1

τ2−τ1
−−−−→ ν′2

t2
−→ ν2 . . . is a path. If (p, τ) ≤ ν is a token of a

configurationν, it is a dead tokenwhenever for every intervalI labelling a pre- or
a read-arc ofp, τ is strictly greater thanI . It means that this token cannot be used
anymore (either by a pre- or a read-arc) to fire a transition.

The timed word which is read along a pathν0
d1
−→ ν′1

t1
−→ ν1

d2
−→ ν′2

t2
−→ ν2 . . . is the

projection overΣ of the timed word (λ(t1),d1)(λ(t2),d1 + d2) . . . Petri nets can be
considered as language acceptors, as formally defined by thenext definition.

1 This is a language misuse, the right term should be “bag”, as there can be several tokens
with the same age.

6

We first define a satisfaction relation for the accepting conditions. It is defined over
configurations of the nets, inductively as follows:

ν satisfies

∑n
i=1 pi ⊲⊳ k iff

∑n
i=1 size(ν(pi)) ⊲⊳ k

ν satisfiesacc1 ∧ acc2 iff ν satisfiesacc1 andν satisfiesacc2

where⊲⊳ ∈ {≤,≥}.

Definition 3 (Language accepted by aRA-TdPN) LetN = (P,m0,T,Pre,Post,
Read, λ,Acc) be anRA-TdPN. A finite path inN is accepting if it ends in a config-
uration satisfying one of the formulas ofAcc. An infinite path is accepting if every
formula ofAcc is satisfied infinitely often along the path (Acc is then viewed as
a generalized Büchi condition2). We noteL∗(N) (resp.Lω(N), Lωnz(N)) the set
of finite (resp. infinite, non-Zeno infinite) timed words accepted byN along finite
(resp. infinite) paths.

It is worth noticing that the accepting conditions only depend on the untimed mark-
ings associated with configurations. Note also that infinitepaths leading to finite
timed words are not considered in this work.

Two RA-TdPNsN andN ′ are∗-equivalent(resp.ω-equivalent, ωnz-equivalent)
wheneverL∗(N) = L∗(N ′) (resp.Lω(N) = Lω(N ′), Lωnz(N) = Lωnz(N ′)). These
equivalences naturally extend to subclasses ofRA-TdPNs. In the following, we
will use notations like “{∗, ω, ωnz}-equivalence” to mean the intersection of all three
equivalences.Idemfor “ {∗, ωnz}-equivalence” and other combinations. We will also
use notations like≡ω or ≡∗,ωnz to denote theω- (resp.{∗, ωnz}) equivalence between
classes of nets.

Notations.Read-arcs are represented by undirected arcs. On pictures,we may use
shorthands to represent bags: for allI ∈ I, I stands for the bag 1· I , [a] is for
the interval [a,a]. We may write intervals as constraints,e.g.“≤ a” stands for the
interval [0,a]. A bagn represents the bagn · R≥0, and no bag on an arc means that
this arc is labelled by the bag 1· R≥0.

Example 1 An example ofRA-TdPN is depicted on Figure 1. This net models an
information provided by a server and asynchronously consulted by clients (transi-
tion “ read”). Since the information may be obsolete with validity duration “ val”,
the server periodically refreshes the value, but the frequency of this refresh may
vary betweenmin and max depending on the workload of the server (transition
“ start”). Note that, due to the “lazy” semantics ofRA-TdPNs, nothing prevents the

2 We do not know whether generalized Büchi conditions could bereduced to Büchi con-
ditions in the context of timed Petri nets. Nevertheless, the standard construction for finite
automata does not extend to Petri nets.

7

token in place “busy” (resp. “ ready”) to die (i.e., to reach an age strictly greater
than max, resp. than0), hence blocking the system. A suitable accepting condi-
tion like “Acc = {busy = 0, ready= 0}” prevents such a blocking behaviour by
enforcing infinitely often the server to refresh the cache. Note the importance of
using a generalized Büchi condition to enforce the firing of both transitions “start”
and “refresh”. The admission control ensures that at least one time unit elapses
between two client arrivals (transition “entry”). Note the interest of the read-arc
between the places “cache” and “ read”: when transition “read” is fired, a token in
place “client” with age 0 is consumed, and it is checked whether at least one token
in place “cache” has age less than or equal to “val”. However, this token is not
consumed (and can hence be used later on again) and its age is unchanged.

Acc = {busy= 0, ready= 0}

• •

input

entry

client

read

cache

readybusy

refresh

start

≥ 1[0]

[0]
[0] ≤ val

[0]

[0]
[0]

[0][min,max]

Fig. 1. An example ofRA-TdPN.

We give an example of a path in thisRA-TdPN, assuming thatmin = 2, max= 4,
andval = 3.

(input,0)+ (busy,0)
(2)
−→ (input,2)+ (busy,2)
start
−→ (input,2)+ (ready,0)

refresh
−→ (input,2)+ (busy,0)+ (cache,0)
(3)
−→ (input,5)+ (busy,3)+ (cache,3)
entry
−→ (input,0)+ (client,0)+ (busy,3)+ (cache,3)
read
−→ (input,0)+ (busy,3)+ (cache,3)

Subclasses ofRA-TdPNs. We define several natural subclasses ofRA-TdPNs.

Definition 4 LetN = (P,m0,T,Pre,Post,Read, λ,Acc) be anRA-TdPN. It is

8

• a timed Petri net(TdPN for short)3 if for all t ∈ T, size(Read(t)) = 0,
• integralif all intervals appearing in bags ofN are inIN≥0,
• 0-resetif for all t ∈ T, for all p ∈ P, I , [0,0]⇒ I < dom(Post(t)(p)),
• k-boundedif all configurationsν appearing along a firing sequence ofN are

such that for every place p∈ P, size(ν(p)) ≤ k,
• boundedif there exists k∈ N≥0 such thatN is k-bounded,
• safeif it is 1-bounded.

All above notions are quite standard, except the 0-reset property which implies that
all tokens which are produced are produced with initial age 0.

Note that theRA-TdPN of Example 1 is integral, 0-reset, but not bounded as there
can be an unbounded number of tokens in place “cache” or “client”.

3 The Coverability Problem.

LetN be anRA-TdPN. Let N be a set of configurations ofN . By N↑, we denote
the upward closure ofN, i.e., the set{ν | ∃ν′ ∈ N, ν′ ≤ ν}.

Let N be a finite set of configurations ofN where all ages of tokens are rational.
The coverability problemfor N and set of configurationsN asks whether there
exists a path inN from ν0, the initial configuration ofN , to someν ∈ N↑. We prove
the following result.

Theorem 1 The coverability problem is decidable forRA-TdPNs.

In order to prove this theorem, we introduce the notion of region for a net. Aregion
is a classical object used in the framework of timed automatafor representing an
infinite set of configurations [3], that we can extend toRA-TdPNs. Such a construc-
tion has been done for example in [12] forTdPNs, and has been used recently in
several other contexts [15,16,11]. An alternative proof based on zones rather than
regions could be used as well, like in [2].

Regions of RA-TdPNs. Let N = (P,m0,T,Pre,Post,Read, λ,Acc) be a net
where the bounds of intervals are inN≥0 ∪ {∞}. Let N be a finite set of markings
with integral ages. There is no loss of generality in assuming that finite bounds of
the net and that values of ages are integers or+∞ (otherwise we refine the granular-
ity of the regions). By max we denote the maximal integer appearing in the bounds
of intervals of the net and in the ages of the tokens in the configurations ofN.

3 This is the standard model, as defined in [18].

9

Definition 5 A regionR for N is a sequence a0a1 . . .ana∞ where n ∈ N≥0, for
all 0 ≤ i ≤ n, ai ∈ Bag(P × {0,1, . . . ,max}) with size(ai) , 0 if i , 0, and
a∞ ∈ Bag(P× {∞}).

We first informally explain the semantics of a region. Given the bag of tokens
defining a configuration, we obtain its associated region as follows. We put in
a∞ all the tokens whose ages are strictly greater than max and forget their ages.
We then put ina0 the tokens with integral ages and add the information about
their ages. Finally, we order the remaining tokens depending on the fractional
part of their ages ina1, . . . ,an, forget their fractional part, and only store the in-
tegral part of their ages. Hencen is the number of different positive fractional
values for ages of the remaining tokens. For instance, consider the bag of tokens
(p,1) + (p,2.8) + (q,0.8) + (q,5.1) + (r,1.5). Then, if the maximal constant is 4,
its region encoding will bea0a1a2a∞ wherea0 = (p,1) (because there is a sin-
gle token with integral age),a∞ = (q,∞) (because the age of token (q,5.1) is 5.1,
hence above the maximal constant),a1 = (r,1) (among all fractional parts, 0.5 is
the smallest one), anda2 = (p,2)+ (q,0) (all tokens with fractional part 0.8).

We now define more formally the semantics of the regions. Letφ be the mapping
from R≥0 to {0,1, . . . ,max,∞} defined by: ifx > max thenφ(x) = ∞ elseφ(x) =
⌊x⌋. We extendφ to P×R≥0 byφ((p, x)) = (p, φ(x)) and toBag(P×R≥0) by linearity.

Let R = a0a1 . . .ana∞ be a region. Then [R] is a set of configurationsν such that
there existν1, ν2, . . . , νn, ν∞ belonging toBag(P× R≥0) with:

• ν = a0 + ν1 + ν2 + . . . + νn + ν∞,
• ∀1 ≤ i ≤ n, φ(νi) = ai, andφ(ν∞) = a∞,
• ∀1 ≤ i ≤ n, ∀(p, x) + (q, y) ≤ νi, 0 < x− ⌊x⌋ = y− ⌊y⌋,
• ∀1 ≤ i < j ≤ n, ∀(p, x) ≤ νi, (q, y) ≤ ν j, x− ⌊x⌋ < y− ⌊y⌋.

Note that every configurationν belongs to a single region, that we writeR(ν), and
that if ν ∈ N, then [R(ν)] = {ν}. The original coverability problem thus reduces to
the coverability problem for finitely many regions, which itself reduces to solving
the coverability problem for a single regionR.

Decidability of the coverability problem. We can now prove Theorem 1.

Proof. We first notice that, given two regionsR = a0a1 . . .ana∞ andR′ = a′0a
′
1 . . .

a′n′a
′
∞, one can check whether [R]↑ ⊆ [R′]↑: the necessary and sufficient conditions

area0 ≥ a′0, a∞ ≥ a′∞ and the existence of a strictly increasing mappingψ from
{1, . . . ,n′} into {1, . . . ,n} such that for every 1≤ i ≤ n′, aψ(i) ≥ a′i .

We define a partial order between regions byR ≤ R′ iff [R′]↑ ⊆ [R]↑. Then, using
Higman’s lemma [9], we can show that this is a well quasi-order, i.e., for every

10

infinite sequence of regions{Ri}i∈N≥0 there existi < j such thatRi ≤ R j. Indeed,
each regionR is a finite sequence of bags over a finite set, hence applying [2,
Theorem 1], the above-mentioned partial order is a well quasi-order.

The algorithm for solving the coverability problem for the upward closure of a
single regionR then consists in computing iteratively the predecessors (by time
elapsing and by discrete steps) of [R]↑. As we will see, each such predecessor is
a finite union of upward closures of regions. We stop exploring the predecessors
of an upward closure of a region when it is larger (for partialorder≤) than an
already computed region. Note that all configurations reachable from [R2]↑ are also
reachable from [R1]↑ wheneverR1 ≤ R2. The computation can then be seen as
a finitely branching tree. To prove that it terminates, it is sufficient to prove that
this tree is finite. Suppose it is not. By applying König lemma, this tree has an
infinite branch. However, as≤ is a well quasi-order, we will eventually obtain a
region which is larger than a previous one. This leads to a contradiction. Hence, the
computation tree is finite, and the computation terminates.The set of configurations
N is covered by theRA-TdPN N if and only if its initial configurationν0 occurs in
the upward closure of some region of the tree.

It remains to explain how we compute the time and discrete predecessors of the
upward closure of a regionR = a0a1 . . .ana∞.

Time predecessors. If a0 contains a token (p,0), there is no strict time predeces-

sor of [R]↑. Otherwise ifsize(a0) , 0, then the time predecessor is [R′]↑ with
R′ = a′0a1 . . .ana′n+1a∞ wherea′0 is the empty bag anda′n+1 is obtained froma0 by
decrementing by 1 the (integral) age of each token. Informally, this operation rep-
resents a (reverse) small time elapse such that no token ofa1 reaches an integral
value and no token ofa∞ reaches back max.

Otherwise (i.e., size(a0) = 0) we need to choose if tokens ofa1 will first reach an
integral value or some tokens ofa∞ will first reach max. It could be the tokens ofa1,
a bag of tokensb∞ ≤ a∞, or both. We only illustrate this last case (which assumes
n ≥ 1). The above-mentioned time predecessor is [R′]↑ whereR′ = a′0a

′
1 . . .a

′
n−1a

′
∞

is obtained as follows.

