
Automatic Synthesis of Robust and Optimal

Controllers – An Industrial Case Study

Franck Cassez1, Jan J. Jessen2, Kim G. Larsen2,
Jean-François Raskin3, Pierre-Alain Reynier4

1 National ICT Australia & CNRS, Sydney, Australia
2 CISS, CS, Aalborg University, Denmark
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Abstract. In this paper, we show how to apply recent tools for the au-
tomatic synthesis of robust and near-optimal controllers for a real indus-
trial case study. We show how to use three different classes of models and
their supporting existing tools, Uppaal-TiGA for synthesis, PHAVer

for verification, and Simulink for simulation, in a complementary way.
We believe that this case study shows that our tools have reached a level
of maturity that allows us to tackle interesting and relevant industrial
control problems.

1 Introduction

The design of controllers for embedded systems is a difficult engineering task.
Controllers have to enforce properties like safety properties (e.g. “nothing bad
will happen”), or reachability properties (e.g. “something good will happen”),
and ideally they should do that in an efficient way, e.g. consume the least possible
amount of energy. In this paper, we show how to use (in a systematic way) models
and a chain of automatic tools for the synthesis, verification and simulation of a
provably correct and near optimal controller for a real industrial equipment. This
case study was provided to us by the Hydac Electronics Gmbh company in
the context of a European research project5.

The system to be controlled is depicted in Fig. 1 and is composed of: (1) a
machine which consumes oil, (2) a reservoir containing oil, (3) an accumulator
containing oil and a fixed amount of gas in order to put the oil under pressure,
and (4) a pump. When the system is operating, the machine consumes oil under
pressure out of the accumulator. The level of the oil, and so the pressure within
the accumulator (the amount of gas being constant), can be controlled using the
pump to introduce additional oil in the accumulator (increasing the gas pres-
sure). The control objective is twofold: first the level of oil into the accumulator
(and so the gas pressure) can be controlled using the pump and must be main-
tained into a safe interval; second the controller should try to minimize the level
of oil such that the accumulated energy in the system is kept minimal.

5 Quasimodo: “Quantitative System Properties in Model-Driven-Design of Embed-
ded”, see http://www.quasimodo.aau.dk/ for details.



In a recent work [5], we have presented an approach for the synthesis of a
correct controller for a timed system. It was based on the tool Uppaal-TiGA [1]
applied on a very abstract untimed game model for synthesis and on Simulink [6]
for simulation. To solve the Hydac Electronics Gmbh control problem, we
use three complementary tools for three different purposes: Uppaal-TiGA for
synthesis, PHAVer [4, 3] for verification, and Simulink for simulation. For the
synthesis phase, we show how to construct a (game) model of the case study
which has the following properties:

– it is simple enough to be solved automatically using algorithmic methods
implemented into Uppaal-TiGA;

– it ensures that the synthesized controllers can be easily implemented.

To meet those two requirements, we con-
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Fig. 1. Overview of the System.

sider an idealized version of the environment
in which the controller is embedded, but we
put additional constraints into the winning
objective of the controller that ensure the ro-
bustness of winning strategies. As the winning
strategies are obtained in an abstract model of
the system, we show how to embed automat-
ically the synthesized strategies into a more
detailed model of the environment, and how
to automatically prove their correctness using
the tool PHAVer for analyzing hybrid sys-
tems. While the verification model allows us

to establish correctness of the controller that is obtained automatically using
Uppaal-TiGA, it does not allow us to learn its expected performance in an en-
vironment where noise is not completely antagonist but follows some probabilis-
tic rules. For this kind of analysis, we consider a third model of the environment
and we analyze the performance of our synthesized controller using Simulink.

To show the advantages of our approach, we compare the performances of the
controller we have automatically synthesized with two other control strategies.
The first control strategy is a simple two-point control strategy where the pump
is turned on when the volume of oil is reaching a floor value and turn off when the
volume of oil reaches a ceiling value. The second control strategy is a strategy
designed by the engineers at Hydac Electronics Gmbh with the help of
Simulink.

Structure of the paper. In section 2, we present the Hydac Electronics Gmbh

control problem. In section 3, we present our construction of a suitable abstract
model of the system, and the strategy we have obtained using the synthesis algo-
rithm of Uppaal-TiGA. In section 4, we embed the controllers into a continuous
hybrid model of the environment and use the tool PHAVer to verify their cor-
rectness and robustness: we prove that strategies obtained using Uppaal-TiGA

are indeed correct and robust. In section 5, we analyze and compare the perfor-
mances in term of mean volume of the three controllers using Simulink.
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2 The Oil Pump Control Problem

We give now more details about the system, the constraints to respect, and the
control objectives. The controller must operate the pump (switch it on and off)
to ensure the following two main requirements:

– (R1): the level of oil v(t) at time t (measured in litres) into the accumulator
must always stay within two safety bounds [Vmin;Vmax], in the sequel Vmin =
4.9l and Vmax = 25.1l;

– (R2): a large amount of oil in the accumulator implies a high pressure of
gas in the accumulator. This requires more energy from the pump to fill in
the accumulator and also speeds up the wear of the machine. This is why
the level of oil should be kept minimal during operation, in the sense that∫

t=T

t=0
v(t) is minimal for a given operation period T .

While requirement (R1) is a safety requirement and so must never be violated
by any controller, (R2) is an optimality requirement and will be used to compare
different controllers.

