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Abstract. Algorithmic formal verification has proved to be a promising
technology to improve reliability and quality of software systems. These
works are rooted in the theory of regular languages, that enjoy important
automata-logic connections. In order to address complex modern software
systems, there is a need for developing new theoretical models, and for im-
proving our understanding of the decidability and complexity of decision
problems. This relies in particular on the development of automata-logic
connections for these new models. In this habilitation thesis, I present
some of my recent contributions in the areas of timed systems and trans-
ducers, that allow to faithfully describe embedded real-time systems and
programs manipulating data streams, respectively. More precisely, the first
part of this document addresses robustness issues in timed systems, and
contains results on model checking and controller synthesis problems in
presence of timing perturbations. The second part, devoted to transduc-
ers, studies fundamental problems for different classes of word and nested
word transformations, with applications to streamability problems.
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Introduction

This habilitation thesis summarizes a selection of my research results obtained since my PhD
thesis, defended in June 2007.

The growing importance of computer systems

Computer systems are now present in every aspect of our lives. They are present in personal
equipments (laptops, smartphones, embedded systems in cars...) as well as in industrial ones
(airplanes, plants...), and may in both cases operate as critical systems. With this widespread
development, these systems are becoming more and more complex, and it becomes harder and
harder to guarantee their reliability. In parallel, with the development of the Web, we have
also observed the multiplication of communicating applications exchanging huge volumes of
data, requiring the conception of highly scalable applications. Developing software which is
both reliable and able to manipulate large inputs with a low memory consumption is a major
challenge.

The objective of the works I present in this habilitation thesis is to contribute to the
development of fundamental tools to achieve these issues of reliability and efficiency of soft-
ware. The common loam is the use of automata based models. As I will explain, they are at
the heart of the model checking approach, which is a successful formal method for ensuring
reliability. At the same time, they are intensively used in database management, allowing to
design simple and robust operational models.

Automata based approaches to reliability and efficiency

Software-engineering techniques aim to increase the quality of software through a rigorous
development process. This is achieved for instance by systematic testing, which helps dis-
covering bugs but does not guarantee their absence. With a different point of view, formal
methods aim at relying on mathematical tools to provide rigorous foundations to software
development. In the context of software verification, the objective is to come up with a proof
of correctness of the software at the end of the development process.

Different formal approaches have been studied, and we will be interested in the first part
of this thesis in model checking, an automata based approach to software analysis. With a
formal specification of the desired behavior of a system in one hand (given for instance as
some logical formula), and a model of the system in the other hand (given for instance as
some automaton), the model checking approach aims at verifying that the actual behavior of
the system corresponds to the specification.

Model checking was initially developed on finite state systems, checked against temporal
logics. Amir Pnueli was awarded the Turing prize in 1996 for introducing temporal logics in
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computing science, while Edmund M. Clarke, E. Allen Emerson and Joseph Sifakis received
this prize in 2007 for making model checking a highly effective verification technology. Since
its beginning, model checking has been extended to numerous classes of infinite state sys-
tems, including pushdown systems, Petri nets, counter automata, timed automata or hybrid
automata. Application domains of model checking are numerous, ranging from industrial
applications in circuit design to databases, going through embedded systems and security
issues.

Using automata based formal approaches for software verification and design allows to
increase their reliability. In addition, automata based modelization can also be fruitful for
several other aspects of software development. For instance, timed automata models have
been used to model real-time software systems, and to derive sharp evaluation of their worst-
case execution times. Similarly, performance evaluation can be realized using Markov decision
processes. A last example comes from the context of database-driven systems in which efficient
query evaluation schemes have been derived using these techniques.

Verification and synthesis of embedded systems

Embedded systems are highly critical, and their design is very challenging as they often
combine real-time computing constraints with a distributed architecture with complex com-
munications. This motivated the development of formal models to describe, analyze and
synthesize these systems.

Regarding the real-time constraints, the model of timed automata, introduced at the
beginning of the 1990’s by Rajeev Alur and David Dill, is now widely accepted as the reference.
Timed automata are defined as the extension of finite-state automata with finitely many real-
valued variables, called clocks. The languages they recognize are sets of of timed words, which
extend well-known words over a finite alphabet by associating to each action a time-stamp
recording the absolute time of occurrence of this action.

The model of Petri nets has been introduced by Carl Adam Petri in his PhD thesis in 1962.
It constitutes one of the main models to describe distributed and concurrent systems, and
has been used in numerous applications, from verification to performance evaluation. This
models fits into the class of infinite-state systems as the number of possible configurations is
infinite. This makes several interesting problems undecidable, and requires the development
of new techniques to make decidable problems tractable.

Studying the theoretical properties of these models by identifying the frontiers between
decidability and undecidability, as well as developing new efficient model checking algorithms,
is the core of my research work in this domain. I also considered models which combine real-
time constraints with concurrency, such as time extensions of Petri nets. Different such
extensions have been considered, by associating timing constraints either on places, arcs, or
transitions. Depending on the chosen semantics, the decidability status of the most basic
problem, namely that of reachability of an (untimed) marking, may change.

The design of embedded systems is a highly non-trivial task, as one has to cope with
timing constraints emerging from different components. The automatic synthesis offers the
possibility to handle complex timing constraints expressed using networks of timed automata.

Controller synthesis extends model checking as follows: given the model of a system in
which some actions are classified into controllable and uncontrollable ones, and a logic formula
representing the specification, the objective is to automatically build a strategy for a controller
of the system that achieves the specification. Relying on the formal tool of two-player games,
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this framework has been intensively developed during the last decade. In the context of timed
systems, efficient algorithms have been developed and successfully implemented in tools such
as UppAal-TiGa.

Though I contributed to the different aspects presented before, I decided to focus the first
part of this thesis to my contributions related to the robustness analysis of timed systems.
Indeed, the semantics of timed automata relies on several mathematical idealizations that are
not satisfied by real hardware and as a consequence, the implementability of timed automata is
still a difficult task. It was shown that these implementability issues are related to a notion of
robustness of timed automata, which can be understood as their tolerance to the introduction
of small perturbations in timing measurements. More precisely, Anuj Puri introduced a
parameterized semantics of timed automata which relaxes the timing constraints by some
parameter δ. It was later shown by Jean-François Raskin and his co-authors that this δ
can be understood as the precision of the implementation platform: if the timed automaton
enlarged by δ > 0 satisfies some linear-time property, then for some sufficiently fast and precise
hardware (with constraints depending on δ), there exists an implementation of this timed
automaton that also satisfies the property. As a consequence, this motivated the development
of a robustness theory for timed automata, which aims at studying the parametric semantics
of timed automata by considering an existential quantification over δ. While parametric
timed automata are quickly undecidable, this parametric semantics of timed automata can
be analyzed, as we will see in the developments of this thesis.

Analysis of data manipulating programs

Basic databases operations such as updates, views, or requests, are performed routinely by
management systems or Web services. Data is central in such applications, and usually
comes with an infinite domain, ensuring integrity of database-driven systems thus requires
the development of new formal models. Automata on words and trees augmented with data
coming from an infinite alphabet (such as register automata working on data words) show how
comparison of variables with values in an infinite domain can be handled in the framework
of automata theory.

Several operations on databases can also be modeled as functions (or relations) from the
database (modeled as a string, or as a tree) to some quantitative domain such as integers,
or even strings or trees. Indeed, one often queries a database in order to know how many
entries satisfy a given property. Updating a tree-structured database by adding a new entry,
or removing one, is naturally modeled as a tree-to-tree transformation. Transductions appear
thus as a natural formal tool to analyse these systems. Different formalisms exist to model
them, including grammars and logics. In this thesis, we will mainly be interested in the
extension of automata with outputs, known as transducers.

In the beginning of the 2000’s, the XML data model has become widespread, together with
the need of adequate automata models. Though XML documents are simply linearizations
of tree structures, and different models of tree automata are well known, it is important to
study automata models working directly on these linearizations in order to derive memory
efficient evaluation algorithms. The model of visibly pushdown automata, introduced in
2004 by Rajeev Alur and Parthasarathy Madhusudan, is a restriction of pushdown automata
well-suited to take as input linearizations of unranked trees, such as XML documents. It
has been shown that visibly pushdown automata can be used to derive efficient tools for
manipulating XML Document Type Definitions (DTDs). This motivated the identification
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of a model of transducer based on visibly pushdown automata, allowing to describe complex
XML transformations.

Biographical sketch since the PhD

My PhD thesis, defended in June 2007, adresses the verification of distributed timed systems,
modeled as networks of timed automata or as timed extensions of Petri nets. I have been
interested during my doctoral studies in algorithmic and decidability issues regarding these
systems, and in robustness issues.

At the end of my PhD, I decided to develop my works on the robustness analysis of timed
systems, and therefore I joined the group of Prof. Jean-François Raskin at the Université
Libre de Bruxelles during the academic year 2007/2008. Our initial objective at that time
was to design an algorithm to automatically synthesize robust controllers for timed games.
We studied this problem during my post-doctoral stay, but did not succeed to solve it. We
finally managed to come up with a solution to this problem last year (2014) with my colleagues
Youssouf Oualhadj (my post doctoral student at that time) and Ocan Sankur. In the mean-
time, I worked on different problems related to robust model checking of timed systems.

In parallel to this activity on robustness, I started to work on a different topic when I
have been hired as assistant professor in Marseille in september 2008. Indeed, when I moved
there, I initiated a new collaboration between Marseille and the group of Prof. Jean-François
Raskin in Bruxelles on the topic of transformations. The starting point was the definition
of a new model of transducers, based on the model of visibly pushdown automata. One of
the objectives was to obtain a decision procedure for determinization of these transducers.
This is of particular interest in order to derive efficient evaluation algorithms. Though this
problem was harder than expected (it is still open as I am writing this document), it was the
beginning of a very fruitful collaboration on the analysis of transformations which is still very
active.

Apart from the two topics of robustness of timed systems and transformations analysis,
I continued to work on distributed systems (Petri nets for instance) and on other aspects of
timed systems analysis. These results are not presented in this thesis, but they are briefly
surveyed at the end of this introduction.

Content of this thesis

This thesis is organized in two independent parts, on the two topics of robustness of timed
systems, and analysis of transformations respectively.

Part I gathers results I obtained on robustness analysis of timed systems.

Chapter 1 contains important definitions and results on model checking of timed automata,
and on controller synthesis in timed games. The implementability of timed automata is also
discussed and illustrated with a few examples.

In Chapter 2, I present my contributions related to robust model checking. Given a timed
automaton A and some temporal property ϕ, this problem consists in deciding whether there
exists δ > 0 such that the δ-enlarged semantics ofA satisfies ϕ. When studying timed systems,
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it is natural to consider specifications expressing timing requirements. A restriction of the
rich timed temporal logic MTL has been introduced in [BMOW07], together with an efficient
model checking algorithm, based on completely different tools, namely channel machines. We
present an algorithm for the robust model checking of this logic, showing that the analysis of
the effect of perturbations can be encoded using channel machines, and using our previous
results on LTL robust model checking. This is a joint work with Patricia Bouyer and Nicolas
Markey, published in [4].

While robust model checking allows to decide whether a property is satisfied for some
level of timing perturbations, it is relevant for practical applications to compute the largest
admissible perturbations. We consider this problem for safety properties, and present an
algorithm for flat timed automata (meaning that there are no nested cycles). To this end,
we provide an algorithm for the symbolic computation of the parametric reachability set of a
flat timed automaton under its enlarged semantics. This is joint work with my (now former)
PhD student Rémi Jaubert published in [18].

A third contribution related to robust model checking concerns the model of time Petri
nets. In this work, we show that when considering unbounded time Petri nets, several prob-
lems are undecidable. We also manage to identify subclasses for which robust model checking
is decidable, thanks to existing results on timed automata. This is joint work with S. Akshay,
Löıc Hélouët and Claude Jard, published in [1, 2].

Chapter 3 presents my recent results on robust controller synthesis in timed games. Stan-
dard timed games are two-player zero-sum games, where the two players are called Controller
and Environment. The objective is to synthesize a strategy for Controller which prescribes
delays and actions in order to control the timed automaton, in such a way that some prop-
erty is satisfied. Environment resolves the non-determinism associated with actions. In such
games, Controller has infinite precision, in the sense that it gets exact clock values and can
prescribe infinitely precise delays. Robust controller synthesis aims at synthesizing a strategy
tolerant to some timing perturbation: there should exist some δ > 0 such that the strategy
is still winning, even if its prescribed delays are modified by at most δ time units. These
perturbations are chosen by the player Environment.

The difficulty of this problem relies in the analysis of the cycles of the region automaton:
indeed, we need to guarantee that Controller is able to repeat some cycle whatever how Envi-
ronment perturbs his delays. We prove that this property is related to a notion of convergence
in cycles, which has recently been characterized using so-called forgetful cycles [BA11]. Using
these techniques, we show the decidability of the robust controller synthesis problem for timed
automata against Büchi objectives. We prove that the problem is ExpTime-complete, which
is also the complexity of the corresponding problem in the non-robust setting.

The framework considered so far is fully antagonist, as the strategy of the controller should
be winning against every behavior of the environment. In order to address more realistic
settings, we consider different stochastic models for the environment, and prove decidability
of the associated robust controller synthesis problems. We consider for instance a model in
which the perturbation of the delays are chosen randomly. These works have been carried
out in two different papers. The first one has been co-authored with Patricia Bouyer, Nicolas
Markey and Ocan Sankur [27]. The second paper has been written with Youssouf Oualhadj
while he was my post doctoral student and with Ocan Sankur [22].
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Part II presents results related to the analysis of transformations.

In Chapter 4, I present different models of string-to-string transformations. After intro-
ducing (two-way) finite-state transducers, I define the model of streaming string transducers
(SST) which has recently been introduced by Rajeev Alur and Pavol Černý. Last, I introduce
a logic based formalism to describe transformations. The two important classes of rational
and regular string transformations are defined, and characterizations are given by means of
the different models of transducers.

Chapter 5 gathers the results I obtained on string-to-string transformations. Most of these
results are motivated by the analysis of the streamability of these transformations, i.e. decide
whether it is possible to realize a transformation using a single left-to-right traversal of the
input word, and using a memory that does not depend on the length of the input word. I
thus start by formally describe this notion of streamability, and I build a link with the class
of deterministic one-way finite state transducers. This class is characterized, among rational
functions, by the so-called twinning property. This settles this streamability problem for the
class of rational functions, as the twinning property can be decided in polynomial time.

Concerning regular string functions, a necessary condition for streamability is to belong
to the class of rational string functions. In terms of transducers, this amounts to decide,
given a functional two way finite-state transducer, whether there exists an equivalent one-
way transducer. Though very natural, this problem had never been studied before, to the
best of our knowledge. Showing that this problem is decidable is rather difficult, and I present
a proof relying on a construction proposed by Rabin and Scott for automata. This is a joint
work with Emmanuel Filiot, Olivier Gauwin and Frédéric Servais published in [14].

The model of streaming string transducer allows to express any regular string function
using a deterministic one-way automaton, equipped with a finite set of string variables. While
streamability amounts to checking whether it is possible to realize a transformation using a
deterministic one-way transducer, a more general problem is thus to minimize the number of
variables required to express a given transformation using an SST. Together with Jean-Marc
Talbot and with Laure Daviaud who owns currently a post doctoral researcher position in our
group, we address this problem in a particular case, namely that of rational functions (which
have a counterpart in terms of SST). In this setting, we introduce a generalization of the
twinning property of order k that characterizes precisely transformations realizable using k
variables. In addition, we prove that this property is decidable, thus allowing to identify the
minimal number of variables required to express a given rational function using this subclass
of SST. This recent work is not published yet.

A strength of regular languages is their equivalent representation by automata, logic and
algebra. When considering regular string functions, we recover the logical equivalence using
MSO string-to-string transformations. The class of first-order definable languages has been
thoroughly studied with an equivalent algebraic characterization in terms of aperiodic monoid.
Recent results provided characterizations of the class of first-order definable string-to-string
transformations by means of aperiodic SST [FKT14], and aperiodic deterministic two-way
transducers [CD15]. Together with Luc Dartois while he was a post-doctoral researcher
in Marseille, we recently proposed different transformations between deterministic two-way
transducers and SST, and proved that they preserve aperiodicity.
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Chapter 6 deals with tree-to-string transformations. I start with a presentation of visi-
bly pushdown automata for which I proposed with Jean-Marc Talbot and our PhD student
Mathieu Caralp a trimming procedure [8, 9]. Then, I present the model of visibly pushdown
transducers we introduced in [16] with Emmanuel Filiot, Jean-François Raskin, Jean-Marc
Talbot and Frédéric Servais. This model takes as input the linearization of an unranked tree,
and produces as output a string that does not necessarily represent a tree. We prove the de-
cidability of important properties such as functionality and k-valuedness, and study closure
properties. We also show that the problem of type-checking is undecidable, and that visibly
pushdown transducers are not closed under composition.

The two previous negative results motivate the study of subclasses of visibly pushdown
transducers which define tree-to-tree transformations, i.e. such that the output string is the
linearization of an unranked tree. We study two different such subclasses: a syntactic one
and a semantical one. We show that the second class is more general, decidable in polynomial
time, closed under composition, and owns a decidable type checking problem. Last, we
compare the tree-to-tree class of transductions defined by the syntactic subclass with known
models of hedge-to-hedge transductions. These results are joint works with my PhD student
Mathieu Caralp, and my colleagues Emmanuel Filiot, Frédéric Servais and Jean-Marc Talbot,
published in [26] and [6]. A journal version of these results is under revision.

The original motivation for studying visibly pushdown transducers is to use an automaton
model close from actual implementations handling XML streams. In particular, our objective
is to characterize streamable transformations. The notion of streamability needs to be defined,
and we consider here different levels of streamability. As a first step, we require that the
memory used to evaluate the transformation may depend on the height of the input (nested)
word, but should not depend on its length. This is reasonable as common XML documents
have very low depth. We manage to characterize this class of transformations using an
adaptation of the twinning property, and prove that this class is decidable in coNP-time.
However, the memory may depend exponentially in the height of the input word, which may
be too much for some applications. As a second step, we thus introduce a stronger twinning
property, and prove the following important facts: this twinning property defines a class of
transductions (it does not depend on the transducer, but only on the transduction it defines);
it subsumes the class of subsequentializable visibly pushdown transducers; it can be decided
in coNP-time; and it can be evaluated using a memory that depends quadratically on the
current height of the input word. This work has been carried with Emmanuel Filiot, Olivier
Gauwin and Frédéric Servais, and has been published in [13]. A journal version of these
results is under revision.

Conclusion summarizes the main results presented in this thesis, and highlights the com-
mon tools on which rely their proofs. The major perspectives are also described and illustrated
with mid-term and long-term goals.

Other contributions not in this thesis

Several papers are not mentioned in this thesis, because I decided to focus on the two topics of
robustness of timed systems, and analysis of transformations. I briefly describe these results
below.
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Analysis of (time) Petri nets The Karp and Miller approach [KM69] is a very well-
known technique to decide the coverability problem, which consists in determining whether
there exists a reachable marking dominating some given marking m. The Karp and Miller
algorithm actually allows to compute the so-called minimal coverability set of a Petri net,
which can be understood as a minimal (finite) over-approximation of the reachability set.
Unfortunately, this algorithm is known to be very inefficient, as the same computations may
be repeated several times. In order to avoid this, a technique of pruning was introduced before
in [Fin93], but it appeared to be erroneous as demonstrated in a recent work [GRVB10].
With Frédéric Servais, who was a PhD student at ULB at that time, we managed to propose
an involved pruning technique which allows to safely apply Karp and Miller acceleration,
yielding a very efficient procedure to compute the minimal coverability set of a Petri net.
These results appeared in the communications [24, 25]. Recently, a rather simple algorithm
has been proposed in [VH14], together with involved techniques for the representation of
intermediate data structures, as well as heuristics for the exploration of the Petri net. The
resulting implementation shows very good performances. It seems very interesting to develop
a new implementation of our procedure in order to test whether it can also benefit from these
technical improvements.

The most widely used time extension of Petri nets is that of time Petri nets, which are
usually considered under a urgent semantics, in the sense that a transition can never miss its
deadline due to time elapsing. Reachability is undecidable for this class, and the undecidability
proof heavily relies on this urgency condition. With Arnaud Sangnier, who was a PhD student
at ENS Cachan at that time, we decided to study the decidability status of the reachability
problem when this urgency condition is relaxed. This non-urgent semantics is usually named
the weak semantics. Surprisingly, we managed to prove that under the weak semantics, the
set of reachable markings is exactly the reachability set of the underlying untimed Petri net.
As a consequence, reachability is decidable for weak time Petri nets. These results have been
published in [23].

Controller synthesis for timed systems During my post-doctoral stay in Brussels, I
was involved in a European project with industrial partners. One of them provided us the
description of a pump system associated with an oil tanker and asked us to automatically
synthesize a controller for the pump respecting some safety constraints regarding the oil level
inside the tank, as well as some optimization constraints in terms of energy consumption. I
derived from this description a modelization of the controller synthesis problem fitting the
input syntax of the tool UppAal-TiGa, and we managed to automatically synthesize such a
timed controller. This work, done in collaboration with Franck Cassez, Jan J. Jessen, Kim
G. Larsen and Jean-François Raskin, has been published in [10].

In some real complex systems, it is not reasonable to assume that the controller has access
to the full description of the current configuration of the system. The model of timed games
with partial observation allows to take this difficulty into account. Allowing the controller to
know the value of some internal variable corresponds to adding some monitor/sensor to the
system, which may come with a cost. In order to minimize the cost of the synthesized con-
trollers, we addressed the problem of identifying the minimal set of observations under which
a given system is controllable. We proposed an algorithm based on refinement techniques, as
well as some heuristics to identify quickly the right set of observations. A prototype imple-
mentation has been realized in order to validate our algorithms. These results, obtained with
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Peter Bulychev, Franck Cassez, Alexandre David, Kim G. Larsen and Jean-François Raskin,
have been published in [5].

Timed systems are a particular case of hybrid systems, which combine discrete steps,
modeled by a finite number of states, and continuous evolution, modeled by a finite set of
real-valued variables governed by differential equations. This constitutes a very expressive
setting, for which numerous problems are undecidable. The work reported in [19] has been
done with my colleague Peter Niebert and his PhD student Janusz Malinowski. This work
is an attempt to make controller synthesis feasible for a class of hybrid systems. In order
to avoid the state space explosion, we proposed a hierarchical algorithm which considers
increasing subsets of variables. Using an implementation of our approach, we have been
able to automatically synthesize a controller for an inverted pendulum. This work has been
carried out in the context of a collaboration with the start-up Novadem whose aim is to
develop unmanned quadricopters.

Characteristic formulae for event-recording automata In this work, we considered
with Omer-Landry Nguena-Timo who was a PhD student at LaBRI at that time a subclass
of timed automata called event-recording automata. We have studied a fixpoint logic tailored
to express timed properties corresponding to this class of timed automata. We have shown
that we can build in this logic a formula which characterizes a given event-recording timed
automaton up to timed bisimilarity. We also proved that a previously introduced timed logic
is not expressive enough for this objective, contrarily to what was claimed in the literature.
This work has been published in [20, 21].

Weighted visibly pushdown automata Last, in addition to works presented in this
thesis on visibly pushdown transducers, I have also worked on weighted visibly pushdown au-
tomata with Jean-Marc Talbot and our PhD student Mathieu Caralp [7]. Our work concerns
the boundedness problem for visibly pushdown automata equipped with weights considered
in the semi-ring (N,+,×). We provided a characterization of automata A whose evaluation is
bounded, i.e. such that there exists k ∈ N such that for every input word w, the value associ-
ated by A to w is at most k. Our characterization is based on patterns, which generalize the
patterns known for automata on finite words. This allows as a particular case to characterize
finitely ambiguous visibly pushdown automata. Using transformations between (weighted)
visibly pushdown automata and (weighted) tree automata, we also derived a characterization
of bounded weighted tree automata over the semi-ring (N,+,×).

Tree transducers with origin semantics I started recently a new collaboration with
Sebastian Maneth in order to study decision problems inspired by databases motivations and
that can be addressed using tree transducers techniques. Such a problem is the determinacy
of a query by a view: we want to determine whether a view of a database (that can be under-
stood as an extraction of it) determines a query (the view is sufficient to answer the query).
Though undecidable in general, we have studied this problem using a new semantics for tree
transducers (the so-called origin semantics that has recently been introduced in [Boj14]), and
we have proven several decidability results. This joint work with Emmanuel Filiot, Sebastian
Maneth and Jean-Marc Talbot has been published in [15].
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A note on references

References to my publications use numbers, and refer to my list of publications, which can
be found as Appendix A. References to other works use alphanumeric keys, and refer to the
bibliography which can be found beginning on page 115.
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Part I

Robustness of timed systems
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Chapter 1

Preliminaries on timed automata

Contents

1.1 Timed automata and model checking . . . . . . . . . . . . . . . . 18

1.2 Timed games and controller synthesis . . . . . . . . . . . . . . . . 22

1.3 Implementability of timed automata . . . . . . . . . . . . . . . . . 23

1.4 Robustness of timed automata . . . . . . . . . . . . . . . . . . . . 25

1.1 Timed automata and model checking

Model checking is a formal method for automatically checking whether a system satisfies a
given property. It is usually defined for labelled transition systems and temporal logics. We
will instantiate here the definition for timed automata, which will be the central object of our
further developments.

Timed automata Given a finite set of clocks C, we call valuations the elements of RC≥0. For
a subset R ⊆ C and a valuation ν, ν[R← 0] is the valuation defined by ν[R← 0](x) = ν(x)
for x ∈ C \R and ν[R← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation ν, the valuation
ν + d is defined by (ν + d)(x) = ν(x) + d for all x ∈ C. We extend these operations to sets of
valuations in the obvious way. We write ~0 for the valuation that assigns 0 to every clock.

An atomic clock constraint is a formula of the form k � x �′ l or k � x − y �′ l where
x, y ∈ C, k, l ∈ Z ∪ {−∞,∞} and �,�′ ∈ {<,≤}. A guard is a conjunction of atomic clock
constraints. A valuation ν satisfies a guard g, denoted ν |= g, if all constraints are satisfied
when each x ∈ C is replaced with ν(x). We denote by JgK the set of clock valuations that
satisfy g. We write ΦC for the set of guards built on C.