• a′∞ = a∞ − b∞,
• a′0 = a1 + c∞ wherec∞ is obtained fromb∞ by setting the age of each token to

max,
• ∀1 ≤ i ≤ n− 1,a′i = ai+1.

Discrete predecessors. We pick a transitiont. Note that given an intervalI of the
net and a token (p, x) belonging to someai for i ∈ {0,1, . . . ,n,∞}, we can compute
whether, given a configuration belonging to that region, thecorresponding token
belongs toI . By property of the regions, this is independent of the choice of the
configuration. We then write (i, x) � I .

11

We consider the upward closure of the regiona0a1 . . .ana∞, and want to compute
its preimage by transitiont. Transitiont produces the bag of tokensPost(t). These
tokens may appear in one of theai ’s, but this is not required, they may only be in
the upward closure. Similarly, some tokens ofRead(t) may appear in some of the
ai ’s, but this is also not required. Hence, we choose bags of tokensposti , read+i ∈
Bag(P×{0,1, . . . ,max}×I) for everyi ∈ {0,1, . . . ,n} andpost∞, read+∞ ∈ Bag(P×
{∞} × I) such that

• for all (p, x, I) ≤ posti + read+i , (i, x) � I ,
• for all i ∈ {0,1, . . . ,n,∞}, π1,2(posti) + π1,2(read+i) ≤ ai,

(recall thatπ1,2 projects bags onto the two first components.)
•
∑

i π1,3(posti) ≤ Post(t),
•
∑

i π1,3(read+i) ≤ Read(t).

The bagposti represents the tokens produced byt which “belong” toai, whereas
the bagread+i represents the tokens read byt which also “belong” toai. However,
there might be additional tokens (either that are read or that are produced) which
do not appear in one of theai ’s (this is possible as we consider the upward closure
of the region), that’s why the two last conditions are inequalities and not equalities.
Figure 2 illustrates the decomposition.

Applying this first decomposition, we build an intermediateregionR′ = a′0a
′
1 . . .a

′
n′a
′
∞

by substractingπ1,2(posti) from ai for everyi and deleting the item in the resulting
sequence if its size is null (for 1≤ i ≤ n).

Then, to really simulate the discrete transitiont, we need to initially have all tokens
required by the read-arcs and all tokens that are consumed bythe pre-arcs. We set
bags of tokensprei , read−i ∈ Bag(P×{0,1, . . . ,max}×I) for everyi ∈ {0,1, . . . ,n′′}
for some integern′′, pre∞, read−∞ ∈ Bag(P × {∞} × I) and a strictly increasing
mappingψ from {1, . . . ,n′} into {1, . . . ,n′′} such that

• for all (p, x, I) ≤ prei + read−i , (i, x) � I ,
• a′′0 = a′0 + π1,2(pre0) + π1,2(read−0),

a′′∞ = a′∞ + π1,2(pre∞) + π1,2(read−∞),
for everyi ∈ {1, . . . ,n′′}, if there existsj such thatψ(j) = i then
a′′i = a′j + π1,2(prei) + π1,2(read−i), otherwisea′′i = π1,2(prei) + π1,2(read−i),
•
∑

i π1,3(prei) = Pre(t),
•
∑

i π1,3(read−i) +
∑

i π1,3(read+i) = Read(t).

The bagsread−i complement the already defined bagsread+i ’s to satisfy theRead(t)
constraint, whereasprei are the tokens required by the pre-arcs of the transition. See
Figure 2 for an illustration of the construction.

Under those conditions, the regionR′′ = a′′0 a′′1 . . .a
′′
n′′a
′′
∞ is a predecessor byt of

[R]↑. Note that the constructed regionR′′ depends on the various choices we have
made (all bagsread+, read−, pre, etc. and also the indicesn′, n′′, the mapping

12

ψ, etc.). For each of these (finitely many) choices, it gives a regionwhich is in
the preimage ofR by t (indeed, take any configurationν′′ ∈ [R′′]↑, then quite
straightforwardly, any configuration image ofν by t is in [R]↑), and all regions in
the preimage byt can of course be obtained in that way.

|=
∑

i π1,3posti

and∈ψ−1(
∑

i π1,2(posti)) |=Post(t)

|=
∑

i π1,3read+i
and∈ψ−1(

∑
i π1,2(read+i))

|=Read(t)

|=
∑

i π1,3read−i
and∈ψ−1(

∑
i π1,2(read−i))

|=Pre(t)=
∑

i π1,3prei

and∈ψ−1(
∑

i π1,2(prei))

∈[R′′]

∈[R′]

∈[R]

∈[R′′]↑ ∈[R′]↑ c∈[R]↑

c = d + e + f with e∈[R]

Fig. 2. Decomposition of the set of tokens for the discrete predecessor computation

Hence, time predecessors and discrete predecessors of regions are finite unions of
regions, and can be effectively computed, which concludes the proof of the theo-
rem. �

4 Two Discriminating Timed Languages

We design two timed languages which distinguish between several subclasses of
RA-TdPNs. Notice that these two languages areZeno. This remark will be impor-
tant later on in this section.

The timed languageL1. The RA-TdPN N1 of Figure 3 (with a single Büchi
accepting conditionp ≥ 1) is a 0-reset, integral and boundedRA-TdPN which
recognizes the timed language (of infinite timed words)

L1 = {(a, τ1) . . . (a, τn) . . . | 0 ≤ τ1 ≤ . . . ≤ τn ≤ . . . ≤ 1}.

13

•p
a

[0,1]

Acc = {p ≥ 1}

Fig. 3. A RA-TdPNN1 recognizingL1

Lemma 1 The timed language L1 is recognized by noTdPN.

Proof. Assume that there is aTdPN N which recognizes the timed languageL1.
We denote byd the least common multiple of the denominators of the constants
appearing in the intervals ofN . We pick an infinite wordw = (a, τ1)(a, τ2) . . .
(a, τn) . . . such that for everyi ≥ 1, 1− 1/(2d) < τi < τi+1 < 1.

The wordw is accepted byN1, and thus byN : there is an infinite firing sequence
σ = σ1(t1, τ1)σ2(t2, τ2) . . . σn(tn, τn) . . . overΣε which is an accepting run ofN and
where all transitions ofσi are labelled byε whereas the transitionsti are labelled
by a.

The setTokof tokens part of the initial marking or produced along the sequenceσ1

is finite. Hence, there is an integern such that tokens inTokare not used for firing
transitions in the sequence (tn−1, τn−1)σn(tn, τn) . . . Sinceτn−1 < τn, there is a suffix
(t′0, τ)(t

′
1, τn) . . . (t′k, τn)(tn, τn) of the timed transition sequence (tn−1, τn−1)σn(tn, τn)

with τ < τn (k may be equal to 0). We noteσ′ the finite prefix ofσ up to (t′0, τ),
andσ′′ the suffix starting right after (t′0, τ) (henceσ = σ′σ′′). We will prove that
the infinite sequencẽσ = σ′(σ′′ + 1/(2d)) is a firing sequence ofN (σ′′ + 1/(2d)
is the timed transition sequence obtained fromσ′′ by delaying firings of transitions
by 1/(2d) time units). To that aim, we will analyse the age of tokens used for firing
a transition ofσ′′ = (t′1, τn) . . . (t′k, τn)(tn, τn)σn+1(tn+1, τn+1) . . . in the original timed
transition sequenceσ, and we will show that (when necessary) we can modify the
initial age of these tokens in order for the timed transitionsequencẽσ to be firable.

We pick a token in placep which, alongσ, is produced by some transitiont and
used for firing a transitiont′ alongσ′′. This means in particular that this token is
not in Tok, and thus that transitiont occurs alongσ at some dateτ with τ1 ≤ τ.
If t is a transition ofσ′′, then we do not need to modify the initial age ofp along
σ̃, sincet andt′ will be separated by the same delay alongσ and along̃σ, hence
the tokenp can be used similarly inσ and inσ̃. Otherwise,t occurs alongσ′ in σ,
hence 1−1/(2d) < τ1 ≤ τ ≤ τ < τn ≤ τ

′ < 1 whereτ′ is the date at whicht′ is fired
alongσ. We setδ = τ′ − τ: obviously, 0< δ < 1/(2d). Let us callI− the interval
of Post(t)(p) associated with the production of the token, andI+ the interval of
Pre(t′)(p) associated with the consumption of the token. We first notice thatI− and
I+ cannot be both singletons: assumeI− = [h/d,h/d] and I+ = [k/d, k/d] with
h, k ∈ N≥0, thenk/d = h/d + δ, which is impossible since 0< δ < 1/(2d). We
distinguish between several cases forI− andI+:

14

• We assumeI− = [h/d,h/d] and I+ = (k/d, k′/d) with k < k′ (the brackets defin-
ing I+ are either “strict” or “non-strict”). The age of the token when it is con-
sumed by transitiont′ alongσ is h/d + δ ∈ I+. Thush < k′, and we get that
h/d + δ + 1/(2d) ∈ I+ (since 0< δ < 1/(2d)). In this case, we do not change the
initial age of the token for firing the timed transition sequenceσ̃, and the firing
of t′ can be delayed by 1/(2d) time units.
• We assumeI− = (h/d,h′/d) and I+ = [k/d, k/d] with h < h′. The age of the

token when it is produced (i.e., when transitiont is fired) alongσ is k/d− δ ∈ I−.
Thus,h < k andk/d − δ − 1/(2d) ∈ I− since 0< δ < 1/(2d). For firing the
sequencẽσ, we thus change the initial age of the token down tok/d−δ−1/(2d),
and the firing oft′ can then be delayed by 1/(2d) time units.
• We assumeI− = (h/d,h′/d) andI+ = (k/d, k′/d) with h < h′ andk < k′. We note
α the initial age of the token when transitiont is fired alongσ: α + δ (≤ k′/d)
is its age when the token is consumed for firing transitiont′ alongσ. If α + δ <
k′/d − 1/(2d), we do not modify its initial age iñσ, and the firing oft′ can be
delayed safely by 1/(2d) time units.

Assume conversely thatα ≥ k′/d − 1/(2d) − δ. Then, (k′ − 1)/d < α < k′/d,
and thush ≤ k′ − 1 < h′. Along σ̃, choose as new initial ageα′ = (k′ − 1)/d + β
with 0 < β < 1/(2d) − δ for the token (when transitiont is fired), then we can
check thatα′ ∈ I− andα′ + δ + 1/(2d) ∈ I+, hence the firing oft′ can also be
delayed by 1/(2d) time units.

With these new initial ages for the tokens, the timed transition sequencẽσ is firable,
and accepts the timed word (a, τ1) . . . (a, τn−1)(a, τn + 1/(2d))(a, τn+1 + 1/(2d))
Moreover, the discrete markings along the run accepting theinitial word and the
above word are the same, both timed words are thus accepted byN . However this
timed word should not be accepted byN as it is not accepted byN1 (because
τn + 1/(2d) > 1), which contradicts the existence of aTdPN N equivalent toN1.
Thus, there is no classicalTdPN which recognizesL1. �

The timed languageL2. The RA-TdPN N2 of Figure 4 is an integral bounded
RA-TdPN which recognizes the timed language (of infinite timed words)

L2 = {(a,0)(b, τ1) . . . (b, τn) . . . | ∃τ < 1 s.t. 0≤ τ1 ≤ . . . ≤ τn ≤ . . . < τ}.

•
p q

a b
[0]]0,1[]0,1[

Acc = {q ≥ 1}

Fig. 4. A RA-TdPNN2 recognizingL2

Lemma 2 The timed language L2 is recognized by no0-reset integralRA-TdPN.

15

Proof.Assume that the timed languageL2 is recognized by the 0-reset integralRA-
TdPN N . Pick a wordw = (a,0)(b, τ1) · · · (b, τi) . . . in L2, with 0 < τ1 ≤ τ2 ≤ . . . ≤

τi ≤ . . . < τ and limi→∞ τi = τ. We noteσ an accepting firing sequence inN for w.

We write σ = σ1σ2 whereσ1 is an instantaneous firing sequence, andσ2 =

(t0,d)σ2 for some delayd > 0 (hence,t0 is the first transition alongσ which does
not occur at date 0). We claim thatσ′ = σ1σ

′
2 whereσ′2 is obtained fromσ2 by

delaying all dates by 1− τ time units, is a firing sequence ofN . Let us select an
occurrence of a transitiont fired in σ2 and a token read or consumed byt corre-
sponding to an intervalI . If the token has been produced by a transition fired inσ2,
then it has the same age inσ′2. If the token is an initial token or has been produced
by σ1, then its agex when firing t in σ2 is such that 0< d ≤ x < τ < 1, thus
]0,1[⊆ I (because the netN is integral and 0-reset). The age of this token when it
is checked for firingt in σ′2 is x+ 1− τ and satisfies 0< x+ 1− τ < 1. Thus, the
same occurrence oft is firable inσ′2.