The Machine. The oil consumption of the machine is cyclic. The cycle of con-
sumptions, as given by the Hydac Electronics Gmbh company, is depicted
in Fig. 2.
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Fig. 2. Cycle of the Machine.

is characterized by a rate of con-
sumption (expressed as a num-
ber of litres per second), a date
of beginning and a duration. We
assume that the cycle is known
a priori : we do not consider the
problem of identifying the cycle
(which can be performed as a
pre-processing step). The con-
trol strategy must allow the ma-
chine to operate for an arbitrar-
ily large number of cycles. At time 2, the rate of the machine goes to 1.2l/s for
two seconds. From 8 to 10 it is 1.2 again and from 10 to 12 it goes up to 2.5
(which is more than the maximal output of the pump). From 14 to 16 it is 1.7
and from 16 to 18 it is 0.5. Even if the consumption is cyclic and known in
advance, the rate is subject to noise: if the mean consumption for a period is
c l/s, in reality it always lies within that period in the inverval [c − ǫ, c + ǫ],
where ǫ is fixed to 0.1 l/s. This property is noted F.

The Accumulator and the Pump. The volume of oil within the accumulator is
initially equal to 10 l . The pump is either on or off, and we assume it is initially
off. The operation of the pump must respect the following latency constraint:
there must always be two seconds between any change of state of the pump, i.e.
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if it is turned on (respectively off) at time t, it must stay on (respectively off)
at least until time t + 2, we note P1 this property. When it is on, its output is
equal to 2.2l/s. Note that as the power of the pump is not always larger than the
demand of the machine during one period of consumption (see Fig. 2 between
10 and 12), some extra amount of oil must be present in the accumulator before
that period of consumption to ensure that the minimal amount of oil constraint
(requirement R1) is not violated6.

Additional Requirements on the Controller. To summarize, the controller to
design must turn on and off the pump at the appropriate points in time while
respecting the latency of the pump (property P1) to ensure that requirements R1

is satisfied, even under the fluctuations F within the cyclic consumption phase,
for an arbitrarily long period of time. Moreover we should try to minimize the
accumulated oil during each cycle (requirement R2).

Because the consumptions are subject to noise, it is necessary to allow the
controller to check periodically the level of oil in the accumulator (as it is not
predictable in the long run). Nevertheless, the controller should exploit the cyclic
nature of the consumption to optimize the level of oil. So, we will also allow our
controllers to take control decisions at predefined instant in time during the cycle
using timers.

The Bang-Bang Controller and the Smart Controller. In the next sections, we
will show how to use synthesis algorithms implemented in Uppaal-TiGA to
obtain a simple but still efficient controller for the oil pump. This controller will
be compared to two other solutions that have been previously considered by the
Hydac Electronics Gmbh company.

The first one is called the Bang-Bang controller. Using the sensor for oil vol-
ume in the accumulator, the Bang-Bang controller turns on the pump when a
floor volume value V1 is reached and turns off the pump when a ceiling volume
value V2 is reached. The Bang-Bang controller is simple but it does not exploit
the timing information about the consumption periods within a cycle. To ob-
tain better performances in term of energy consumption, engineers at Hydac

Electronics Gmbh have designed a controller that exploit this timing.
This second controller is called the Smart controller. With this controller,

after an initial phase for learning the consumer demands, the pump is activated
at points in time precomputed in advance for each cycle according to a rather
complex, adaptive strategy. Though simulations of Simulink models developed
by Hydac Electronics Gmbh reveal no unsafe behaviour, the engineers have
not been able to verify its correctness and robustness. As we will see later, in a
simplified form the strategy is not safe in the long run in presence of noice.

3 The Uppaal-TiGA Model for Controller Synthesis

In this section, we show how to synthesize automatically, from a game model of
the system and using Uppaal-TiGA, an efficient controller for the Hydac case

6 It might be too late to switch the pump on when the volume reaches Vmin.
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study. Uppaal-TiGA is a recent extension of the tool Uppaal which is able to
solve timed games.

Game Models of Control Problems. While modeling control problems with games
is very natural and appealing, we must keep in mind several important aspects.
First, solving games is computationally hard, so we should aim at game mod-
els that are sufficiently abstract. Second, when modeling a system with a game
model, we must also be careful about the information that is available to each
player in the model. The current version of Uppaal-TiGA offers games of per-

fect information (see [2] for steps towards games for imperfect information into
Uppaal-TiGA.) In games of perfect information, the two players have access to
the full description of the state of the system. For simple objectives like safety
or reachability, the strategies of the players are functions from states to actions.
To follow such strategies, the implementation of the controller must have ac-
cess to the information contained in the states of the model. In practice, this
information is acquired using sensors, timers, etc.

The Uppaal-TiGA Model. We describe in the next paragraphs how we have
obtained our game model for the Hydac case study. First, to keep the game
model simple enough, we have designed a model which: (a) considers one cycle
of consumption; (b) uses an abstract model of the fluctuations of the rate; (c) uses
a discretization of the dynamics within the system. Second, to make sure that the
winning strategies that will be computed by Uppaal-TiGA are implementable,
the states of our game model only contain the following information, which can
be made available to an implementation:

– the volume of oil at the beginning of the cycle;
– the ideal volume as predicted by the consumption period in the cycle;
– the current time within the cycle;
– the state of the pump (on or off).

Third, to ensure robustness of our strategies, i.e. that their implementations
are correct under imprecisions on measures of volume or time, we consider some
margin parameter m which represents how much the volume can deviate because
of these imprecisions. We will consider values in range [0.1; 0.4]l.