Let Σ be a finite alphabet. A timed automaton A over Σ is a tuple (L, C, `0, F, E), where
L is a finite set of locations, C is a finite set of clocks, E ⊆ L×ΦC×Σ×2C×L is a set of edges,
`0 ∈ L is the initial location, and F ⊆ L is the set of final locations. An edge e = (`, g, a,R, `′)

is also written as `
g,a,R−−−→ `′. A state of A is a pair q = (`, ν) composed of a location ` and a

clock valuation ν over C.
The set of possible behaviors of a timed automaton can be described by the set of its runs,

as follows. A run of A is a sequence q1e1q2e2 . . . where qi ∈ L×RC≥0, and writing qi = (`, ν),
either ei ∈ R≥0, in which case qi+1 = (`, ν + ei), or ei = (`, g, a,R, `′) ∈ E, in which case
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`0 `1 `2 `3
1<x<2, a

y:=0

y≥2, b, y:=0

x≤2, c, x:=0

x=0∧y=2

Figure 1.1: A timed automaton A from [Pur00]

ν |= g and qi+1 = (`′, ν[R← 0]). We say that ei is a delay action when ei ∈ R≥0, and that ei

is a discrete action with label a when ei = (`, g, a,R, `′) ∈ E. We may write q
t−→ q′ to denote

a transition of delay t, and q
a−→ q′ to denote a discrete transition labelled by a. W.l.o.g., we

assume that discrete and delay actions alternate. We denote by statei(ρ) the i-th state of any
run ρ, by first(ρ) its first state, and, if ρ is finite, last(ρ) denotes the last state of ρ. The label
of a run ρ = q1e1q2e2 . . . e2nq2n+1 with e1 ∈ E is the timed word w = (ai, di)1≤i≤n where ai is
the label of e2i−1 and di is the delay e2i. The set of runs in A starting in state q is denoted
Runs(A, q).

A run ρ is accepting if it starts in the initial state (`0,~0) and ends in some final location. A
timed word w ∈ (Σ×R≥0)∗ is accepted by a timed automaton A if there exists an accepting
run ρ whose label is w. The language of A is the set of the timed words it accepts, and
is denoted L(A). Given a timed word w, the untimed word associated with w (i.e. its
projection on Σ∗) is denoted by untimed(w). This notation is lifted to languages, and we
denote by untimed(L(A)) the untimed language of A, defined as the projection of L(A) on
Σ∗.

Standard definitions of timed automata also allow invariants on locations which restrict
time elapsing. For the sake of simplicity, we do not consider this technical addition here,
however our results hold in presence of invariants.

We say that a state q is reachable in A if there exists a run ρ such that first(ρ) = (`0,~0)
and last(ρ) = q. We denote by reach(A) the set of reachable states in A.

We say that A is deterministic if for every pair of edges (`, g1, a, R1, `1) and (`, g2, a, R2, `2)
starting in the same location ` and over the same letter a, we have Jg1K ∩ Jg2K = ∅.

An example of timed automaton is given on Figure 1.1. This timed automaton is de-
terministic, and one can verify that its untimed language can be described by the regular
expression ac(bc)∗.

Timed transition system The semantics of timed systems is often given as a timed tran-
sition system. Formally, a timed transition system (TTS for short) over Σ is a transition
system S = (Q, q0, Qf ,→), where Q is the set of states, q0 ∈ Q is the initial state, Qf ⊆ Q

is the set of final states and the transition relation → consists of delay moves q
d−→ q′ (with

d ∈ R≥0), and discrete moves q
a−→ q′ (with a ∈ Σε). Moreover, we require standard properties

of time-determinism, additivity and continuity for the transition relation →.

The semantics of A defined above can be understood using the (infinite state) timed
transition system JAK = (Q, q0, Qf ,→), where Q is the set of states of A, q0 = (`0,~0) is the
initial state, Qf = {(`, ν) | ` ∈ F} and →⊆ Q× (R≥0 ∪ Σ)×Q has been defined above.

Timed (bi)-simulation: Let S = (Q, q0, Qf ,→) and S′ = (Q′, q′0, Q
′
f ,→′) be two TTS.

A relation R ⊆ Q × Q′ is a timed simulation if and only if, (q0, q
′
0) ∈ R and for every

σ ∈ Σε ∪ R≥0, q1 ∈ Q, q′1 ∈ Q′ such that (q1, q
′
1) ∈ R, if q1

σ−→ q2, then there exists q′2 such
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that q′1
σ−→ q′2 and (q2, q

′
2) ∈ R. We will say that S′ simulates S and write S � S′ when such a

relation R among states of S and S′ exists. If in addition R−1 is a timed simulation relation
from S′ to S, then we say that R is a timed bisimulation. We say that S and S′ are timed
bisimilar when such a relation R among states of S and S′ exists, and write S ≈ S′.

Region automaton. In order to symbolically reason about the infinite state space of timed
automata, [AD94] defines an equivalence relation (of finite index) as follows. Let A = (L, C,
`0, F, E) be a timed automaton, and M be the largest integer occurring in A. Two valuations
ν and ν ′ are equivalent iff the following conditions hold 1:

• for all c ∈ C, either ν(c) and ν ′(c) are greater than M , or bν(c)c = bν ′(c)c;

• for all c, c′ ∈ C, if both ν(c) and ν(c′) are lower than M , then

– 〈ν(c)〉 ≤ 〈ν(c′)〉 iff 〈ν ′(c)〉 ≤ 〈ν ′(c′)〉;
– 〈ν(c)〉 = 0 iff 〈ν ′(c)〉 = 0.

This defines an equivalence relation, whose equivalence classes are referred to as regions. We
write [ν] for the region containing ν, and r for the topological closure of the region r (w.r.t. the
usual topology on RC≥0). The set of regions is finite and exponential in the size of the timed
automaton. We define the region automaton as the finite automaton R(A) = (Γ, γ0,→a)
where

• Γ is the set {(`, r) | ` ∈ L, r region},

• γ0 is the initial state (`0, r0) where r0 is the region which contains the valuation ν0 with
ν0(c) = 0 for every c ∈ C,

• →a ⊆ Γ× (Σ ∪ {τ})× Γ and ((`, r), σ, (`′, r′)) ∈ → iff the following holds:

– either σ ∈ Σ and (`, ν)
σ−−→ (`′, ν ′) is a transition of JAK for some ν ∈ r and ν ′ ∈ r′,

– or σ is the symbol τ , and there exists t ∈ R≥0 s.t. (`, ν)
t−→ (`′, ν ′) is a transition

of JAK for some ν ∈ r and ν ′ ∈ r′.

The notions of path in the region automaton, trace of a path, ... are defined in the usual
way. It is well known that this automaton is time-abstract bisimilar to the original timed
automaton, which implies that, under the standard semantics, all reachability and more
generally ω-regular properties can be checked equivalently on the original timed automaton
or on the region automaton. We assume that classical properties of region automata are
known, and refer to [AD94] for more details. Let us observe that the size of the region
automaton is exponential in the size of the timed automaton, but that it can be explored
on-the-fly yielding PSpace algorithms (for checking emptiness for instance).

Symbolic representation of valuations Although the region automaton is a very im-
portant tool to obtain decidability results, it is not amenable to implementation. To this end,
zones constitute a symbolic representation of sets of valuations that is more abstract, and
yields to smaller state spaces. Formally, a zone Z is a convex set of valuations that can be

1bν(c)c represents the integer part of ν(c) and 〈ν(c)〉 represents its fractional part.
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defined using a guard, i.e. such that there exists a guard g satisfying Z = JgK. We denote
by Zones(C) the set of zones defined on the set of clocks C. The main asset of zones is their
representation using the data structure of difference bound matrices (DBM for short) allowing
to implement efficiently every basic operation (time elapsing, reset of clocks, intersection . . . ).

A symbolic state is a pair (`, Z) ∈ L×Zones(C). Consider a transition e = (`, g, a,R, `′) ∈
E of a TA A. We define the operator Poste computing the symbolic successors over e starting
from the zone Z, with Z ∈ Zones(C), by Poste(Z) = {v′ ∈ RC≥0 | ∃v ∈ Z,∃d ∈ R>0 : v |=
g ∧ v′ = v[R← 0] + d}. It is well known that Poste(Z) is still a zone. We define similarly the
operator Pree for the set of predecessors by e. Given a sequence of transitions ρ, we define
the operators Postρ and Preρ as the compositions of these operators for each transition of
ρ. We define the set of successors from a symbolic state by Succ(`, Z) = {(`′,Poste(Z)) ∈
L× Zones(C) | e = (`, g, a,R, `′) ∈ E}.

Temporal logics One needs tools to specify the properties that the systems should fulfill.
Temporal logics, introduced by Pnueli in the 70’s, are central in model checking approach
because there exist efficient model checking algorithms based on automata translations. We
present below the Linear Temporal Logic, LTL for short. We will mainly consider linear-time
temporal logics in this thesis.

Definition 1 (Logic LTL). The logic LTL over finite set of actions Σ is defined by the following
grammar: (a ranges over the set of actions Σ)

LTL 3 ϕ ::= a | ϕ ∨ ϕ | ¬ϕ | X ϕ | ϕU ϕ

Semantics of LTL. We define the semantics of LTL over (finite or infinite) words over Σ.
We thus assume we are given a word u = (ai)i ∈ Σ∗ ∪Σω. Given a natural number j ∈ N, we
denote by uj the word (ai)i≥j . The satisfaction relation for LTL is denoted |= and is defined
inductively as follows (we omit the semantics of standard boolean operators):

u |= a ⇐⇒ a0 = a
u |= X ϕ ⇐⇒ u1 |= ϕ
u |= ϕ1 U ϕ2 ⇐⇒ ∃ i ≥ 0 s.t. ui |= ϕ2 and ∀ 0 ≤ j < i, uj |= ϕ1

The set of words satisfying an LTL formula ϕ is denoted JϕK.
In the following, we use classical shortcuts like F ϕ (which holds for trueU ϕ where true

denotes the “true” formula) or G ϕ (which holds for ¬(F (¬ϕ)).

In particular, LTL properties allow to express basic properties such as safety (something
bad never happens, expressed by the G operator).

Last, given a timed automaton A and an LTL formula ϕ, we say that A satisfies ϕ iff for
all w ∈ L(A), we have untimed(w) |= ϕ.

Model checking Given a timed automaton A and a property ϕ expressed in some formal
language, the model checking problem consists in determining whether A satisfies ϕ. This
problem can of course be instantiated with several classes of models and properties. We
review some of them here, together with complexity and decidability results.

The model of the system is often described using an automata-based formalism, while the
model of the property is usually given as some logical formula. The automata-based approach
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to model checking, introduced in [VW86, Var95, KVW00] consists in translating the property
into an automaton, and in using automata algorithms to solve the problem.

The problem of model checking of timed automata against safety properties is defined as
follows:

Input: A timed automaton A = (L, C, `0, F, E) and a subset Bad ⊆ L

Problem: Does reach(A) ∩ (Bad× RC≥0) = ∅ hold?

This problem can be reduced to a reachability problem in the region automaton of A, and we
obtain:

Theorem 1 ([AD94]). Model checking of timed automata against safety properties is PSpace-c.

The problem of LTL model checking for timed automata is defined as follows:

Input: A timed automaton A and an LTL formula ϕ

Problem: Does A |= ϕ hold?

Given a timed automaton, the satisfaction of an LTL formula only depends on its untimed
language. As a consequence, we can also use the region automaton to decide this problem.
Using well-known translations of LTL formula into Büchi automata, one obtains:

Theorem 2 ([AD94]). LTL model checking for timed automata is PSpace-c.

1.2 Timed games and controller synthesis

While model-checking aims at proving the correction of an existing system w.r.t. a specifi-
cation, synthesis aims at building from a specification a correct-by-construction system. We
will not consider reactive synthesis as introduced by Pnueli and Rosner in [PR89], but rather
supervisory control as introduced in the seminal work of Ramadge and Wonham [RW87]. We
refer the reader to [ELTV14] for a comparison of these two approaches.

Assume that we have the description of a system in which the set of transitions is par-
titioned into controllable and uncontrollable ones. The controller synthesis is formalized as
a two-player zero-sum game (i.e. the two players are antagonist), played between Controller
and Environment. While Controller may choose which controllable transition he wants to ex-
ecute, Environment may play an uncontrollable transition at any time. The objective is then
to decide the existence of a winning strategy for Controller.

This approach was first lifted to timed systems in [MPS95]. Let A = (L, C, `0, F, E) be
a timed automaton. In this setting, a strategy for Controller maps each finite run ending in
some state (`, ν) to a controllable transition (that can be executed from state (`, ν)), or to
wait (meaning that this player wants to let time elapse). Player Environment’s strategies are
similar, and if both players want to execute a transition, the priority is given to Environment.
A strategy of Controller is declared winning iff the set of runs of the timed game it induces all
satisfy Controller’s objective, which is often given as an ω-regular property. Using a fixpoint
computation on the set of regions of the timed automaton, one can prove the decidability of
the controller synthesis in timed game automata for reachability and safety objectives:

Theorem 3 ([MPS95]). The existence of a winning strategy for Controller in a timed game
with reachability or safety objectives is decidable in ExpTime.
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This work led to numerous further developments, involving other semantics for timed
games ([AMPS98, dAFH+03]), symbolic approaches [CDF+05] and the development of the
too UppAal-TIGA. Recent works used this tool to solve case studies [10].

Already in [MPS95], but also in more recent works such as [dAFH+03], a focus has been
put on unrealistic strategies for Controller. For instance, it was admitted that a player should
not win the game by following a Zeno behavior, i.e. performing infinitely many transitions in
a finite amount of time. In [MPS95], this property was ensured using the so-called restriction
of strictly non-Zeno timed automata. In [dAFH+03], the authors proposed an encoding of
this property in the abstract game used to solve the (timed) game, leading to the decision of
the existence of non-Zeno winning strategies. As we will see in the following developments,
Zeno behaviors are not the only pathological runs of timed automata. In some sense, our
results on robust controller synthesis generalize the ones of [dAFH+03].

1.3 Implementability of timed automata

Altough timed automata are a model widely used for representing real-time systems, there
exists a gap between the models analyzed and their implementations that may cause the lost
of correctness properties checked on the models. As we will see in the forthcoming examples,
the semantics of timed automata relies indeed on several mathematical idealizations that
cannot be guaranteed on realistic physical devices.

The line of works we present in the first part of this thesis builds on the work of Anuj
Puri [Pur00] in which he proposed a parametric semantics for timed automata: given a timed
automaton A and a rational number ε > 0, Puri defines the hybrid automaton H(A, ε)
obtained by replacing clock variables by hybrid variables whose derivative belongs to the
interval [1 − ε, 1 + ε]. Formally, this means that after a time elapsing of d time units, each
clock variable is incremented of some d′, with d′ ∈ [d − dε, d + dε] (with possibly a different
d′ for each clock). This enlarges the set of runs of A, and Puri proved that the limit of the
reachability set of these hybrid automata H(A, ε) when ε converges towards 0 does exist, and
can be computed using the region automaton. The parametric semantics we will consider is
strongly related to that of Puri.

Examples of timed automata The semantics of timed automata suffers from several
mathematical idealizations that cannot be faithfully respected by implementations. For in-
stance, there is no lower bound between two consecutive actions, clock values are considered
with infinite precision, and communication between processes is instantaneous. We illustrate
these assumptions with few examples of timed automata. First, the example depicted on
Figure 1.2.(a) illustrates the well-known issue of Zeno behaviors that perform an infinite
number of actions in a finite amount of time. In order to execute the sequence aω, one needs
to perform an infinite number of a’s in only one time unit. Second, the timed automaton
implementing a timed version of Fischer’s protocol for mutual exclusion is depicted on Fig-
ure 1.2.(c) for two participants. The two processes communicate through the shared variable
id. Here, the correction of the system, i.e. the mutual exclusion of locations c1 and c2, is
lost if the strict inequality xi > 2 is replaced by a non-strict inequality. This shows the high
dependance of the correction of the system to the perfect precision of its implementation
concerning clock measures. It shows also that if the two processes use clocks that are not
perfectly synchronized, then the same error may occur.
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(a) Example of Zeno behavior
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(b) Example of convergence (but non-Zeno)
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x1:=0

x1:=0

id:=1

x1:=0

id:=0

id=1, x1>2

id:=0

s2 r2

x2≤2

w2c2

id=0

x2:=0

x2:=0

id:=2

x2:=0

id:=0

id=2, x2>2

id:=0

(c) Fischer’s protocol for mutual exclusion

Figure 1.2: Timed automata exhibiting timing anomalies.

Last, we consider the timed automaton depicted on Figure 1.2.(b). This automaton has
been introduced in [CHR02] in order to exhibit a convergence phenomenon which is not a
Zeno behavior. More precisely, one can prove that in order to loop forever in green locations
along the word (abc)ω, the delay between the consecutive actions c and a will necessarily
converge towards 0, but the global time is diverging.

A model of implementation In [DDR05], the authors introduce a program semantics
for timed automata. The platform of implementation is characterized by two parameters
δprecision and δCPU which correspond intuitively to the clock precision and to the processor
speed. Analyzing this semantics with two parameters is not easy, and they show that one can
instead study a rather simple parametric semantics depending on a single parameter δ. This
semantics, called the enlarged semantics, enlarges every guard by the parameter δ. Given a
timed automaton A and a rational number δ ≥ 0, we denote by Aδ the timed automaton
obtained by enlarging every guard with δ. For instance, the constraint 3 ≤ x < 5 becomes
3− δ ≤ x < 5 + δ. They manage to prove that whenever the inequality 4δprecision + 3δCPU ≤ δ
holds, then the program semantics of a timed automaton A (with parameters δprecision and
δCPU) is simulated by the δ enlarged semantics of A. As a consequence, this intuitively implies
that if one has proven the correction of A under its enlarged semantics for some positive δ,
then using a sufficiently fast and precise implementation platform, one obtains the correction
of the program semantics, as desired. This motivates the study of the enlarged semantics
with an existential quantification on the parameter δ. The line of works we present in the
next section follows this idea.

Related work In [AT05], the authors propose to build an explicit model of the execution
platform of the timed automaton, in order to get a precise model of its implementation.
This approach is expensive in terms of verification as it increases the size of the model, and
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in addition it does not fulfill natural requirements. For instance, if one wants to change the
platform execution (take a faster processor. . . ), one has to redo the whole verification process.

In our context, imprecisions on clock values can accumulate along infinite runs. A different
approach for implementability of timed automata has been presented in [ACS13] but it relies
on the opposite assumption that clocks are periodically synchronized, and thus the drift of
clocks is always bounded.

Another model of program implementation corresponds to the sampled semantics of timed
systems. In this context, a fixed granularity of time τ is chosen, and every delay is a multiple
of τ . Several works have studied the semantics of timed automata under such a sampled
semantics (also called digitization), for finite and infinite words (see [OW03, KP05, AKY10]).
In this context, the existence of a sampling rate under which some property is satisfied
(existence of an infinite run, controllability w.r.t. some objective) has been studied for instance
in [CHR02, KP05]. The formulation of the problem is thus similar to that of the problems
we consider, and as we will discuss in the perspectives of Chapter 3, it may be possible to
identify links between these two approaches.

Last, our robustness analysis of timed automata has also a semantical interpretation as
we consider the behavior of the timed automaton obtained for every positive perturbation,
whatever how small it is. It is thus related to other works that have studied alternative
semantics for timed automata.

For instance, robust timed automata [GHJ97] are a semantical modification of timed au-
tomata based on a topological acceptance condition. This semantics is incomparable with
the standard semantics as it may both add and remove behaviors. The aim of this seman-
tics was to obtain new decidability results (such as language inclusion), and no link with
implementability has been shown.

A probabilistic semantics has been introduced in [BBB+07]. It is based on a measure of
the runs satisfying a given property, amongst the whole set of runs. The author study model-
checking problems under this new semantics, and obtain decidability results in the one-clock
case. However, this study is more language-based than related to implementability.

1.4 Robustness of timed automata

Based on the link established in [DDR05] between the implementability of some timed au-
tomaton A and its enlarged semantics Aδ, we will now be interested in studying this new
semantics. Let us recall that given a non-negative rational number δ, Aδ denotes the timed
automaton obtained from A by enlarging every timing constraint by δ, i.e. replacing any
constraint of the form a ≤ x ≤ b by the enlarged constraint a− δ ≤ x ≤ b+ δ.

Instead of fixing the value of δ under consideration, we consider δ as a parameter. It is well
known that timed automata enriched with parameters are in general undecidable [AHV93]
(see [BO14] for a recent improvement of the decidability results). We thus consider model
checking problems with an existential quantification over δ > 0: does there exist a positive
value of δ under which the specification is met? This intuitively amounts to ask whether
there exists a sufficiently fast and precise platform on which the timed automaton can be
implemented safely.

It is worth observing that as we consider an enlarged semantics, our parameter only helps
in relaxing the constraints. This way, using the terminology of [HRSV02], it corresponds to
an ’upper’ parameter. However, our results do not follow from those of [HRSV02] as in this
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paper they allow the extremal value δ = 0.

A linear-time property is defined as a subset of the set of timed words. For instance, LTL
properties are linear-time properties. We say that a timed automaton A robustly satisfies a
linear-time property P iff there exists δ > 0 such that every timed word associated with an
accepting run of Aδ belongs to the set P . If this holds, then we write A |≡ P .

Recall that the set of discrete behaviors of Aδ increases with δ. We present now how
infinitesimally small perturbations may induce new discrete behaviors in timed automata,
and review existing results on robust model checking of timed automata.

Perturbations in timed automata When enlarging guards of a timed automaton, new
behaviors may appear due to strict constraints, as it is the case for the timed automaton of
Figure 1.2.(a). These new behaviors can easily be detected using the region graph construc-
tion.

More subtle behaviors are due to accumulation of perturbations. Consider the timed
automaton A depicted on Figure 1.1. Location `3 is not reachable in the standard semantics
of A while it is reachable in Aδ for every positive δ. Indeed, let us consider state (`2, ν) with
ν(x) = 0 and ν(y) = 2. We denote by t1 (resp. t2) the transition from `1 to `2 (resp. from `2
to `1), and let ρ = t1t2. One can easily verify that in Aδ, the state (`2, ν) is reachable after
d 1

2δ e iterations of the cycle ρ (see Figure 1.3), hence it is reachable in Aδ for every positive δ.
Observe also that the smaller δ is, the longer is the witness of the reachability of this state in
Aδ. This accumulation of perturbations will be at the heart of our further developments.
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Figure 1.3: Reachable states during the forward analysis of Aδ.

Safety properties The robust model checking problem of timed automata against safety
properties asks, given a TA A = (L, C, `0, F, E) and a subset Bad ⊆ L, whether or not there
exists δ > 0 such that reach(Aδ) ∩ (Bad× RC≥0) = ∅.

As an illustration, let us consider the behaviors of the timed automaton A of Figure 1.1
described above. Letting Bad = {`3}, A satisfies the safety property ”never Bad”, but it does
not satisfy this safety property robustly.

This problem has been solved in [DDMR04], under two restrictions on timed automata
that we describe now. A progress cycle in the region automaton of A is a cyclic path along
which all the clocks are reset, and that does not only contain the initial region (i.e. the region
where all the clocks are set to 0). We say that a timed automaton A is progressive if all the
cycles in the region automaton R(A) are progress cycles.
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We say that a timed automaton has bounded clocks if there exists a constant M such that
for every reachable state, all clocks are bounded by M .

The bounded clocks hypothesis is not really restrictive since bounded timed automata
are as expressive as standard timed automata (see for example [BFH+01]). The progress
cycle hypothesis has first been considered in [Pur98], and in the framework of bounded timed
automata, it is less restrictive than classical strong non-Zenoness assumptions.

Theorem 4 ([DDMR04]). The robust model checking of progressive timed automata with
bounded clocks against safety properties is PSpace-c.

In order to prove this result, the set reach∗(A) =
⋂
δ>0 reach(Aδ) is considered, and the

two following facts are proven:

1. checking whether ∃δ > 0 s.t. reachδ(A) ∩ Bad = ∅ is equivalent to check whether
reach∗(A) ∩ Bad = ∅,

2. checking whether reach∗(A) ∩ Bad = ∅ is decidable, and PSpace-c.

While the first point has a topological nature, the second point relies on the analysis
of the strongly connected components (SCC for short) of the classical region automaton
construction. Intuitively, the main impact of the enlarged semantics can be summarized as
follows: given a progress cycle ρ of a timed automaton A, the reachability relation in Aδ
along the iterations of ρ is complete for any δ > 0. As a consequence, in order to compute
reach∗(A), as soon as the reachability set intersects the frontier of an SCC (in the topological
sense), then the whole SCC can be added to the reachability set. As an illustration, the sets
reach(A) and reach∗(A) are described on Figure 1.4, for the timed automaton A depicted on
Figure 1.1. The difference is due to the iteration of the cycle around `1 and `2.
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2
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`1

reach∗(A)
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Figure 1.4: Differences between reach(A) and reach∗(A).

The drawback of the previous approach is that it is based on the region automaton con-
struction, which is well known to not be amenable to implementation. As a remedy, zones
are often considered as an adequate symbolic representation to provide efficient algorithms.
In [DK06], an algorithm has been proposed to compute the set reach∗(A) using zones, but this
algorithm only applies to flat timed automata, i.e. with no nested cycles. Intuitively, each
cycle ρ is accelerated in isolation, using a greatest fixpoint computation of the so-called stable
zone Wρ, defined as the set of valuations having infinitely many successors and predecessors
through cycle ρ. The stable zone represents the acceleration of the cycle ρ. Informally, the
algorithm of [DK06], presented as Algorithm 1, proceeds in a forward exploration of the timed
automaton using zones, and ’accelerates’ cycles using their stable zones. We will present in
Section 2.2 a parametric extension of this algorithm.
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Algorithm 1 Computation of reach∗(A) [DK06].

Require: a progressive flat timed automaton A with bounded clocks.
Ensure: the set reach∗(A).

1: Compute Wρ = νY.Preρ(Y ) ∩ νY.Postρ(Y ), for each cycle ρ in A.
2: Wait = {(`0, Z0)} ; // Initial states
3: Passed = ∅ ;
4: while Wait 6= ∅ do
5: - pop (`, Z) from Wait ;
6: - if ∀(`, Z ′) ∈ Passed, Z * Z ′ then
7: - - if there exists a cycle ρ around location ` then
8: - - - if Z ∩Wρ 6= ∅ then
9: - - - - Wait = Wait ∪ Succ(`,Wρ)) ;

10: - - - - Passed = Passed ∪ {(`,Wρ) ;
11: - - Wait = Wait ∪ Succ(`, Z) ;
12: - - Passed = Passed ∪ {(`, Z)} ;
13: return Passed ;

Last, we mention a more recent result, whose proof relies on an encoding of robustness
into channel machines that we describe in Section 2.1. This result solves the robust model
checking of safety properties for general timed automata.