Since the untimed firing sequences ofσ andσ′ are equal,σ′ is an accepting se-
quence. The timed word which is read onσ′ is w′ = (a,0)(b, τ1 + 1− τ) . . . (b, τi +

1− τ) . . . with lim i→∞ τi + 1− τ = 1. Thus,w′ < L2, which contradicts the assump-
tion that it is accepted byN , and thus byN2. Finally, there is no 0-reset integral
RA-TdPN which recognizes the languageL2. �

5 Normalization of RA-TdPNs

We present a transformation ofRA-TdPNs which preserves both languages over
finite and (Zenoor non-Zeno) infinite words, as well as boundedness and integral-
ity of the nets. This construction transforms the net by imposing strong syntactical
conditions on places, which will simplify further studies of RA-TdPNs. This con-
struction is decomposed into three steps. The first step consists in splitting inter-
vals so that two intervals are either disjoint or equal. The second step is somehow
close to one-dimensional regions of [10], and records ages of tokens and how time
elapses. The third step duplicates places so that all pre- (resp post-) arcs connected
to a place are labelled by the same interval.

Proposition 1 For everyRA-TdPNN , we can effectively construct aRA-TdPNN ′

which is{∗, ωnz, ω}-equivalent toN , and in which all places are configured as one
of the five patterns depicted in Figure 5, which reads as: “there is ana (which is a
positive rational, or is possibly equal to+∞ for patternsP2 andP4) such that the
place is connected to possibly several post-arcs, pre-arcsand read-arcs, with bags
as specified on the figure”. Note that parameters n, n′ and n” are not necessarily
shared by arcs (whereas a is). Moreover the construction preserves boundedness
and integrality.

16

n · [0]

n′ · [0]

n′′ · [0]
p

t′

t t′′

(a) PatternP1

[0]

n′ ·]0,a[

n′′ ·]0,a[
p

t′

t t′′

(b) PatternP2 (a > 0 ora = ∞)

[0]

n′ ·]0,a[

[a]
p

t′

t t′′

(c) PatternP3 (a > 0)

n ·]0,a[

n′ ·]0,a[

n′′ ·]0,a[
p

t′

t t′′

(d) PatternP4 (a > 0 ora = ∞)

n ·]0,a[

n′ ·]0,a[

[a]
p

t′

t t′′

(e) PatternP5 (a > 0)

Fig. 5. The five normalized patterns for anRA-TdPN.

To avoid difficulties due to the initial marking, we first apply a straightforward
transformation to the net. We add a placepinit containing initially one token and
a transitiontinit labelled byε, whose single pre-arc labelled by [0] is connected
to pinit and whose post-arcs correspond to the initial marking,i.e., for all p ∈ P,
Post(t)(p) = m0(p) · [0]. All other places are initially unmarked. Finally we add
pinit = 0 to the acceptance conditions. It is trivial that this transformation does
not modify any accepted language. In the sequel, we assume that we have already
applied this transformation to the net, and we apply the nexttransformations on
each place, exceptpinit.

As announced above, for proving Proposition 1 we proceed in three steps, and
successively construct a net which satisfies syntactical restrictions (1), (2) and (3)
below:

(1) For every place, there exists a finite set of pairwise disjoint intervals{Ik}1≤k≤K

such that every arc connected to this place has a bag of the form
∑

1≤k≤K nk · Ik.
Moreover, everyIk is either of the form [a] or]a,b[with a ∈ Q≥0 andb ∈
Q>0 ∪ {∞}.

(2) For every place,
• either it is connected to (possibly) several post-arcs labelled by bagsn · [0],

(possibly) several read-arcs labelled by bagsn′ · [0] and (possibly) several
pre-arcs labelled by bagsn′′ · [0].
• or there existsa ∈ Q>0 such that it is connected to one post-arc whose bag is

[0], (possibly) several post-arc labelled by bagsn ·]0,a[, (possibly) several
read-arcs labelled by bagsn′ ·]0,a[, one pre-arc labelled by a bag [a], and
(possibly) several pre-arcs labelled by bagsn′′ ·]0,a[.
• or it is connected to one post-arc whose bag is [0], (possibly) several post-

arc labelled by bagsn ·]0,+∞[, (possibly) several read-arcs labelled by bags

17

n′ ·]0,+∞[, and (possibly) several pre-arcs labelled by bagsn′′ ·]0,+∞[.
(3) Every place is configured as one of the five patterns depicted on Figure 5.

In all following lemmas, the equivalence mentioned is the{∗, ω, ωnz}-equivalence,
which means that the constructions are correct for finite andinfinite timed words.

The transformation proceeds as follows: it starts with anRA-TdPN N and suc-
cessively builds the threeRA-TdPNs N1, N2 andN3 obtained respectively by
Lemma 3, 4 and 5.

Lemma 3 We can build aRA-TdPN N1, equivalent toN , and satisfying restric-
tion (1).

Proof.Let p be a place ofN . We consider the finite bounds of intervals which occur
in the bag of some arc connected top, say{a1, . . . ,am} with i < j ⇒ ai < a j. We
then define the setSIp = {[a1,a1],]a1,a2[, . . . ,]am−1,am[, [am,am],]am,∞[}. W.l.o.g.
we assume thata1 = 0. Moreover, to ease the presentation, we defineam+1 = ∞ and
setam+1 − am = ∞, and write the setSIp asSIp = {Ik}1≤k≤K . Note that for every
interval Ik ∈ SIp and for every intervalI which occurs in the bag of some arc
connected top, we have eitherI ∩ Ik = ∅ or I ∩ Ik = Ik.

We will iteratively apply the following transformation to the transitions connected
to p. Let us pick a transitiont connected top by an arc whose associated bag is
x =
∑

1≤k′≤K′ nk′ · Jk′ . We will replace the transitiont by copies with the same arcs
and the same bags except the one which is concerned by the transformation. We
denote such copies bytφ, whereφ is a mapping from{1, . . . ,K}× {1, . . . ,K′} toN≥0

such thatIk ∩ Jk′ = ∅ ⇒ φ(k, k′) = 0 and
∑

1≤k≤K φ(k, k′) = nk′. The modified bag is
defined by:

xφ =
∑

1≤k′≤K′
∑

1≤k≤K φ(k, k′) · (Ik ∩ Jk′)

=
∑

1≤k′≤K′
∑

1≤k≤K φ(k, k′) · Ik

=
∑

1≤k≤K(
∑

1≤k′≤K′ φ(k, k′)) · Ik.

This transformation is valid. Indeed given any choice of an itemb ∈ Bag(R≥0 × I)
with π2(b) = x there exists a mappingφ and an itemb′ ∈ Bag(R≥0 × I) such that
π1(b′) = π1(b) andπ2(b′) = xφ. More precisely, we associate with a token (d, Jk′) ≤
b a token (d, Ik) such thatd ∈ Ik. Conversely, given an itemb′ ∈ Bag(R≥0 ×I) with
π2(b′) = xφ, we pickφ(k, k′) tokens{(di , Ik)}1≤i≤φ(k,k′) and replace them by the tokens
{(di , Jk′)}1≤i≤φ(k,k′). In this way, we obtain a bagb ∈ Bag(R≥0 × I) with π2(b) = x
andπ1(b) = π1(b′).

The resultingRA-TdPN is denotedN1. �

Lemma 4 We can build aRA-TdPN N2, equivalent toN1, and satisfying restric-
tions(1) and(2).

18

Proof.We iteratively apply the following transformation to each place ofN1. Let p
be a place ofN1 and assume that{[a1,a1],]a1,a2[, . . . ,]am−1,am[, [am,am],]am,am+1[}
is the set of pairwise disjoint intervals required by restriction (1).

We substitute top a set of places{pa1, pa1,a2, . . . , pam−1,am, pam, pam,am+1}. We thus need
to modify the accepting conditionAcc1 of N1: the accepting conditionAcc2 of
N2 is obtained by replacing all occurrences ofp in Acc1 by the term

∑m
i=1(pai +

pai ,ai+1). Besides, in the transformed net, a token with aged in placepai or pai ,ai+1

will correspond to a token with aged + ai in placep.

In order to pick (i.e., produce, consume or read) a token with ageai in placep, one
must pick a token with age 0 in the new placepai . In order to pick a token with age
d ∈]ai ,ai+1[in placep, one must pick a token with aged− ai ∈]0,ai+1 − ai[in the
new placepai ,ai+1.

Thus we transform an arc connected top with bag

x = n1 · [a1,a1] + n1,2 ·]a1,a2[+ · · · + nm · [am,am] + nm,m+1 ·]am,am+1[

into arcs connected to the new places such that the bag corresponding topai is
ni · [0,0], and the bag corresponding topai ,ai+1 is ni,i+1 ·]0,ai+1 − ai[.

Finally, we add transitions to “transfer” tokens from one ofthe new places to an-
other one when their age increases:ta1,a2, ta2, . . . , tam, tam,am+1. A transition tai con-
sumes a token with ageai − ai−1 in pai−1,ai and produces a token with age 0 in place
pai . A transition tai ,ai+1 consumes a token with age 0 inpai and produces a token
with age 0 in placepai ,ai+1. All these transitions are labelled byε.

LetN2 be the transformed net andν′ be a configuration ofN2. We associate with
ν′ a configurationν = f (ν′) of N1 defined by:

f (p′,d) = (p′,d) if p′ , p place ofN1

f (pai ,d) = (p,ai + d) for everypai

f (pai ,ai+1,d) = (p,ai + d) for everypai ,ai+1

which we extend on bags by linearity. Note thatf (ν′0) = ν0. Straightforwardly,
time elapsing commutes with this mapping. Moreover, firing anew transition does
not modify the image of a configuration and finally the transformation of the arcs
ensures that firing an existing transition is also possible in the original net and that
this firing commutes with the mapping. Finally, we easily check that the image by
this mapping of a configuration satisfyingAcc1

4 is a configuration satisfyingAcc2.
An accepting firing sequence ofN2 leads thus by this mapping to an accepting firing
sequence ofN1.

4 Recall that a configurationν satisfies an acceptance conditionAcc whenever the number
of tokens in the places satisfies the constraint ofAcc.

19

Conversely, assume thatσ is an accepting firing sequence ofN1. First, we split
time elapsing steps in such a way that if at some time a token corresponding to the
sequence reaches the ageai, this instant is associated with an intermediate config-
uration. In order to build the corresponding sequenceσ′ of N2, we will add firings
of the new transitions at this instant some them just after the last time elapsing and
some others just before the next time elapsing. The first set of firings will corre-
spond to transitionstai+1 and will transferall tokens in placepai ,ai+1 with ageai+1−ai

to placepai+1. The second set of firings will correspond to transitionstai ,ai+1 and will
transferall tokens in placepai with age 0 in placepai ,ai+1. With these enforced tran-
sition firings, tokens are always in the appropriate place for simulating a transition
firing in σ. �

Example 2 We illustrate the above construction on the net below:

5 · [0] + 2 ·]0,2[

2 · [0]+]0,2[

3 · [2]+]2,∞[
p

Read

Post Pre

The new (part of) net which is constructed is the following:

p0 p0,2 p2 p2,∞

Read

Pret0,2 t2 t2,∞Post
5 · [0] [0] [0] [2] [0] [0] [0]]0,∞[

3 · [0]

2 ·]0,2[

2 · [0]]0,2[

We consider an execution in the initial net, and will give thecorresponding ex-
ecution in the constructed net. We consider the following execution in the initial

20

net:
Post
−→ 5 · (p,0)+ (p,1)+ (p,1.2)
(0.5)
−→ 5 · (p,0.5)+ (p,1.5)+ (p,1.7)
Post
−→ 5 · (p,0)+ 5 · (p,0.5)+ 2 · (p,1)+ (p,1.5)+ (p,1.7)
Post
−→ 10 · (p,0)+ 5 · (p,0.5)+ 4 · (p,1)+ (p,1.5)+ (p,1.7)
Read
−→ 10 · (p,0)+ 5 · (p,0.5)+ 4 · (p,1)+ (p,1.5)+ (p,1.7)
(1)
−→ 10 · (p,1)+ 5 · (p,1.5)+ 4 · (p,2)+ (p,2.5)+ (p,2.7)
Pre
−→ 10 · (p,1)+ 5 · (p,1.5)+ (p,2)+ (p,2.7)

In the above sequence, tokens are gathered by age, for example the first bag means
that there are seven tokens in place p, five of age0, one of age1 and one of age1.2.
The corresponding sequence of transitions in the constructed net is:

Post, (t0,2)
5, (0.5),Post,Post,Read, (t0,2)

10, (0.3), t2, t2,∞, (0.2), t2, t2,∞, (0.5), (t2)
4,Pre

Lemma 5 We can build anRA-TdPNN3, equivalent toN2, and satisfying restric-
tions(1), (2), and(3).