Global Variables. First, we discretize the time w.r.t. ratio stored in variable
D, such that D time units represent one second. Second, we represent the current
volume of oil by the variable V. We consider a precision of 0.1l and thus multiply
the value of the volume by 10 to use integers. This volume evolves according to
a rate stored in variable V rate and the accumulated volume is stored in the
variable V acc7. Finally, we also use an integer variable time which measures the
global time since the beginning of the cycle.

The Model of the Machine. The model for the behaviour of the machine is
represented on Fig. 3(a). Note that all the transitions are uncontrollable (rep-
resented by dashed arrows). The construction of the nodes (except the mid-

7 To avoid integers divisions, we multiply all these values by D.
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dle one labelled bad) follows easily from the cyclic definition of the consump-
tion of the machine. When a time at which the rate of consumption changes
is reached, we simply update the value of the variable V rate. The additionnal
central node called bad is used to model the uncertainty on the value of V due to
the fluctuations of the consumption. The function Noise (Fig. 4) checks whether
the value of V, if modified by these fluctuations, may be outside the interval
[Vmin + 0.1, Vmax − 0.1] 8. The function final Noise (Fig. 4) checks the same but
for the volume obtained at the end of cycle and against the interval represented
by V1F and V2F. Note that this modelling allows in some sense to perform partial
observation using a tool for games of perfect information. Indeed, the natural
modelling would modify at each step the actual value of the variable V and the
strategies would then be aware of the amount of fluctuations. In our model the
ideal value of V is predictable because it directly depends on the current time
and from the point of view of the controller (i.e. the state of the system) it does
not give any information about the volume.

The Model of the Pump. The model for the pump is represented on Fig. 3(b).
The transitions are all controllable (plain arrows). The pump simply consists of
two locations representing whether the pump is ON or OFF. Moreover, the la-
tency constraint9 P1 is expressed using the clock z. An additional integer variable
i is used to count how many times the pump has been started on. We use param-
eter N to bound this number of activations, which is set to 2 in the following.
Note also that the time points of activation/desactivation of the pump are stored
in two vectors start and store.

The Model of the Scheduler. We use a third automaton represented on Fig. 3(c)
to schedule the composition. Initially it sets the value of the volume to V0 and
then it repeats the following actions: it first updates the global variables V, V acc

and time through function update val. Then the scheduling is performed using
the two channels update cy10 and update pump. When the end of the cycle of
the machine is reached, the corresponding automaton sets the boolean variable
done to true, whic forces the scheduler to go to location END.

Composition. We denote by A the automaton obtained by the composition
of the three automata described before. We consider as parameters the initial
value of the volume, say V0, and the target interval I2, corresponding to V1F

and V2F, and write A(V0, I2) the composed system.

Global Approach for Synthesis. Even if the game model that we consider is
abstract and concentrates on one cycle, note that our modelling enforces the
constraints expressed in section 2. Indeed, R1 is enforced through function Noise,
F is handled through the two functions Noise and final Noise, and P1 is expressed
explicitely in the model of the pump. To extend our analysis from one cycle to
any number of cycles, and to optimize objective R2, we formulate the following

8 For robustness, we restrain safety constraints of 0.1 l.
9 Notice that we impose a bit more than P1 as we require that 2 seconds have elapsed

at the beginning of the cycle before switching on the pump.
10 We did not represent this synchronization on Fig. 3(a) to ease the reading.
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Fig. 3. Uppaal-TiGA models.

control objective (for some fixed margin m ∈ Q) CO:
Find some interval I1 = [V1, V2] ⊆ [4.9; 25.1] such that (Property (∗)):

(i) I1 is m-stable: from all initial volume V0 ∈ I1, there exists a strategy for
the controller to ensure that, whatever the fluctuations on the consump-
tion, the value of the volume is always between 5 l and 25 l and the volume
at the end of the cycle is within interval I2 = [V1 + m,V2 − m],

(ii) I1 is optimal among m-stable intervals: the worst accumulated volume of
the strategies of I1 is minimal.

The strategies that fulfill that control objective have a nice inductive property:
as the value of the volume of oil at the end of the cycle is ensured to be within
I2, and I2 ⊂ I1 if m > 0, the strategies computed on our one cycle model can
be safely repeated as many times as desired. Moreover, the choice of the margin
parameter m will be done so as to ensure robustness. We will verify in PHAVer
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bool Noise(int s){

// s is the duration of consumption (in t.u.)

return (V-s<(Vmin+1)*D | V+s>(Vmax-1)*D);}

bool final_Noise(){

// 10*D t.u. of consumption in 1 cycle

return (V-10*D<V1F*D | V+10*D>V2F*D);}

void update_val(){

int V_pred = V;

time++;

V+=V_rate;

V_acc+=V+V_pred;

}

Fig. 4. Functions embedded in UppAal Tiga models

that even in presence of imprecisions, the final volume, if it does not belong to
I2, belongs to I1, because of the definition of I2 as strict subset of I1.

We now describe a procedure to compute an interval verifying Property (∗),
and the associated strategies. We proceed as follows 11:

1. For each V0 ∈ I1, and target final interval J , compute (by a binary search)
the minimal accumulated volume Score(V0, J) that can be guaranteed. This
value Score(V0, J) is

min{K ∈ N | A(V0, J) |= control: A<> Scheduler.END and V acc<=K}

2. Compute an interval I1 such that, for I2 = [V1 + m,V2 − m]:
(a) ∀V0 ∈ I1, A(V0, I2) |= control: A<> Scheduler.END

(b) the value Score(I1) = max{Score(V0, I2) | V0 ∈ I1} is minimal.