Proposition 1 ([BMS11]). The robust model checking of timed automata against safety prop-
erties is PSpace-c.

LTL properties A natural extension of these positive results for robust model checking
of safety properties is to consider more general temporal logics. During my PhD, together
with Patricia Bouyer and Nicolas Markey, we studied the logic LTL. We followed the stan-
dard approach for LTL model checking, relying on the conversion of LTL formula into Büchi
automata.

We observed that the robust model checking of LTL properties can be reduced this way to
robust model checking of co-Büchi properties. We proposed an algorithm solving the former
problem by considering an extended region graph, based on an analysis of SCCs.

Theorem 5 ([3]). LTL robust model checking is PSpace-c.

Untimed language preservation A timed automaton may be analyzed by means of its un-
timed language. A natural notion of robustness is then to require that this untimed language
is preserved when small enough timing perturbations are introduced. The untimed language
preservation problem of timed automata asks, given a TA A = (L, C, `0, F, E), whether there
exists δ > 0 such that untimed(L(Aδ)) = untimed(L(A)). If this is the case, we say that A is
language-robust.

This problem has been studied in [San11] for progressive timed automata with bounded
clocks. Further, the decidability of this problem also follows from Proposition 1 for general
timed automata as we prove below.

Proposition 2. Checking if a timed automaton A is language-robust is decidable.
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Proof. Given a finite timed automatonA, the untimed language ofA is a regular language. We
can build a finite state automaton C accepting the complement of this language, equipped with
final states. Let B be another timed automaton, and denote by B ⊗ C the product of B with
C. It is easy to verify that B⊗C never enters a final state iff untimed(L(B)) ⊆ untimed(L(A)).
As for any non-negative δ we have L(A) ⊆ L(Aδ), we obtain that Aδ ⊗ C does not enter its
final states iff L(A) = L(Aδ). As C is untimed, the two timed automata Aδ ⊗C and (A⊗C)δ
are equal. Our problem thus reduces to a robust safety problem for the automaton A ⊗ C
which is decidable thanks to Proposition 1. One can verify that the algorithm obtained this
way runs in 2-ExpSpace (see [San13]).
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Chapter 2

Robust model checking
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In this chapter, we first consider a class of timed properties, defined as a large and ex-
pressive fragment of the Metric Temporal Logic, and prove that its robust model checking
problem is ExpSpace-c. Then, we consider the quantitative robust model checking problem
that aims at computing the maximal admissible perturbation. Last, we consider robust model
checking problems for the model of time Petri nets.

2.1 Timed temporal logics

The temporal properties we have studied previously do not allow to express timed properties,
as they only depend on the untimed words associated with accepting runs. When studying
timed systems, it is however natural to consider real-time specifications.

Metric Temporal Logic (MTL [Koy90]) is a widely studied real-time extension of the logic
LTL. While undecidable in general, several restrictions on the problem under consideration
(finite vs infinite words, model-checking vs satisfiability), or fragments of the logic, allow to
obtain decidability. A survey of these (un)decidability results can be found in [OW08].

An important decidable fragment of MTL is the one forbidding punctuality constraints,
considered in [AFH96], and named Metric Interval Temporal Logic (MITL for short). However,
the decidability proof relies on a translation of MITL formula into timed automata and on a
product construction. This approach is not suitable to address robustness problems, as our
techniques do enlarge all guards of the timed automaton, and that would implicitly mean
that we do not consider the exact formula, but only an approximation of it.

Another decidable fragment has been identified in [BMOW07], with a completely dif-
ferent decision procedure relying on one-clock alternating timed automata and on channel
automata. The model-checking problem for this fragment, called co-flat Metric Temporal
Logic (coFlat-MTL), is ExpSpace-c. In this Section, we explain informally how to extend
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the decision procedure presented in [BMOW07] to robust model-checking. These results have
been published in [4].

Fragments of metric temporal logic

Linear-time properties are often defined via temporal logic formulae. In this paper, we focus
on subclasses of Metric Temporal Logic.

Fix a finite, non-empty alphabet Σ. The syntax of MTL over Σ is defined by the following
grammar:

MTL 3 φ ::= σ | ¬σ | φ ∨ φ | φ ∧ φ | φUI φ | φ ŨI φ

where σ ∈ Σ, and I is an interval of R≥0 with bounds in N ∪ {∞}. MTL formulae are
interpreted over timed words. Let w = (ai, di)i≥0 be a timed word, and p ∈ N. The (pointwise)
semantics of MTL is defined recursively as follows (we omit Boolean operations):

w, p |= a ⇐⇒ ap = a

w, p |= φUI ψ ⇐⇒ ∃i > 0 s.t. w, p+ i |= ψ,
∑
p<j≤i

dj ∈ I

and ∀0 < j < i, w, p+ j |= φ

w, p |= φ ŨI ψ ⇐⇒ w, p |= ¬
(

(¬φ) UI (¬ψ)
)
.

If w, 0 |= φ, we write w |= φ.

Additional operators, such as true (true), false (false), =⇒ , ⇐⇒ , F , G and X , are
defined in the usual way: FI φ ≡ trueUI φ, GI φ ≡ false ŨI φ, and XI φ ≡ falseUI φ.
We also use pseudo-arithmetic expressions to denote intervals. For example, ‘= 1’ denotes
the singleton {1}.

Following [BMOW07], we identify the following syntactic fragments of MTL: LTL can be
considered as the fragment of MTL in which modalities are not constrained (i.e. where R≥0

is the only constraining interval); Bounded-MTL is the fragment of MTL in which all interval
constraints are bounded: observe that Bounded-MTL disallows unconstrained modalities, and
is in particular not suitable to express invariance properties (the most basic type of temporal
specifications). The fragment coFlat-MTL1 has then been defined to remedy this deficiency:

coFlat-MTL 3 φ ::= σ | ¬σ | φ ∨ φ | φ ∧ φ | φUJ φ | φUI ψ | φ ŨJ φ | ψ ŨI φ

where J ranges over the set of bounded intervals, I over the set of all intervals, and the
underlined formula ψ ranges over LTL.

One immediately sees that coFlat-MTL subsumes both LTL and Bounded-MTL, but it is
not closed under negation. However, it is closed under invariance, and can then express e.g.
bounded response-time or even richer formulae such as G (request⇒F≤5 (acquire∧F=1 release)).

Channel automata

Channel automata are a formalism for reasoning about alternating timed automata that has
been used in [BMOW07] to prove the ExpSpace-membership of the model-checking problem

1We do not explain this terminology here, and refer to [BMOW07] for deeper considerations.
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for coFlat-MTL. Intuitively, they consist of a finite state automaton equipped with a FIFO
channel with some operations on this channel.

A channel automaton with renaming and occurrence testing (CAROT for short) is a tuple
C = (S, s0,Σ, δ, F ), where S is a finite set of control states, s0 ∈ S is the initial control state,
F ⊆ S is a set of accepting control states, Σ is a finite alphabet, δ ⊆ S ×Op × S is the set of
transition rules, where

Op = {σ!, σ? | σ ∈ Σ} ∪ {zero?(σ) | σ ∈ Σ} ∪ {R | R ⊆ Σ× Σ}

is the set of operations. Given a rule τ = (s, α, s′) ∈ δ, we define op(τ) = α.
Intuitively, operations σ! and σ? are the classical write and read operations, zero?(σ) is

a guard for testing the occurrence of σ in the channel, and R ⊆ Σ × Σ is interpreted as a
global renaming. An end-of-channel marker can be used to count the number of times the
whole channel is read: it suffices to add, from each state of the CAROT, an outgoing transition
reading B, immediately followed by a transition writing B. That way, there is always a unique
copy of B on the channel (except when it has just been read). The number of transitions
writing B along a computation ρ is the number of cycles of ρ, denoted by cycles(ρ). In the
sequel, the CAROT are assumed to contain the end-of-channel marker B, and to have all their
states equipped with a loop reading and writing that symbol.

We consider in the sequel a restricted version of the reachability problem for CAROTs,
where we impose a bound on the “time” (measured here as the number of cycles of the
channel): the cycle-bounded reachability problem for CAROTs is defined as follows: given a
CAROT C, an input word w ∈ Σ∗, and a cycle bound h, does C have an accepting computation
ρ on w with cycles(ρ) 6 h?

In [BMOW07], a non-deterministic procedure is presented to check the existence of an
accepting cycle-bounded computation using only polynomial space in the value of the cycle
bound and in the size of the CAROT:

Theorem 6 ([BMOW07]). The cycle-bounded reachability problem for CAROT is solvable in
polynomial space in the size of the channel automaton, the size of the input word, and the
value of the cycle bound.

Encoding robustness problems using channel automata

This encoding is rather technical, hence we will only give an informal presentation of it. We
will proceed in three steps:

• first, we explain how to simulate a timed automaton,

• second, we take into account the enlarged semantics, by adding special symbols on the
channel,

• third, we encode the MTL formula by considering its translation into a one-clock alter-
nating timed automaton.

Simulating a timed automaton Let A be a timed automaton, we describe a CAROT CA.
We explain how a state (`, ν) ∈ L×RC≥0 of a timed automaton is encoded as a configuration of
CA, by means of its discrete state and of its channel. First, the valuation ν is represented by
a sequence of disjoint subsets C0, C1, ..., Cp of C obtained using standard region techniques.
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More precisely, C0 contains elements whose fractional part is 0 and the others Ci gather
elements with the same fractional part and are sorted according to the increasing order of
fractional parts.

The intended encoding of a state (`, ν) in the CAROT CA is the following: the integral
values of the clocks of A are stored in the discrete state of the CAROT, as well as the set C0

and the current location `. The other Ci’s are stored on the channel, from C1 (recently written
on the channel) to Cp (the next item to be read from the channel).

Example 1. Consider state (`, ν) with C = {x1, x2, x3, x4} and ν(x1) = 1.4, ν(x2) = 1.0,
ν(x3) = 3.4 and ν(x4) = 2.1. The discrete state of the CAROT stores the location `, the
mapping bνc = (1, 1, 3, 2), and the set C0 = {x2}. The content of the channel is depicted on
the left of Figure 2.1 (the channel is read from the right, and written from the left).

{x4} {x1, x3}  {x2} {x4} {x1, x3}  {x2} {x4}

Figure 2.1: Evolution of channel content during time-elapsing

We explain how transitions can be executed by the CAROT. We start with time-elapsing
transitions. There are two cases: if the set C0 stored in the discrete state is non-empty, then
this set if pushed onto the channel, and the discrete state is updated by letting C0 be the
empty set. Otherwise (C0 = ∅ in the discrete state), the channel is read and thus the set Cp
is removed from the channel. Then, the discrete state is updated by letting C0 = Cp, and
by incrementing the integral values associated with clocks belonging to Cp. In particular,
observe that the channel represents one time unit, and that a cycle in this channel machine
exactly corresponds to one time unit elapsing.

Example 2. We illustrate time-elapsing on state (`, ν) given in Example 1. When time-
elapsing is performed, as C0 6= ∅, the set C0 is pushed onto the channel, and the discrete state
is updated with C0 = ∅.

A second time-elapsing removes the set {x1, x3} from the channel (as we have now C0 = ∅),
and the discrete state is then composed of location `, of the mapping bνc = (2, 1, 4, 2), and of
the set C0 = {x1, x3}.

The evolution of the channel content during these two time-elapsing transitions is depicted
on Figure 2.1.

For an edge e = (`, g, a,R, `′) of A, whether it can be executed can easily be checked
using the discrete state of the CAROT. If this is the case, then one updates the location in the
discrete state. The reset of clocks belonging to R can be performed using rewriting operations
on the channel and an update of the integral part in the discrete state.

Consider as initial configuration the discrete state representing the state (`0,~0), and the
initial channel content w = ε. Denoting by JCAK the transition system associated to CA, one
can prove the following lemma stating the correctness of the construction:

Lemma 1. The transition systems JCAK and JAK are time-abstract bisimilar.

Enlarged semantics Our objective is to simulate the behavior of the automaton Aδ for
arbitrarily small values of δ. To this end, we consider values of δ of the form 1

n with n ∈ N
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arbitrarily large. We consider a new symbol ∆ belonging to the channel alphabet and we
introduce n copies of this symbol onto the channel. These symbols are (almost) always present
on the channel (as soon as a ∆ symbol is removed from the channel, a new one is pushed onto
it). The intended meaning of these symbols is a partitioning of one time unit. Intuitively,
if n symbols ∆ are present on the channel, they should represent the n values 1

n+1 , . . . ,
n
n+1 .

In particular, clocks that are before the first symbol ∆ (resp. after the last symbol ∆) have
a fractional value smaller than 1

n+1 (resp. greater than n
n+1). As a consequence, in order to

simulate the enlarged semantics, we consider that clocks that are before the first symbol ∆
(resp. after the last symbol ∆) have a small fractional value (resp. a large fractional value).

Example 3. We illustrate the role of symbols ∆ with the state (`, ν) considered in Example 1.
Suppose that there are 3 symbols ∆ on the channel, and that they indeed correspond to real
numbers 1

4 , 2
4 and 3

4 respectively. The new channel content is depicted on Figure 2.2. In
particular, observe that as clock x4 is before the first symbol ∆, the guard x4 ≤ 2 can be fired
in the enlarged semantics, although we have ν(x4) = 2.1.

{x4} ∆ {x1, x3} ∆ ∆

On the channel: In the discrete state:

location `, bνc = (1, 1, 3, 2)

C0 = {x2}

Figure 2.2: Encoding of the state of Example 1 in a CAROT C∆
A with initial content ∆3

We explain how to simulate the enlarged semantics. Assuming the previous property on
clock values, we thus have to store in the control part of the CAROT which clocks are “before”
(resp. “after”) the first (resp. last) symbol ∆. Whereas this can easily be done for the clocks
that have been recently written on the channel, this is not possible for the clocks lying at
the head of the channel (this would require to store the position of each clock w.r.t. each
symbol ∆). Instead, we use non-determinism to allow the CAROT make predictions about the
content of the head of the channel, and then we verify when reading clocks from the channel
that these predictions were correct.

Let us denote by C∆
A the CAROT just described, and denote by (d, cn) its initial configu-

ration composed of the discrete state d representing the state (`0,~0), and the initial channel
content cn = ∆n. Though we cannot ensure precisely the property introduced above about
time values associated with symbols ∆, we manage to prove the following property:

Lemma 2. For any n ≥ 3, we have:

• if L(A 1
n

) 6= ∅, then C∆
A has a time-divergent accepting computation starting in (d, cn)

• if C∆
A has a time-divergent accepting computation starting in (d, cn), then L(A 2

n
) 6= ∅.

Encoding the MTL formula The last step of the construction of the CAROT for encod-
ing the robust model-checking problem consists in adding the part related to the temporal
formula ϕ (in MTL). This part will be handled in a very similar way as in [BMOW07]. First,
we build the one-clock alternating timed automaton B¬ϕ corresponding to ¬ϕ (see [OW05]).
Then, we build the product of the CAROT C∆

A with a CAROT simulating the behavior of B¬ϕ.
It is worth noticing here that the model of CAROT allows to enlarge only a subset of guards,
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contrary to the enlarged semantics of timed automata. Indeed, the special symbols ∆ are
used to simulate enlarged guards in A, while guards of B¬ϕ are not enlarged. The resulting
CAROT, say C∆

A,¬ϕ, running from the initial configuration (d′, c′n) corresponding to the initial

configuration (d, cn) of C∆
A and to the initial state of B¬ϕ, simulates joint behaviors of C∆

A
and B¬ϕ. The accepting condition for C∆

A,¬φ is the Büchi condition given by ‘flattening’ B¬ϕ.
The results of [BMOW07] combined with our above results yield:

Theorem 7 ([4]). Let A be a timed automaton and ϕ be an MTL property. Then A 6|≡ ϕ iff
for all n ≥ 3, C∆

A,¬ϕ has a time-divergent accepting computation starting in (d′, c′n).

Decidability results

We present now the decidability results we obtain for timed temporal logics. Thanks to The-
orem 7, solving a robust model-checking problem amounts to decide a kind of “universality”
checking of the CAROT, where we universally quantify on the initial number of ∆’s on the
channel.

The algorithm to decide the robust model-checking problem for Bounded-MTL formula
relies on the fact that the truth value of a Bounded-MTL formula φ along a run % only depends
on the first h time units of %, where h is the sum of the constants appearing in φ [BMOW07].
This allows to pump in the computations of the CAROT, reducing the universality checking
to checking the property for a large enough value of n. We obtain:

Theorem 8 ([4]). The robust model-checking problem for Bounded-MTL is ExpSpace-c (and
PSpace-c if constants of the formula are given in unary).

The case of coFlat-MTL is more involved than that of Bounded-MTL. The reason is that,
unlike Bounded-MTL, the truth value of a coFlat-MTL formula φ along a run % does not only
depend on a prefix of % of bounded duration. Instead, we use a decomposition result for
infinite accepting runs proven in [BMOW07] (Theorem 12), involving three different cases:

• finite parts, of bounded length

• finite parts, of unbounded length, corresponding to an untimed subformula of φ

• an infinite suffix, verifying some LTL formula

In addition, the two first types can appear a bounded number of times.
Each of the three cases can be solved using existing techniques: the first case corresponds

to Bounded-MTL formula, the second case amounts to verify that a configuration is reachable
from another one for every positive δ, i.e. a robust safety problem, and the third case
corresponds to the robust model-checking of LTL formula.

Gathering these results, we prove:

Theorem 9 ([4]). The robust model-checking problem for coFlat-MTL is ExpSpace-c.

2.2 Quantitative robust model checking

The results presented before allow to decide the existence of a positive perturbation δ under
which a given property is satisfied. When the answer is positive, some of the algorithms
presented also allow to identify a witness of the form 1/2|A|. While this allows to deduce a
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correct value for the parameter δ, computing the largest value of δ for which the enlarged
semantics meets the specification was still an open problem. We are interested here in this
last problem, which we call the quantitative problem of robustness for safety properties.

In this section, we present results published in [18]. We will prove that the quantitative
robustness problem for safety properties is decidable for flat timed automata (i.e. where
each location belongs to at most one cycle). In addition, we show that the maximal safe
value of δ is a rational number. To this end, we solve a more general problem: we prove
that it is possible to compute, for a flat timed automaton A, the reachability set of Aδ
parameterized by δ. We call it the parametric reachability set. For this computation, we
present a forward algorithm based on parametric zones (recall that a zone is a constraint on
clocks). This algorithm can be understood as a parametric version of the symbolic algorithm
proposed in [DK06] for flat timed automata. We then tackle two issues: the termination of
our procedure and its correctness. For the first aspect, as we are in a parametric setting, we
need completely new arguments of termination (the number of parametric zones we compute
cannot be bounded as it is the case for zones). Considering a graph representation of zones
introduced in [CJ99], we obtain proofs of termination depending only on the number of clocks,
and not on the constants appearing in the automaton. To our knowledge, this constitutes
an original approach in the context of timed automata. Regarding correctness, we identify
under which conditions the enlarged reachability set coincides with the standard reachability
set. This allows us to propose an algorithm computing the parametric reachability set of a
flat timed automaton.

Graph representation of constraints

In the sequel, we will use a representation of clock constraints as a weighted directed graph
introduced in [CJ99]. We recall here only succinctly its definition. Intuitively, the value of a
clock can be recovered from its date of reset and the current time. The vertices of the graph
represent these values, with one duplicate for each fired transition. Constraints on clock
values are expressed as weights on arcs. Given a sequence of edges ρ, we will only consider
the operator Postρ, but all our results also apply to the operator Preρ.

More formally, we consider a set of clocks C = {x1, . . . , xn} with n = |C|. We let x0 be a
fictive clock whose value is always zero and define C0 = C ∪ {x0}. We introduce a new clock
τ that is never reset and thus represents the total elapsed time. In addition, for each clock
xi ∈ C we let variable Xi denote Xi = τ − xi; Xi thus represents last date of reset of clock

xi. We denote
−→
V the vector of variables defined as (τ,X1, . . . , Xn).

For an edge e = (`, g, a,R, `′), we define the formula T e(
−→
V ,
−→
V ′) which expresses the rela-

tionship between values of the variables before (represented by
−→
V ) and after the firing of the

edge (represented by
−→
V ′ = (τ ′, X ′1, . . . , X

′
n)):

T e(
−→
V ,
−→
V ′) := (τ≤τ ′) ∧

n∧
i=1

Xi≤τ ∧X ′i≤τ ′ ∧ g ∧
∧
xi∈R

τ = X ′i ∧
∧
xi /∈R

Xi = X ′i


where g is the constraint g where for any i, clock xi is replaced by τ −Xi. In this formula,
τ represents the time at which the edge e has been executed, while τ ′ represents the current
time.
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Figure 2.3: An example of graph G(ρ) associated with a sequence of edges ρ

Let ρ = e1 . . . em be a sequence of edges. For j ∈ {0, . . . ,m}, we denote by
−→
V j the vector

(τ j , Xj
1 , . . . , X

j
n). Then we define formula T ρ(

−→
V 0,
−→
V m) expressing the constraints between

variables before and after the firing of the sequence ρ as follows:

T ρ(
−→
V 0,
−→
V m) := ∃

−→
V 1, . . . ,

−−−→
V m−1.

m−1∧
j=0

T tj+1(
−→
V j ,
−−−→
V j+1)

We associate with formula T ρ(
−→
V 0,
−→
V m) a weighted directed graph whose vertices are variables

used to define the formula, and arcs represent constraints of the formula:

Definition 2 (Graph G(ρ)). Let ρ = e1 . . . em be a sequence of edges of A. The weighted
directed graph G(ρ) has a set of vertices S =

⋃m
j=0 V

j, where V j = {τ j , Xj
1 , . . . , X

j
n}. Given

two vertices X,X ′ ∈ S and a weight c ∈ Q, there is an arc from X to X ′ labelled by c if and

only if the formula T ρ(
−→
V 0,
−→
V m) contains the constraint X −X ′≤c.

Example 4. Consider the timed automaton of Figure 1.1, page 19, with x1 = x and x2 = y.
Two iterations of the cycle around location `1 correspond to the following sequence of edges:

ρ =
x1≤2, x1:=0−−−−−−−−→ x2≥2, x2:=0−−−−−−−−→ x1≤2, x1:=0−−−−−−−−→ x2≥2, x2:=0−−−−−−−−→

The graph depicted on Figure 2.3 represents G(ρ) (arcs without label have weight 0). Let us
illustrate the construction of G(ρ) with few examples:

• clock x1 is reset by the first edge, hence there are arrows in both directions labeled by 0
between nodes τ0 and X1

1 (the last date of reset for x1 is τ0),

• clock x2 is not reset by the first edge, hence there are arrows in both directions labeled
by 0 between nodes X0

2 and X1
2 (the last date of reset for x2 is unchanged),

• the upper bound x1 ≤ 2 of the first edge is represented by the arrow from τ0 to X0
1

labeled by 2.

For any path p in some graph G(ρ), we write w(p) the total weight of the path. Suppose
now that there is no cycle of negative weight in graph G(ρ). Let P ρend denote the set of
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minimal weighted paths from a vertex in V 0 to another vertex in V 0. Given a path p ∈ P ρend
starting in vertex X0

i and ending in vertex X0
l , we define the following clock constraint:

C(p) = xl − xi ≤ w(p).
The following correctness properties follow from results of [CJ99]:

Proposition 3. Let ρ be a sequence of transitions. We have:

• there exists a cycle γ with w(γ) < 0 in G(ρ) ⇐⇒ Postρ(>) = ∅

• if there is no cycle of negative weight, then J
∧
p∈P ρend

C(p)K = Postρ(>)

More generally, given a zone Z, one can modify the graph G(ρ) so as to include constraints
of Z on vertices in V 0. This way, the mapping C applied on paths in P ρend then defines the
zone Postρ(Z). Similarly, the zone Preρ(Z) can be represented by adding constraints of Z on
vertices in V |ρ|.

Given a zone defined as the result of the firing of a sequence of transitions, this representa-
tion allows to recover how the constraints are obtained. Thus, the graph stores the complete
history of the constraints.

Accelerating computations of greatest fixpoints

In the sequel, we use this construction in the particular case of the iteration of a cycle ρ,
given as a sequence of edges of a TA. We consider the sequence of zones (Zk)k≥0 defined by
Z0 = > and Zk+1 = Postρ(Zk). Note that by monotonicity of Postρ, the sequence (Zk)k≥0 is
decreasing and converges towards Z∞ = νY.Postρ(Y ). According to Proposition 3, note that
constraints defining zone Zk can be obtained from shortest paths in graph G(ρk).

Moreover, we will only be interested in vertices at the frontier between the different copies
of the graph of ρ. Then, given a clock xi ∈ C0 and an index j ≤ k, vertex Xj

i now denotes
the date of reset of clock xi after the j-th execution of ρ (this notation is a shorthand for the

notation X
j×|ρ|
i , as this last notation will never be used anymore).

We prove the following lemma that provides a bound for termination only dependent on
the number of clocks. Note that this result does not require the cycle ρ to be progressive
neither the clocks to be bounded. This lemma relies on a simple pumping in the graph G(ρk).
In our work, we use this result to compute the greatest fixpoints νY.Postρ(Y ) and νY.Preρ(Y )
in a parametric setting. More recently, this technique has been used in [DHS+14] to check
whether a cycle can be executed infinitely many times.

Lemma 3. Let N = |C0|2, and k ≥ N . If Zk+1 ( Zk, then we have Z∞ = ∅.

Sketch of proof. We deduce from Zk+1 ( Zk that there exists a constraint xp− xq ≤ · that is
strictly smaller in Zk+1 than in Zk. This constraint is obtained as a shortest path c between
vertices Xk+1

q and Xk+1
p in the graph G(ρk+1) (see Figure 2.4). This path c necessarily

contains arcs in G(ρ) (otherwise the constraint xp − xq ≤ · would be the same in Zk+1 and
in Zk). As k ≥ |C0|2, we can identify a pair (u, v) of vertices occurring twice, as depicted
on Figure 2.4, say after iterations i and j of ρ. The weight of the part of c between these
iterations (depicted by dashed lines on Figure 2.4) is necessarily negative (otherwise we could
remove it). By iterating this part of c, we obtain the emptiness of the limit Z∞.

A consequence of Lemma 3 is that the greatest fixpoint Z∞ = νY.Postρ(Y ) can be com-
puted using at most |C0|2 + 1 iterations of the operator Postρ, and this number does not
depend on the constraints used in the timed automaton.
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Figure 2.4: Pumping lemma : a path from Xk+1
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Parametric zones

In order to be able to describe the parametric reachability set, we introduce a parametric
extension of zones. Intuitively, we allow the use of the parameter ∆ in the equalities. for
instance, the constraint x1 ≤ 2 + 3∆ ∧ x2 − x1 ≤ 3 + ∆ is a parametric clock constraint
representing a parametric zone.