Proof.To prove this lemma, we need to explain how we can transform the snippets
built in the proof of the previous lemma into equivalent other snippets where all
places have the shape of one of the five patterns of Figure 5. InRA-TdPN N2 we
have5 ,

• placespai are connected to (possibly) several post-arcs labelled by bagsn · [0],
(possibly) several read-arcs labelled by bagsn′ · [0] and (possibly) several pre-
arcs labelled by bagsn′′ · [0].
• placespai ,ai+1 (with ai+1 < ∞) are connected to one post-arc whose bag is [0],

(possibly) several post-arc labelled by bagsn ·]0,ai+1 − ai[, (possibly) several
read-arcs labelled by bagsn′ ·]0,ai+1−ai[, one pre-arc labelled by a bag [ai+1−ai],
and (possibly) several pre-arcs labelled by bagsn′′ ·]0,ai+1 − ai[.
• placepam,∞ is connected to one post-arc whose bag is [0], (possibly) several post-

arc labelled by bagsn ·]0,+∞[, (possibly) several read-arcs labelled by bags
n′ ·]0,+∞[, and (possibly) several pre-arcs labelled by bagsn′′ ·]0,+∞[.

We apply successively the following transformations to thedifferent places:

• duplicate the place for each incident post-arc, and duplicate all transitions con-
nected with read- and pre-arcs as depicted on the next picture (transitiont can be
connected by a pre- or a read-arc):

5 Parametersn,n′ andn′′ are not necessarily shared by arcs.

21

k1 · I1

k2 · I2

n · I
{

k1 · I1

k2 · I2

m · I

(n−m) · I

p
p1

p2

t t(m)

Thus, each transitions connected by a pre- or read-arc is replaced by copies, one
for everym≤ n if n · I is the bag labelling the arc betweenp andt.
• duplicate the place for each incident pre-arc, and duplicate all transitions con-

nected with read- and post-arcs as depicted on the next picture (transitiont can
be connected by a post- or a read-arc):

k1 · I1

k2 · I2

n · I
t1

t2
{

k1 · I1

k2 · I2

m · I

(n−m) · I

p
p1

p2

t t(m)
t1

t2

Thus, each transition connected by a post- or a read-arc is replaced by copies,
one for everym≤ n if n · I is the bag labelling the arc betweenp andt.

We modify accordingly the accepting conditions by replacing occurrences ofp by
the sump1 + p2 if we have duplicated the placep into the two placesp1 andp2. It
is straightforward to prove that these constructions do notchange the accepted lan-
guages. There is only one point that needs to be detailed. In the last transformation,
given an occurrence oft in a sequenceσ of N , we obtain the correspondingσ′ of
N ′ by choosing the appropriatet(m) which depends onσ. Indeed, we countm1 the
number of tokens produced byt that will be consumed byt1 andm2 the number of
tokens produced byt that will be consumed byt2. Note thatm1+m2 ≤ n, so we can
choose anymsuch thatm1 ≤ m≤ n−m2.

Finally, the places of the resulting net satisfy the property that they are connected
to post-arcs (resp. pre-arcs) labelled by the same interval. Moreover, because of the
form of the intervals in the former construction, this meansthat every place is of
the form of one of the five patterns of Figure 5. �

Note that all transformations we have presented in this section preserve both bound-
edness and integrality of the nets. Note also that the transformation is doubly-
exponential. This bound may be improved, but here we only focus on expressive-
ness. This concludes the proof of Proposition 1.

22

6 Removing the Read-Arcs

In this section, we study the role of read-arcs inRA-TdPNs. Thanks to Lemma 1
(languageL1), we already know that read-arcs add expressive power toTdPNs for
theω-equivalence. We then prove that read-arcs do not add expressiveness to the
model of TdPNs when considering finite or infinite non-Zeno timed words. We
present two different constructions: the first one is correct only for finite timed
words, whereas the second one, which extends the first one, iscorrect for non-
Zenoinfinite timed words. In both correction proofs, we need to assume that places
connected to read-arcs do not occur in the acceptance condition. This can be done
without loss of generality, as stated by the following lemma.

Lemma 6 Given anRA-TdPNN , we can build aRA-TdPNN ′ {∗, ω, ωnz}-equiva-
lent toN such that no place connected to a read-arc does occur in the acceptance
condition.

Proof. We iteratively apply the following transformation to everyplace ofN con-
nected to a read-arc and occurring in the acceptance condition. Let p be such a
place. The netN ′ is obtained by adding toN a new placep′ such that for every
t ∈ T, Post(t)(p′) = Post(t)(p), Pre(t)(p′) = Pre(t)(p), Read(t)(p′) = 0. We as-
sume in addition thatν0(p′) = ν0(p), and we set the acceptance condition ofN ′ to
the one ofN where placep is replaced by placep′.

We claim thatN ′ is equivalent toN . First note that given any reachable config-
uration ofN ′, p and p′ contain the same number of tokens, but not necessarily
the same (i.e., with the same age) tokens (because pre-arcs may choose different
tokens).

Let σ′ be a firing sequence ofN ′ leading to an accepting configuration. Thenσ,
obtained fromσ′ by deleting the tokens ofp′ in the bagsx, y, z associated with the
firing of a transition, is a sequence ofN . Indeed asN is a subnet ofN ′ obtained
by deleting places, all behaviours of the latter net are behaviours of the former
one. Furthermore, due to the previous observation about markings of p andp′, the
configuration reached after the firing sequenceσ satisfies the acceptance condition
of N .

Let σ be a firing sequence ofN leading to an accepting configuration. Then we
build σ′ a firing sequence ofN ′ from σ by consuming and producing in place
p′, the same tokens consumed and produced inp by the sequenceσ. The final
configuration ofσ′ has the same tokens inp andp′ and thus satisfies the acceptance
condition ofN ′. �

23

6.1 Case of finite words

As announced above, we establish now a result proving that with respect to the
equivalence of finite timed words, it is possible, given anRA-TdPN, to build an-
other one which is equivalent. One of the key ideas underlying this construction
is the resort to a modification of the acceptance conditions which allows us to add
some vivacity to the model. Before stating our result, we illustrate this idea on an
example.

Example 3 We consider theRA-TdPNN1 depicted on Figure 3. We transform this
net into the net illustrated on Figure 6, which recognizes the same language of finite
timed words. In this net, initially, transition t1 labelled byε puts one token in place
p1 and another one in place p2. Then a’s are produced by firings of the transition
t3, and finally before one time unit has elapsed, the transitiont2 labelled byε is
taken, which empties places p1 and p2. This last firing is enforced by the accepting
condition p1 + p2 = 0.

•

t1, ε t2, ε

p2

p1

t3,a

[0]

[0]

[0]
[0,1]Acc = {p1 + p2 = 0}

Fig. 6. An illustration of the ideas used for removing the read-arcs.

Theorem 2 Let N be anRA-TdPN, then we can effectively build aTdPN N ′,
which is∗-equivalent toN . Note that the construction preserves boundedness and
integrality of the net.

Proof. To prove this result, we first normalize the net. We consider only places
incident to read-arcs and, thanks to the previous lemma, we can suppose that these
places are not in the acceptance condition. We then distinguish between the five
possible patterns of Figure 5 for a placep incident to a read-arc, and show that in
every case, we can remove the read-arcs incident to placep.

Pattern P1. The construction is presented on Figure 7. This is the simplest case.
Indeed, the simulation is the same as in the untimed case. It is easy to verify that
the firing sequences of the two nets are exactly the same, and thus the two nets are
equivalent.

Pattern P2. We handle separately the casesa = +∞ anda < +∞. The construc-
tion for the first case is presented on Figure 8. For the secondcase, the construction
is presented on Figure 9.

24

n · [0]

n′ · [0]n′ · [0]

n′′ · [0]
p

t′

t t′′

Fig. 7. Removing read-arcs in patternP1

[0]

n′n′ · [0]

n′′> 0 [0]
p

t′

t t′′

Fig. 8. Removing read-arcs in patternP2, casea = +∞

The casea = +∞ is relatively simple. It is indeed sufficient to notice that, once a
token has a positive age, it can be used forever by read-arcs and pre-arcs, since its
age does not constrain their firings. In particular, we do notmodify the accepting
condition.

The casea < +∞ is a little bit more involved since we have to take into account
the ages of the tokens. Simulating the read-arcs is thus not so easy. To ensure the

t′

t

t′′

p3

p1

p2 t1, ε
t2, ε[0]

[0]

> 0 [0]

n′n′ · [0]

n′′

]0,a[

n′′ ·]0,a[

Fig. 9. Removing read-arcs in patternP2, casea < +∞

correctness of this construction, we also modify the accepting condition ofN by
adding the following constraint:p1 + p2 + p3 ≤ 0. Before proving the equivalence
between the two nets, we make preliminary remarks on severalinvariants of the net
N ′. Every configurationν appearing on anacceptingfiring sequence ofN ′ satisfies
the following properties:

25

(i) size(ν(p1)) = size(ν(p2))+ size(ν(p3))
(ii) size(ν(p2)) ≥ size(ν(p1)|=0)

whereν(p1)|=0 is the bag of tokens in placep1 whose age is equal to 0
(iii) size(ν(p1)) = size(ν(p1)|<a)

whereν(p1)|<a is the bag of tokens in placep1 whose age is strictly less
thana

The two first properties are simple invariants obtained by comparing producing and
consuming arcs connected to placesp1, p2 andp3.

The last property relies on the accepting property of the sequence. Indeed, this
implies that every token produced in placep1 has to be consumed by one of the two
transitionst′′ andt2. The timing requirements (]0,a[) of arcs connected to placep1

of transitionst′′ and t2 then implies that the age of these tokens is always strictly
less thana.

We first consider an accepting firing sequenceσ of N , and build a corresponding
accepting firing sequenceσ′ of N ′. We make two kinds of modifications to this
sequence. First, we move tokens from placep2 to placep3 with the silent transition
t1 as soon as we need them for transitiont′ or t′′ (if a token is never used, we
move it when its age is equal toa/2). Secondly, we empty placesp1 andp3 using
the silent transitiont2 as soon as the tokens are no more used until the end of
the sequence. In this way, we consume every dead token of place p of netN . The
silent transitions we have inserted allow to verify that we can fire the corresponding
discrete transitions in the netN ′.

Conversely, we consider an accepting firing sequenceσ′ of N ′. We build a firing
sequenceσ of N obtained fromσ′ by erasing silent transitionst1 andt2. We now
verify that transitionst′ and t′′ are still firable inσ. First note that the producing
arcs imply the following inequality between two configurationsν andν′ obtained
respectively after the same prefix ofσ andσ′:

ν(p) ≥ ν′(p1)

This implies that every firable occurrence of the transitiont′′ in σ′ is still firable in
σ. To prove the same property fort′, we will use the preliminary remarks. Suppose
thatt′ is firable inν′. Then, there are at leastn′ tokens in placep3. Properties (i), (ii)
and (iii) together imply that there are at leastn′ tokens of age belonging to]0,a[in
placep1. The previous inequality betweenν(p) andν′(p1) finally implies that the
transitiont′′ is also firable inN . This concludes the proof for patternP2.

Pattern P3. The construction is presented on Figure 10. We also modify the ac-
cepting condition ofN by adding the following constraint:

∑6
i=1 pi ≤ 0. Before

proving the equivalence between the two nets, we also make preliminary remarks

26

t′

t

t′′
p1

p2

p3

p4

p5

p6

t1, ε

t2, ε

t3, ε

t4, ε

t5, ε

[0]

[0]

[0]

[0]

> 0

[0]

[0]

[0]

[0]

[a]

]0,a[

> 0

n′n′ · [0]

Fig. 10. Removing read-arcs in patternP3

on several invariants of the netN ′. Every configurationν appearing on an accepting
firing sequence ofN ′ satisfies the following properties:

(i) size(ν(p1)|=0) + size(ν(p2)|=0) + size(ν(p4)|=0) = size(ν(p3)|=0)
(ii) size(ν(p2)|=a) ≤ size(ν(p6)|>0)

(iii) size(ν(p2)|>0) + size(ν(p4)|>0) = size(ν(p3)|>0) + size(ν(p5)) + size(ν(p6))
(iv) size(ν(p2)|]0,a[) + size(ν(p4)|>0) ≥ size(ν(p3)|>0) + size(ν(p5))

The first property is an invariant obtained by comparing producing and consuming
arcs connected to the different places.

The second property relies on the accepting condition. Since a token with agea in
placep2 has to be consumed in zero time by transitiont′′, this transition has to be
enabled, and thus we obtain the inequality (ii).

The third property is obtained from the first one by letting time elapse, using the
fact that the acceptance condition implies thatsize(ν(p1)>0) = 0.

Finally, the fourth property can be obtained from properties (ii) and (iii) by sub-
traction.

We first consider an accepting firing sequenceσ of N , and build a corresponding
accepting firing sequenceσ′ ofN ′.

At each time a token is produced by the transitiont, we move the corresponding
token of placep1. If this token will be consumed by the transitiont′′, then we use
the silent transitiont1 to move it to the placep2. Otherwise, we move it witht2 to
the placep4.