3. For each V0 ∈ I1, compute a control strategy S(V0) for the control objective
A<> Scheduler.END and V acc<=K with K set to Score(V0, I2). This strat-
egy is defined by four dates of start/stop of the pump 12 and, by definition
of Score(V0, I2), minimizes the accumulated volume.

It is worth noticing that the value Score is computed using the variable V acc

which is deduced from intermediary values of variable V. Since V corresponds to
the value of the volume with no noise, V acc represents the mean value of the
accumulated volume for a given execution.

Results. For a margin m = 0.4l
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Fig. 5. Strategy for D = 1 and m = 0.4 l.

and a granularity of 1 (D=1 in the
Uppaal-TiGA model), we obtain
as optimal stable interval the inter-
val I1 = [5.1, 10]. The set of cor-
responding optimal strategies are
represented on Fig. 5.

For each value of the initial vol-
ume in the interval I1, the corre-
sponding period of activation of the
pump is represented. We have rep-
resented volumes which share the
same strategy in the same color. For the 50 initial possible values of volume, we
obtain 10 different strategies (first row of Table 1).

11 Control objectives are formulated as “control: P” following Uppaal-TiGA syntax,
where P is a TCTL formula specifying either a safety property A[]φ or a liveness
property A<>φ.

12 This is easy to obtain these times using the vectors start anf stop of the pump.8



The overall strategy we synthesize thus measures the volume just once at the
beginning of each cycle and play the corresponding “local strategy” until the
beginning of next cycle.

Table 1 represents the results obtained for different granularities and margins.
It gives the optimal stable interval I that is computed, (note that it is smaller
if we allow a smaller margin or a finer granularity), the number of different
local strategies, and the value of worst case mean volume which is obtained as
Score(I)/20. These strategies are evaluated in sections 4 and 5.

Granularity Margin Stable interval Number of strategies Mean volume

1 4 [5.1, 10] 10 8.45

1 3 [5.1, 9.8] 10 8.35

1 2 [5.1, 9.6] 9 8.25

1 1 [5.1, 9.4] 9 8.2

2 4 [5.1, 8.9] 14 8.05

2 3 [5.1, 8.7] 14 7.95

2 2 [5.1, 8.5] 11 7.95

2 1 [5.1, 8.3] 11 7.95

Table 1. Main Characteristics of the Strategies Synthesized with Uppaal-TiGA.

4 Checking Correctness and Robustness of Controllers

In this section, we report on the results concerning the verification of the cor-
rectness robustness of the three solutions mentioned in the previous sections. To
analyze the correctness and the robustness of the three controllers, we use the
tool PHAVer [4, 3] for analysing hybrid systems. PHAVer allows us to con-
sider a rich continuous time model of the system where we can take into account
the fluctuations of consumption of the machine as well as adequate models of
imprecisions inherent to any real implementation. The PHAVer model of the
cycle together with the pump is given in Appendix A.1. This model takes into
account the fluctuations in the consumption rate of the machine as well the im-
precision on the measure of the volume. We now summarize the results for the
three controllers.

The Bang-Bang controller. The PHAVer automaton of the Bang-Bang con-
troller is given in Appendix A.2. This automaton turns on the pump when a
floor volume value is reached and turns off the pump when a ceiling value is
reached. To ensure robustness and implementability of this control strategy, we
introduce imprecision in the measure of the oil volume: when the volume is read
it may differ at most by ǫ = 0.06 l from the actual value (precision of the sensor).
Tuning this controller amounts to choose the tightest values for this floor and
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ceiling. In our experiment we found that 5.76 and 25.04 are the best margins we
can expect.

With this PHAVer model and
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Fig. 6. Cyclic Behavior of the Bang-Bang
controller with Noise

the previous margins13, we are able
to show that: (1) this control strat-
egy enforces the safety requirement
R1, i.e. the volume of oil stays within
the bounds [4.9; 25.1]; (2) the set of
reachable states for initial volume
equal to 10 l can be computed and it
is depicted in Fig. 6; this means that
this controlled system is “cyclic” from
the end of the first cycle on and the
same interval [10.16; 14] (for the vol-
ume) repeats every other cycle. It is also possible to compute an interval for the
cumulated volume over two cycles and for this controller it is 307 and the mean
volume is 15.35.

The Smart Controller. The Smart Controller designed by Hydac Electronics

Gmbh is specified by a 400 line C program and computes the start/stop dates
for the next cycle according to what was observed in the previous cycle: it is
not possible to translate it precisely with PHAVer. Instead the PHAVer code
of a simplified version of the controller, obtained from observing its behaviour
in the absence of noise, is given in Appendix A.3: it turns on and off so that
the pump is active exactly during the three intervals [2.16; 4.16], [9.05; 11.42] and
[13.96; 16.04] during each cycle. Indeed using simulation, the engineers of Hydac

Electronics Gmbh had discovered that the behavior of their controllers in
the absence of noise was cyclic (stable on several cycles) if they started with an
amount of oil equal to 10.3 l. This is confirmed by the simulations we report
on at the end in Fig. 9 and by Fig. 7(a), obtained with PHAVer showing that
the smart controller stabilizes with no fluctuations in the rate. However, our
simplified version of the Smart controller (without imprecision on the dates of
start and stop of the pump), is not robust against the fluctuations of the rate:
the behavior of the system in the presence of noise is depicted in Fig. 7(b) and
it can be shown with our PHAVer models that after four cycles, the safety
requirement R1 can be violated. Unfortunaltey, there is no way of proving the
correctness of the full Smart controller with PHAVer and Simulink only gives
an average case. In this sense we cannot trust the Smart controller for ensuring
the safety property.