Formally, we denote by PG(C) the set of parametric (clock) constraints generated by the
grammar g ::= g ∧ g | x− y≤k + b∆, where x 6= y ∈ C0, k ∈ Q and b ∈ N. ∆ is a parameter
representing a delay and b represents the accumulation of this delay.

Example 5. Consider the zones depicted on Figure 1.3, page 1.3. On the first picture, the
zone associated with location `1 can be described by the following parametric clock constraint:

−1−∆≤y − x≤− 1 + ∆ ∧ x≤2 + ∆ ∧ y≤1 + 2∆

The zone associated with location `1 on the second picture can be described by the following
constraint:

y − x≤− 1 + 3∆ ∧ x≤2 + ∆ ∧ y≤1 + 4∆

Given a parametric constraint g and δ ∈ Q≥0, we denote by g(δ) the constraint obtained
by evaluating the parameter ∆ in δ. As the parameter helps in “relaxing” the clock constraint,
we have that δ ≤ δ′ implies Jg(δ)K ⊆ Jg(δ′)K.

Definition 3 (Parametric Zone). A parametric zone Z over C is a partial mapping from
Q≥0 to zones over C, which satisfies the following properties: (i) its domain dom(Z) is an
interval with rational bounds, and (ii) it can be defined as the parametric satisfiability set of a
parametric clock constraint, i.e. there exists g ∈ PG(C) such that for all δ ∈ dom(Z),Z(δ) =
Jg(δ)K. We denote by PZones(C) the set of parametric zones on C. 2

The data structure of DBMs for zones can be extended to parametric zones. The resulting
data structure, called piecewise linear DBMs (PLDBM for short) is presented in [Jau09]. A
PLDBM is a square matrix of size |C|+1 whose entries are continuous piecewise linear functions
of δ. Intuitively, when computing intersections of parametric zones we obtain conjunctions
of the form x ≤ 2 + 3∆ ∧ x ≤ 3 + ∆. We handle them by splitting the set of possible values
of ∆ so as to exhibit a unique strongest constraint (for the previous example, we obtain
x ≤ 2 + 3∆ if ∆ ≤ 1

2 , and x ≤ 3 + ∆ otherwise). We obtain this was constraints represented
by piecewise linear functions. We can prove that elementary operations (time elapsing, reset,
intersection with an atomic constraint. . . ) can be performed in quadratic time. Observe that
our parametric constraints are less expressive than those considered in [AAB00] as they only

2In the sequel, Z and Y denote a zone, while Z and Y denote a parametric zone.
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involve conjunctions. Thus, we do not have to split DBMs and our data structure has lower
complexities than parametric DBMs considered in [AAB00].

By default the considered domain for a parametric zone is Q≥0. Given a rational interval I,
we denote Z|I the parametric zone whose domain is restricted to I i.e., dom(Z|I) = dom(Z)∩I,
and which coincides with Z on dom(Z|I). Given Z,Z ′ ∈ PZones(C), we define Z ⊆ Z ′ if, and
only if, we have dom(Z) ⊆ dom(Z ′), and for any δ ∈ dom(Z), Z(δ) ⊆ Z ′(δ). We say that
a parametric zone Z is non-empty if there exists δ ∈ dom(Z) such that Z(δ) 6= ∅. Let Z
be a non-empty parametric zone. As the mapping represented by Z is monotone, we define
δ¬∅(Z) = inf{δ≥0 | Z(δ) 6= ∅} the minimal value of the parameter for the zone it denotes to
be nonempty. As Z only involves non-strict linear inequalities, δ¬∅(Z) is a rational number
and we have Z(δ¬∅(Z)) 6= ∅ (provided that δ¬∅(Z) ∈ dom(Z)).

In order to perform parametric computations, we extend operators Postρ and Preρ to a
parametric setting. We denote these extensions by PPostρ and PPreρ. We also define the
operator Succ(`,Z), where Z ∈ PZones(C), using the PPost operator. All these operations
can be made effective thanks to PLDBMs.

Last, we explain how to compute, in the parametric setting, the greatest fixpoint of
PPostρ for every cycle ρ of the automaton. This relies on Lemma 3. Letting N = |C0|, we first

evaluate the parametric zones Z = PPostρ
N

(>) and Z ′ = PPostρ(Z). Then, we determine
the minimal value δ0 = min{δ ≥ 0 | Z(δ) = Z ′(δ)}. This definition is correct as Z ′ ⊆ Z and,
for large enough values of δ, all parametric constraints are equivalent to >. Thus, we have
νY.PPostρ(Y)(δ) 6= ∅ which implies by Lemma 3 that Z(δ) = Z ′(δ). Finally the greatest
fixpoint can be represented by Z|[δ0;+∞[ as Lemma 3 ensures that the fixpoint is empty for
all δ < δ0.

Parametric forward analysis with acceleration

We present Algorithm 2 for the parametric computation of reach(A(δ)), which intuitively
extends Algorithm 1 of [DK06] to a parametric setting. We first observe that we can modify
Algorithm 1 as follows: in the test of Line 8, the stable zone Wρ can be replaced by the
fixpoint νY.Preρ(Y ), and in Lines 9 and 10, the stable zone can be replaced by the fixpoint
νY.Postρ(Y ).

We give now some explanations on Algorithm 2. First, at Line 1 we perform parametric
computation of greatest fixpoints using the procedure proposed previously. Second, the test
of intersection between the current zone and the greatest fixpoint of Preρ is realized in a
parametric setting by the computation at Line 8 of δmin = δ¬∅(Z ∩ νY.PPreρ(Y)). Finally,
we split the domain of the current parametric zone into intervals I1 and I2. In interval I1,
no acceleration is done for cycles and thus the set reach(A(δ)) is computed. Acceleration
techniques are used only for interval I2, and for these values the algorithm computes the set
reach∗(A(δ)). We can prove that in this case, the equality reach(A(δ)) = reach∗(A(δ)) holds.
Note that the test at Line 9 allows to handle differently the particular case of value δmin which
does not always require to apply acceleration.

Theorem 10 ([18]). Let A be a progressive timed automaton with bounded clocks. Algorithm 2
terminates and returns a finite set of parametric zones representing the parametric reachability
set of A.

40



Algorithm 2 Parametric Computation of the Reachability Set.

Require: a progressive flat timed automaton A with bounded clocks.
Ensure: the set reach(A(δ)) for all δ ∈ R≥0.

1: Compute νY.PPreρ(Y) and νY.PPostρ(Y) for each cycle ρ of A.
2: Wait = {(`0,Z0)} ; // Initial States
3: Passed = ∅ ;
4: while Wait 6= ∅ do
5: — pop (`,Z) from Wait ;
6: — if ∀(`,Z ′) ∈ Passed, Z * Z ′ then
7: — — if there exists a cycle ρ around location ` then
8: — — — δmin = δ¬∅(Z ∩ νY.PPreρ(Y)) ;
9: — — — if δmin = δ¬∅(νY.PPreρ(Y)) then

10: — — — — I1 = [0; δmin] ; I2 =]δmin; +∞[ ;
11: — — — else
12: — — — — I1 = [0; δmin[ ; I2 = [δmin; +∞[ ;
13: — — — Wait = Wait ∪ Succ(`,Z|I1) ∪ Succ(`,Z|I2) ∪ Succ(`, νY.PPostρ(Y)|I2) ;
14: — — — Passed = Passed ∪ (`,Z|I1) ∪ (`,Z|I2) ∪ (`, νY.PPostρ(Y)|I2) ;
15: — — else
16: — — — Wait = Wait ∪ Succ(`,Z) ;
17: — — — Passed = Passed ∪ (`,Z) ;
18: return Passed ;

Quantitative safety Given a timed automaton A = (L, C, `0, F, E) and a subset Bad ⊆ L,
the quantitative robustness problem aims at computing the value δmax = sup{δ > 0 |
reach(Aδ)∩Bad = ∅}. Once the reachable state space of the automaton is computed by Algo-
rithm 2, it is easy to compute the value of δmax. Simply compute the value δ¬∅ on each para-
metric zone associated with a bad location and keep the lower one: δmax = min{δ¬∅(Z) | ∃` ∈
Bad such that (`,Z) ∈ Passed}. We thus obtain:

Theorem 11 ([18]). The quantitative robustness problem for safety properties is decidable for
flat progressive timed automata with bounded clocks. In addition, the value δmax is a rational
number.

2.3 Robustness issues in time Petri nets

In this section, we tackle the problem of robustness under small perturbations in the dis-
tributed and timed setting of time Petri nets [Mer74]. This model extends the well-known
model of Petri nets and thus, unlike timed automata, the discrete control structure of time
Petri nets is unbounded. Real-time constraints are introduced by associating time intervals
with transitions representing “guards” within which the transition must fire once it is enabled.
Our aim is to study the effect of small enlargement of those intervals.

We will present in this section how some of the presented results on timed automata can
be applied to the study of robustness for time Petri nets. However, due to their unbounded
discrete part, time Petri nets exhibit some new difficulties. The results presented in this
section have been published in [1, 2].
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Time Petri nets

An interval I of R≥0 is a Q≥0-interval iff its left endpoint belongs to Q≥0 and its right
endpoint belongs to Q≥0∪{∞}. We denote by I(Q≥0) the set of Q≥0-intervals of R≥0. Given
I ∈ I(Q≥0), we set I↓ = {x ∈ R≥0 | x ≤ y for some y ∈ I}, the downward closure of I.

A time Petri net N over Σ is a tuple (P, T, •(.), (.)•,m0,Λ, I) where P is a finite set of
places, T is a finite set of transitions with P ∩ T = ∅, •(.) ∈ (NP )T is the backward incidence
mapping, (.)• ∈ (NP )T is the forward incidence mapping, m0 ∈ NP is the initial marking,
Λ : T → Σε is the labeling function and I : T 7→ I(Q≥0) associates with each transition a
firing interval. We denote by α(t) (resp. β(t)) the lower bound (resp. the upper bound) of
interval I(t). An example is depicted on Figure 2.5 with usual graphical conventions.

A configuration of a TPN is a pair (m, ν), where m is a marking in the usual sense, i.e.
a mapping in NP , with m(p) the number of tokens in place p. A transition t is enabled in a
marking m if m ≥ •t. We denote by En(m) the set of enabled transitions in m. The second
component of the pair (m, ν) is a valuation over En(m) which associates with each enabled
transition its age, i.e. the amount of time that has elapsed since this transition was last
enabled. An enabled transition t can be fired if ν(t) belongs to the interval I(t). The result
of this firing is as usual the new marking m′ = m− •t+ t•. Moreover, we define the predicate
↑enabled(t′,m, t) as follows: we say 3 that transition t′ is newly enabled by firing of t from
marking m (written ↑enabled(t′,m, t)) iff t′ ∈ En(m − •t + t•) ∧ ((t′ 6∈ En(m − •t)) ∨ t = t′).
Clocks being reset by the firing of t from marking m are exactly clocks associated with
transitions t′ that are newly enabled by this firing.

The set ADM(N ) of (admissible) configurations consists of the pairs (m, ν) such that
ν(t) ∈ I(t)↓ for every transition t ∈ En(m). Thus time can progress in a marking only when
it does not leave the firing interval of any enabled transition.

Formally, the semantics of a TPN N is defined as the timed transition system JN K =
(Q, q0, Qf ,→) where Q = Qf = ADM(N ), q0 = (m0,0), and → is defined by:

- delay moves: ∀d ∈ R≥0, (m, ν)
d−→ (m, ν + d) iff ∀t ∈ En(m), ν(t) + d ∈ I(t)↓,

- discrete moves: (m, ν)
Λ(t)−−→ (m− •t+ t•, ν ′) iff t ∈ En(m) is s.t. ν(t) ∈ I(t), and

∀t′ ∈ En(m− •t+ t•), ν ′(t′) = 0 if ↑enabled(t′,m, t) and ν ′(t′) = ν(t) otherwise.

• p0

p2p1

(2, 3] t2[1, 2] t1

Figure 2.5: The TPN N0.

One may immediately notice that the semantics of TPN
integrates a notion of urgency: as in delay moves, time can
elapse only up to a point that does not violate any upper
bound of time constraints attached to enabled transitions,
some transitions have to fire before other ones.

Example 6. Consider the TPN of Figure 2.5. Transition
t1 has to fire at a date d that lays between 1 and 2 time
units after its enabling, and transition t2 at a date d that
is strictly greater than 2 time units after its enabling. Ac-
cording to the semantics, one cannot let 2 time units elapse
without firing t1. Hence, within this setting, only transition
t1 can fire.

3We follow the standard definition of ↑enabled(t′,m, t), but alternative semantics exist (see [BCH+05a] for
a comparison). One can prove that the undecidability results as well as the decidability results presented in
this work also hold for TPN equipped with these alternative semantics.
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The language of N is defined as the language of JN K and is denoted by L(N ). We will also
consider the untimed language untimed(L(N )). The reachability set of N , denoted reach(N ),
is the set of markings m ∈ NP such that there exists a reachable configuration (m, ν). A
bounded TPN is a TPN N such that reach(N ) is finite.

Perturbations in time Petri nets

Our goal is to consider a model of perturbation for time Petri nets similar to that considered
for timed automata, in order to be able to transfer results from timed automata to time Petri
nets. Given an interval I ∈ I(Q≥0) and a rational number δ ≥ 0, we denote by Iδ the interval
obtained by replacing its lower bound α by the bound max(0, α − δ), and its upper bound
β by the bound β + δ. Given a TPN N , we denote by Nδ the TPN obtained by replacing
every interval I by the interval Iδ. We can then easily prove that Petri nets enjoy a monotony
property similar to that of timed automata. This entails that if the system verifies a safety
property for some perturbation δ0, it will also verify this property for any δ ≤ δ0:

Lemma 4. Let N be a TPN and δ ≤ δ′ ∈ Q≥0. We have JNδK � JNδ′K.

Problems considered We now define robustness problems on TPN in a way which is
consistent with the monotony property stated above.

Robust boundedness: Given a bounded TPN N , does there exist δ ∈ Q>0 such that Nδ is
bounded?

Robust untimed language preservation: Given a bounded TPN N , does there exist δ ∈ Q>0

such that untimed(L(Nδ)) = untimed(L(N ))?

We call a TPN N robustly bounded if there exists δ ∈ Q>0 such that Nδ is bounded. This
problem is strongly related to the problem of robust safety asking, given a bounded TPN N
with set of places P , and a marking m ∈ NP , whether there exists δ ∈ Q>0 such that Nδ does
not cover 4 m. In fact, our undecidability and decidability results for robust boundedness
will easily extend to this problem. However, the situation differs for robust untimed language
preservation and so we treat this problem separately.

The above properties are considered in the setting of bounded TPN. However, from the
undecidability results presented in this section, we can infer undecidability in the unbounded
setting as well.

Sequential time Petri nets We identify the class of sequential TPNs that corresponds
to a strict subclass of timed automata. We state their properties in detail here as they will
be useful in later proofs. Also this exhibits a clear way to distinguish the relative power of
TPNs and TA.

A TPNN is sequential if it satisfies the following property: for any reachable configuration
(m, ν), and for any transitions t, t′ ∈ T that are fireable from (m, ν) (i.e. such that t, t′ ∈
En(m), ν(t) ≥ α(t) and ν(t′) ≥ α(t′)), t and t′ are in conflict, i.e. there exists a place p such
that m(p) < •t(p) + •t′(p).

The following lemma states robustness properties of sequential TPNs and their relation
to timed automata.

4A TPN N over a set of places P covers a marking m ∈ NP iff there exists m′ ∈ reach(N ) such that m′ ≥ m.

43



•

p1

•

p2

red

a, [2, 3]a′, [1, 2]

t1, [0, 2]

t2, [0, 1]

b′, [1, 2]b, [2, 3]

t3, [0, 2]

t4, [0, 1]t, [1,∞)

Figure 2.6: The TPN N1 exhibiting new discrete behaviors under infinitesimal perturbations.

Lemma 5. We have the following properties:

(i) Checking whether a bounded TPN N is sequential is decidable.

(ii) If N is a sequential bounded TPN, then it can be translated into a timed automaton
which resets every clock on each transition.

(iii) If N is sequential, then there exists δ ∈ Q>0 such that reach(Nδ) = reach(N ) and
untimed(L(Nδ)) = untimed(L(N )).

Accumulations of perturbations in time Petri nets As for timed automata, different
sources of non robustness may be distinguished in time Petri nets. First, new behaviors due to
neighbor configurations can appear (see for instance the TPN N0: for every δ > 0, intervals
[1 − δ, 2 + δ] and (2 − δ, 3 + δ] have a non-empty intersection). Such behaviors can easily
be detected using the state class graph construction. In addition, if we consider a bounded
horizon, one can compute an upper bound on δ so as to ensure that no new discrete behavior
appears. The remaining interesting case is the accumulation of perturbations along infinite
executions. For such situations, as for timed automata, new discrete behaviors exist due to
the repetition of some cycle, with the property that the smaller δ is, the larger will be the
number of iterations of the cycle required.

We have presented an example of a TA, provided by Puri [Pur00], exhibiting such an
accumulation of perturbations (see A0 on Figure 1.1). Though translations from TA to TPN
do exist for the exact semantics (see for instance [BCH+05b]), it is not guaranteed that they
also preserve the enlarged semantics. In particular, the TPN resulting from the application of
such translations to A0 do not exhibit such accumulations. Instead, we directly build a TPN
which exploits the concurrency of Petri nets while using ideas similar to those of Puri.

This TPN, denoted N1, is depicted on Figure 2.6. Informally, it is composed of two compo-
nents performing periodic behaviors around places p1 and p2 respectively. These components
can be synchronized using transition t if places p1 and p2 are marked simultaneously. Intu-
itively, these components simulate the behavior of clocks x and y of the TA A0 in the sense
that in the exact semantics, places p1 and p2 are marked respectively for the k-th time at
timestamps τk and τ ′k such that τ ′k − τk = 1, and thus t is never fired. On the other hand,
in the enlarged semantics, the value of τk − τ ′k may ‘drift’ and thus t may be fired. Observe
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Figure 2.7: TPN N2 obtained by combining N1 and NM.

that this example can be simplified using singleton intervals, but we avoid this to show that
problems due to accumulation may arise even without singletons.

It is easy to prove that, for every positive δ, it is possible in the net (N1)δ to fire simul-
taneously transitions a and b. As a consequence, places p1 and p2 can remain marked for 1
time unit, and the red place is reachable in (N1)δ.

Undecidability results

We use the TPN N1 of Figure 2.6 to prove undecidability of all the robustness problems
considered for bounded TPN.

Theorem 12 ([1, 2]). The problems of (i) robust boundedness, (ii) robust untimed language
preservation and (iii) robust safety are undecidable for bounded TPN.

Sketch. Let us first recall that given a Minsky machineM whose target control state is state
qn, it is possible to build a TPN NM satisfying the following properties (see [2] for details).
First, as NM simulates exactly executions of M, NM is bounded iff M is, and NM covers
marking {qn} iff M reaches state qn. Second, one can easily verify that the net NM is
sequential.

We then combine the TPNs N1 from Figure 2.6 and NM as depicted on Figure 2.7 to
obtain the TPN N2. It it then easy to observe the two following facts:

• for δ = 0, the red place of N1 is never marked, and thus no token enters the net NM

• for every positive δ, transition ts becomes fireable, and thus the NM is ”executed”. In
addition, as it is sequential, its execution is not altered by the presence of small enough
perturbations (Lemma 5)

The results easily follow.

Subclasses with decidability results

A robust translation from TPN to TA As robustness issues were first studied for timed
automata, and several translations of TPN into TA exist in literature, it is natural to study
which of these translations are compatible with robustness. A way to reduce robustness prob-
lems for TPNs to robustness problems for TA is to show that an existing timed bisimulation
between TPN and its TA translation is preserved under perturbation.

Let us study the marking class timed automaton construction of [DDSS07]. The con-
struction of [DDSS07] was only stated for TPN whose underlying Petri net (i.e. the Petri
net obtained by ignoring the timing information in the given TPN) is bounded. We adapt
the construction to a more general framework: we consider as input a TPN N which is not
necessarily bounded and a finite set of markings M . The construction is then restricted to
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the set M , and we can prove that it is correct for the set of behaviors of N which always
remain within M . In the following, we will instantiate M depending on the context.

Theorem 13 ([1, 2]). Let N be a TPN, M be a finite set of markings containing the initial
marking of N , and AM be the marking timed automaton of N over M . We denote by JNδK|M
the restriction of JNδK to states (m, ν) such that m ∈ M . Then for all δ ∈ Q≥0, we have
JNδK|M ≈ J(AM )δK.

Robustly bounded TPNs By Theorem 12, we know that checking membership in the
class of robustly bounded TPNs is undecidable. We present two decidable subclasses, as well
as a semi-decision procedure for the whole class. We first consider the subclass of TPNs whose
underlying Petri net is bounded:

Proposition 4. The set of TPNs whose underlying net is bounded is a decidable subclass
of robustly bounded TPNs. Further, for each net N of this class, one can construct a finite
timed automaton A such that JNδK ≈ JAδK for all δ ≥ 0.

The decidability follows from that of boundedness for (untimed) Petri nets [KM69]. The
second part of the above proposition follows from Theorem 13.

We now exhibit another decidable subclass of robustly bounded TPNs whose underlying
Petri nets can be unbounded. We first state the following important technical result:

Lemma 6. Let N be a TPN, and M be a finite set of markings. Determining whether there
exists δ > 0 such that reach(Nδ) ⊆M is decidable.

Proof. Call M̃ = M ∪ {m′ | ∃m ∈ M, t ∈ T,m′ = m − •t + t•} the (finite) set of markings
reachable from M in at most one-step in the underlying Petri net. Let A

M̃
be the marking

timed automaton of N over M̃ , and let δ ≥ 0. We claim:

reach(Nδ) ⊆M ⇐⇒ reach((A
M̃

)δ) ⊆M

The proof of this equivalence relies on Theorem 13.
Now, determining whether there exists δ > 0 such that the right hand side of the previous

equivalence holds is decidable thanks to Proposition 1.

We consider the following subclass of bounded TPNs:

Definition 4. A bounded TPN N is called Reach-Robust if reach(Nδ) = reach(N ) for some
δ > 0. We denote by RR the class of Reach-Robust TPNs.

Checking membership in this class is decidable, i.e. given a bounded TPN N we can
decide if there is a positive guard enlargement under which the set of reachable markings
remains unchanged. This follows from Lemma 6 by taking M = reach(N ):

Theorem 14 ([1, 2]). RR is a decidable subclass of robustly bounded TPNs.

We can now address properties of the general class of robustly bounded TPN. Again, this
result follows from Lemma 6 and Theorem 13.

Lemma 7. The set of robustly bounded TPNs is recursively enumerable. Moreover, given a
robustly bounded TPN N , we can build effectively a timed automaton A such that there exists
δ0 > 0 for which, ∀0 ≤ δ ≤ δ0, JNδK ≈ JAδK.

This result allows us to transfer existing robustness results for timed automata to TPNs. We
will illustrate the use of this property in the following section.
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Untimed language robustness in TPNs We now consider the robust untimed language
preservation problem, which was shown undecidable in general in Theorem 12. We show that
for the subclass of distinctly labeled bounded TPNs (i.e. labels on transitions are all distinct,
and different from ε) this problem becomes decidable.

Definition 5. A bounded TPN N is called Language-Robust if L(Nδ) = L(N ) for some
δ > 0. We denote by LR the class of Language-Robust nets and by LR 6= (resp. RR 6=) the
subclass of LR (resp. RR) with distinct labeling.

We first compare the class RR (for which checking membership is decidable by Theo-
rem 14) with the class LR (where, as already noted, checking membership is undecidable by
Theorem 12). We can then observe that:

Proposition 5. (1) The classes RR and LR are incomparable w.r.t. set inclusion. (2)
Further, the class LR 6= is strictly contained in the class RR 6=.

Finally, we show that the problem of robust untimed language preservation becomes de-
cidable under the assumption of distinct labeling. This result uses Lemma 7 and Proposition 2
on timed automata.

Theorem 15 ([1, 2]). The class LR6= is decidable, i.e. checking if a distinctly labeled bounded
TPN is in LR is decidable.

Summary

bounded TPN

robustly bounded TPN

RR UBS

RR LR
S

UB

Without distinct labels

RR
LR

S

UB

With distinct labels

Figure 2.8: RR stands for reach-robust, LR for language-robust, UB for bounded underlying
PNs, S for sequential bounded TPNs. Dotted lines represent that checking membership in
the class is undecidable, while solid lines represent that it is decidable.

We have launched an investigation into robustness in time Petri nets with respect to
guard enlargements. We transferred several positive results from the TA setting to TPNs and
showed that some other problems become undecidable in TPNs due to unboundedness. We
summarize our results in the diagram in Figure 2.8 which shows the relative expressiveness
of the various classes and their decidability. In the table below, we give a more detailed
picture of the decidability results for each problem and each class of TPNs considered. The
leftmost column lists the problems addressed while the top row lists the subclasses of nets. A
“yes” entry in a cell means that the problem considered at that row is decidable for the class
considered in the column, “no” means that it is undecidable, and “g” means that a positive
answer to the problem is always guaranteed for the considered class. For instance, robustness
of subset-markings is guaranteed for Reach-robust nets.
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hhhhhhhhhhhhhhhhhProblems
Classes

TPNs Bounded Rob. Bounded RR UB S

Robust Boundedness no no g g g g

Robust language preservation no yes yes yes yes g
(with distinct labels)

Robust language preservation no no yes yes yes g
(without distinct labels)

Robustness of reach(N ) no yes yes g yes g

2.4 Perspectives

The different results we have presented offer natural immediate perspectives. For instance,
regarding our results on MTL, one could be interested in extending the results of [BMS11]
to our setting in order to derive a proof of our decidability results fully based on channel
machines and valid for general timed automata.

The algorithm of [DK06] that we extended to a parametric setting has recently been lifted
from flat timed automata to general timed automata in [KLMP14]. It seems thus promising
to try to adapt this new algorithm to a parametric setting.

Last, our results on time Petri nets are mainly consequences of results proven on timed
automata. A challenging research topic would thus be to identify classes of unbounded time
Petri nets with decidable robust model checking problems, and also, in another direction, to
consider these robustness issues directly on the non-interleaved semantics of time Petri nets.