27

Moreover, we also move the copy of the token of placep3 to placep5 with the
silent transitiont3 as soon as we need it for transitiont′ (if a token is never checked
by t′, we move it when its age is equal toa/2). This instant must appear after a
strictly positive delay of time since the interval oft′ is]0,a[, which ensures that the
transitiont3 is firable.

Finally, as soon as a token of placep5 is no more used until the end of the sequence
by the transitiont′, we have to consume it usingt4 or t5. Two cases are possible:

• either the corresponding token ofσ is consumed byt′′, and then we move it to
p6 usingt4. Note that since the last read appears strictly before its age equalsa,
the age of the produced token inp6 will be strictly positive when the age of the
corresponding token of placep2 will reach a, and thus the transitiont′′ will be
firable.
• or the token is never consumed byt′′, and then we consume it immediately byt5,

which is possible since the last occurrence oft′ appears strictly beforea.

Note that the previous modifications are possible if we have done the same choices
for the copies of the token placed inp1 andp3. In this way, we consume every dead
token of placep of the netN . This implies that the corresponding firing sequence
will be accepting.

Finally, it can be checked that the silent transitions we have inserted lead to a firable
sequence of the netN ′.

Conversely, we consider an accepting firing sequenceσ′ of N ′. We build a firing
sequenceσ of N obtained fromσ′ by erasing silent transitionst1, . . . , t5. We now
verify that transitionst′ and t′′ are still firable inσ. First note that the producing
arcs imply the following inequality between two configurationsν andν′ obtained
respectively after the same prefix ofσ andσ′:

ν(p) ≥ ν′(p1) + ν
′(p2) + ν

′(p4)

In particular, we haveν(p) ≥ ν′(p2). This implies that every firable occurrence of
the transitiont′′ in σ′ is still firable inσ. To prove the same property fort′, we will
use the preliminary remarks. Suppose thatt′ is fireable inν′. Then there are at least
n′ tokens in placep5. Using inequality (iv), and the fact that the age of every token
in placep4 is strictly less thana (since we consider an accepting sequence), we get:

size(ν(p2)|]0,a[) + size(ν(p4)|]0,a[) ≥ n′

This implies, using the previous inequality onν, that there at leastn′ tokens in place
p of age belonging to the interval]0,a[in the configurationν. This proves thatt′ is
firable inν and concludes the proof for patternP3.

28

Pattern P4. We distinguish the two casesa = +∞ (Figure 11) anda < +∞

(Figure 12).

n · [0]

n′n′ · [0]

n′′
p

t′

t t′′

Fig. 11. Removing read-arcs in patternP4, casea = +∞

For the casea = +∞, the construction is similar to that for patternP1. Indeed,
a token produced is immediately and forever available for use since its age does
not constrain the firing of transitions. Note that we do not modify the accepting
conditions.

As for the patternP2, the casea < +∞ is more involved since we have to take
into account the ages of the tokens. We also modify the accepting condition ofN

t′

t

t′′

p2

p1

t1, εn · [0]

n ·]0,a[

n′n′ · [0]

n′′

]0,a[

n′′ ·]0,a[

Fig. 12. Removing read-arcs in patternP4, casea < +∞

by adding the following constraint:p1 + p2 ≤ 0. This pattern is treated similarly
as the patternP2. Indeed, the pre- and read-arcs are the same. The only modifica-
tion then comes from the post-arc. In this pattern, tokens are produced with initial
age belonging to the interval]0,a[, whereas they were produced with initial age 0
in patternP2. The construction is simpler here since we do not need to let some
time elapse before allowing the transitiont′ (corresponding to the read-arcs) to use
produced tokens.

The correctness proof for this pattern can easily be derivedfrom the proof for pat-
ternP2.

29

Pattern P5. The construction is presented on Figure 13. We also modify the ac-

t′

t

t′′
p1

p2

p3

p4

p5

t1, ε

t2, ε t3, ε

t4, ε

n · [0]

n · [0]

[0]

[0]

]0,a[

]0,a[[0]

[a]

]0,a[

> 0

n′n′ · [0]

Fig. 13. Removing read-arcs in patternP5

cepting condition ofN by adding the following constraint:
∑5

i=1 pi ≤ 0. PatternP5

is treated in a way similar to patternP3 since pre- and read-arcs are the same and
the only modification comes from the post-arc: production inthe interval [0,0] has
been replaced by a production in the interval]0,a[.

We make two main modifications to the case of patternP3.

First, we let the choice of the initial age of the produced tokens to the transitionst1
andt2. Since there is no timed copy of the token, the choice of an initial age raises
no difficulty. Recall that the choice of firingt1 or t2 corresponds as previously to
the distinction between tokens that will be eventually consumed by the transition
t′′ before the end of the firing sequence, and the tokens that willnot.

Then, since produced tokens have initial age belonging to the interval]0,a[, these
tokens can immediately be used by the transitiont′, and thus, as in the previous
case, we do not need to let some time elapse before moving tokens in the placep4.

The correctness proof for this pattern can easily be derivedfrom the one for pattern
P3. �

6.2 Case of infinite non-Zeno words

The previous construction cannot be applied to languages ofinfinite words. Indeed,
it relies on the following idea: the acceptance condition requires that one empties
the places at the end of the sequence in the simulating net in order to check whether
ages of tokens have been appropriately simulated.

30

pb a
]0,3[[0,0]

Acc = tt

Fig. 14. ARA-TdPNN3

In the case of infinite timed words, a similar Büchi conditionwould require that
the places of the simulating net are empty infinitely often, but this may not be the
case. Consider for example the netN3 depicted on Figure 14. This net recognizes
the following language of infinite timed words :

Lω(N3) = {w = (ai , τi)i≥0 | ai = a⇒ ∃ j < i,a j = b andτi − τ j ∈]0,3[}

In particular the following timed word belongs toL(N3):

w = (b,0)(b,2)(a,2)(b,4)(a,4) . . . (b,2i)(a,2i) . . .

Any configuration of the execution acceptingw always contains a token in placep
that needs to be read later on and thus a Büchi condition similar to the one used for
finite words would “eliminate” the timed wordw. However in the divergent case,
we will first apply a transformation of the net that will not change the language, in
such a way that in the new net, every infinite non-Zenotimed word will be accepted
by an appropriate generalized Büchi condition. Roughly, this construction consists
on this example in creating two copies of the net and producing tokens alternatively
in a copy of placep or in the other one. As a consequence, each copy will be empty
infinitely often.

Theorem 3 Let N be anRA-TdPN, then we can effectively build aTdPN N ′,
which isωnz-equivalent toN . Note that the construction preserves the boundedness
and the integrality of the nets.

Proof. We assume thatN is normalized and that no place connected to a read-
arc occurs in the acceptance conditions. First note that theonly cases in which
bounds of intervals may be infinite are in patternsP2 andP4. Moreover, in these
cases, whena is infinite, we have proposed constructions which do not relyon
a modification of the acceptance conditions and which are thus also correct for
equivalences on infinite timed words. In the sequel, we are thus only interested in
cases of finite bounds,i.e., whena is finite.

First we transformN into anotherRA-TdPN N∗ as follows. We duplicate every
placep connected to a read-arc by an arc labelled with]0,a[(a finite), into two
placespodd and peven. Then we apply the following transformation iteratively to
every placep and every arc connected top. Let t be a transition connected top and
n· I be the bag labelling the arc connecting them. We replacet by a set of transitions
{t(k)}0≤k≤n such that the arcs of these transitions are identical to those of t except the

31

one under examination. We add to transitiont(k) two arcs (of the same kind as the
original one), one labelled byk · I connected topodd and one labelled by (n− k) · I
connected topeven. Note that an original transition may be duplicated severaltimes.
The label of the duplicated transitions is the one of the original transition.

It is clear thatN andN∗ are equivalent for all the language equivalences and in
particular for theωnz-equivalence. HoweverN∗ satisfies an additional property that
we explain now. We select an integer strictly greater than every finite interval bound
occurring inN∗ and call it max. Given an infinite sequenceσ and a token initially
present or produced along the sequence, we say that a token isuselessin some
configuration reached alongσ, if it will not be “used” in the remaining sequence
by a read-arc or a pre-arc.

Let w be an infinite non-Zenotimed word accepted by a firing sequenceσ of N
then we build a firing sequenceσ∗ ofN∗ whose label isw and such that:

• at any time (2k) ·max withk ∈ N≥0, there is a configuration such that all places
pevencontain only useless tokens,

• at any time (2k + 1) · max with k ∈ N≥0, there is a configuration such that all
placespodd contain only useless tokens.

Note that, due to the (time) divergence ofσ, a token produced in some placep
(defined as before) will either become useless or it will be consumed in some con-
figuration. This is true because we are concerned with intervals whose bounds are
finite. If this configuration occurs in some interval [(2k+1)·max, (2k+2)·max[, we
say that this token isevenotherwise we say that it isodd. We buildσ∗ by appropri-
ately replacing a transition by one of its copies: the choiceof the copy depends on
whether tokens that are read, consumed or produced are even or odd. For instance,
an odd (resp. even) token will be produced in the odd (resp. even) copy of the place.

Now take the last configuration ofσ∗ reached at time (2k + 1) · max and suppose
that placepodd contains a token which is not useless yet, then it will becomeuseless
during the interval](2k+ 1) ·max, (2k+ 2) ·max[. So it is an even token and should
have been produced inpeven. The proof for the last configuration ofσ∗ reached at
time (2k) ·max is similar.

We now apply the transformation of Theorem 2 toN∗ yieldingN ′. In the trans-
formation of patterns 2, 3, 4, 5 whena is finite we memorize the character of the
new places. For instance, in the patternP4, a placepodd is replaced by two places
podd,1 and podd,2. Then we add to the generalized Büchi condition ofN ′ two new
conditions: the sum of tokens in odd (resp. even) places mustbe infinitely often 0.

Let w be a non-Zenoinfinite timed word ofN (and ofN∗). Now take a sequence
σ∗ of N∗ acceptingw with the additional property. Simulate the sequence inN ′

as for Theorem 2 except that tokens not consumed byσ∗ are consumed by the
“emptying” transitions ofN ′ as soon as they become useless. Due to the property

32

of σ∗, this simulating sequence fulfills the new conditions addedto the generalized
Büchi condition.

Conversely letσ′ be an infinite non-Zenosequence ofN ′ and suppose that it does
not respect previous conditions,i.e., that it produces tokens in the wrong copies of
the placep, or that it does not consume tokens that are useless. Then some tokens
in odd or even places will never be consumed inσ′ andσ′ is not accepting. Thus
for an accepting sequenceσ′ of N ′, we apply exactly the same transformations as
those performed in Theorem 2 in order to obtain an accepting sequence ofN∗. �

Example 4 (Application of the construction of Theorem 3) Consider the netN3

depicted on Figure 14. It is easy to see that the net depicted on Figure 15, sayN ′3,
is the net obtained by the construction presented in the proof of Theorem 3. Indeed,
the only place p ofN3 is configured as patternP2. The construction thus consists
in duplicating this place into two copies called “Even” and “Odd”, and then ap-
plying the construction described for finite timed words to each of this copies. The
accepting condition is a generalized Büchi condition requiring that the two sets
of places obtained respectively for the even copy and for theodd copy are empty
infinitely often. Recall that the following word is acceptedbyN3.

Acc =

3∑

i=1

pi
e = 0,

3∑

i=1

pi
o = 0

Even copy

t3e,a

t1e,b

p3
e

p1
e

p2
e

t2e, ε

t4e, ε

[0]

[0]

> 0 [0]

[0]

]0,3[

Odd copy

t3o,a

t1o,b

p3
o

p1
o

p2
o

t2o, ε

t4o, ε

[0]

[0]

> 0 [0]

[0]

]0,3[

Fig. 15. Application of Theorem 3 to the netN3

w = (b,0) (b,2) (a,2) (b,4) (a,4) . . . (b,2i) (a,2i) . . .

odd even even

We give here the corresponding executionσ′ in N ′3, as it is defined in the proof
of Theorem 3. Note that it could be possible on this example toprovide a simpler
execution. By definition, we consider4 as the constantmax of the proof. Then a

33

token is “even” if it becomes useless in an interval of the form [(2k + 1).4, (2k +
2).4[, and “odd” otherwise. We have indicated under the occurrences of b in w
whether the produced token is odd or even. Using this information, we can derive
the following sequenceσ′.

σ′ = (t1o,0)(t2o,2)(t1e,2)(t3o,2)(t4o,2)(t1e,4)(t2e,4)(t3e,4)(t4e,4)(t1o,6)(t2e,6)(t3e,6)(t4e,6) . . .

Let us noteν1 (respectivelyν2) the configuration reached after firing the5 first tran-
sitions (respectively13) of σ′. It is routine to verify thatν1 satisfies the accepting
condition

∑3
i=1 pi

o = 0 and thatν2 satisfies the accepting condition
∑3

i=1 pi
e = 0.