The ideal Smart Controller (no noise on the rate) produces an average cu-
mulated volume of around 221 per cycle i.e. an average volume of 11.05.

Controller Computed with Uppaal-TiGA. We now study the correctness and
robustness of the controller synthesized with Uppaal-TiGA. This verification

13 And another suitable piece of PHAVer program for the computations.
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Fig. 7. Behavior of the Hydac Electronics Gmbh Smart Controller

phase is necessary because during the synthesis phase we have used a very ab-
stract model of the system and also discrete time. To force robustness and cor-
rectness, we have imposed additional requirements on the winning strategies (our
inductive property together with the margin). But instead of proving by hand
that the model and the objective are giving by construction robust and correct
controller, it is more adequate to formally verify this. We summarize here the
results of this verification phase.

In the sequel we use the controller for granularity 2 and margin 4: this con-
troller can be seen as 14 different local controllers, each one managing one of the
14 intervals in which the initial volume can be at the beginning of a cycle. We
will focus on those strategies here but we have automated the process and the
others may be treated along the same lines.

The PHAVer models for those local strategies are obtained automatically
from the generic controller depicted on Figure 13 in Appendix A.4. To make
sure that our strategies are implementable, we have verified them in presence of
fluctuations of the rate consumption and two types of imprecisions: on the date
of start and stop of the pump (we use δ = 0.01 second), and on the measure of
the initial volume ǫ = 0.06 l. A summary of the verification results is given in
Table 2. From this table, we formally prove that our controller is correct and
inductive i.e. robust against the three types of imprecisions mentioned above.

5 Simulation and Performances of the Controllers

In this section, we report on results obtained by simulating the three controller
types in Simulink, with the purpose of evaluating their performance in terms
of the accumulated volume of oil.

Simulink models of the Bang-Bang controller as well as of the Smart con-
troller of Hydac Electronics Gmbh have been generously provided by the
company. As for the eight controllers – differing in granularity and margin – syn-
thesized by Uppaal-TiGA, we have made a Ruby script which takes Uppaal-

TiGA strategies as input and transforms them into Simulink’s m-format.

11



Controller for: Range of volume Correctness Range of final volume Robustness

[5.1; 5.2] [5.0270; 11.8449] OK [6.2519; 8.6931] OK

[5.3; 5.5] [5.2270; 11.8398] OK [5.3519; 7.8651] OK

[5.6; 5.6] [4.9740; 11.1320] OK [5.6519; 7.9481] OK

[5.7; 6.3] [4.9770; 11.8320] OK [5.7519; 8.6481] OK

[6.4; 6.6] [5.0270; 11.8320] OK [5.3519; 7.8485] OK

[6.7; 6.9] [4.9733; 11.3320] OK [5.6513; 8.1492] OK

[7; 7.4] [4.9770; 11.8320] OK [5.9479; 8.6480] OK

[7.5; 7.6] [5.3480; 11.7320] OK [5.3480; 7.7480] OK

[7.7; 7.7] [5.0270; 8.4440] OK [5.5480; 7.8480] OK

[7.8; 8.2] [4.9714; 8.9480] OK [5.6453; 8.3520] OK

[8.3; 8.5] [4.9770; 9.2440] OK [6.1244; 8.6480] OK

[8.6; 8.6] [5.2770; 8.6600] OK [5.3480; 7.6887] OK

[8.7; 8.8] [4.9740; 8.8600] OK [5.4480; 7.8480] OK

[8.9; 8.9] [4.9700; 8.9600] OK [5.6440; 7.9495] OK

Table 2. Correctness and Robustness of a Uppaal-TiGA Controller (Granularity 2,
margin 4).

Fig. 8 shows the Simulink block diagram for simulation of the strategies
synthesized by Uppaal-TiGA. The diagram consist of built-in functions and
four subsystems: Consumer, Accumulator, Cycle timer and Pump activation (we
ommit the details of the subsystems). The Consumer subsystem defines the flow
rates used by the machine with the addition of noise: here the choice of a uni-
form distribution on the interval [−ǫ,+ǫ] with ǫ = 0.1l/s has been made. The
Accumulator subsystem implements the continous dynamics of the accumulator
with a specified initial volume (8.3l for the simulations). In order to use the
synthesized strategies the volume is scaled with a factor 10, then rounded and
feed into a zero-order hold function with a sample time of 20s. This ensures that
the volume is kept constant during each cycle, wich is feed into the strategy
function. The Pump activation subsystem takes as input the on/off dates from
the strategy (for the given input volume of the current cycle) and a Cycle timer,
that holds the current time for each cycle.

Now, the plots in Fig. 9 are the result of Simulink simulations of the ten
controllers, illustrating the volume of the accummulator as well as the state of
the pump (on or off) for a duration of 200 s, i.e. 10 cycles. Though the simulations
do not reveal the known violation of the safety requirement R1 in the Hydac

Smart controller case, the simulations yield useful information concerning the
performance of the controllers. In particular, the simulations indicate that the
accumulated oil volume for all controllers grow linearly with time. Also, there
is clear evidence that the strategies synthesized by Uppaal-TiGA outperform
the Smart controller of Hydac – which is not robust – and also the Bang-Bang
controller – which is robust but very non-optimal.
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Fig. 8. The overall Simulink model.

This is highlighted in Table 3, giving – for each of the ten strategies – the
simulation results for the accumulated volume of oil , the corresponding mean
volume as well as the worst case mean volume according to synthesis of Uppaal-

TiGA. The table shows – as could be expected – that Uppaal-TiGA’s worst
case mean volumes consistently are slightly more pessimistic that their simu-
lation counter-parts. More interestingly, the simulation reveals that the perfor-
mances of the synthesized controllers (e.g. G2M1) provide a vast improvement
both of the Smart Controller of Hydac Electronics Gmbh (33%) and of the
Bang-Bang Controller (45%).