In addition to these research leads, the main challenge for robustness analysis is probably
the one of implementation. There is indeed a lack of tool allowing to check the robustness of a
timed automaton, and this is actually due to the fact that most decidability results published
so far rely on the region automaton construction. The only exceptions are the symbolic
algorithms of [DK06, KLMP14], and they have led to the development of two tools. First,
an implementation of the algorithm of [KLMP14] is presented in the same paper. Second,
another tool has been published this year in [San15]. This tool implements a modification
of the same algorithm: it performs a symbolic forward exploration of the timed automaton
and accelerates less cycles than [KLMP14]. This results in a semi-decision procedure as no
guarantee of termination is provided. The implementation relies on a simplification of the
data structure of PLDBMs that considers small values of δ (hence, only the first affine map
of a piecewise linear function is preserved), and thus allows addition to compute a positive
admissible value of δ.
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Chapter 3

Robust controller synthesis
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We consider timed games played on a timed automaton involving two players, namely
Controller and Environment. In such games, Controller usually suggests an action a and a
delay d ≥ 0, and Environment answers by choosing an edge enabled after d time units whose
label is a. Using this definition, a winning strategy for Controller may require to execute an
action after an exact delay of one time unit, or to execute actions faster and faster. In this
chapter, we are interested in synthesizing robust strategies for Controller, i.e. tolerant to some
imprecisions in delays, and thus amenable to implementation.

3.1 Robust timed games

Definitions

In order to define perturbations, and to capture the reactivity of a controller to these, we define
the following parameterized timed game semantics. Intuitively, the parameterized timed game
semantics of a timed automaton is a two-player game parameterized by δ > 0, where Player 1,
also called Controller chooses a delay d > δ and an action a ∈ Σ such that every a-labeled
enabled edge is such that its guard is satisfied after any delay in the set d+ [−δ, δ] (and there
exists at least one such edge). Then, Player 2, also called Perturbator chooses an actual delay
d′ ∈ d+ [−δ, δ] after which the edge is taken, and chooses one of the enabled a-labeled edges.
Hence, Controller is required to always suggest delays that satisfy the guards whatever the
perturbations are.

Formally, given a timed automaton A = (L, C, `0,Σ, E) and δ > 0, we define the param-
eterized timed game of A w.r.t. δ as a two-player turn-based game Gδ(A) between players
Controller and Perturbator. The state space of Gδ(A) is partitioned into VC ∪ VP where
VC = L × RC≥0 belong to Controller, and VP = L × RC≥0 × R≥0 × Σ belong to Perturbator.

The initial state is (`0,~0) ∈ VC . The transitions are defined in the natural way according to
the intuition given above.
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Figure 3.1: A robustly controllable timed automaton

A play of Gδ(A) is a finite or infinite sequence q1e1q2e2 . . . of states and transitions of Gδ(A),
with q1 = (`0,~0), where ei is a transition from qi to qi+1. It is said to be maximal if it is
infinite or cannot be extended. A strategy for Controller is a function that assigns to every
non-maximal play ending in some (`, ν) ∈ VC , a pair (d, a) where d > δ and a is an action
such that there is a transition from (`, ν) to (`, ν, d, a). A strategy for Perturbator is a function
that assigns, to every play ending in (`, ν, d, a), a state (`′, ν ′) such that there is a transition
from the former to the latter state. A play ρ is compatible with a strategy f for Controller
if for every prefix ρ′ of ρ ending in VC , the next transition along ρ after ρ′ is given by f .
We define similarly compatibility for Perturbator’s strategies. A play naturally gives rise to
a unique run, where the states are in VC , and the delays and the edges are those chosen by
Perturbator.

Robust timed game problem. Given δ > 0, and a pair of strategies f, g, respectively
for Controller and Perturbator, we denote ρ the unique maximal run that is compatible with
both f and g. A Büchi objective is a subset of the locations of A. A Controller’s strategy f is
winning for a Büchi objective B if for any Perturbator’s strategy g the run ρ that is compatible
with f and g is infinite and visits infinitely often a location of B. The robust timed game
problem asks, for a timed automaton A and a Büchi objective B, if there exists δ > 0 such
that Controller has a winning strategy in Gδ(A) for the objective B. When this holds, we say
that Controller wins the robust timed game for A, and otherwise that Perturbator does. Note
that these games are determined since for each δ > 0, the semantics is a timed game.

Example 7. Consider first the (deterministic) timed automaton depicted on Figure 1.1,
equipped with the Büchi objective {`2}. This timed automaton is not robustly controllable.
In fact, Perturbator can enforce in the game Gδ(A) that the value of x be increased by δ at
each arrival at `1, thus blocking the run eventually.

Consider now the timed automaton depicted on Figure 3.1, this automaton is robustly
controllable for the Büchi objective {`1, `2, `3}. We assume that all transitions have the same
label, hence the automaton is non-deterministic. The cycle around `1 cannot be taken forever,
as value of x increases due to perturbations. The cycle around `2 can be taken forever, but
Controller cannot reach `2 due to the equality x = 1. Controller’s strategy is thus to loop
forever around `3. This is possible as for both choices of Perturbator in location `4 to resolve
non-determinism, clock x will be reset, and thus perturbations do not accumulate. If one of
the two resets were absent, Perturbator could force the run to always take that branch, and
would win the game.

The main result of this section is the following theorem:
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Theorem 16 ([22]). The robust timed game problem is ExpTime-c.

It is worth observing that the corresponding (non-robust) timed game problem is also
ExpTime-c.

Related work This problem has been addressed in [CHP11] but for a fixed valued value
of δ. In this case, it is possible to reduce the problem to standard timed games, and the
parametric problem we solve here was left as an open challenging problem. More recently,
a similar problem has been formalized in the theory of interfaces in [LLTW14]. Again, the
problem is solved for a fixed valued of δ, avoiding thus the main difficulty.

The case of deterministic automata

If the timed automaton A defining the timed game is deterministic, Perturbator only perturbs
the delays prescribed by Controller. This setting has been considered in [27], and can be
illustrated for instance by the first example considered in Example 7, depicted on Figure 1.1.
As we will see, solving this problem amounts to determining which cycles of the region au-
tomaton are safe for Controller, i.e. such that Controller is able to loop forever in this cycle
whatever the perturbations of Perturbator. This is directly associated to the notion of conver-
gence in cycles, which generalizes the Zeno behaviors, and that is illustrated with the timed
automaton of Figure 1.2.(b).

Orbit graphs While standard timed games can be solved using the region automaton
as abstraction, this is not the case for robust timed games, as illustrated with the timed
automaton depicted on Figure 1.1. We introduce a refinement of the region automaton,
based on the notion of folded orbit graph, that allows to identify more precisely the possible
timed behaviors along an abstract run described by the region automaton. Although this
is technical, we believe that this may be an important tool for several problems in timed
automata.

A vertex of a region r is any point of r̄∩NC . The set of vertices of r is denoted V(r). With
any path π of the region automaton, we associate a |π|-partite labelled graph called the orbit
graph of π [Pur00]. Intuitively, the orbit graph of a path gives the reachability relation between
the vertices of the regions visited along the path. We define the folded orbit graph (FOG for
short) Γ(π) for any path π as a bipartite graph on node set {1}×V(first(π))∪{2}×V(last(π))
(if π is a cycle around first(π), then we only consider vertices V(first(π))). Intuitively, this
graph is obtained as a compression of the previous one. As proven in [Pur00], it represents
precisely the reachability relation between valuations along the path π. For instance, this
relation is complete iff the FOG is.

A strongly connected component (SCC) of a graph is initial if it is not reachable from any
other SCC. A forgetful cycle of R(A) is a cycle whose FOG is strongly connected. A cycle π
is aperiodic if for all k ≥ 1, πk is forgetful. Note that there exist forgetful cycles that are not
aperiodic [Sta12]. An example of a non-forgetful cycle is given in Figure 3.3. Figure 3.4 gives
an example of forgetful (and aperiodic) cycle.

Forgetfulness was recently introduced in [BA11] for studying the entropy of timed lan-
guages. This was further studied in [Sta12] in the context of frequencies in timed automata,
where aperiodicity was considered. Already in these works, forgetful cycles are used to discard
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Figure 3.2: The orbit graph of a (cyclic) path in the region automaton of the automaton of
Fig. 1.1.

Figure 3.3: The folded orbit graph of
the (non-forgetful) cycle of Fig. 3.2.

Figure 3.4: The folded orbit graph of
a forgetful cycle.

convergent runs. As we show in the next lemma, these notions can be used to characterize
the existence of robust strategies along infinite executions in the game semantics.

Lemma 8 ([27]). Let A be a deterministic timed automaton, and π be a cycle of R(A). Then
Controller has a winning strategy along this path iff π is aperiodic.

π not aperiodic implies no winning strategy for Controller. Let us first suppose that π
is not aperiodic and explain how to build a winning strategy σp for Perturbator in the game
Gδ(A) for every δ > 0. We will formalize the intuition presented for the timed automaton of
Figure 1.1 in Example 7.

Let us represent a valuation ν in some region r by its barycentric coordinates w.r.t. vertices
of r: we write ν = λν · V(r). As proved by Puri, the folded orbit graph of a cycle π describes
the reachability relation along π as follows: let ν, ν ′ ∈ r, we have ν

π−→ ν ′ iff there exists a
stochastic matrix P ≤M(Γ(π)) such that λν′ = λν ·P (where M(Γ(π)) denotes the adjacency
matrix of Γ(π)). Intuitively, the edges of Γ(π) represent how the barycentric coordinates may
flow when cycle π is followed.

Given a region r with set of vertices V , a subset I ⊆ V and a valuation ν = λν ∈ r, we
define LI(ν) =

∑
v∈I λν(v). The next lemma is established in [BA11] (I corresponds to an

initial strongly connected component of the orbit graph):

Lemma 9. Let π be a non-forgetful cycle with vertices V . There exists a subset I ( V such
that for every ν

π−→ ν ′, we have LI(ν
′) ≤ LI(ν).

This lemma states that the sum of the coefficients associated with the subset I decreases
when cycle π is followed. We show in [27] that in the enlarged semantics, it is possible
to strengthen this lemma by proving that this sum (strictly) decreases by a fixed amount
(depending on δ).

Lemma 10. Let π be a non-forgetful cycle with vertices V and δ > 0. There exists a subset
I ( V , and a strategy σp for Perturbator in the game Gδ(A) such that for every play ν

π−→ ν ′

compatible with σp, we have LI(ν
′) ≤ LI(ν)− ε2/2 where ε = δ

2(|C|+1) .
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An immediate consequence of this lemma is that this cycle cannot be iterated forever,
and thus the run is eventually blocking, or leaves the cycle, hence Controller does not have a
winning strategy along this cycle.

π aperiodic implies the existence of a winning strategy for Controller. Suppose now
that π is aperiodic. We can prove that for n large enough, the FOG of πn is complete. We
then show that along a cycle whose FOG is complete, Controller has a winning strategy. We
use the standard tool of so-called controllable predecessors of a set of states X along a path
π, denoted CPreπ(X), defined as those states from which Controller has a strategy to reach X
by following the path π (i.e. a sequence of delays along path π). It is well-known that if X
is given as a DBM, then this operator can be implemented by means of DBMs.

We lift this operator to the game Gδ(A), and denote it by CPreδπ(X). Here, Controller
has a strategy to reach X by following the path π against any strategy of Perturbator. In
order to study this parametric operator, we use shrunk DBMs (see [SBM14]) that allow us to
study parametric restrictions of a DBM. Indeed, unlike Section 2.2 in which, during a forward
analysis in the enlarged semantics, we studied parametric enlargements of DBMs, we consider
now a parametric shrinking of DBMs. Using the fact that the FOG of the cycle is complete,
we manage to exhibit a non-empty set of states s such that s ⊆ CPreδπ(s), for small enough
δ. This yields a winning strategy for Controller in the game Gδ(A) for small enough δ, from
states in s.

Observe also that this approach allows to build a concrete value of δ and an actual winning
strategy for Controller in Gδ(A).

Combining Lemma 8 with the fact that looking for a reachable cycle in the region au-
tomaton whose FOG is aperiodic can be done in PSpace, we obtain:

Theorem 17 ([27]). The robust timed game problem for deterministic timed automata is
PSpace-c.

General case

Thanks to the results presented in the previous subsection, we know precisely which cycles
are winning for Controller. In the general case Perturbator may also derive from a given cycle
when he resolves non-determinism.

A game in the region automaton We define an appropriate abstraction (as a finite
turn-based two-player game) based on region automata in order to characterize winning in
the robust timed game. We therefore define, on top of the usual region construction, a complex
winning condition W characterizing accepting runs along aperiodic cycles.

We fix a timed automaton A = (L, C, `0,Σ, E) and a Büchi condition φ. We define a
two-player turn-based game played on the region automaton R(A). In this game, Controller’s
strategy consists in choosing actions, while Perturbator’s strategy consists in resolving non-
determinism. Given a finite-memory strategy σ, we denote by R(A)[σ] the automaton ob-
tained under strategy σ.

Winning condition on R(A) We define set W of winning plays in the game R(A): an
infinite play is winning iff the following two conditions are satisfied: 1) an accepting state
in φ is visited infinitely often 2) disjoint finite factors with complete folded orbit graphs are
visited infinitely often.
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Proposition 6. The game (R(A),W) is determined, admits finite-memory strategies for both
players, and wining strategies can be computed in ExpTime.

The above proposition is proved by showing that condition 2) of W can be rewritten as
a Büchi condition: the set of folded orbit graphs constitutes a finite monoid (of exponential
size) which can be used to build a Büchi automaton encoding condition 2). Using a product
construction for Büchi automata, one can define a Büchi game of exponential size where
winning for any player is equivalent to winning in (R(A),W).

We introduce two conditions for Perturbator and Controller which are used to prove that
condition W characterizes winning in the robust timed game.

CP : there exists a finite-memory strategy τ for Perturbator such that no cycle in R(A)[τ ]
reachable from the initial state is winning aperiodic.

CC : there exists a finite-memory strategy σ for Controller such that every cycle in R(A)[σ]
reachable from the initial state is winning aperiodic.

Intuitively, determinacy allows us to write that either all cycles are aperiodic, or none is, re-
spectively under each player’s winning strategies. We prove that these properties are sufficient
and necessary for respective players to win (R(A),W):

Lemma 11. The winning condition W is equivalent to CP and CC :

1. Perturbator wins the game (R(A),W) iff property CP holds.

2. Controller wins the game (R(A),W) iff property CC holds.

In both cases, a winning strategy for W is also a witness for CC (resp. CP ).

The proof is obtained by the following facts: finite-memory strategies are sufficient to win
the game (R(A),W), thanks to the previous proposition; given a folded orbit graph γ, there
exists n such that γn is complete iff γ is aperiodic; last, the concatenation of a complete FOG
with an arbitrary FOG is complete.

Solving the robust timed game We explain now why condition CP (resp. CC) is sufficient
to witness the existence of a winning strategy in the robust timed game for Perturbator (resp.
Controller). By Lemma 11, the robust timed game problem is then reduced to (R(A),W) and
we obtain:

Theorem 18 ([22]). Let A be a timed automaton with a Büchi condition. Then, Controller
wins the robust timed game for A iff he wins the game (R(A),W).

Sketch. First, we observe that under condition CP , Perturbator wins the robust timed game.
We use the following observations. Once one fixes a strategy for Perturbator satisfying CP ,
intuitively, one obtains a deterministic timed automaton such that all accepting cycles are
non-aperiodic. We can thus conclude by Lemma 8.

Suppose now that condition CC holds, and let us show that Controller wins the robust
timed game. This is the most difficult part of the proof. By hypothesis, we assume now
that every reachable cycle in the region automaton is winning aperiodic (the finite memory
strategy can be encoded in the automaton). Thanks to Lemma 8, we know that Controller can
win if he can follow a fixed aperiodic cycle. However, due to non determinism, Perturbator
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can switch between different cycles. We consider the unfolding of R(A) of depth N . We
prove that by considering N large enough, one can ensure that every branch has a complete
FOG. Second, we prove that winning strategies along fixed branches can be combined in a
global winning strategy. This part is technical and uses the notion of shrunk DBMs as a
representation of the winning strategy of Controller.

By Proposition 6, the robust timed game can be solved in ExpTime. In addition, we
prove in [22] that when Controller wins the robust timed game, one can also compute δ > 0
and a concrete winning strategy in Gδ(A).

3.2 Stochastic adversary

In some systems, considering the environment as a completely adversarial opponent is a too
strong assumption. We thus consider stochastic environments by defining two semantics as
probabilistic variants of the robust timed games. The first one is the stochastic game semantics
where Perturbator only resolves the non-determinism in actions, but the perturbations are
chosen independently and uniformly at random in the interval [−δ, δ]. The second semantics
is the Markov decision process (MDP) semantics, where the non-determinism is also resolved
by a uniform distribution on the edges, and there is no player Perturbator.

Stochastic game semantics

Formally, given δ > 0, the state space is partitioned into VC ∪VP as previously. At each step,
Controller picks a delay d ≥ δ, and an action a such that for every edge e = (`, g, a,R, `′) such
that ν+d |= g, we have ν+d+ε |= g for all ε ∈ [−δ, δ], and there exists at least one such edge
e. Perturbator then chooses an edge e with label a, and a perturbation ε ∈ [−δ, δ] is chosen
independently and uniformly at random. The next state is determined by delaying d + ε
and taking the edge e. To ensure that probability measures exist, we restrict to measurable
strategies.

In this semantics, we are interested in deciding whether Controller can ensure a given
Büchi objective almost surely, for some δ > 0. It turns out that the same characterization as
in Theorem 18 holds in the probabilistic case.

Theorem 19 ([22]). It is ExpTime-c to decide whether for some δ > 0, Controller has a
strategy achieving a given Büchi objective almost surely in the stochastic game semantics.
Moreover, if CC holds then Controller wins almost-surely; if CP holds then Perturbator wins
almost-surely.

We claim that the characterization of the (non-stochastic) robust timed game presented
in the previous section and given by the game (R(A),W) also characterizes winning in this
stochastic framework. If CC holds then Controller wins surely (hence almost-surely). Oth-
erwise, by Lemma 11, CP holds. As in the proof of Theorem 18, once one fixes a strategy
for Perturbator satisfying CP , one obtains a deterministic timed automaton such that all ac-
cepting cycles are non-aperiodic. To conclude, we adapt Lemma 10 to our stochastic setting
by showing that for any δ > 0, there exists an integer n (depending on δ) such that with
probability 1, every play along a non-forgetful cycle has length at most n. Intuitively, each
time the cycle is iterated, the clock valuation goes strictly closer to the border of the region
with positive probability.
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Figure 3.5: This automaton is losing in the MDP semantics for the almost-sure winning but
winning under the same semantics for the limit-sure winning. In fact, a blocking state (`0, x)
with x > 1− δ is reachable with positive probability for any δ.

The previous theorem is a powerful result showing a strong distinction between robust
and non-robust timed games: in the first case, a controller that ensures the specification
almost surely can be computed, while in non-robust timed games, any controller will fail
almost surely. Thus, while in previous works on robustness in timed automata (e.g. [Pur00])
the emphasis was on additional behaviors that might appear in the worst-case due to the
accumulation of perturbations, we show that in our setting, this is inevitable. Note that this
also shows that limit-sure winning (see next section) is equivalent to almost-sure winning.

Markov decision process semantics

The Markov decision process semantics consists in choosing both the perturbations, and
the edges uniformly at random (and independently). Formally, it consists in restricting
Perturbator to choose all possible edges uniformly at random in the stochastic game seman-
tics. We denote by GMDP

δ (A) the resulting game, and PσGMDP
δ (A),s

the probability measure on

Runs(A, s) under strategy σ.
For a given timed Büchi automaton, denote φ the set of accepting runs. We are interested

in the two following problems: (we let s0 = (`0,~0))

Almost-sure winning: does there exist δ > 0 and a strategy σ for Controller such that
PσGMDP

δ (A),s0
(φ) = 1?

Limit-sure winning: does there exist, for every 0 ≤ ε ≤ 1, a perturbation upper bound δ,
and a strategy σ for Controller such that PσGMDP

δ (A),s0
(φ) ≥ 1− ε?

Observe that if almost-sure winning cannot be ensured, then limit-sure winning still has
a concrete interpretation in terms of controller synthesis: given a quantitative constraint on
the quality of the controller, what should be the precision on clocks measurements to be able
to synthesize a correct controller? Consider the timed automaton depicted on Figure 3.5. It
is easy to see that Controller loses the (non-stochastic) robust game, the stochastic game and
in the MDP semantics with almost-sure condition, but he wins in the MDP semantics with
limit-sure condition.

Theorem 20 ([22]). It is ExpTime-c to decide whether Controller wins almost-surely (resp.
limit-surely) in the MDP semantics of a timed Büchi automaton.

To prove this theorem, we will define decidable characterizations on R(A) which we will
see as a finite Markov decision process. In this MDP, the non-determinism of actions is
resolved according to a uniform distribution. Given a strategy σ̂ for Controller and a state v,
we denote by Pσ̂R(A),v the resulting measure on Runs(R(A), v). The initial state of R(A) is

v0. We will use well-known notions about finite MDPs; we refer to [Put94].
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Almost-sure winning We introduce the winning condition W ′: Controller’s strategy σ̂ in
R(A) is winning in state v iff Pσ̂R(A),v(φ) = 1 and all runs in Runs(R(A)[σ̂], v) contain infinitely
many disjoint factors whose FOGs are complete. Observe that this combines an almost-sure
requirement with a sure requirement. This winning condition is our characterization for
almost-sure winning:

Proposition 7 ([22]). Controller wins almost-surely in the MDP semantics of a timed Büchi
automaton A iff Controller wins the game (R(A),W ′) in v0.

Intuitively, the first condition is required to ensure winning almost-surely, and the second
condition allows to forbid blocking behaviors. Notice the resemblance with condition W; the
difference is that φ only needs to be ensured almost-surely rather than surely. We prove the
decidability of this condition.

Lemma 12 ([22]). The game (R(A),W ′) admits finite-memory strategies, and winning strate-
gies can be computed in ExpTime.

Limit-sure winning As illustrated in Figure. 3.5, it is possible, for any ε > 0, to choose
the parameter δ > 0 small enough to ensure a winning probability of at least 1 − ε. The
idea is that in such cases one can ensure reaching the set of almost-sure winning states with
arbitrarily high probability, although the run can still be blocked with small probability before
reaching this set.

To characterize limit-sure winning, we define condition W ′′ as follows. If Win′ denotes
the set of winning states for Controller in the game (R(A),W ′), then W ′′ is defined as the set
of states from which one can almost surely reach Win′.

Proposition 8 ([22]). Controller wins limit-surely in the MDP semantics of a timed Büchi
automaton A from s0 iff Controller wins the game (R(A),W ′′) in v0.

The proof of this proposition relies on the following lemma, and uses techniques similar
as those introduced to prove Proposition 7.

Lemma 13 ([22]). The game (R(A),W ′′) admits finite-memory strategies, and winning
strategies can be computed in ExpTime.

3.3 Perspectives

A first natural perspective of the results presented in this chapter is their extension to more
expressive timed games. It may indeed be useful for modelization purposes to allow the
environment to play some uncontrollable edges. We believe that the tools we developed to
handle non determinism will be useful to analyse such games. Another direction is the study
of concurrent timed games, which are more symmetric. It is not clear yet what would be the
good notion of robustness for these games.

As we pointed out in the perspectives of Chapter 2, in order to be able to apply our
algorithms to case studies, we need to develop a prototype implementation. However, our
approach relies on the region automaton construction, and it is well-known that this construc-
tion is not amenable to implementation. An important objective is thus to develop symbolic
algorithms, based on zones, to solve the robust timed game problem. This is a difficult task
as the notion of aperiodic path heavily relies on regions. Instead, one could try to develop
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backward algorithms manipulating shrunk DBMs, and obtain this way good heuristics. We
could also try to adapt the OTFUR algorithm used in UppAal Tiga for timed games analysis.

On a more theoretical side, our results rely on the notion of forgetful and aperiodic cycle.
These notions have been introduced for the analysis of the entropy of deterministic timed
automata. In order to handle non-determinism, we have shown how to use these notions for
branching executions, and our results may thus be useful in the context of entropy.

Last, I would like to study the connections that may exist between our results and problems
of discretization of timed automata. In this context, some authors have been interested in
determining whether there exists a sampling rate under which the language is non-empty
(with some Büchi accepting condition) [KP05]. The proofs of the results presented in this
Chapter suggest that it could be possible to build a link between the existence of robust
strategies and the existence of a sampling rate under which the language is non-empty. This
would also allow to derive an original decision procedure looking for such a sampling rate
using a reduction to SAT solvers, as in [NMA+02] for instance.
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Part II

Analysis of transformations
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Chapter 4

Preliminaries on transductions
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The theory of regular languages constitutes a cornerstone in theoretical computer sci-
ence. Initially studied on languages of finite words, it has since been extended in numerous
directions, including finite and infinite trees.

Another natural extension is moving from languages to relations. This is precisely the pur-
pose of transductions. We present in this section different fundamental models of transducers
that allow to define string-to-string transductions, together with their main properties.

4.1 Transductions

Words/strings and languages Given a finite alphabet Σ, we denote by Σ∗ the set of finite
words over Σ, and by ε the empty word. These objects may also be called (finite) strings. A
language over Σ is a set L ⊆ Σ∗.

The length of a word u ∈ Σ∗ is its number of symbols, denoted by |u|. For all i ∈
{1, . . . , |u|}, we denote by u[i] the i-th letter of u. Given 1 ≤ i ≤ j ≤ |u|, we denote by u[i..j]
the word u[i]u[i+ 1] . . . u[j] and by u[j..i] the word u[j]u[j − 1] . . . u[i].

We say that v ∈ Σ∗ is a prefix (respectively a suffix, factor) of u if there exist u2 ∈ Σ∗

(respectively u1 ∈ Σ∗, u1, u2 ∈ Σ∗) such that u = vu2 (respectively u = u1v, u = u1vu2). If
v is a prefix of u, we may write v � u. Given two words u, v, we denote by lcp(u, v) their
longest common prefix. Given two words u, v ∈ Σ∗, we define delay(u, v) = (u′, v′), where
u′, v′ are two words such that u = lcp(u, v)u′ and v = lcp(u, v)v′. We also define the distance
d(u, v) between two words u, v as d(u, v) = |u| + |v| − 2.|lcp(u, v)|. Observe that if we have
delay(u, v) = (u′, v′), then we also have d(u, v) = |u′|+ |v′|.