7 Removing General Resets

In this section, we study the role of general resets inRA-TdPNs. Thanks to Lemma 2
(languageL2), we know that the class of integralRA-TdPNs is strictly more expres-
sive than the class of 0-reset integralRA-TdPNs for theω-equivalence. We now
prove two results, which show that this is the combination ofthe presence of read-
arcs together with the integrality property which explainsthe expressiveness gap
between 0-reset nets and nets with general resets. Indeed, we first propose a con-
struction which is correct forTdPNs (i.e., without read-arcs), and which preserves
integrality of the net. Then we present a second construction, which is correct even
for nets with read-arcs, but which does not preserve the integrality of the nets.

Theorem 4 For everyTdPNN , we can effectively build a0-resetTdPNN ′ which
is {∗, ω, ωnz}-equivalent toN . Moreover, this construction preserves boundedness
and integrality of the net.

This result is not difficult and consists in shifting intervals of pre-arcs connected to
a place, depending on the intervals which label post-arcs connected to this place.

Proof.LetN be aTdPN. Observing that the transformation related to Proposition1
preserves the absence of read-arcs, we can assume that everyplacep ofN satisfies
one of the five patterns of Figure 5, in which there is no read-arc.

Only patternsP4 andP5 have general resets, we thus only describe a construction
for these two cases. The constructions are depicted on Figure 16, and it is straight-
forward to prove their correctness. Indeed, in the case of patternP4, if, in the initial
net, a token enters placep with agex ∈]0,a[and leaves placep with agey ∈]0,a[,
then in the second net, it will enter placep with age 0, and leave placep with age
y − x ∈ [0,a[. Conversely, if a token arrives in placep (with age 0) in the second
net, and leaves the place with agex ∈ [0,a[, then it will arrive in placep (in the first
net) with agea−x

2 ∈]0,a[if a < ∞ (with age 1 otherwise) and it will leave placep

34

{

n ·]0,a[n′′ ·]0,a[

n · [0] n′′ · [0,a[

p

t t′′

p

t t′′

(a) Case of patternP4

{

n ·]0,a[[a]

n · [0]]0,a[

p

t t′′

p

t t′′

(b) Case of patternP5

Fig. 16. Removing general resets inTdPNs.

at agea+x
2 ∈]0,a[if a < ∞ (at age 1+ x otherwise). Dead tokens in the first net

correspond to dead tokens in the second net. The case of patternP5 is similar. �

The second construction is much more involved, and requiresto refine the granular-
ity of the net which is built. However, it is correct for the whole class ofRA-TdPNs.

Theorem 5 For everyRA-TdPN N , we can build a0-resetRA-TdPN N ′ which is
{∗, ωnz, ω}-equivalent toN . The construction preserves boundedness of the net, but
not its integrality.

Proof.First, it it worth noticing that in the case of finite timed words, and non-Zeno
infinite timed words, this result is a corollary of previous results (Theorems 2, 3
and 4). The construction we explain now, though correct for all finite and infinite
timed words, is thus only necessary to deal withZenoinfinite timed words.

Let N be aRA-TdPN which, we assume, only includes the patterns of Proposi-
tion 1. The only places ofN which are connected to non 0-reset post-arcs are those
which satisfy patternP4 or patternP5 (Figures 5(d) and 5(e)).

Case of patternP4. The construction for this case is depicted on Figure 17. We
denoteN ′ the resulting net. We prove now the equivalence of the two netsN and
N ′.

First, letσ be an (infinite) accepting firing sequence inN . We construct a sequence
σ′ in N ′ accepting the same timed word as follows.

Let us pick a token ofp with initial ageδ. Two cases have to be distinguished:

• First case:this token will not be consumed byt′′. If δ ≥ a
2 then we permanently

leave it inp1. Otherwise (0< δ < a
2), after lettinga

2−δ time units pass, we transfer
it to p2 using the silent transitiont1. Note that the token inN ′ is available inp1

or in p2 at least as long as it is available inN .

35

0 ≤ n′1 ≤ n′

0 ≤ n′′1 ≤ n′′

n · [0] [0, a
2[[0] (n′′ − n′′1) · [0, a

2[

n′′1 · [0,
a
2[

n′1 · [0,
a
2[(n′ − n′1) · [0,

a
2[

p1 p2

t′(n′1)

t t′′(n′′1)

t1, ε

Fig. 17. 0-reset equivalent for patternP4

• Second case:this token will be consumed byt′′ when its age isδ′. If 0 < δ′−δ(<
a), then we transfer it top2 after lettingδ′−δ

2 time units pass. Otherwise, the token
is immediately consumed and no time elapses: we thus do not transfer the token.
Note again that the token inN ′ is available inp1 or in p2 at least as long as it is
available inN .

Now the sequenceσ′ is obtained fromσ by inserting the occurrences of the transfer
transition and by substituting the appropriatet′(n′1) (resp.t′′(n′′1)) for t′ (resp.t′′)
depending on the locations of the tokens ofp in N ′ used by the firing oft′ (resp.
t′′) in N .

Conversely, letσ′ be an (infinite) accepting firing sequence inN ′. We construct a
sequenceσ in N accepting the same timed word as follows.

We simply delete the occurrences of the transfer transitionand we substitute the
transitiont′ (resp.t′′) for t′(k′1) (resp.t′′(k′′1)). It remains to define the initial age
of a token produced inp. If this token corresponds to a token inN ′ which is not
transfered top2, its initial age isa

2. If the token is transfered top2 when its age isδ,
then inN , its initial age isa

2 − δ. Due to this choice, the token is available inp at
least as long as it is available inp1 or in p2 ofN ′, and every firable transition ofσ′

will thus be firable inσ.

This concludes the case of patternP4.

Case of patternP5. This construction is more involved since read actions and
consumptions happen in different intervals (]0,a[and [a] respectively). In order
to understand the problem raised by this new constraint, compared to patternP4,
we start with a wrong simulation (depicted in Figure 18) directly adapted from the
previous simulation.

Using a proof similar to the one for patternP4, we can show that every firing se-

36

0 ≤ n′1 ≤ n′

n · [0]]0, a
2[[0] [0, a

2]

n′1 · [0,
a
2[(n′ − n′1) · [0,

a
2[

p1 p2

t′(n′1)

t t′′

t1, ε

Fig. 18. A wrong 0-reset simulation for patternP5

quenceσ inN can be simulated in this net. However the converse is wrong. Indeed,
assume for instance thatn = n′ = 1. Then, the firing sequence (t,0)(t1, a

4)(t′(1), a
4)

(t′′, a
4) does not correspond to any sequence in the original net. Indeed if such a

sequence did exist then the token produced byt would have an age belonging to
]0,a[at time a

4 in order to firet′. But then at timea
4, the transitiont′′ is not firable.

The problem with this simulation is that at the same point in time, a token may be
used first to simulate a firing oft′ and then to simulate the firing oft′′.

0 ≤ n′1 ≤ n′

n · [0]]0, a
2[[0]

[0, a
2]

x · [0, a
2[

n′1 · [0,
a
2[(n′ − n′1) · [0,

a
2[

p1 p2

t′(n′1)

t t′′

t1, ε

Fig. 19. A 0-reset simulation for patternP5 ... with a dynamical weight

We now present a second simulation (depicted in Figure 19) which is correct but
uses a “dynamical” weightx on an arc. Let us explain the semantics ofx: when
firing t′′ at some time pointτ, x is the maximum value ofn′ −n′1 corresponding to a
previous firing of somet′(n′1) at dateτ. Thus, one avoids the problem faced by the
previous simulation, but there are no dynamical weights in the RA-TdPN model.
The next (correct) simulation, depicted on Figure 20, mainly consists in simulating
such a dynamical weight. We again denote byN ′ the resultingRA-TdPN.

Before proving the correctness of the construction, we givesome explanations
aboutN ′. First, placeready is connected to every transition ofN by a read-arc
whose bag is [0]. Secondly, we denote byK the largest constantn′ appearing on a
bagn′ ·]0,a[of a read-arc and, for every integerk such that 0≤ k ≤ K, we define a
placeq(k) and two silent transitionsin(k) andout(k). The lower part of the net plays
three roles. First it schedules the upper part as follows: itmakes explicit the alterna-
tion between time elapsing and “simulating” instantaneousfiring sequences in the
upper part of the net. Then before any “simulating” instantaneous firing sequence, it
selects the maximal number of tokens that will be simultaneously checked by a fir-
ing of t′ in this firing sequence (i.e., selects the numberk which corresponds to the
previous dynamical weight). Finally, after some time has elapsed, it moves tokens
from p1 to p2 in order to avoid these transfers during the “simulating” instanta-
neous firing sequences. More precisely, every behaviour ofN ′ must be a (possibly

37

0 ≤ k ≤ K ∧ 0 ≤ n′1 ≤ n′ ∧ n′ − n′1 ≤ k

n · [0]]0, a
2[[0]

[0]

[0, a
2]

k · [0, a
2[

n′1 · [0,
a
2[

(n′ − n′1) · [0,
a
2[

[0]

[0]
[0]

[0] [0]

p1 p2

t′(n′1, k)

t t′′(k)t1, ε

tr

q(k)

ready

•

> 0

> 0

[0]

[0]

[0] [0]

[0]

[0]

[0]

[0]

[0]

[0]
[0][0]

sel
ready

q(0)

q(K)

tr
wait

tend, ε

tsel, ε

in(0), ε

in(K), ε

out(0), ε

out(K), ε

Fig. 20. 0-reset equivalent for patternP5.

infinite) iteration of the following sequence:

• First, exactly one of the transitionsin(k) is fired, thus putting instantaneously
(i.e., in zero delay) a token in some placeq(k) and in the placeready.
• Then the net fires the transitions ofN , includingt, t′, t′′, (or more precisely their

versions inN ′) in zero delay. Then, instantaneously, transitiontend is fired and
the token in placereadyis moved to the placewait.
• Afterwards, some time elapses, enabling the firing of the silent transitionout(k),

which picks the token out of the placeq(k) and puts a token in placetr.
• The upper part of the net can then transfer in zero delay some tokens fromp1 to

p2 using the silent transitiont1.
• Finally, the silent transitiontsel is fired instantaneously and puts back the token

of the lower part in placesel.

38

We can now prove that the two nets are equivalent.

Let σ be an (infinite) accepting firing sequence inN . We add to this sequence
additional information in order to build a sequenceσ′ in N ′ accepting the same
timed word. We assume that the sequence includes the intermediate markings and
that the tokens in the markings are distinguished (meaning for instance, that if two
tokens have the same age, then one of them is the first, the other is the second).

First, we add a (possibly infinite)transfer dateto all tokens produced inp. Let us
pick a token ofp with initial ageδ produced at timeτ. Two cases are possible:

• First case:this token will not be consumed byt′′. If δ ≥ a
2, then we affect to it a

transfer date equal to∞. Otherwise (0< δ < a
2), its transfer date will beτ+ a

2−δ.
• Second case:this token will be consumed byt′′ (necessarily when its age isa).

Its transfer date will beτ + a−δ
2 .

Let us now consider a maximal instantaneous firing sequenceρ, i.e., a (possibly
infinite) maximal subsequence ofσ of time length equal to 0. In this subsequence,
we add to every occurrence of some transitiont′ connected top with a read-arc
n′·]0,a[, the number of tokens checked by this read-arc which have not yet reached
their transfer date, let sayn′1. We affect to the whole subsequence the (finite) maxi-
mal value amongn′ −n′1 for suchn′1 (0 if this set is empty). Let us denote this value
k: k = max{n′ − n′1 | n

′
1 is attached tot′, t′ ∈ ρ}. We havek ≤ K.

We now buildσ′ as follows. Let 0= τ0 < τ1 < τ2 < · · · be the (finite or infinite)
sequence of instants corresponding to either a firing of a transition inσ or to a finite
transfer date (or both).

In σ′, the lower part of the net of Figure 20 “decomposes” time elapsing according
to τ0, τ1, τ2, Let us describe the iterative “behaviour” ofσ′. If τi corresponds
to a firing subsequence ofσ then it selects the valuek described above by firing
in(k), otherwise, it selects 0 by firingin(0). Afterwards, the upper part simulates
the maximal subsequence substitutingt′(n′1, k) (resp.t′′(k)) for t′ (resp.t′) with n1

specified above. Then, after firingtend, it lets τi+1 − τi time units elapse and (after
firing out(k)), fires t1 as many times as specified by the number of tokens with
transfer dateτi+1 and finally firestsel.

We claim that we obtain in this way a firing sequence inN ′ accepting the same
timed word. The validity of the firing of a transitiont′(n1, k) is obtained as for
patternP4. Thus the only point to be detailed is the validity of at′′(k) firing in N ′

since there is an additional read-arc. However, this firing takes place in a maximal
instantaneous firing subsequence wherek tokens have been read inp2 with an age
belonging to [0, a

2[. Due to our choice of firings of the transfer transitiont1, these
tokens correspond inN to tokens inp whose age was strictly less thana during
this subsequence. So they cannot be consumed by this subsequence and thus are

39

present when firingt′′(k).