Controller Acc. volume Mean volume Mean volume (Tiga)

Bang-Bang 2689 13.45 -

Hydac 2232 11.16 -

G1M4 1511 7.56 8.45

G1M3 1511 7.56 8.35

G1M2 1518 7.59 8.25

G1M1 1518 7.59 8, 2

G2M4 1527 7.64 8.05

G2M3 1513 7.57 7.95

G2M2 1500 7.5 7.95

G2M1 1489 7.44 7.95

Table 3. Performance characteristics based on Simulink simulations.

6 Conclusion

In this paper we have presented a model-based methodology for the systematic
development of robust and near-optimal controllers. The methodology applies a
chain of tools for automatic synthesis (Uppaal-TiGA), verification (PHAVer)
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and simulation (Simulink). Initially, sufficiently simple and abstract game mod-
els are used for synthesis. The correctness and robustness of the strategies are
then verified using continuous hybrid models and – finally – the performance of
the strategies are evaluated using simulation models.

Applied to the industrial case study provided by Hydac Electronics

Gmbh, our method provides control strategies which outperforms the Smart

controller as well as the simple Bang-Bang controller considered by the company.
More important – whereas correctness and robustness of the Smart controller is
unsettled – the strategies synthesized by our method are provably correct and
robust. We believe that the case study demonstrates the maturity and industrial
relevance of our tools.

Directions for further work include:

– Improve the performance of our controller further by optimizing over several
cycles, and/or

– Improve the performance of our controller further by adding some predefined
points when we can measure the volume (even with imprecision).

– Consideration of other imprecisions, e.g. with respect to the timing of con-
sumer demands.

– Consideration of other optimization criteria. An interesting feature of the
Smart controller of Hydac Electronics Gmbh seems to be that the oil
volume is kept in a rather narrow interval, a feature which could possibly be
benificial for increasing the life-time of the Accumulator.

– Use the emerging version of Uppaal-TiGA supporting synthesis under par-
tial observability in order to allow more accurate intial game models.
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A PHAVer Models

A.1 Model for the cycle and the pump

The PHAVer hybrid automaton cycle for the cycle and the pump14 is given
in Fig. 10. This automaton has two synchronisation labels: switch off and
switch on. They model the actions of switching on and off the pump and are
issued by the controller. The cycle is complete w.r.t. these actions and so does
not constraint their occurrences. This model is cyclic (t is reset in locations l8*).
It also takes into account the fluctuations (variable f) of the rate of consumption
of the machine when it is consuming (otherwise no fluctuation). Another uncer-
tainty we take into account is on the measure of the initial volume: the initial
state is given by an interval [v1−ǫ; v2 +ǫ] where ǫ (eps) is the uncertainty on the
volume measure. If eps is 0 we assume the cycle starts with exactly an amount
between v1 and v2 litres in the accumulator. The states of the automaton cycle

indicates the current point in the cycle: the phases are numbered from 0 to 8
according to the consumption rate of the machine. When the consumption rate
of the machine is 0 there is no fluctuation of the rate: this is why in locations
loc2* the error f is not used in the derivative v’ of v.

1: rate0:=0; // rates of the machine; rate(i) is the rate of phase i in the schedule
rate1:=-1.2;

3: rate2:=0;
rate3:=-1.2;

5: rate4:= -2.5;
rate5:= 0;

7: rate6:= -1.7;
rate7:= -0.5;

9: rate8:= 0;
pump:=2.2 ; // rate of the pump when on

11: f:=0.1; // fluctuation of uncertainty of the pump+machine rate
// be careful: do not use when pump+machine are off

13: eps:=0.06 ; // this is the size of the interval around the init volume

15: automaton cycle
contr_var: t, v; // elapsed time in a cycle and current volume in the pump

17: synclabs: tau, // needed because each trans must a label
switch_on, switch_off;

19:

//rate0=0 no noise f
21: loc l0off: while t<=2 wait {t’==1 & v’==rate0}

when true sync switch_on do {t’==t & v’==v} goto l0on ;
23: when t==2 sync tau do {t’==t & v’==v} goto l1off ;

25: loc l0on: while t<=2 wait {t’==1 & v’<=rate0+pump & v’>=rate0+pump}
when true sync switch_off do {t’==t & v’==v} goto l0off ;

27: when t==2 sync tau do {t’==t & v’==v} goto l1on ;

14 For technical reasons (derivative value v’) it is not easy to make two models one for
the cycle and one for the pump and synchronize them.
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30: loc l1off: while t<=4 wait {t’==1 & v’<=rate1+f & v’>=rate1-f}
when true sync switch_on do {t’==t & v’==v} goto l1on ;

32: when t==4 sync tau do {t’==t & v’==v} goto l2off ;

34: loc l1on: while t<=4 wait {t’==1 & v’<=rate1+pump+f & v’>=rate1+pump-f}
when true sync switch_off do {t’==t & v’==v} goto l1off ;

36: when t==4 sync tau do {t’==t & v’==v} goto l2on ;

38: // rate2=0 no noise f
loc l2off: while t<=8 wait {t’==1 & v’==rate2}

40: when true sync switch_on do {t’==t & v’==v} goto l2on ;
when t==8 sync tau do {t’==t & v’==v} goto l3off ;