By u we denote the mirror of u, i.e. the word of length |u| such that u[i] = u[|u| − i+ 1]
for all 1 ≤ i ≤ |u|.
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Transductions Let Σ and ∆ be two alphabets. A transduction R from Σ∗ to ∆∗ is a
binary relation between words of Σ∗ and words of ∆∗, i.e. R ⊆ Σ∗ ×∆∗. We say that v is a
transduction, or an image, of u by R whenever (u, v) ∈ R. The set of all images of u by R is
denoted R(u) = {v ∈ ∆∗ | (u, v) ∈ R}. We extend this notation to sets of words, let L ⊆ Σ∗,
we denote by R(L) = ∪u∈LR(u) the set of all transductions by R of words in L. The domain
of R, denoted by dom(R), is the set {u ∈ Σ∗ | ∃v ∈ ∆∗ : (u, v) ∈ R}. The range of R, denoted
by range(R), is the set {v ∈ ∆∗ | ∃u ∈ Σ∗ : (u, v) ∈ R}.

Transductions are subsets of Σ∗ × ∆∗, as such, the set-related operations do apply to
transductions. For example, the intersection of two transductions R1 ∩R2 = {(u, v) | (u, v) ∈
R1∧ (u, v) ∈ R2} is the standard set intersection. The inverse transduction of a transduction
R from Σ∗ to ∆∗ is the relation R−1 = {(u, v) | (v, u) ∈ R} from ∆∗ to Σ∗. The composition
of a transduction R1 from Σ1

∗ to Σ2
∗ and R2 from Σ2

∗ to ∆∗ is the transduction R2 ◦ R1

from Σ1
∗ to ∆∗ such that R2 ◦ R1 = {(u, v) | ∃w ∈ Σ2

∗ : (u,w) ∈ R1 ∧ (w, v) ∈ R2}. The
restriction of a transduction R to a language L is a transduction, denoted by R|L, such that
its domain is the domain of R restricted to words that belong to L, and the image of a word
is the image of this word by R, i.e. R|L = {(u, v) | (u, v) ∈ R ∧ u ∈ L}.

We say that a transduction R is functional if it defines a function, i.e. for every u ∈
dom(R), there is exactly one v such that (u, v) ∈ R. Given a natural number k, we say it is
k-valued if, for every u ∈ dom(R), the size of R(u) is at most k. Last, we say it is finite-valued
if there exists k such that it is k-valued.

Decision Problems Viewing transductions as a tool to perform static analysis of programs
manipulating strings, or trees, it is important to prove that we can decide some properties
for classes of transductions under interest. The decision problems we will consider for trans-
ductions are the following. We consider a class of transductions R from Σ∗ to ∆∗.

• Membership: given R ∈ R and (u, v) ∈ Σ∗ ×∆∗, does (u, v) ∈ R hold?

• Emptiness: given R ∈ R, does there exist (u, v) ∈ Σ∗ ×∆∗ such that (u, v) ∈ R holds?

• Equivalence: given R1, R2 ∈ R, do we have R1 = R2?

• Type Checking against a class of languages L: given two languages L1 ∈ L and L2 ∈ L,
do we have R(L1) ⊆ L2?

The problem of type checking is in particular useful in database applications, as it allows
for instance to verify that the update of the database does not alter the integrity of the
database w.r.t. some property expressed as a regular language. It is also useful for instance
when considering transformations of XML documents, which should always be compliant
w.r.t. to a DTD.

It is worth observing that the type-checking problem can be reduced to the emptiness
problem, provided that the class of transductions R is closed under composition, and the
class of languages L is closed under complement. Indeed, one can then use the following
equivalence:

R(L1) ⊆ L2 ⇐⇒ dom(IdL2
◦R ◦ IdL1) = ∅

where IdL is the identity mapping defined exactly on the language L, and L denotes the
complement of L.
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4.2 Finite-state transducers

Automata A non-deterministic two-way finite state automaton1 (2NFA) over a finite al-
phabet Σ is a tuple A = (Q, q0, F,∆) where Q is a finite set of states, q0 ∈ Q is the initial state,
F ⊆ Q is a set of final states, and ∆ is the transition relation, of type ∆ ⊆ Q×Σ×Q×{+1,−1}.
It is deterministic if for all (p, a) ∈ Q × Σ, there is at most one pair (q,m) ∈ Q × {+1,−1}
such that (p, a, q,m) ∈ ∆. In order to see how words are evaluated by A, it is convenient
to see the input as a right-infinite input tape containing the word (starting at the first cell)
followed by blank symbols. Initially the head of A is on the first cell in state q0 (the cell
at position 1). When A reads an input symbol, depending on the transitions in ∆, its head
moves to the left (−1) if the head was not in the first cell, or to the right (+1) and changes
its state. A stops as soon as it reaches a blank symbol (therefore at the right of the input
word), and the word is accepted if the current state is final.

A configuration ofA is a pair (q, i) ∈ Q×(N\{0}) where q is a state and i is a position on the
input tape. A run ρ of A is a finite sequence of configurations. The run ρ = (p1, i1) . . . (pm, im)
is a run on an input word u ∈ Σ∗ of length n if p1 = q0, i1 = 1, im ≤ n + 1, and for all
k ∈ {1, . . . ,m−1}, 1 ≤ ik ≤ n and (pk, u[ik], pk+1, ik+1− ik) ∈ ∆. It is accepting if im = n+1
and pm ∈ F . This means that for all the configurations but the last one, the reading head
should be on a letter of the input word (1 ≤ ik ≤ n for all k ≤ m − 1). For the run to
be accepting, the last configuration must correspond to the reading head being immediately
after the end of the input word (im = n+ 1). The language of a 2NFA A, denoted by L(A),
is the set of words u such that there exists an accepting run of A on u.

A non-deterministic (one-way) finite state automaton (NFA) is a 2NFA such that ∆ ⊆
Q × Σ × Q × {+1}, therefore we will often see ∆ as a subset of Q × Σ × Q. Any 2NFA is
effectively equivalent to an NFA (w.r.t. the accepted language). It was first proved by Rabin
and Scott, and independently by Shepherdson [RS59, She59]. We denote by 2DFA (resp.
DFA) the class of deterministic two-way finite state automata (resp. deterministic one-way
finite state automata). Clearly, deterministic machines have a single computation on any
input word. We way a 2NFA is unambiguous if for every input word u, there is at most one
accepting run on u.

Transducers Non-deterministic two-way finite state transducers (2NFT) over Σ extend
NFA with a one-way left-to-right output tape. They are defined as 2NFA except that the
transition relation ∆ is extended with outputs: ∆ ⊆ Q × Σ × Σ∗ × Q × {−1,+1}. If a
transition (q, a, v, q′,m) is fired on a letter a, the word v is appended to the right of the
output tape and the transducer goes to state q′. Wlog we assume that for all p, q ∈ Q, a ∈ Σ
and m ∈ {+1,−1}, there exists at most one v ∈ Σ∗ such that (p, a, v, q,m) ∈ ∆. We also
denote v by out(p, a, q,m).

A run of a 2NFT is a run of its underlying automaton, i.e. the 2NFA obtained by ig-
noring the output. A run ρ may be simultaneously a run on a word u and on a word
u′ 6= u. However, when the underlying input word is given, there is a unique sequence
of transitions associated with ρ. Given a 2NFT T , an input word u ∈ Σ∗ and a run
ρ = (p1, i1) . . . (pm, im) of T on u, the output of ρ on u, denoted by outu(ρ), is the word
obtained by concatenating the outputs of the transitions followed by ρ, i.e. outu(ρ) =

1We follow the definition of Vardi [Var89], but without stay transitions. This is without loss of generality
though.
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qb qa

b | a,+1 a | a,+1

a | a,+1

b | a,+1

Figure 4.1: The transducer T0 realizing the transduction R0.

out(p1, u[i1], p2, i2−i1) · · · out(pm−1, u[im−1], pm, im−im−1). If ρ contains a single configu-
ration, we let outu(ρ) = ε. When the underlying input word u is clear from the con-
text, we may omit the exponent u. The transduction defined by T is the relation JT K =
{(u, outu(ρ)) | ρ is an accepting run of T on u}. We may often just write T when it is clear
from the context.

A 2NFT T is functional if the transduction it defines is functional. The class of functional
2NFT is denoted by f2NFT. The class of functions realized by f2NFT is called the class of
regular functions. A deterministic two-way finite state transducer (2DFT) is a 2NFT whose
underlying input automaton is deterministic. Note that 2DFT are always functional, as
there is at most one accepting run per input word. Note also that thanks to determinism, a
configuration (q, i) cannot occur twice in an accepting run of a 2DFT T (otherwise the run
is infinite). As a consequence, functions realized by 2DFT are linearly bounded, i.e. there
exists an integer K such that for every (u, v) ∈ JT K, we have |v| ≤ K|u|.

A non-deterministic (one-way) finite state transducer (NFT) is a 2NFT whose underlying
automaton is an NFA2. It is deterministic, or sequential, (written DFT) if the underlying
automaton is a DFA. We will also consider the class of functional one-way transducers, denoted
by fNFT. The class of functions realized by fNFT is called the class of rational functions.

Last, we say that a 2NFT T is unambiguous if its underlying automaton is unambiguous.
When this is the case, we have that T is functional. A well-known result due to [EM65] states
that every functional NFT can be transformed into an equivalent unambiguous NFT.

Example 8. Let Σ = {a, b} and # 6∈ Σ, and consider the transductions

1. R0 = {(u, a|u|) | u ∈ Σ+, u[|u|] = a}

2. R1 = {(u, b|u|) | u ∈ Σ+, u[|u|] = b} ∪R0

3. R2 = {(#u#,#u#) | u ∈ Σ∗}.

R0 is DFT-definable: it suffices to replace each letter by a and to accept only if the last
letter is a. Therefore it can be defined by the DFT T0=({qa, qb}, qb, {qa}, {(qx, y, a, qy) | x, y ∈
Σ}). This transducer is depicted on Figure 4.1.

R1 is fNFT-definable but not DFT-definable: one can construct an NFT T1 as follows.
In its initial state, it non-deterministically guesses the last letter of the input word and,
accordingly, goes to the left (states q2, q4) or to the right (states q1, q3). It also guesses
whether the current letter is or not the last letter of the word. Even if R1 is functional, it is

2This definition implies that there is no ε-transitions that can produce outputs, which may cause the image
of an input word to be an infinite language. Those NFT are sometimes called real-time in the literature.
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q0 q1q2 q3q4
Σ | b,+1

Σ | b,+1

b | b,+1

b | b,+1

Σ | a,+1

Σ | a,+1

a | a,+1

a | a,+1

Figure 4.2: The transducer T1 realizing the transduction R1.

q0 q1 q2 q3 qf

σ | ε,+1 σ | σ,−1 σ | ε,+1

# | ε,+1 # | #,−1 # | #,+1 # | ε,+1

Figure 4.3: The transducer T2 realizing the transduction R2.

not DFT-definable, as the transformation depends on the property of the last letter, which can
be arbitrarily far away from the beginning of the string. This intuition will be made formal
later in this section.

R2 is 2DFT-definable: it suffices to go to the end of the word by producing ε each
time a letter is read, to go back to the beginning while copying each input letter, and re-
turn to the end without outputting anything, and to accept. Hence it is defined by T2 =
({q0, q1, q2, q3, qf}, q0, {qf}, δ2) where states q1, q2, q3 denote passes, and δ2 is made of the
transitions (q0,#, ε, q1,+1), (q1, x∈Σ, ε, q1,+1) (during the first pass, move to the right),
(q1,#, ε, q2,−1), (q2, x∈Σ, x, q2,−1), (q2,#,#, q3,+1), (q3, x∈Σ, ε, q3,+1), (q3,#,#, qf ,+1).
This transducer is depicted on Figure 4.3.

Deterministic and functional transducers Functions play an important role among re-
lations and, as we will see later, they enjoy better decidability properties. This motivates the
study of classes of transducers which are functional. It is trivial that deterministic transducers
are functional. While for languages, every non-deterministic automaton can be made deter-
ministic, this is not anymore the case for transducers, if one considers one-way transducers.
However, the result holds for functional two-way transducers, as stated below:

Theorem 21. The following results hold:

• DFT are strictly less expressive than fNFT.

• 2DFT and f2NFT are expressively equivalent 3.

The first point is illustrated by example R1. The second point is a more difficult result
that has been proven in [Eng82, EH01, dS13].

3To be precise, this equivalence holds if left and right end-markers are added to the input word, so that the
deterministic transducer can identify the beginning and the end of the input.
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Determining whether a transducer recognizes a function is thus a natural question. This
problem has been solved in 1983 for 2NFT in [CK87]. For NFT, the problem can be solved in
polynomial time, and different proofs have been proposed. An elegant one, based on a squaring
construction of transducers, can be found in [BCPS03]. We will use this construction later,
so we briefly present it.

The square T 2 of a transducer T is simply the product of T by itself. It is a transducer
which outputs pairs of words. The characterization of [BCPS03] states that T is functional
iff the two following properties are satisfied:

1. For every two runs (i1, i
′
1)

u1|(v1,v′1)
−−−−−−→ (q, q′) and (i2, i

′
2)

u2|(v2,v′2)
−−−−−−→ (q, q′) in the trimmed 4

part of T 2, we have delay(v1, v
′
1) = delay(v2, v

′
2).

2. For every run (i, i′)
u|(v,v′)−−−−→ (q, q′) in T 2 such that q, q′ ∈ F , we have v = v′.

It yields a simple PTime algorithm which builds the square, trims it, and then applies an
action computing the value of delay.

The first point of the previous theorem rises the problem of determining, given a fNFT,
whether there exists an equivalent DFT. This determinization problem has been solved in
1977 by Choffrut, using the so-called twinning property. We give a short presentation of
this result, as some of our further developments are based on the twinning property. The
definition we give here is a different, but equivalent, presentation of the definition given by
Choffrut. Let T = (Q, I, F, δ) be a trimmed fNFT. T satisfies the twinning property if for all
q0, q

′
0 ∈ I, for all q, q′ ∈ Q, for all words u1, v1, w1, u2, v2, w2 ∈ Σ∗, if:

q0
u1/v1−−−→ q

u2/v2−−−→ q and q′0
u1/w1−−−−→ q′

u2/w2−−−−→ q′ are runs of T,

then delay(v1, w1) = delay(v1v2, w1w2).

The twinning property does not exactly characterize the class of functions that are DFT
definable, but a slightly larger superclass, that of so-called subsequential functions. Such a
function is described by a DFT with additionally finite words associated with final states.
The image of an input word u is the word vw, where v is the word produced by the accepting
run ρ on u, and w is the word associated with the final state reached by ρ.

Theorem 22. Let T be a fNFT. The following results hold:

• T satisfies the twinning property iff JT K is subsequential.

• Determining whether T satisfies the twinning property can be done in polynomial time.

The first point of this theorem has been proven in [Cho77]. The decidability in PTime is
shown in [WK95].

Domain, range and closure properties The domain (resp. range) of a transducer T
is defined as dom(T ) = dom(JT K) (resp. range(T ) = range(JT K)). The domain dom(T ) is a
regular language that can be defined by the 2NFA obtained by projecting away the output
part of the transitions of T , called the underlying input automaton.

4A finite-state automaton is trimmed whenever for every state q, there exists an accepting run going through
state q.

65



Regarding the range, one easily observes that ranges of NFT are also regular languages.
This is however not the case for 2NFT, as one can easily come up with the set of palindromes
for instance (consider a transducer, obtained as a slight modification of the transducer T2 of
Example 8, that copies the input word once during a first left-to-right pass, and then copies
its mirror image in a second right-to-left pass). The languages obtained as range of 2NFT
can be described by means of linear context-free graph grammars. This is out of the scope of
this thesis, and we refer to [EH91] for further details.

It is well known that the class of regular languages is closed under boolean operations. The
situation for transductions is different as they are in general not closed under intersection and
complement. Indeed, transductions defined by NFT and 2DFT are such that each word has
finitely many images. This immediately forbids closure under complement. Non-closure under
intersection is standard and can be proved by observing that the domain of the intersection
of relations {(anbm, cn | n,m ∈ N)} and {(anbm, cm | n,m ∈ N)} is not a regular language.

Similarly, transductions defined by NFT and 2DFT are not closed under inverse as the
inverse image of a word may be infinite.

Last, we consider closure under composition. This operation is natural for functions, and
relations in general. It is actually rather easy to prove that NFT are effectively closed under
composition. Concerning 2DFT, it has been proved in [CJ77] that these transducers are also
closed under composition, but the construction is much more involved.

In contrast, 2NFT are not closed under composition, see [EH07] for further details.

Decidability properties We give the decidability status and the complexity class of the
decision problems introduced previously. The results are summarized in Table 4.1.

First, emptiness in PTime for the classes of DFT, fNFT and NFT trivially follows from
standard reachability in graphs. For two-way machines, first observe that we only have to
consider the underlying input automaton. This two-way automaton can be turned into an
equivalent DFA using Shepherdson’s construction, resulting in an exponential size automaton.
However, this automaton can be built on-the-fly, resulting in a PSpace procedure. Hardness
follows for instance from emptiness of intersection of finitely many DFA.

Concerning type checking, the hardness comes from that of language inclusion, already
for DFT (consider the identity function). We explain why type checking for NFT is decidable
in PSpace. Let us denote by A,B the input and output NFA and by T the NFT under
consideration. Using a previous remark, we explain how to build a NFT for the transduction
R = Id

L(B)
◦JT K◦IdL(A). First, the composition JT K◦IdL(A) follows from a standard product

construction of A and T . Similarly, considering an automaton C such that L(C) = L(B), one
can build the product with C in order to recognize R. As a consequence, one has to check
emptiness of the resulting transducer whose size is exponential. However, this transducer can
still be built on-the-fly, yielding the result. The same construction can be used for an input
2NFT T , resulting in an ExpSpace procedure.

Last, regarding equivalence, the undecidability for NFT has been proven in [Gri68], while
the PSpace-completeness for 2DFT comes from [Gur82]. For the class of fNFT, the PSpace
hardness follows from that of language inclusion (by checking the domains). Once the domains
are known to be equal, the equivalence amounts to functionality checking, decidable in PTime.
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emptiness type checking equivalence
(vs NFA)

DFT PTime PSpace-c PTime
fNFT PTime PSpace-c PSpace-c
2DFT PSpace-c ExpSpace PSpace-c

NFT PTime PSpace-c undecidable
2NFT PSpace-c ExpSpace undecidable

Table 4.1: Decision problems for finite-state transducers.

4.3 Streaming string transducers

Recently, a new model of transducer has been proposed by Rajeev Alur and Pavol Černý
in [AČ11], which captures exactly the class of regular string functions 5. Streaming String
Transducers, unlike the models we have defined before, are not finite state. They are indeed
equipped with a finite set of variables storing finite words that can be reset to a finite word, and
that can be concatenated with a finite word or with another variable. Moreover, their finite
state behavior is simple as it is defined by a deterministic one-way automaton. Intuitively,
the complexity of the two-wayness of 2DFT is replaced by operations on string variables.

Let X be a finite set of variables denoted by X,Y, . . . and Σ be a finite alphabet. A
substitution σ is defined as a mapping σ : X → (Σ ∪ X )∗. Let SX ,Σ be the set of all substitu-
tions. Any substitution σ can be extended to σ̂ : (Σ ∪ X )∗ → (Σ ∪ X )∗ in a straightforward
manner. The composition σ1σ2 of two substitutions σ1 and σ2 is defined as the standard
function composition σ̂1σ2.

A streaming string transducer (SST) over Σ is a tuple T = (Q, q0, δ,X , ρ, F ) where Q is a
finite set of states with initial state q0, δ : Q×A→ Q is a transition function, X is a finite set
of variables, ρ : δ → SX ,Σ is a variable update function, and F : Q ⇀ (X ∪ Σ)∗ is a (partial)
output function.

The concept of a run of an SST is defined in an analogous manner to that of a finite state
automaton. The sequence 〈σr,i〉0≤i≤|r| of substitutions induced by a run r = q0

a1−→ q1
a2−→

q2 . . . qn−1
an−→ qn is defined inductively as the following: σr,i=σr,i−1ρ(qi−1, ai) for 1 < i ≤ |r|

and σr,1 = ρ(q0, a1). We denote σr,|r| by σr.

As the underlying automaton of an SST is deterministic, given a state q and a word u,
there is at most one run r on u starting in state q. We then denote the substitution σr by
σq,u.

If r is accepting, i.e. qn ∈ Qf , we can extend the output function F to r by F (r) =
σεσrF (qn), where σε substitutes all variables by their initial value ε. For all words w ∈ A∗,
the output of w by T is defined only if there exists an accepting run r of T on w, and in that
case the output is denoted by T (w) = F (r). The domain of T , denoted by dom(T ), is defined
as the set of words w on which there exists an accepting run of T . The transformation JT K
defined by T is the function which maps any word w ∈ dom(T ) to its output T (w).

It is not difficult to observe that this definition yields exponential size increase transforma-
tions, i.e., one can define an SST with a single variable which maps the input word an to the
output word a2n , by considering a rule X := XX. As transformations defined by finite-state

5The model introduced in [AČ11] considers an infinite data domain but for the sake of coherence we present
it for a finite alphabet Σ.
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qb qa X

b;X := Xa a;X := Xa

a;X := Xa

b;X := Xa

(a) R0

qb Y qa X

b;
X:=Xa
Y:=Yb a;

X:=Xa
Y:=Yb

a;
X:=Xa
Y:=Yb

b;
X:=Xa
Y:=Yb

(b) R1

q0 q1 q2 #X#

σ;X := σX

# #

(c) R2

Figure 4.4: SST realizing transformations R0, R1 and R2.

transducers are linear size increase, one needs to restrict SST to recover the expressiveness of
regular string functions. The good restriction is to require the variable update function to be
copyless. A substitution σ is copyless if for any variable X, there exists at most one variable
Y such that X occurs in σ(Y ). We say that an SST T is copyless if every substitution of its
variable update function is copyless. Alur and Černý proved the following result:

Theorem 23 ([AČ10a]). Copyless SST and 2DFT are expressively equivalent.

It is worth observing that the translations are effective, and go through the equiva-
lent model of monadic second-order transductions, defined in Section 4.4, resulting in non-
elementary complexity (from SST to 2DFT). We propose new constructions in Section 5.4.

Example 9. Let us consider again the examples given to present finite state transducers. One
can easily come up with simple SST realizing the transformations R0, R1 and R2. Observe
that the SST realizing transformations R0 and R1, which are definable by one-way transducers,
do only use the operation of appending a string to a variable. This will be formalized later.

Other restrictions than the copyless one have been introduced in the literature. In order
to present them, we introduce the notion of flow of variable. Let T be an SST (non-necessarily
copyless) with set of states Q and set of variables X . Let u be a string in Σ∗ such that there
exists a run r in T from state p to state q, inducing substitution σ. Let X,Y be two variables,
and j ∈ N, we say that Y flows j times in X from p to q on u if Y occurs j times in σ(X). If

this holds, we denote it by (p, Y )
u
 j (q,X).

Observe that if T is copyless, then by definition for any input word u and any variable Y ,
there is at most one variable X such that Y flows in X, and if this holds then Y flows exactly
once in X.

Weaker restrictions have been considered. We say that the SST T is:

• 1-bounded if for every p, q,X, Y, u, if (p, Y )
u
 j (q,X), then j = 0 or j = 1,
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• k-bounded if for every p, q,X, Y, u, if (p, Y )
u
 j (q,X), then 0 ≤ j ≤ k,

• bounded if there exists k such that it is k-bounded.

Theorem 24 ([AFT12]). Copyless SST, 1-bounded SST, and bounded SST are expressively
equivalent.

Closure and decidability properties. Thanks to the (effective) equivalence with 2DFT,
several properties follow immediately. However, they can also be proved directly on (copyless)
SST. The decidability of the type-checking against regular languages is proven to be decidable
in PSpace in [AČ11], as well as equivalence. Closure under composition is proven in [AČ11].

As we have explained before, when removing the copyless assumption, one obtains a model
that can induce exponential size increase. Together with Emmanuel Filiot, we have studied
this model, and proven that it is actually very similar to HDT0L systems (HDT0L systems
roughly consist in the iterations of a finite set of morphisms on a given word). Intuitively, we
simulate the applications of morphisms using substitutions, and vice versa. As a consequence,
using the result of Culik and Karhumaki stating the decidability of the equivalence of two
HDT0L systems [IK86], we prove:

Theorem 25 ([17]). The equivalence problem for copyfull SST is decidable.

The subclass of rational functions One-way transducers play an important role in trans-
ducer theory as they are for instance heavily used in applications related to language process-
ing. It is worth mentioning that there exists a simple and natural restriction of SST which
exactly characterizes the class of rational functions.

Given an SST T = (Q, q0, δ,X , ρ, F ), we say that T is right-appending if the only updates
of variables are of the form X := Y u with X,Y ∈ X and u ∈ Σ∗, and if the output functions
are of the form Xu with X ∈ X and u ∈ Σ∗. We denote by ra-SST this class of SST.

Theorem 26. Right-appending SST recognize exactly rational functions.

This result holds actually for an arbitrary semiring S, and in this case one can characterize
unambiguous weighted automata on S (see [ADD+13] for details). We present the proof of
this result in the setting of transducers for completeness.

Given a right-appending SST T = (Q, q0, δ,X , ρ, F ), one can build a one-way transducer
T ′ = (Q′, I ′, F ′, δ′) as follows. States are enriched with variables, i.e. Q′ = Q × X . Initial
states are defined as I ′ = {q0}×X . Final states are defined as F ′ = {(q,X) ∈ Q′ | F (q) = X}.
Elements of δ′ are tuples ((p,X), a, u, (q, Y )) such that δ(p, a) = q and ρ(p, a)(Y ) = Xu.

One easily verifies that the fact that the underlying automaton of T is deterministic implies
that T ′ is unambiguous, and thus functional.

Conversely, given a functional one-way transducer T = (Q, I, F, δ), one can build an
equivalent right-appending SST by using a kind of subset construction. Formally, we define
an appending SST T ′ = (Q′, q′0, δ

′,X , ρ, F ′) as follows:

• states of T ′ are subsets of Q, i.e. Q′ = 2Q,

• the initial state is q′0 = I,

• we consider one variable for each state, i.e. X = {Xq | q ∈ Q},
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• δ′ is defined by δ′(S, a) = {q ∈ Q | ∃p ∈ S, u ∈ Σ∗.(p, a, u, q) ∈ δ}

• ρ is defined as follows: let S ∈ Q′, a ∈ Σ and p ∈ Q, then there are two cases. If
p ∈ δ′(S, a), then there exist q ∈ S, u ∈ Σ∗ such that (q, a, u, p) ∈ δ. Then we choose
such elements q and u, and let ρ(S, a)(Xp) = Xqu. Otherwise, if p 6∈ δ′(S, a), we let
ρ(S, a)(Xp) = ε. In the former case, the fact that the choice of q and u is not important
relies on the functionality of T . In the latter case, the variable Xp will not be involved
in the final output, and we reset it as we have to define ρ(S, a)(Xp), but its value is
useless.