Conversely, letσ′ be an (infinite) accepting firing sequence ofN ′. We obtain a
sequenceσ of N with same timed word as follows. First we remark that each time
a transitiont′′(k) is fired inσ′, we can consume the oldest token inp2 with age less
than or equal toa2 without modifying the firability of the sequence (since tokens in
p2 are checked for downwards closed intervals). Thus we assumethis behaviour.

We simply delete the occurrences of the transfer transitionand the cycle transitions
(i.e., those occurring in the lower net) and we substitute the transition t′ (resp.t′′)
for t′(n′1, k) (resp.t′′(k)). It remains to define the initial age of a token produced in
p. If this token corresponds to a token inN ′ which is not transfered top2, its initial
age isa

2. If the token is transfered top2 when its age isδ and not consumed by some
t′′(k), then inN , its initial age isa

2 − δ. At last, if the token is transfered top2 when
its age isδ and consumed by some transitiont′′(k) when its age isδ′, then its initial
age isa−δ−δ′ (note that this last choice implies that the corresponding occurrence
of transitiont′′ will also be firable inN).

Finally, we need to verify that these definitions of the initial ages of the tokens inN
are compatible with the firing of the transitionst′. Let us consider an occurrence in
σ of a transitiont′ with a read-arc labelled by bagn′ ·]0,a[. To be firable,t′ requires
the presence ofn′ tokens inp with age less thana. This checking corresponds in
N ′ to the firing of a transitiont′(n′1, k) with n′ − n′1 ≤ k in some instantaneous firing
sequenceρ. Then′1 tokens inp1 used by this firing have, by construction, an age
less thana (note that these tokens will be possibly transfered top2 after a time
elapsing). Now take then′ − n′1 youngest tokens inp2 at the beginning ofρ. We
will prove that they all have an age inN strictly less thana. First, note that none
of them can be consumed by a transitiont′′ duringρ since a firing oft′′ requires
at leastk ≥ n′ − n′1 tokens in addition to the one to be consumed, and since we
have assumed above that transitionst′′(k) consume the oldest tokens. Now, let us
consider one of these tokens. Two cases are possible: eitherit is consumed later
(i.e., in another instantaneous firing sequence) by a transitiont′′(k), and then its age
in N is necessarily less thana. Or this token is never consumed, and then if its age
in N ′ is equal to someδ′ < a

2, we have defined above its age inN as a
2 + δ

′, which
satisfiesa

2 + δ
′ < a.

This concludes the proof of the second case. �

8 Summary of Our Expressiveness Results

Case of finite and infinite non-Zeno words. Applying the results of the two pre-
vious sections, we get equality of all subclasses ofRA-TdPNs mentioned on Fig-

40

ure 21, for the{∗, ωnz}-equivalence. Note that this picture is correct for the general
classes, for the restriction to integral nets, and also for the restriction to bounded
nets.

RA-TdPN ≡∗,ωnz TdPN ≡∗,ωnz 0-resetTdPN︸︷︷︸
Theo. 4

︸︷︷︸
Theo. 2,3

Fig. 21. Relative expressiveness ofRA-TdPNs for finite and infinite non-Zenowords

Case of infinite words. The picture in the case of infinite timed words is much
different (see Figure 22). Indeed the hierarchy in the previous case collapses, whereas
we get in that case the lattice depicted on Figure 22. Plain arcs represent strict in-
clusion, and dashed arcs indicate that the classes are incomparable. Finally note
that this picture holds for both bounded and general nets.

9 Application to Timed Automata

First defined in [3], the model of timed automata (TA) associates with a finite au-
tomaton a finite set of non negative real-valued variables called clocks.

RA-TdPN ≡ω 0-resetRA-TdPN

integralRA-TdPN

0-reset integralRA-TdPN

TdPN ≡ω 0-resetTdPN

integralTdPN ≡ω 0-reset integralTdPN
︸︷︷︸

Theo. 4

︷︸︸︷Theo. 5

︸︷︷︸
Theo. 4

&ω

integral

&
ω lang.L2

'
ω

lang.L1

'
ω

lang.L1
&ω

integral

Fig. 22. Relative expressiveness ofRA-TdPN for infinite words

41

9.1 Definition of Timed Automata

Let X be a finite set of variables, which we callclocks. We writeC(X) for the set of
constraintsover X, which consist of conjunctions of atomic formulas of the form
x ⊲⊳ h for x ∈ X, h ∈ Q≥0 and⊲⊳ ∈ {<,≤,=,≥, >}. The model we will define here
is a slight extension of the classical model of [3] and a subclass ofupdatable timed
automata[5].

Definition 6 (Timed Automaton (TA)) A timed automatonA over Σε is a tuple
(L, ℓ0,X,Σε,E,A) where L is a finite set oflocations, ℓ0 ∈ L is theinitial location,
X is a finite set ofclocks, E ⊆ L×C(X)×Σε × (X ֒→ I)× L is a finite set ofedges,
A ⊆ 2L is the accepting condition. An edge e= 〈ℓ, γ,a, µ, ℓ′〉 ∈ E represents a
transition from locationℓ to locationℓ′ labelled by a with constraintγ and update
partially defined functionµ called areset.

A valuation vis a mapping inRX
≥0. If µ : X ֒→ I is a partially defined function, ifv

is a valuation,µ(v) is the set of valuationsv′ such thatv′(x) ∈ µ(x) if µ is defined in
x, andv′(x) = v(x) otherwise. Constraints ofC(X) are interpreted over valuations,
and the relationv |= γ is defined inductively byv |= (x ⊲⊳ h) whenv(x) ⊲⊳ h, and
v |= (γ1 ∧ γ2) wheneverv |= γ1 andv |= γ2.

The semantics of timed automata is defined as a timed transition system.

Definition 7 (Semantics of aTA) The semantics of aTA A = (L, ℓ0,X,Σε,E) is a
TTS SA = (Q,q0,→) where Q= L × (R≤0)X, q0 = (ℓ0,0) and→ is defined by:

• either a delay move(ℓ, v)
d
−→ (ℓ, v+ d),

• or a discrete move(ℓ, v)
e
−→ (ℓ′, v′) iff there exists some e= (ℓ, γ,a, µ, ℓ′) ∈ E s.t.

v |= γ and v′ ∈ µ(v).

We recover classical timed automata by restricting the resets to partial functionsµ
assigning only the interval [0], but we will call them here 0-reset timed automata.
If all constants appearing in guards and updates are integers, we say that the timed
automaton isintegral.

As for RA-TdPNs, we define the various timed languages accepted by aTA A:
L∗(A), Lω(A), andLωnz(A), where the acceptance condition is given by the set
of finite locations

⋃
F∈A F for finite timed words, and by the generalized Büchi

conditionA for infinite timed words6 . We extend the∗-(resp.ω-,ωnz-)equivalences
to TA and to comparisons between subclasses ofRA-TdPNs and subclasses ofTA.

6 Here we could use standard Büchi conditions since the classical construction for finite
state automata also works forTA.

42

Two examples ofTA are given on Figure 23. Note that theTA A1 of Figure 23(a)
recognizes the timed languageL1 introduced in section 4. Similarly, theTA A2 of
Figure 23(b), which uses a non-deterministic reset of clockx in the interval]0,1[,
recognizes the timed languageL2 also introduced there.

x ≤ 1,a

(a) A TAA1 recognizingL1

x = 0, a
x :∈]0,1[

x < 1,b

(b) A TAA2 recognizingL2

Fig. 23. Two examples of timed automata

9.2 TA and BoundedRA-TdPNs.

Our aim was to compare the relative expressiveness ofRA-TdPNs andTA. In this
subsection, we prove the equivalence between boundedRA-TdPNs andTA. In this
context, the following result has been obtained by Jiří Srba:

Theorem 6 ([17]) SafeRA-TdPNs andTA are {∗, ωnz, ω}-equivalent.7

We strengthen the above result and prove that this also holdsfor boundedRA-
TdPNs.

Theorem 7 BoundedRA-TdPNs andTA are {∗, ωnz, ω}-equivalent. Moreover, the
translation preserves integrality and0-reset.

To improve readability, we however give here a self-contained proof of the com-
plete result.

Proof. From bounded RA-TdPNs to TA. LetN be a boundedRA-TdPN, and as-
sume that the net is bounded byk. We will build a TA A equivalent toN . The
construction is made in two steps. We first construct an equivalent (structurally)
safeRA-TdPN N ′, and we then build an equivalent timed automatonA.

Copies of places.Every placep ofN is replaced by 2k places{p0
i , p

1
i | 1 ≤ i ≤ k} in

N ′. The two placesp0
i andp1

i will be mutually exclusive, and the (at most)k tokens
in placep in N will be spread in the placesp1

i ’s. The intuition of the construction
is to use the placesp1

i to simulate one of the at mostk tokens in placep. To ensure
that these places are safe, we use the complementary placesp0

i . We make these

7 The result proved in [17] is even stronger because the equivalence considered is not a
language equivalence, but isomorphism of timed transitionsystems.

43

two places (p0
i and p1

i) mutually exclusive by imposing, when producing (resp.
consuming) a token inp1

i , to consume (resp. produce) a token in placep0
i .

Copies of transitions.Let us consider a transitiont of N . Transition t will be
replaced by copies.Pre(t)(p) (resp.Read(t)(p), Post(t)(p)) is a bag inBag(I),
whosesize is denoted bys(p) (resp.s′(p), s′′(p)). We order the tokens in these
bags and assume thatPre(t)(p) = I1 + . . . + Is(p), Read(t)(p) = I ′1 + . . . + I ′s′(p) and
Post(t)(p) = I ′′1 + . . . + I ′′s′′(p). The copies oft are parameterized by three functions
indicating for every placep in which copies of the placep the tokens should be
consumed (resp. read, produced).

Pre-arcs.For every placep such thats(p) > 0. Consider an injective function
ζp defined from{1, . . . , s(p)} into Nk = {1, . . . , k}. This function defines in which
places the pre-arc betweent andp will consume thes(p) tokens.

Read-arcs.For every placep such thats′(p) > 0. Consider an injective function
ζ′p defined from{1, . . . , s′(p)} into Nk = {1, . . . , k}. This function defines in which
places the read-arc betweent andp will read thes′(p) tokens.

Post-arcs.For every placep such thats′′(p) > 0. Consider an injective function
ζ′′p defined from{1, . . . , s′′(p)} intoNk = {1, . . . , k}. This function defines in which
places the post-arc betweent andp will produce thes′′(p) tokens.

We now define the functionζ (resp.ζ′, ζ′′) as the function mapping each place
p ∈ P to the functionζp (resp.ζ′p, ζ

′′
p).

Suppose moreover that these three functions satisfy the following conditions:

∀p ∈ P,

ζp andζ′p have disjoint images,

ζ′p andζ′′p have disjoint images.

These conditions simply require that for every placep, the simulation oft does not
try to consume and read a token in the same copy of the placep (resp. does not try
to read and produce a token in the same copy of the placep).

44

For every 3-tuple of such functions (ζ, ζ′, ζ′′) verifying these conditions, we add to
the new net the transitiont′ = tζ,ζ′,ζ′′ defined, for every placep ∈ P, by

∀i ∈ {1, . . . , s(p)},

Pre(t′)(p1

ζp(i)) = I i

Post(t′)(p0
ζp(i)) = [0]

∀ j ∈ {1, . . . , s′(p)}, Read(t′)(p1
ζ′p(j)) = I ′j

∀l ∈ {1, . . . , s′′(p)},

Pre(t′)(p0

ζ′′p (l)) = R≥0

Post(t′)(p1
ζ′′p (l)) = I ′′l

Moreover, the label oftζ,ζ′,ζ′′ is the one oft.

Given a placep, the arcs connecting transitiontζ,ζ′,ζ′′ to copies ofp are represented
on Figure 24.

i ∈ {1, . . . , s(p)}

p1
ζp(i)

p0
ζp(i)

p1
ζ′′p (l)

p0
ζ′′p (l)

l ∈ {1, . . . , s′′(p)}

p1
ζ′p(j)

j ∈ {1, . . . , s′(p)}

tζ,ζ′,ζ′′ , λ(t)I i

[0]

I ′′l

R≥0

I ′j

Fig. 24. Simulating a boundedRA-TdPN using a safeRA-TdPN

Initial marking. Given the original initial markingM0 ∈ Bag(P), the new initial
markingM′0 is defined by

M′0 =
∑

p∈P

M0(p)∑

i=1

p1
i .

Acceptance condition.Finally, the acceptance condition is transformed in a natural
way: every occurrence of a placep in the acceptance condition is replaced by the
term

∑k
i=1 p1

i .