42:

loc l2on: while t<=8 wait {t’==1 & v’<=rate2 + pump & v’>=rate2 + pump }
44: when true sync switch_off do {t’==t & v’==v} goto l2off ;

when t==8 sync tau do {t’==t & v’==v} goto l3on ;
46:

loc l3off: while t<=10 wait {t’==1 & v’<=rate3+f & v’>=rate3-f}
48: when true sync switch_on do {t’==t & v’==v} goto l3on ;

when t==10 sync tau do {t’==t & v’==v} goto l4off ;
50:

loc l3on: while t<=10 wait {t’==1 & v’<=rate3+pump+f & v’>=rate3+pump-f}
52: when true sync switch_off do {t’==t & v’==v} goto l3off ;

when t==10 sync tau do {t’==t & v’==v} goto l4on ;
54:

loc l4off: while t<=12 wait {t’==1 & v’<=rate4+f & v’>=rate4-f}
56: when true sync switch_on do {t’==t & v’==v} goto l4on ;

when t==12 sync tau do {t’==t & v’==v} goto l5off ;
58:

loc l4on: while t<=12 wait {t’==1 & v’<=rate4 + pump +f & v’>=rate4 + pump -f}
60: when true sync switch_off do {t’==t & v’==v} goto l4off ;

when t==12 sync tau do {t’==t & v’==v} goto l5on ;
62:

//rate5=0 no noise f
64: loc l5off: while t<=14 wait {t’==1 & v’==rate5}

when true sync switch_on do {t’==t & v’==v} goto l5on ;
66: when t==14 sync tau do {t’==t & v’==v} goto l6off ;

68: loc l5on: while t<=14 wait {t’==1 & v’<=rate5 + pump & v’>=rate5 + pump }
when true sync switch_off do {t’==t & v’==v} goto l5off ;

70: when t==14 sync tau do {t’==t & v’==v} goto l6on ;

72: loc l6off: while t<=16 wait {t’==1 & v’<=rate6+f & v’>=rate6-f}
when true sync switch_on do {t’==t & v’==v} goto l6on ;

74: when t==16 sync tau do {t’==t & v’==v} goto l7off ;

76: loc l6on: while t<=16 wait {t’==1 & v’<=rate6 + pump +f & v’>=rate6 + pump -f}
when true sync switch_off do {t’==t & v’==v} goto l6off ;

78: when t==16 sync tau do {t’==t & v’==v} goto l7on ;

80: loc l7off: while t<=18 wait {t’==1 & v’<=rate7 + f & v’>=rate7 - f}
when true sync switch_on do {t’==t & v’==v} goto l7on ;

82: when t==18 sync tau do {t’==t & v’==v} goto l8off ;

84: loc l7on: while t<=18 wait {t’==1 & v’<=rate7 + pump +f & v’>=rate7 + pump-f}
when true sync switch_off do {t’==t & v’==v} goto l7off ;

86: when t==18 sync tau do {t’==t & v’==v} goto l8on ;

88: // rate8=0 no noise
loc l8off: while t<=20 wait {t’==1 & v’==rate8};

90: when true sync switch_on do {t’==t & v’==v} goto l8on ;
when t==20 sync tau do {t’==0 & v’==v} goto l0off;

92:

loc l8on: while t<=20 wait {t’==1 & v’==rate8+pump};
94: when t==20 sync tau do {t’==0 & v’==v} goto l0on;

when true sync switch_off do {t’==t & v’==v} goto l8on ;
96:

initially : l0off & t==0 & v>=v1-eps & v<=v2+eps ;
98: end

Fig. 10. Cycle and Pump in PHAVer
17



A.2 Model for the Bang-Bang Controller

The PHAVer code of the Bang-Bang controller is given in Figure 11.

1: // ——————————————————–
// bang bang Controller automaton

3: // this controller starts in on or off and then
// switch on or off when a bound is reached

5: // ——————————————————–

7: eps1:=0.06; // imprecision on the volume measure
margin_min:=0.86; // best we can do

9: margin_max:=0.06; // best we can do

11: automaton controller
input_var: v; // v is given by the cycle+tank automaton

13:

synclabs: switch_on , switch_off ; // synchronized with the cycle+tank
15:

loc on: while v <= VMAX - margin_max + eps1 wait {true}
17: when v>=VMAX-margin_max-eps1 sync switch_off do {true} goto off;

19: loc off: while v>=VMIN+margin_min - eps1 wait {true}
when v<=VMIN+margin_min+eps1 sync switch_on do {true} goto on;

21:

initially : off & true ; // values for no noise
23: end

Fig. 11. Bang-Bang controller in PHAVer

A.3 Model for the Hydac Electronics Gmbh Smart Controller

The PHAVer model for th Hydac Electronics Gmbh controller is repre-
sented on Figure 12.

A.4 Model for the controllers computed with Uppaal-TiGA

We have designed a generic PHAVer model for controllers with 2 starts and 2
stops during one cycle which is given in Figure 13.