• last, the final output function F ′ is defined only for states S such that S∩F 6= ∅, and we
let F ′(S) = Xp for some p ∈ S∩F . Again, the choice of such a state p is not important,
thanks to the functionality of T .

4.4 Logical presentation of transducers

As the class of regular languages has a logical presentation, one may be interested in a logical
presentation for transductions. In this section, we present a logic-based formalism introduced
by Bruno Courcelle [Cou94] to define transformations of graphs seen as logical structures. For
further details, we refer the reader to the recent survey [Fil15] on logic-automata connections
for transformations.

Recall that a word u over an alphabet Σ can be seen as a logical structure over the
signature SΣ composed of the unary predicates (La)a∈Σ that define the labels of the positions
in u, and the binary predicate � that defines the order on the word positions. Given an
alphabet Σ, monadic second-order formulas (MSO formulas) over the signature SΣ are built
over first-order variables x, y . . . and second-order variables X,Y . . . They are defined by the
following grammar:

φ ::= ∃X · φ | ∃x · φ | φ ∧ φ | ¬φ | x ∈ X | La(x) | x � y

Universal quantifiers as well as other Boolean connectives are defined naturally, and we use
the standard elementary logical definitions: free variable, bound variable. . .

A logical transducer defines, given an input logical structure corresponding to some word
u, a new logical structure corresponding to some word v. The output structure is defined by
taking a finite number of copies of the input structure domain. Formally, a logical MSO trans-
ducer (MSOT for short) over the alphabet Σ is a tuple T = (C, φdom, (φ

c
pos)c∈C , (φ

c
a)c∈C,a∈Σ,

(φc,d� )c,d∈C) where C is a finite copy set, and φdom is an MSO sentence over SΣ, φcpos and φca

are MSO formula over SΣ with one free first-order variable, while φc,d� are MSO formula over
SΣ with two free first-order variables.

Given an input word u, the output structure computed by such an MSOT T is defined
by the domain D = {(x, c) ∈ dom(u) × C | u |= φcpos(x)} (each node (x, c) is denoted

hereafter xc) and for all xc, yd ∈ D, xc is labeled by a ∈ Σ iff u |= φca(x), and xc � yd holds

iff u |= φc,d� (x, y). The sentence φdom gives the domain of the transduction realized by T ,
denoted dom(T ). We assume the following consistency property: for every u ∈ dom(T ), this
output structure encodes a word v (note that this is decidable as it can be expressed as an
MSO property on words, see [Fil15]). In this case, we say that the pair (u, v) is recognized
by T , and denote by JT K the set of such pairs of words.
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Example 10. We consider again the transductions R0, R1 and R2. Recall that Σ = {a, b}.
We start with R0 which is realized by the MSOT defined as follows: we let C be a singleton
(and thus omit superscript c in the sequel), φdom = ∃x · last(x) ∧ La(x) (where last(x) char-
acterizes the last position of the word), φpos(x) = true, φa(x) = true and φb(x) = false,
and finally we let φ�(x, y) = x � y. Intuitively, this MSOT selects using its domain formula
input words u ∈ Σ+ such that the last letter is a, then copies the structure and replaces every
label by the letter a.

The transduction R1 is realized by the MSOT defined as follows: we let C be a singleton,
φdom = ∃x · true, φpos(x) = true, φσ(x) = ∃y · last(y) ∧ Lσ(y) for σ ∈ Σ, and finally we let
φ�(x, y) = x � y. This MSOT selects using its domain formula input words u ∈ Σ+, copies
the structure and replaces every label by the one of the last letter of u.

Last, the transduction R2 is realized by the MSOT defined as follows: we let C be a
singleton, we do not detail φdom but it is clear that #Σ∗# is a regular language, φpos(x) =
true, φσ(x) = Lσ(x) for σ ∈ Σ, and finally we let φ�(x, y) = y � x. This MSOT simply
inverses the order relation using φ�.

Observe that these examples use a singleton copy set C, but for instance, in order to realize
the function copy : Σ∗ → Σ∗ defined as copy(u) = uu, we would need a copy set of size two.

Joost Engelfriet and Hendrik Jan Hoogeboom proved the following theorem, which justifies
to denote this class by the class of regular string functions:

Theorem 27 ([EH01]). MSOT and 2DFT are expressively equivalent.

As it has been done for regular languages, a natural objective is to provide similar logic-
automata connections for subclasses of regular functions. We start with rational functions
that own a simple characterization in terms of logic. Intuitively, we will simply impose the
one-way-ness in the output structures produced by the MSOT.

We say that an MSOT T = (C, φdom, (φ
c
pos)c∈C , (φ

c
a)c∈C,a∈Σ, (φ

c,d
� )c,d∈C) is order-preserving

if for all words u ∈ dom(T ), all positions x, y in u, all copies c, d ∈ C, if u |= φc,d� (x, y), then
x � y holds true. Emmanuel Filiot proved recently the following theorem.

Theorem 28 ([Fil15]). Order-preserving MSOT and fNFT are expressively equivalent.

In Section 5.4, we consider the fragment of transductions that are definable using only
first-order formulae with the predicate of linear order. As we will see, this fragment owns
representations in terms of aperiodic transducers.

4.5 Summary

We have presented three different models of transducers, and have identified two important
classes of string-to-string functions.

First, regular functions are characterized as f2NFT, 2DFT, (copyless or bounded) SST,
and MSOT. It is natural to study translations between these models, and part of the results
can be found in the literature; they are summarized on Figure 4.5. Observe that there exists
no direct translation from SST to 2DFT. We will propose such a construction in Section 5.4.

A second important class of functions is that of rational string-to-string functions. This
class can be equivalently described by means of fNFT, ra-SST, and order-preserving MSOT.
We will study (and refine) this class in Section 5.3.
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1-bounded SST

MSOT2DFT

Copyless SST k-bounded SST

[AČ10a, AFT12]

[AFT12]

[AFT12]

[AČ10a] [ADT13]

[EH01]

⊆⊆

Figure 4.5: Summary of transformations between equivalent models. Dashed arrows corre-
spond to new constructions that are presented in Section 5.4.

We have focused on functions here, but the generalization to relations is worth being
studied too as, for instance, the equivalence problem is known to be decidable for finite-
valued rational relations.
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Chapter 5

String-to-string transductions
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The results presented in the first three sections of this chapter deal with memory analysis
of programs processing words. This is an important tool for ensuring system robustness, and
in particular when the input words are streams.

We investigate static analysis of memory usage for a special kind of programs on words,
namely programs defined by transducers. We assume that the transducers are functional and
non-deterministic. Non-determinism is required as input words are read from left to right
in a single pass and some actions may depend on the future of the stream. For instance,
the XML transformation language XSLT [Cla99] uses XPath for selecting nodes where local
transformations are applied, and XPath queries rely on non-deterministic moves along tree
axes, such as a move to any descendant.

The results presented in the last section are more of an algebraic nature. They aim at
improving our understanding of the class of transductions which are definable in the first-order
logic with the order relation. Characterizations in terms of aperiodic two-way transducers,
and aperiodic streaming string transducers are studied.

5.1 Streamability

In order to formally define the complexity classes for evaluation that we target, we introduce
a deterministic computational model for word transductions that we call Turing Transducers.
Turing transducers have three tapes: one read-only left-to-right input tape, one write-only
left-to-right output tape, and one standard working tape. Such a machine naturally defines a
transduction: the input word is initially on the input tape, and the result of the transduction
is the word written on the output tape after the machine terminates in an accepting state.
We denote by JMK the transduction defined by M . The space complexity is measured on the
working tape only.
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We consider in this section finite-state string transductions that can be evaluated with a
constant amount of memory if we fix the machine that defines the transduction. Intuitively,
this corresponds to what we denote by streamable transformation.

Definition 6. A (functional) transduction R ⊆ Σ∗ × Σ∗ is bounded memory (BM) if there
exists a Turing transducer M and K ∈ N such that JMK = R and on any input word u ∈ Σ∗,
M runs in space complexity at most K.

It is not difficult to verify that for string-to-string functions, bounded memory character-
izes the class of subsequential functions.

Proposition 9. Let f : Σ∗ ⇀ Σ∗. Then f is BM iff f is a subsequential function.

This result follows from the two following simple observations: first, a subsequential trans-
ducer can be evaluated using bounded memory; second, a Turing transducer using a bounded
memory can be understood as a DFT.

Corollary 1 ([13]). Given a fNFT T , we can decide in polynomial time whether JT K is
bounded memory.

5.2 From two-way to one-way transducers

On finite strings, it is well-known that the expressive power of finite state automata does not
increase when the reading head can move left and right, even in presence of non-determinism:
the class 2NFA is no more powerful than the class NFA. The proof of this result was first
shown in the seminal paper of Rabin and Scott [RS59], and independently by Shepherdson
[She59]. An alternative proof can be found in [Var89]. This equivalence also holds for weighted
automata over commutative semi-rings, as it is shown in [Ans90, CL14].

For string-to-string transducers (which can be viewed as weighted automata over a non-
commutative semi-ring), two-wayness does increase the expressive power (consider for instance
the mirror transformation). This statement holds both for general transducers, and for func-
tional ones. In other terms, regular string functions strictly contain rational string functions.
In this section, we address the following natural definability problem: given a regular string
function, is it rational? In terms of transducers, the problem reads as follows: given a f2NFT,
does there exist an equivalent fNFT?

Theorem 29 ([14]). For all functional 2NFT T , it is decidable whether the transduction
defined by T is definable by an NFT.

The proof of Theorem 29 extends the proof of Rabin and Scott [RS59] from automata to
transducers 1.

This result implies the decidability of the streamability (i.e. bounded memory evaluation
by a Turing transducer) for regular string functions. The next result follows indeed from
Proposition 9 and Theorems 22 and 29.

Corollary 2 ([14]). Given a f2NFT T , we can decide whether JT K is bounded memory.

As a consequence of Theorems 27 and 28, our result also implies:

Corollary 3. Let T be an MSOT, we can decide whether JT K is order-preserving MSOT-
definable.

1Shepherdson and then Vardi proposed arguably simpler constructions for automata. It is however not
clear to us how to extend these constructions to transducers.
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Rabin and Scott’s approach in a nutshell

The proof of Theorem 29 relies on the same ideas as Rabin and Scott’s construction for
automata [RS59]. It is based on the following key observation: any accepting run is made of
many zigzags, and those zigzags are organized by a nesting hierarchy: zigzag patterns may be
composed of simpler zigzag patterns. The simplest zigzags of the hierarchy are those that do
not nest any other zigzag: they are called z-motions. Rabin and Scott described a procedure
that removes those zigzags by iterating a construction that removes z-motions.

q1
•

q2•

q3
•

q4•run of T

=⇒

RT (q1, q2)
••

RT (q3, q4)
••

q5
•

q6•

run of T1 = squeeze(T )

=⇒

LT1
(q5, q6)

• •q7
•

q8•run of T2 = squeeze2(T )

=⇒

LT2
(q7, q8)

• •
run of T3 = squeeze3(T )

Figure 5.1: Zigzags removal by applications of squeeze.

If T is a 2NFA, it is possible to construct a new automaton denoted by squeeze(T ) such
that, for all accepting runs ρ of T on some input word u, there exists a “simpler” accepting
run of squeeze(T ) on u, obtained from ρ by replacing some z-motions by one-way runs that
simulate three passes in parallel. It is illustrated by Fig. 5.1. For instance at the first step,
there are two z-motions from q1 to q2 and from q3 to q4 respectively. Applying squeeze(T )
consists in non-deterministically guessing those z-motions and simulating them by one-way
runs. This is done by the NFA RT (q1, q2) and RT (q3, q4) respectively. Depending on whether
the z-motions enter from the left or the right, z-motions are replaced by runs of NFA RT (., .)
(that read the input backwardly) or LT (., .), as illustrated by the second iteration of squeeze
on Fig. 5.1.

An N -crossing run ρ (i.e. each position of the input is visited at most N times) can be
simplified into a one-way run after at most N2 applications of squeeze. This result was not
published in [RS59] so we proved it in [14]. At the automata level, it is known that for all
words u accepted by a 2NFA T with N states, there exists an N -crossing accepting run on u.
Therefore it suffices to apply squeeze N2 times to T . One gets an equivalent 2NFA T ∗ from
which the backward transitions can be removed while preserving equivalence with T ∗, and so
T .
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Z-motion transducers

The basic brick of the Rabin and Scott’s approach is the simulation of z-motions by one-way
runs. While this is always doable for automata, this is not the case for transducers. Formally,
a z-motion is a run ρ = (qj , ij)j such that its projection on the second component is of the
form 1, . . . , n, n−1, . . . , 1, . . . , n for some n (the form n, . . . , 1, 2, . . . , n, . . . , 1 should also be
considered but we omit it to simplify the presentation). We introduce in this paragraph a
special class of transducers whose runs are z-motions, and show in the next paragraph how
to decide whether such transducers are equivalent to some NFT. This result will be the basic
brick of our procedure for proving Theorem 29.

z-motion transducers are defined like 2NFT except that they must define functions and
to be accepting, a run on a word of length n must be of the form ρ.(qf , n + 1) where ρ is a
z-motion run and qf is an accepting state. The class of z-motion transducers is denoted by
ZNFT.

Let T ∈ ZNFT and ρ = (p1, 1) . . . (pn, n) (qn−1, n−1) . . . (q1, 1)(r2, 2) . . . (rn+1, n+ 1) be a
run of T on a word of length n. In order to make our notations uniform, we let qn = pn and
r1 = q1 and define the following shortcuts: for 1 ≤ i ≤ j ≤ n, out1[i, j] = out((pi, i) . . . (pj , j)),
and out2[i, j] = out((qj , j) . . . (qi, i)) and out3[i, j] = out((ri, i) . . . (rj , j)), and out3[i, n+ 1] =
out((ri, i) . . . (rn+1, n+ 1)).

We characterize the NFT-definability of a ZNFT by a property that we prove to be
decidable. Intuitively, this property which relies on word combinatorics gives the most general
form the output words of the run of a ZNFT may have to be NFT definable.

Definition 7 (P-property). Let T ∈ ZNFT with m states, and let (u, v) ∈ R(T ) where
u has length n. Let K = 2.o.m3.|Σ| where o = max{|v| | (p, a, v, q,m) ∈ ∆}. The pair
(u, v) satisfies the property P, denoted by (u, v) |= P, if for all accepting runs ρ on u, there
exist two positions 1 ≤ ` ≤ `′ ≤ n and w,w′, t1, t2, t3, x1, x2, y1, y2, y3, z1, z2 ∈ Σ∗ such that
v ∈ wt1t∗2t3w′ and:

out1[1, `] = w out1[`, `′] = x1 out1[`′, n] = x2

out2[1, `] = y3 out2[`, `′] = y2 out2[`′, n] = y1

out3[1, `] = z1 out3[`, `′] = z2 out3[`′, n] = w′

|s| ≤ K, ∀s ∈ {t1, t2, t3, x2, y1, y3, z1}
(†) x1x2y1y2y3z1z2 ∈ t1t∗2t3

This decomposition is depicted in Fig. 5.2. T satisfies property P, denoted T |= P, if all
(u, v) ∈ R(T ) satisfy it.

•

` `′

w x1 x2

y3 y2 y1

z1 z2 w′

Figure 5.2: Output decomposition in property P.

The following key lemma is proved in the next paragraph.
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Lemma 14. Let T ∈ ZNFT. T |= P iff T is NFT-definable. Moreover, P is decidable and if
T |= P, one can (effectively) construct an equivalent NFT.

Definition 8 (z-motion transductions induced by a f2NFT). Let T = (Q, q0, F,∆) be a
f2NFT and q1, q2 ∈ Q. The transduction LT (q1, q2) (resp. RT (q1, q2)) is defined as the set of
pairs (u2, v2) such that there exist u ∈ Σ∗, two positions i1 < i2 (resp. i2 < i1), an accepting
run ρ of T on u which can be decomposed as ρ = ρ1(q1, i1)ρ2(q2, i2)ρ3 such that u2 = u[i1 . . . i2]
and

• (q1, i1)ρ2(q2, i2) is a z-motion run

• out((q1, i1)ρ2(q2, i2)) = v2

Proposition 10. The transductions RT (q1, q2) and LT (q1, q2) are ZNFT-definable.

To prove the next lemma, it is crucial in Definition 8 to make sure that the z-motion
(q1, i1)ρ2(q2, i2) can be embedded into a global accepting run of T . Without that restriction,
it might be the case that LT (q1, q2) or RT (q1, q2) is not NFT-definable although the 2NFT T
is. Indeed, the domain of LT (q1, q2) or RT (q1, q2) would be too permissive and accept words
that would be otherwise rejected by other passes of global runs of T . This is another difficulty
when lifting Rabin and Scott’s proof to transducers, as for automata, the context in which a
z-motion occurs is not important.

Lemma 15. If T is NFT-definable, then so are the transductions RT (q1, q2) and LT (q1, q2)
for all states q1, q2. Moreover, it is decidable whether the transductions RT (q1, q2) and
LT (q1, q2) are NFT-definable.

From Z-motion to one-way transducers

We give some details on the proof of Lemma 14 which is the core of our decision procedure.
To prove that property P is a necessary condition, one uses pumping in the input word so as
to identify loops which allow to apply word combinatorics techniques. Conversely, we present
a construction which turns a ZNFT into an NFT.

Let T be a ZNFT. We sketch the construction of a NFT T ′ such that JT ′K = {(u, v) ∈
JT K | (u, v) |= P}. As a consequence, we immediately obtain that if T |= P, then T is
NFT-definable.

Initially, T ′ guesses words t1, t2, t3, x2, y1, y3 and z1 (of bounded length). These guesses
also imply constraints on words x1, y2 and z2, thanks to property (†). Describing these
constraints is a tedious case analysis that we do not detail here. This case analysis depends
on the lengths of words x1, x2y1, y2, y3z1 and z2, w.r.t. the lengths of words t1, t2 and t3. In
order to illustrate our construction, we assume from now that the following inequalities hold:
|x1| ≥ |t1|, |x2y1| ≥ |t2|, |y2| ≥ |t2|, |y3z1| ≥ |t2|, and |z2| ≥ |t3|. The other cases (there are
finitely many cases) should be considered similarly. The previous inequalities imply that t1
is a prefix of x1 and that t3 is a suffix of z2. One can then refine the property (†) and write
the new set of equalities (‡) as follows:

(‡) x1 = t1t
n1
2 α1, x2y1 ∈ β1t

m1
2 α2, y2 ∈ β2t

n2
2 α3, y3z1 ∈ β3t

m2
2 α4, z2 ∈ β4t

n3
2 t3

where t2 = αiβi for all i ∈ {1, 2, 3, 4}, n1, n2, n3,m1,m2 ∈ N. As t2 is of bounded length, so
are its decompositions αiβi. We can thus assume that T ′ memorizes these decompositions
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in its state. Similarly, m1,m2 are known (they can be deduced from x2, y1, y3, z1 which are
known), while n1, n2, n3 ∈ N are unknown.

The execution of T ′ is decomposed into three different phases, switching from one to
another one is done non-deterministically. T ′ has to simultaneously verify that its guesses (of
bounded length words and of positions ` and `′) are correct, and produce the correct output
word. We now describe the behavior of T ′:

1. before `: T ′ replicates the output of the first run, and verifies that the second and third
run produce words y3 and z1.

2. between ` and `′: this part needs more explanations. Our objective is that T ′ produces
x1x2y1y2y3z1z2 during this phase. Thanks to (†), we know that this word is of the form
t1t
∗
2t3. In order to produce the correct output word, it remains only to identify the right

power of t2. For simplicity, we assume we are in the sub case described by (‡). Thus,
the output is exactly t1t

n
2 t3 where n = n1 + n2 + n3 + m1 + m2 + 4. T ′ immediately

outputs t1t
m1+m2+4
2 . Then, while simulating the three runs of T and verifying that

words x1, y2 and z2 can be decomposed according to (‡), T ′ identifies the values of n1,
n2 and n3, and produces a new copy of the word t2 each time one of these three counters
is incremented. When T ′ decides (non-deterministically) to move to the last phase, it
outputs the word t3.

3. after `′: during this last phase, T ′ only has to replicate the output of the third run of T ,
and verify that the first and the second run produce the words x2 and y1 respectively.

It should be clear from this description that a pair (u, v) ∈ JT K can be produced by T ′ if,
and only if, (u, v) |= P, yielding the expected equality JT ′K = {(u, v) ∈ JT K | (u, v) |= P}. As a
consequence, we obtain that for an arbitrary ZNFT T , we have JT ′K ⊆ JT K, and the equality
holds iff T |= P. As we are considering functions, checking the equality of the relations
amounts to check the following domain inclusion: dom(T ) ⊆ dom(T ′). This last property is
decidable, yielding the expected result.

A decision procedure

Construction of squeeze(T ) Let T be a f2NFT which is NFT-definable, we explain how to
construct the f2NFT squeeze(T ). By hypothesis, the transductions LT (q1, q2) and RT (q1, q2)
are NFT-definable for all q1, q2 by NFT LT (q1, q2) and RT (q1, q2) respectively (they exist by
Proposition 10 and Lemma 14). The main idea to define squeeze(T ) is to non-deterministically
(but repeatedly) apply LT (q1, q2), RT (q1, q2), or T , for some q1, q2 ∈ Q. The transducer
squeeze(T ) has two modes, Z -mode or T -mode. In T -mode, it works as T until it non-
deterministically decides that the next zigzag is a z-motion from some state q1 to some state
q2. Then it goes in Z -mode and runs LT (q1, q2) (or RT (q1, q2)) in which transitions to an
accepting state have been replaced by transitions to state q2 in T , so that squeeze(T ) returns
in T -mode. We easily obtain:

Proposition 11. Let T ∈ f2NFT such that T is NFT-definable. Then squeeze(T ) is defined
and equivalent to T .

Let T ∈ f2NFT. If T is NFT-definable, then the operator squeeze can be iterated on T
while preserving equivalence with T , by the latter proposition. As for two-way automata,
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if we denote by N the number of states of T , we know that T is N -crossing, and therefore
it suffices to iterate squeeze N2 times to remove all zigzags from accepting runs of T . We
derive the following decision procedure: we set T0 to T , and i to 0, and, while Ti satisfies the
necessary condition stated in Lemma 15 and i ≤ N2, we increase i and set Ti to squeeze(Ti−1).
If the procedure exits the loops before reaching N2, then T is not NFT-definable, otherwise
it is NFT-definable by the NFT obtained by removing from TN2 all its backward transitions.
This concludes the proof of Theorem 29.

It is worth observing that the resulting decision procedure has non elementary complexity.

5.3 Beyond streamability: variable minimization

The results presented previously aim at characterizing streamable transformations. However,
it is clear that not all transformations are streamable, consider for instance a transformation
swapping two parts of a document at some unbounded distance. For some applications, the
input is arbitrarily long and is accessed as a stream. The evaluation must then be done
using a one-way machine. Rather than characterizing streamable transformations, a more
challenging issue in this context is thus to identify the minimal amount of memory needed to
evaluate a given transformation using a one-way machine.

We argue that the model of SST may provide means to address this problem. Indeed, let us
recall that (copyless) SST recognize exactly regular string functions. As SST are deterministic
finite-state automata with string variables, the evaluation of a transformation given by some
SST T with k variables requires a memory that can be bounded by a constant (the number
of states of T ) plus k times the size of the input word (times the maximal length of a word
used is some variable update). Minimizing the number of variables needed to encode a given
transformation f gives thus information on the memory usage of the evaluation of f .

This problem, presented here for transducers, can easily be adapted to other classes of
register automata as defined in [ADD+13]. Observe that this minimal number of variables
heavily depends on the kind of operations allowed to update the variables. A first work in this
direction has been published in [AR13]. The authors tackle this minimization issue for a class
of deterministic automata equipped with integer valued variables (called additive cost-register
automata, ACRA for short). The only update operation allowed is of the form X := Y + c,
where X,Y denote variables and c ∈ Z. In particular, it is not possible to reset a variable
(X := c) nor to combine two variables (X := Y + Z, with X,Y, Z variables).

We will present an original approach to variable minimization, based on the twinning
property. To be coherent with the setting described in this thesis, we present our results for
transducers but, as we will discuss at the end of this section, our results can be applied to a
more general setting. These results have not been published yet but can be found in [12].

Right-appending SST and rational string functions The update operations of SST
are of the form X := Y Z or X := uY v, where X,Y, Z are variables and u, v ∈ Σ∗. The
copyless restriction forbids the use of the same variable in different right hand sides.

As we have proven in Theorem 26, the class of right-appending SST, obtained by only
considering updates of the form X := Y u, without the copyless restriction, is expressively
equivalent to rational string functions.

We denote by ra-SST the class of right-appending SST, and by ra-SSTk the class of
right-appending SST with k variables. We present a solution to the following minimization
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problem:
Input: A fNFT T and a natural number k
Question: Is the function JT K realized by an element of the class ra-SSTk?

It is easy to observe that the expressive power of the class ra-SST1 is exactly the class
of subsequential functions. As this class is decidable, using the twinning property, the above
decision problem is decidable for k = 1. In addition, this class is also characterized by the
co-called bounded variation property introduced by Choffrut in [Cho77]. Based on these
observations, we will introduce a twinning property of order k, and a k-bounded variation
property, that will both characterize the class ra-SSTk.

q0

p0

q

p

u1|v1

u1|w1

u2|v2

u2|w2

Figure 5.3: The classical twinning
property

A twinning property of order k Recall that the
twinning property requires that two runs ”synchro-
nized” on some loop should not diverge, meaning that
they can be simulated by a single run. This situa-
tion is depicted on Figure 5.3, describing two loops
on the input word u2, both reachable from some ini-
tial state by a run on the input word u1. In this
case, the twinning property requires that the equality
delay(v1, w1) = delay(v1v2, w1w2) holds. When prov-
ing that the twinning property allows to determinize
a functional transducer, one shows that the distance
between the outputs of two runs over the same input
word is bounded, thanks to this twinning property.