It is easy to verify that this transformation provides a structurally 1-safeRA-TdPN
N ′ which is strongly bisimilar toN . The fact thatN ′ is 1-safe is obvious by con-
struction (recall that placesp0

i and p1
i are mutually exclusive). The existence of a

bisimulation relation relies on the fact that a configuration with n tokens in placep
is encoded by a configuration wheren placesp1

i contains 1 token (whose ages are

45

the ones of tokens ofp) whereas for thek− n otheri’s, there is 1 token in placep0
i

(with arbitrary ages). It is then easy to prove thatt is firable from a configuration
ν of N if and only if there exists a copy oft which is firable from a correspond-
ing configuration inN ′. Since the initial markings and the acceptance conditions
are preserved by the bisimulation, the strong bisimulationimplies the{∗, ω, ωnz}-
equivalence.

We now present the construction which transforms a safeRA-TdPN into aTA. Let
N = (P,m0,T,Pre,Post,Read, λ,Acc) be a safeRA-TdPN. We define aTA A =
(L, ℓ0,X,Σε,E, F,A) equivalent toN . By notation misuse, given a transitiont ofN ,
we simply write in this constructionPre(t) for the set of placesp ∈ P such that
size(Pre(t)(p)) > 0 (and similarly forPost andRead). Note that sinceN is safe,
we can assume that for every transitiont ∈ T, we havePre(t) ∩ Read(t) = ∅ and
Read(t) ∩ Post(t) = ∅ (otherwise the transition will never be firable).

We defineA as follows:

• L = 2P,
• ℓ0 = dom(m0) (there is exactly one token per initially marked place),
• X = P (xp denotes the clock corresponding to the placep),

• there is a transitionℓ
γ,a,µ
−−−→ ℓ′ whenever there exists a transitiont in N such that:

· Pre(t) ∪ Read(t) ⊆ ℓ,
· Post(t) ∩ (ℓ \ Pre(t)) = ∅,
· ℓ′ = (ℓ \ Pre(t)) ∪ Post(t),
· γ is the conjunction of allxp ∈ Ip such that (p, Ip) ∈ Pre(t) ∪ Read(t),
· a is the label of transitiont in N ,
· µ resets clockxp in interval Ip if (p, Ip) ∈ Post(t).
• if Acc = {acc1, . . . , acck}, A is defined as the set of formulas{A1, . . . ,Ak} where

for every 1≤ i ≤ k, Ai =

{
ℓ ∈ 2P |

(∧

q∈ℓ

q = 1∧
∧

q<ℓ

q = 0
)
⇒ acci

}
.

Note that since a place contains at most one token, one clock is enough to encode
the behaviour of a place. It is then routine to verify that this construction is correct.

From TA to bounded RA-TdPNs. LetA = (L, ℓ0, X,Σε,E, F) be aTA. We construct
theRA-TdPN N = (P,m0,T,Pre,Post,Read, λ,Acc) as follows.

• P = L ∪ X,
• m0 = ℓ0 +

∑
x∈X x,

• T = E,
• for all e= ℓ

g,a,µ
−−−→ ℓ′ in E,

· if x is such thatµ(x) is defined,Post(e)(x) = µ(x), Pre(e)(x) = g|x, whereg|x is
the interval ofx imposed by constraintg,
· if x is such thatµ(x) is not defined,Read(e)(x) = g|x,

46

· Pre(e)(ℓ) = R≥0, Post(e)(ℓ′) = [0],
· λ(e) = a,
• if A = {A1, . . . ,Ak}, thenAcc is the set{acc1, . . . , acck}where for every 1≤ i ≤ k,

acci =

∧

ℓ∈Ai

ℓ = 1

The netN that we have constructed is strongly bisimilar to the original timed au-
tomaton. Indeed, we consider the relationR defined by

(ℓ, val) R ν iff

size(ν(ℓ)) > 0

size(ν(ℓ′)) = 0 ∀ℓ′ , ℓ

ν(x) = 1 · val(x) ∀x ∈ X,

where (ℓ, val) ∈ L × RX
≥0 is a configuration ofA, andν ∈ Bag(R≥0)P is a configu-

ration ofN . It is straightforward to verify thatR is a bisimulation relation which
respects accepting configurations.

Finally, just notice that there is always exactly one token in one of the placesℓ for
ℓ ∈ L. This justifies the definition ofAcc. Moreover, it is easy to verify that the net
we have constructed is safe, thus bounded. �

Example 5 We illustrate the transformation of aTA into a boundedRA-TdPN on
the automaton depicted on Figure 25.

•

• •

{

ℓ1 ℓ2

ℓ1 ℓ2

x y

a
x < 2∧ y ≥ 3,a

x := 1
< 2

[1]

≥ 3

Fig. 25. An example of the construction fromTA to safeRA-TdPNs.

9.3 Expressiveness Results forTA

Combining the previous result with the results of the previous section on Petri nets,
we get interesting side results on timed automata, and in particular quite surprising
results for languages of infinite timed words.

Corollary 1 For the{∗, ωnz}-equivalence,

(1) boundedTdPNs andTA are equally expressive;
(2) (integral)TA and0-reset (integral)TA are equally expressive.

Corollary 2 For theω-equivalence,

47

(3) TdPNs andTA are incomparable;8

(4) TA are strictly more expressive than boundedTdPNs;
(5) integralTA are strictly more expressive than integral0-resetTA;
(6) TA and0-resetTA are equally expressive.

As a folklore theorem, it was thought thatTA and boundedTdPNs are equally ex-
pressive. We have proved that this is indeed the case for finite and infinite non-Zeno
timed words (item(1)), but that it is wrong when considering alsoZenobehaviours
(item (4)). Indeed, the result is even stronger: even thoughTdPNs can be somehow
seen as timed systems with infinitely many clocks, we have proved thatTA and
TdPNs are in general incomparable (item(3)).

The three other results complete the picture of known results about general resets in
TA [5]. Item (2) was already partially proved in the above-mentioned paper,and we
provide here a new proof of this result. Items(5) and(6) are quite surprising, since
they show that refining the granularity of the guards is necessary for removing
general resets inTA (and for preserving the languages of infinite timed words).
It is one of the first such results in the framework of timed systems (up to our
knowledge). Finally, the construction provided in the proof of Theorem 5 applied
to TA provides an extension to infinite words of the construction presented in [5] for
removing general resets inTA (which is indeed only correct for finite and infinite
non-Zenotimed words). We illustrate this construction on Figure 26 by giving a
0-resetTA ω-equivalent to the timed automaton of Figure 23(b).

x = 0,a
x := 0

x < 1
2,b

x < 1
2, ε

x < 1
2,b

Fig. 26. An example of the construction for removing generalresets inTA.

10 Conclusion

In this paper , we have thoroughly studied the relative expressiveness ofTdPNs and
TA, and we have proved in particular that they are incomparablein general. This
makes the model ofRA-TdPNs (introduced earlier in [17]) very interesting, as it
unifiesTA andTdPNs while it enjoys the interesting property that coverability is
still decidable. Surprisingly, this rather general model also enjoys nice expressive-
ness properties.

8 Recall that (untimed) Petri nets may recognize non regular languages, unlike timed au-
tomata whose untimed languages are always regular.

48

We have studied the expressive power of read-arcs inRA-TdPNs, and we have
proved that, when restricting to finite or infinite non-Zenobehaviours, read-arcs
do not add expressiveness. On the other hand, we show thatZenobehaviours dis-
criminate between several subclasses ofRA-TdPNs. For instance,RA-TdPNs are
strictly more expressive thanTdPNs. This implies in particular that, in this context,
the classical assumption which consists in forgettingZenobehaviours is restrictive.
Since we also prove that boundedRA-TdPNs andTA are equally expressive, we
get the surprising result thatTA are strictly more expressive than boundedTdPNs,
which is quite counter-intuitive.

Classically,TdPNs use quite general resets, whereasTA only use resets to 0. We
have thus studied the expressive power of these general resets, compared with resets
to 0. We have shown that they don’t add any expressiveness to the above-mentioned
models, but that the granularity has to be refined for removing general resets inRA-
TdPNs when consideringZenobehaviours. Up to our knowledge, this is one of the
first expressiveness results (at least in the domain of timedsystems), which requires
to refine the granularity of the model. As side results, we complete the work in [5],
and get that it is necessary to refine the granularity of guards in TA for removing
general resets, when considering languages of infinite possibly Zenotimed words.

Our main further work is to develop unfolding techniques forRA-TdPNs, taking
advantage of the locality of the firing rules. A first step in that direction is [7],
where we have extended the seminal work of McMillan [13] to networks of timed
automata with invariants (using some ideas presented in this paper for translating
timed autamata toRA-TdPNs). Note that read-arcs increase concurrency between
events, but they require some attention when building unfoldings [20,21]. Another
possible research direction is to study other kinds of arcs,for instance arcs which
do not reset ages of tokens when moving the tokens from one place to another one.

References

[1] P. A. Abdulla, P. Mahata, and R. Mayr. Decidability of Zenoness, syntactic
boundedness and token-liveness for dense-timed petri nets. In Proc. 24th
Conference on Foundations of Software Technology and Theoretical Computer Science
(FST&TCS’04), volume 3328 ofLecture Notes in Computer Science, pages 58–70.
Springer, 2004.

[2] P. A. Abdulla and A. Nylén. Timed Petri nets and bqos. InProc. 22nd International
Conference on Application and Theory of Petri Nets (ICATPN’01), volume 2075 of
Lecture Notes in Computer Science, pages 53–70. Springer, 2001.

[3] R. Alur and D. Dill. A theory of timed automata.Theoretical Computer Science,
126(2):183–235, 1994.

[4] B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems

49

using time Petri nets.IEEE Transactions in Software Engineering, 17(3):259–273,
1991.

[5] P. Bouyer, C. Dufourd, E. Fleury, and A. Petit. Updatabletimed automata.Theoretical
Computer Science, 321(2–3):291–345, 2004.

[6] P. Bouyer, S. Haddad, and P.-A. Reynier. Timed Petri netsand timed automata: On
the discriminating power of Zeno sequences. InProc. 33rd International Colloquium
on Automata, Languages and Programming (ICALP’06) — Part II, volume 4052 of
Lecture Notes in Computer Science, pages 420–431. Springer, 2006.

[7] P. Bouyer, S. Haddad, and P.-A. Reynier. Timed unfoldings of networks of timed
automata. InProc. 4th International Symposium on Automated Technologyfor
Verification and Analysis (ATVA’06), volume 4218 ofLecture Notes in Computer
Science, pages 292–306. Springer, 2006.

[8] C. Girault and R. Valk, editors.Petri Nets for Systems Engineering. Springer, 2002.

[9] G. Higman. Ordering by divisibility in abstract algebras. InProc. London Math. Soc.,
volume 2, pages 326–336, 1952.

[10] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking timed automata with
one or two clocks. InProc. 15th International Conference on Concurrency Theory
(CONCUR’04), volume 3170 ofLecture Notes in Computer Science, pages 387–401.
Springer, 2004.

[11] S. Lasota and I. Walukiewicz. Alternating timed automata. In Proc. 8th
International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS’05), volume 3441 ofLecture Notes in Computer Science, pages
250–265. Springer, 2005.

[12] P. Mahata.Model Checking Parameterized Timed Systems. PhD thesis, Department of
Information Technology, Uppsala University, Uppsala, Sweden, 2005.

[13] K. McMillan. A technique of state space search based on unfolding. Formal Methods
in Syst. Design, 6(1):45–65, 1995.

[14] U. Montanari and F. Rossi. Contextual nets.Acta Informatica, 32(6):545–596, 1995.

[15] J. Ouaknine and J. B. Worrell. On the language inclusionproblem for timed automata:
Closing a decidability gap. InProc. 19th Annual Symposium on Logic in Computer
Science (LICS’04), pages 54–63. IEEE Computer Society Press, 2004.

[16] J. Ouaknine and J. B. Worrell. On the decidability of metric temporal logic. InProc.
19th Annual Symposium on Logic in Computer Science (LICS’05), pages 188–197.
IEEE Computer Society Press, 2005.

[17] J. Srba. Timed-arc petri nets vs. networks of timed automata. In Proc. 26th
International Conference Application and Theory of Petri Nets (ICATPN’05), volume
3536 ofLecture Notes in Computer Science, pages 385–402. Springer, 2005.

[18] V. Valero, D. Frutos-Escrig, and F. R. F. . Cuartero. On non-decidability of reachability
for timed-arc Petri nets. InProc. 8th Int. Work. Petri Nets and Performance Models
(PNPM’03), pages 188–196. IEEE Computer Society Press, 1999.

50

[19] W. Vogler. Efficiency of asynchronous systems, read arcs, and the MUTEX-problem.
Theor. Comput. Sci., 275(1–2):589–631, 2002.

[20] W. Vogler, A. L. Semenov, and A. Yakovlev. Unfolding andfinite prefix for nets with
read arcs. InProc. 9th Int. Conf. Concurrency Theory (CONCUR’98), volume 1466
of LNCS, pages 501–516. Springer, 1998.

[21] J. Winkowski. Reachability in contextual nets.Fundam. Inform., 51(1-2):235–250,
2002.

51