For example, the controller for initial volume within [5.7; 6.3] is obtained by
setting starti and stopi with the correct values for this initial volume. In this
automaton, there is a variable δ (delta) which models the interval in which we
issue the start/stop commands: we cannot measure time with infinite accurracy
and thus we will only be able to issue the start/stop actions in an interval around
the precise time points given by the controller: if the ideal synthesized controller
has to issue switch on at 2.5, the implementation of the controller can only
ensure it will be issued in [2.5 − δ; 2.5 + δ]. We use the model for the cycle and
pump automaton given Fig. 10 in Appendix A.1. The values v1 and v2 are set
according to the controller we want to check (e.g. v1 = 5.7 and v2 = 6.3 for the
controller which has to be used for the volume within [5.7; 6.3]). As our controllers
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1: // ——————————————————–
// HYDAC smart controller automaton

3: // this controller starts in off and then
// switch on or off at given time points

5: // ——————————————————–

7: // time between switch is at least 2

9: automaton controller

11: contr_var: t; // this is the time reference of the controller
synclabs: switch_on , switch_off, tau1 ; // synchronized with the cycle+tank

13:

loc off1: while t<=2.16 wait {t’==1}
15: when t==2.16 sync switch_on do {t’==t} goto on1;

17: loc on1: while t<=4.16 wait {t’==1}
when t==4.16 sync switch_off do {t’==t} goto off2;

19:

loc off2: while t<=9.05 wait {t’==1}
21: when t==9.05 sync switch_on do {t’==t} goto on2;

23: loc on2: while t<=11.42 wait {t’==1}
when t==11.42 sync switch_off do {t’==t} goto off3;

25:

loc off3: while t<=13.96 wait {t’==1}
27: when t==13.96 sync switch_on do {t’==t} goto on3;

29: loc on3: while t<=16.04 wait {t’==1}
when t==16.04 sync switch_off do {t’==t} goto last;

31:

loc last: while t<=20 wait {t’==1}
33: when t==20 sync tau1 do {t’==0} goto off1;

35: initially : off1 & t==0 ;

37: end

Fig. 12. Hydac Electronics Gmbh Smart Controller in PHAVer
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1: // ——————————————————–
// TIGA controller automaton

3: // this controller starts in off and then
// switch on or off at time points defined in another file

5: // ——————————————————–

7: // time between switch is at least 2
delta:=0.01; // this defines the maximum error on

9: // the date at which start/stop are performed

11: automaton controller

13: contr_var: t; // this is the time reference of the controller
synclabs: switch_on , switch_off ; // synchronized with the cycle+tank

15:

loc off1: while t<=start1+delta wait {t’==1}
17: when t>=start1-delta sync switch_on do {t’==t} goto on1;

19: loc on1: while t<=stop1+delta wait {t’==1}
when t>=stop1-delta sync switch_off do {t’==t} goto off2;

21:

loc off2: while t<=start2+delta wait {t’==1}
23: when t>=start2-delta sync switch_on do {t’==t} goto on2;

25: loc on2: while t<=stop2+delta wait {t’==1}
when t>=stop2-delta sync switch_off do {t’==t} goto last;

27:

loc last: while true wait {true} ;
29:

initially : off1 & t==0 ;
31:

end

Fig. 13. Generic PHAVer Controller with two Start/Stop(s).
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should handle all the possible values of the volume at the beginning of a cycle, as
well as to be robust w.r.t. errors in the volume measurement, we add a variable
(ǫ) eps which models this error: it means we use the controller for [5.7; 6.3] on
an larger interval which is given by [5.7 − ǫ; 6.3 + ǫ]. Still our controller should
ensure that the final volume is within [5.1; 8.9]. To ensure overlapping and full
coverage of the initial volume range, we need to set ǫ larger than 0.05: we choose
0.06 for the following experiments15. To validate the controller synthesized with
Uppaal-TiGA we check the following:

1. we set δ = 0.01 second, ǫ = 0.06, and the maximum rate fluctuation is
f = 0.1;

2. we check that the set of reachable states of each of the 14 controllers is within
[Vmin;Vmax] which is the safety requirement of the accumulator;

3. we check that, starting from Iǫ = [5.1 − ǫ; 8.9 + ǫ] the final values of the
volume are within the interval [5.1; 8.9]. Thus we have an inductive proof
that our controller is safe and robust w.r.t. triple (δ, ǫ, f).

These computations can be done using the following PHAVer program (Fig. 14):

15 If the real volume is 5.65, we may obtain a measure of 5.7 or 5.6: what we check is
that both the controllers for 5.7 and 5.6 will ensure the final volume is the interval
[5.1; 8.9].
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REACH_CONSTRAINT_LIMIT = 48;
2: REACH_CONSTRAINT_TRIGGER = 96;

CONSTRAINT_BITSIZE = 24;
4: REACH_BITSIZE_TRIGGER = 200;

6: // Other constants
REFINE_DERIVATIVE_METHOD = 0; // say ’constrained based’ in the manual

8: PARTITION_PRIORITIZE_ANGLE = false; // when partitioning use the spread angle
PARTITION_DERIV_MINANGLE = 0.99 ; // spread angle almost 1 means almost derivative

10: REACH_USE_CONVEX_HULL=true;
REACH_USE_BBOX=true;

12:

// the system is
14: sys = cycle & controller ;

16: // parameters for refinement
m1:=0.05;

18: m2:=0.1;

20: sys.add_label(tau_sys); // new label for refinement
sys.set_refine_constraints((t,m1,m2),(v,m1,m2),tau_sys);

22:

bad=sys.{$ & v<VMIN, $ & v>VMAX};
24:

// now compute the reach
26: echo "Now computing the state space ... ";

reach=sys.reachable;
28: r=reach;

r1=reach;
30:

reach.intersection_assign(bad);
32: echo "checking wether the safety bounds are met";

reach.is_empty;
34:

vmintarget:=5.1;
36: vmaxtarget:=8.9;

r2=sys.{$ & t==20 & v<vmintarget, $ & t==20 & v>vmaxtarget};
38: r1.intersection_assign(r2);

echo "checking wether the final interval is within the initial";
40: r1.is_empty ;

Fig. 14. PHAVer Program to Check Correctness and Robustness.
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