In order to generalize this idea, we introduce a
twinning property of order k, which intuitively requires that for arbitrary k + 1 runs syn-
chronized on k loops, there should exist two runs which are ”close”, meaning that they can
be simulated by a single one. As for the classical twinning property, we consider a trimmed
transducer. The formal definition is:

Definition 9. A functional NFT satisfies the twinning property of order k (denoted by TPk)
if for all k + 1 runs ρ0, . . . , ρk as described on Figure 5.4, there exist j 6= ` such that for all
i ∈ [1, k], we have:

delay(αj1 · · ·α
j
i , α

`
1 · · ·α`i) = delay(αj1 · · ·α

j
iβ

j
i , α

`
1 · · ·α`iβ`i ).

A k-bounded variation property The bounded variation property is defined on functions
and is thus a machine independent property: whenever two NFT are equivalent, either both
or none of them satisfy this property.

Given a partial mapping f : Σ∗ ⇀ Σ∗, the bounded variation property introduced by
Choffrut in [Cho77] states that for every N ∈ N, there exists n ∈ N such that for all w,w′ ∈ Σ∗

such that f(w), f(w′) are defined, if d(w,w′) ≤ N , then d(f(w), f(w′)) ≤ n. Intuitively, this
property states that whenever two words only differ by a small suffix, so do their images
by f . This corresponds to the intuition that the function can be expressed by means of a
right-appending SST with a single variable (a behavior can be deduced from the other one).

When lifting this property to functions that can be expressed using at most k variables,
we consider k + 1 input words pairwise close, and require that two of them must have close
images by f . We obtain the following definition:
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Figure 5.4: The twinning property of order k

Definition 10. Let f : Σ∗ ⇀ Σ∗ and a number k. We say that f satisfies the k-bounded
variation property iff for all naturals N > 0, there is a natural n such that for all words
w0, . . . , wk ∈ dom(f), if for all 0 ≤ i, j ≤ k, d(wi, wj) ≤ N , then there is i 6= j such that
d(f(wi), f(wj)) ≤ n.

Generalizing the reasoning used for the twinning property, we manage to prove the fol-
lowing key lemma, which corresponds to the bound on the distance between different runs on
the same input word:

Lemma 16. If a functional NFT T satisfies TPk then for all words u and all runs qj
u|αj−−−→ pj

with j ∈ {0, . . . , k} (where qj are initial states), there are j 6= ` such that d(αj , α`) ≤ 2nk+1M
where n is the number of states of T and M is the maximal length of an output word.

Conversely, we prove that delays can grow arbitrarily if the transducer does not satisfy
the twinning property:

Lemma 17. If a functional NFT T does not satisfy TPk, then for all positive integers m,

there are a word u and k+ 1 runs qj
u|αj−−−→ pj with j ∈ {0, . . . , k} (where qj are initial states),

such that for all j 6= j′, d(αj , αj
′
) > m.

Characterization of ra-SSTk The result of Choffrut states that a functional NFT T is
DFT-definable iff T satisfies the twinning property iff JT K satisfies the bounded variation
property. We state now our generalization of this result:

Theorem 30 ([12]). Let T be a fNFT and k ∈ N. The following assertions are equivalent:

(i) T satisfies the twinning property of order k,

(ii) JT K satisfies the k-bounded variation property,

(iii) JT K is realized in the class ra-SSTk.
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Sketch of proof. The proof proceeds as follows: we start with the equivalence (i) ⇐⇒ (ii),
and then show the equivalence (i) ⇐⇒ (iii).

Observe that the equivalence (i) ⇐⇒ (ii) corresponds to a machine independent char-
acterization of the twinning property of order k. This equivalence follows rather easily from
Lemmas 16 and 17.

Consider now the equivalence (i) ⇐⇒ (iii). We first prove that TPk is a necessary
condition for a functional NFT to be definable by some ra-SSTk. Indeed, if it is violated,
then for any integer N , we can find an input word u such that there are at least k + 1 runs
on u whose output words are pairwise at distance at least N . Each of these runs can be
completed using some input word wi into an accepting run. Considering the configuration
reached by some ra-SST with k variables after reading the input u, we can prove that one of
these runs will not be simulated faithfully.

Conversely, we consider the implication (i)⇒ (iii). First, we recall that every fNFT can be
transformed into an equivalent unambiguous NFT [EM65]. By the equivalence (i) ⇐⇒ (ii)
showing that the twinning property is machine independent, we know that the equivalent
unambiguous transducer satisfies the TPk. We sketch now a construction that, given an un-
ambiguous NFT T satisfying TPk, returns an equivalent ra-SSTk S. The standard technique
to build a deterministic machine consists in using a subset construction, as this is done for
instance to build a DFT. In our setting, we intuitively need to partition the set of runs in
at most k subsets, the runs belonging to the same element of the partition being represented
by the same variable of the ra-SST. Therefore, we use a notion similar to the notion of sep-
arability introduced in [AR13]: there exists a constant N depending on k such that if two
runs have their outputs which are at a distance larger than N , then these two runs cannot
be simulated using the same variable. This constant can be derived from Lemma 16. This is
used to justify the fact that we can store in the states of S the delays between each pair of
runs, provided they are smaller than N .

Let Q be the set of states of T (w.l.o.g., we assume T trimmed). Formally, states of S

are square matrices whose entries belong to
(
Σ≤N

)2 ∪{ω}, and which are indexed by subsets
of Q. For such a matrix M , its set of indices is denoted by dM and called the domain of M .
The initial state is the matrix M such that dM is the set of initial states of T , and all the
entries are equal to (ε, ε). The transition function of S is defined in the expected way with
the following intuition: the state M reached in S after reading some input word u is such
that:

• dM is exactly the set of states of T reachable along u,

• given p, q ∈ dM , M [p, q] = ω iff there exists a prefix u′ of u such that the two runs

i1
u′|v1−−−→ p and i2

u′|v2−−−→ q on the word u′ reaching respectively p and q from some initial
states, satisfy the condition d(v1, v2) > N ,

• given p, q ∈ dM such that M [p, q] 6= ω, consider the two runs i1
u|v1−−→ p and i2

u|v2−−→ q
on the word u reaching respectively p and q from some initial states, then we have
M [p, q] = delay(v1, v2).

Observe that as T is unambiguous and trimmed, for every p ∈ dM , there exists a unique run

i
u|v−−→ p such that i is an initial state.

Thanks to Lemma 16, we know that for every such reachable matrix M , we are able
to select at most k states pi, . . . , pk such that for every q ∈ dM , there exists i ∈ {1, . . . , k}
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with M [q, pi] 6= ω. This property is used to define variable updates in a consistent way so
as to ensure the correctness of the construction. More precisely, we actually derive first a
right-appending SST whose updates use elements in the free group on Σ. In a second step,
we show that as the function realized is a function from strings to strings, it is possible to
modify this SST so as to only use updates in Σ∗.

Decidability of the twinning property of order k We will sketch the proof of the
following theorem:

Theorem 31 ([12]). Let T be a fNFT and k be a number given in unary. Determining
whether T satisfies the TPk is in PSpace.

Proof. We first recall how Weber and Klemm show in [WK95] that the twinning property
can be decided in PTime. They first show that a fNFT T does not satisfy the TP iff there
exist two runs as in the premises of the TP (see Figure 5.3) such that one of the two following
conditions holds:

• either |v2| 6= |w2|,

• or v1 and w1 have a mismatch, i.e. a position on which they differ.

Using a similar reasoning, we prove the following lemma describing how a witness of the
violation of the TPk can be exhibited:

Lemma 18. Let T be a fNFT violating the TPk. Then there exist:

• states {qji }0≤i≤m,0≤j≤k with k ≤ m ≤ k2, and qj0 initial and qjk co-accessible for all j,

• words u1, . . . , um, v1, . . . , vm such that there are k+ 1 runs satisfying for all 0 ≤ j ≤ k,

for all 1 ≤ i ≤ m, qji−1

ui|αji−−−→ qji and qji
vi|βji−−−→ qji

and such that for all 0 ≤ j < j′ ≤ k:

• either there exists 1 ≤ i ≤ m such that |βji | 6= |β
j′

i |,

• or there exists 1 ≤ i ≤ m such that |βji | = |βj
′

i | 6= 0, the words αj1 . . . α
j
i and αj

′

1 . . . α
j′

i

have a mismatch, and the runs qj0
u1...ui−−−−→ qji and qj

′

0
u1...ui−−−−→ qj

′

i are such that for every

prefixes qj0
u|α−−→ and qj

′

0

u|α′−−→ of these runs on the same input, we have d(α, α′) ≤Mnk+1.

This allows to derive a non-deterministic procedure running in polynomial space: we first
guess the global structure of the witness, i.e. the value of m, the vectors of states (qji )j for
each 0 ≤ i ≤ m, and, for every pair 0 ≤ j < j′ ≤ k, which of the two cases holds. First the
reachability between two vectors of states can be checked in polynomial space. Second, it is
possible to decide in polynomial space the existence of a cycle around a given vector of states
such that the length of output words on j-th and j′-th runs are different. Indeed, one can
bound the length of such cycles by 2|Q|k+1. Last, we explain how to verify the existence of
the mismatches. Given a pair of runs (ρ, ρ′), we proceed as follows: one non-deterministically
guesses ρ and ρ′ and stores the difference between the lengths of the outputs of the two runs.
Non-deterministically, one can record the letter produced by the run that is ahead (say ρ).
Then one continues the simulation until ρ′ catches up ρ, and checks that the letter produced
by ρ′ is different. This can be achieved in polynomial space using the fact that the distance
between ρ and ρ′ is always bounded by Mnk+1.
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Figure 5.5: Hierarchy for finite-valued rational relations. The class with a valuedness equal to
` and k variables corresponds to `-valued NFT satisfying the TPk and to the class ra-SST`

k.

Corollary 4 ([12]). Let S be an ra-SST, and k be a number (coded in unary). Then deter-
mining whether there exists S′ ∈ ra-SSTk such that JSK = JS′K is PSpace-c.

The hardness follows from that of a similar problem considered in [AR13]. The member-
ship result follows from the polynomial translation of ra-SST into NFT, and from Theorem 31.

Extension to relations Until now, we focused on functions, rather than general relations.
It may however be useful to relax this constraint. It is well-known that finite-valued relations
enjoy very good decidability properties, as functions do. The main result is the decidability
of the equivalence of two finite-valued rational relations.

The model of SST we have presented only recognizes functions. A non-deterministic
extension, which thus allows to recognize relations, has been considered in [AD11]. It is a
quite expressive framework, incomparable with non-deterministic MSO transductions, and
that may define infinite-valued transductions.

We suggest here an alternative extension of SST that allows to recognize finite-valued
relations. We present it in the setting of right-appending SST, but it could similarly be used
for general SST. The idea is simply to modify the output function as follows: instead of
associating to some state p a variable X (or more generally a string involving variables, such
as uY vZw), we may associate to state p a finite set of such expressions. Formally, considering
some SST T = (Q, q0, δ,X , ρ, F ), the output function F is now of the type F : Q ⇀ 2(X∪B)∗ .
Given such a SST T , letting val(T ) = max{|F (q)| | q ∈ Q,F (q) is defined}, we immediately
have that the relation defined by T is val(T )-valued. We now denote by ra-SSTp

k the class
of ra-SST using k variables, and output functions of size at most p. ra-SSTp is the union of
ra-SSTp

k over k, and ra-SST+
k is the union of ra-SSTp

k over p.

The generalized twinning property as well as the generalized bounded variation property
presented before can be adapted to the setting of finite-valued NFT, and we can extend
Theorem 30 to finite-valued relations. We can also show that our decision procedure is valid
for this more general setting, with the same theoretical complexity, and thus we obtain that
the minimization of variable is PSpace-c for the class ra-SST with extended output functions.
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As a corollary, we obtain a decidable and strict hierarchy for the whole class of finite-valued
rational relations depicted on Figure 5.5.

Extension to infinitary groups In [12], these results are presented not only for the
monoid of finite words equipped with concatenation, but also in the setting of so-called
infinitary groups [FGR15]. This includes the classical settings (N,+, 0), (Z,+, 0), but also
groups allowing to encode sum automata, discounted sum automata and average automata,
as shown in [FGR15]. In particular, we obtain this way a generalization of the minimization
result stated in [AR13] for so-called additive cost regular functions.

5.4 First-order definable transformations

Based on the automata-logic connection known for regular languages, several works have
studied similar connections for other logics. In particular, it has been shown that languages
definable using the first-order logic (FO) enjoy several other characterizations: star-free ex-
pressions, aperiodic syntactic monoid, linear temporal logic, counter-free automata. . . These
logical fragments are also very useful to study circuits synthesis [Imm87].

These positive results have motivated the study of similar connections between first-order
definable string transformations (FOT) and restrictions of state-based transducers models.
Two recent words provide such characterizations for SST and 2DFT respectively [FKT14,
CD15]. To this end, the authors introduce a notion of monoid for these transducers, and
prove that FOT is expressively equivalent to transducers with aperiodic monoid.

Although SST (resp. aperiodic 1-bounded SST) and 2DFT (resp. aperiodic 2DFT) are
known to be equivalent as they are both equivalent to MSOT (resp. to FOT), there is no direct
transformation from SST to 2DFT, as it can be observed from Figure 4.5, and thus the only
existing transformation has non-elementary complexity 2. In this section, we present direct
constructions from SST to 2DFT (and back), and prove that these constructions preserve the
aperiodicity of the underlying monoid. We hope that our direct translations provide better
intuition about the workings of the models concerned and may help understand them better.

In addition, we also provide a transformation from k-bounded SST to 1-bounded SST
that preserves aperiodicity. As a consequence, this yields that FOT is not only equivalent to
the class of aperiodic 1-bounded SST, but also to the larger class of aperiodic bounded SST.
These results have been obtained with Luc Dartois recently and are not published yet, but
they are presented in [11]. These results are summarized in Figures 4.5 (general case) and 5.6
(case of aperiodic transducers).

A first-order definable string transformation (FOT) is an MSOT T = (C, φdom, (φ
c
pos)c∈C ,

(φca)c∈C,a∈Σ, (φ
c,d
� )c,d∈C) where φdom a FO sentence over SΣ, and φcpos, φ

c
a and φc,d� are FO

formula over SΣ with respectively one, one and two free first-order variables.

Example 11. We consider the example given in [CD15]. Let Σ be the alphabet {a, b}. We
consider the function f : Σ∗ → Σ∗ that maps the input word u = ak0bak1b . . . akn to the output
word f(u) = ak0bk0ak1bk1 . . . aknbkn. For instance, we have f(aababb) = aabbab.

A FOT T realizing this function uses two copies of the input structure, identifies blocks of
a, and uses them to produce the blocks of a’s (using the first copy) and the new blocks of b’s

2We have recently been aware of the unpublished work [Led13] that proposes an SST to 2DFT construction
similar to ours.
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aperiodic 1-bounded SST

aperiodic 2DFT FOT

aperiodic k-bounded SST

[FKT14]

[CD15]

⊆

Figure 5.6: Tranformations between aperiodic 2DFT, FOT and aperiodic variants of SST.
The original constructions presented in this section are depicted by thick dashed arrows.

1 2

3

a|a,+1
`|ε,+1

b|ε,−1
a|ε,−1

a|b,−1

b|ε,+1
`|ε,+1

a|ε,+1

b|ε,+1

(a) An aperiodic 2DFT

a
X := Xa
Y := Y b

b
X := XY
Y := ε

XY

(b) An aperiodic SST

Figure 5.7: Two transducers realizing the function f .

(using the second copy). Formally, we let C = {1, 2}, φdom = true, φ1
a(x) = φ2

b(x) = La(x)

and φ1
b(x) = φ2

a(x) = false, and the order formula φi,j� are defined by:

• φi,i� (x, y) = x � y for i = 1, 2,

• φ1,2
� (x, y) = x � y ∨ (∀z · y � z � x⇒ La(z)),

• φ2,1
� (x, y) = ∃z · x � z � y ∧ Lb(z).

An aperiodic 2DFT and an aperiodic (copyless) SST realizing f are depicted respectively on
Figures 5.7.(a) and 5.7.(b).

A monoid for 2DFT The monoid of a 2DFT is defined as the one of its underlying 2DFA,
i.e. ignoring the output words. Though this definition may seem surprising, it is sufficient to
obtain an equivalence with FOT. However, as we will discuss later, it is problematic in order
to obtain an algebraic characterization of FOT.

As for DFA, the transition monoid of a 2DFA A is defined as the quotient of the free
monoid Σ∗ by the congruence relation ∼A which is such that two words u, v verify u ∼A v iff
they induce the same behaviors in A. While for a DFA such behaviors are only left-to-right
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runs, in 2DFA we have to consider four types of behaviors, namely left-to-left, left-to-right,
right-to-right and right-to-left. Formally, given a 2DFA A and a non-empty word u, we define
for instance the left-to-right behaviors 3 of A on the word u, denoted bhA`r(u), as the set of
pairs of states (p, q) of A such that the run of A starting in state p on the first letter of u,
and leaving u by the right, reaches state q. Sets bhA``(u), bhArr(u) and bhAr`(u) are defined
similarly. We then define u ∼A v iff bhAxy(u) = bhAxy(v) for all x, y ∈ {`, r}. We denote by MA

the resulting monoid. Recall that a monoid M is aperiodic if there exists a positive integer α
such that for every element m ∈ M , we have mα = mα+1. The minimal such α is called the
aperiodicity index of M .

The transition monoid MT of a 2DFT T is defined as the transition monoid MA of its
underlying 2DFA A. We say that a 2DFT T is aperiodic if the transition monoid MT is
aperiodic.

Theorem 32 ([CD15]). FOT and aperiodic 2DFT are expressively equivalent.

A monoid for SST The monoid MT of an SST T (non-necessarily copyless) with set of
states Q and set of variables X is defined using the notion of flow of variable. We say that
two words u and v are equivalent w.r.t. T , denoted u ∼T v, iff for all p, q,X, Y, k, we have
(p, Y )

u
 k (q,X) ⇐⇒ (p, Y )

v
 k (q,X). The monoid MT is defined as the quotient of Σ∗ by

the congruence ∼T . Elements of MT can be represented by square matrices with indices in
Q×X , and whose entries are elements of N. We denote by ηT the morphism of monoid from
Σ∗ to MT . We say that T is aperiodic iff MT is aperiodic.

It is worth observing that T is k-bounded iff for every matrix m ∈MT , all its entries are
less than or equal to k.

Theorem 33 ([FKT14]). FOT and aperiodic 1-bounded SST are expressively equivalent.

Observe that this result does not give the equivalence with copyless aperiodic SST, nor
with k-bounded aperiodic SST for an arbitrary k.

From SST to 2DFT We provide the first direct translation of SST to 2DFT:

Theorem 34 ([11]). Let T be a 1-bounded SST with n states and m variables. We can
construct an equivalent 2DFT T2W with O(m2m2mnn) states. If T is copyless, then T2W has
O(mnn) states. In addition, if T is aperiodic, so is T2W .

Let T = (Q, q0, δ,X , ρ, F ) be a 1-bounded SST. The transducer T2W will follow the output
structure (see Figure 5.8) of T and construct the output as it appears in the structure. To
make the proof easier to read, we define T2W as the composition of a left-to-right sequential
transducer T1, a right-to-left sequential transducer T2 and a deterministic 2-way transducer T3.
Remark that this proves the result as 2DFT are closed under composition. The transducer T1

does a single pass on the input and enriches it with the transition used by T in the previous
step (the new alphabet is composed of pairs (a, t) ∈ Σ × δ. The second transducer uses
this information, and enriches the input word with the set of variables corresponding to the
variables that will be produced from this position. The new alphabet is thus composed of
triples (a, t, S) ∈ Σ× δ × 2X . The last transducer will then follow the output structure of T

3We define these objects as relations but when the two-way automaton is deterministic it is worth observing
they are functions.
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Yo:
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Zo:
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•
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εa

aa c

aa
b

a

ab

ε
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Figure 5.8: The output structure of a partial run of an SST. Formally, this structure can be
defined as a graph in which edges are labeled by finite strings, and that allows to describe
how the final output of the SST is obtained. See [AČ10a, AFT12] for details.

and use the transitions t of the enriched alphabet to rewind the run of T when the reading
head moves left. The set of variables S will be used to clear the non determinism due to
the 1-bounded property. Indeed, it may be the case, when executing some transition t, that
some variable X is used to define two (or even more) variables Y and Z. However, due to the
1-boundedness property of T , at most one of Y and Z will be part of the final output. The
set S which is now part of the input alphabet of T3 allows to resolve this ambiguity, and to
follow the good edge in the output structure of T .

Observe that if T is copyless, this last ambiguity does not exist, and thus we do not
need to use transducer T2. The statements on the size of T2W follow from the study of the
construction proposed in [CJ77] for the composition of a 2DFT with a DFT.

Last, we argue on the aperiodicity of T2W . First, thanks to results proved in [CD15], it is
sufficient to prove that each of the transducer involved in the composition is aperiodic. This
is rather trivial for T1 and T2. Concerning T3, this property is more difficult to prove. To this
end, we need to show that for α large enough, the behaviors of uα and uα+1 are the same in
T3. Informally, runs in T3 follow the output structure of T , and we thus need to show that
this output structure is ”aperiodic”. The definition of aperiodicity for T exactly ensures that
for α large enough, for any u, q,X, the variables appearing in σq,uα(X) and in σq,uα+1(X) are
the same (with the same multiplicity, which in the case of a 1-bounded SST is necessarily
equal to 1). However, to prove the aperiodicity of the structure, we need a stronger property,
i.e. the equality 4 πX (σq,uα(X)) = πX (σq,uα+1(X)) (informally, the same variables appear in
the same order). We prove that this property holds true (with a possibly larger aperiodicity
index), which concludes the proof of Theorem 34.

Proposition 12. Let T be an aperiodic k-bounded SST with m variables of aperiodicity index
αT . Then for any u, q,X, and for any α ≥ αT + (k + 1)m, we have:

πX (σq,uα(X)) = πX (σq,uα+1(X))

4πX is the projection from (X ∪ Σ)∗ onto X ∗.
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(q, τ) (q′, τ ′)

sr1
v0

τ(r1)
Xr1

r2

v1

τ(r2)
Xr2

τ ′(s)
v2

Figure 5.9: The flow of variables in the SST TSST.

From 2DFT to SST We present a simplification of a construction introduced in [AFT12]
in the more general context of infinite words. We prove that this construction preserves
aperiodicity.

Theorem 35 ([11]). Let T be a 2DFT with n states. We can construct an equivalent 1-
bounded SST TSST with O(nn) states and n + 1 variables. In addition, if T is aperiodic, so
is TSST.

The construction relies on Shepherdson’s construction that allows to transform a 2DFA
into a DFA [She59]. To this end, this construction stores in its states the right-to-right
behaviors on the word read so far in order to be able to compute the global left-to-right
behavior. More formally, states of the resulting DFA are pairs (q, τ) ∈ S × SS , where S
denotes the set of states of the input 2DFA A. After having read the input word u, the
DFA reaches the state (q, τ) where q is the unique state such that (i, q) ∈ bhA`r(u) (i denotes
the initial state of A), and τ = bhArr(u). In the context of transducers, one can use a string
variable Xr to store the output word produced by the behavior starting in r (see Figure 5.9).
One can observe that the SST constructed this way is 1-bounded (it is not copyless due to a
kind of non-determinism on which right-to-right behavior will be part of the final accepting
run).

Assuming that T is aperiodic, the aperiodicity of TSST is a direct consequence of the
following property, which is proven by induction. Given a run (q, τ)

u−→ (q′, τ ′) in TSST

inducing a substitution σ, we claim that we have, for all states s:

• if the run of T on u starting in s on the last letter of u leaves u on the right producing
some word v, then σ(Xs) = v;

• if the run of T on u starting in s on the last letter of u leaves u on the left, then
σ(Xs) = v0Xr1v1 . . . Xrnvn, where n ≥ 1 and:

1. (s, r1) ∈ bhr`(u) produces v0

2. (τ(ri), ri+1) ∈ bh``(u) produces vi for all i < n

3. (τ(rn), τ ′(p)) ∈ bh`r(u) produces vn

The situation corresponding to the second case is illustrated in Figure 5.9.
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c,
X:=Xa
Y:=Yb

a,X := XYX

b,X := Y XY

(a) A 2-bounded SST recognizing the function f :
cnα 7→ anbnan if α = a, and bnanbn if α = b.

Xε

c, σ

a,Xε := Xa
1Y

a
1 X

a
2

b,Xε := Y b
1X

b
1Y

b
2

(b) An equivalent 1-bounded SST. The update σ is de-
fined by σ(Xα

i ) = Xα
i a and σ(Y αi ) = Y αi b for i ∈ {1, 2}

and α ∈ {a, b}.

Figure 5.10: Removing bounded copy

From k-bounded SST to 1-bounded SST The existing construction from k-bounded to
1-bounded, presented in [AFT12], builds a copyless SST. This construction is rather com-
plex, involving so-called dependency graphs, and it is thus difficult to prove that it preserves
aperiodicity (though we conjecture this is the case). We present an alternative construction
that, given a k-bounded SST, builds an equivalent 1-bounded SST (but not copyless). We
prove that this construction preserves aperiodicity.

Theorem 36 ([11]). Let T be a k-bounded SST with n states and m variables. We can
construct an equivalent 1-bounded SST TSST with n2N states and mkN variables, where N =
O(nn(k+1)nm

2
) is the size of the monoid MT of T . In addition, if T is aperiodic, so is TSST.

Proof. In order to move from a k-bounded SST to a 1-bounded SST, the natural idea is to
use copies of each variable. However, we cannot maintain k copies of each variable all the
time: suppose that X flows into Y and Z, which both occur in the final output. If we have
k copies of X, we cannot produce in a 1-bounded way k copies of Y and k copies of Z. We
thus limit, for each variable X, the number of copies of X we maintain. In order to get this
information, we use a look-ahead information on the suffix of the run.

Suppose that we know at each step what is the substitution induced by the suffix of the
run at the current state, then, for each variable X we know the value of the integer n such
that X will be involved exactly n times in the final output. This gives us the precise number
of copies of each variable we have to maintain, and we can use these copies to produce the
substitution in a copyless manner.

As an illustration, consider the SST depicted on Figure 5.10.(a). It is obviously 2-bounded,
and there are actually only 2 different cases corresponding to non-trivial suffixes of input
words: either X flows twice in X, and Y flows once in X (if the last letter of the input word
is a) or Y flows twice in X, and X flows once in X (if the last letter of the input word is b).
By guessing which of the two cases holds, one can produce the adequate number of copies. As
we cannot guess, because our aim is to build a deterministic automaton, we have to consider
the two possible cases. We thus consider variables Xa

1 , X
a
2 , Y

a
1 corresponding to the first case

(last letter is a) and similarly Xb
1, Y

b
1 , Y

b
2 for the second case. We do not try to share variables

used for the different cases. Variable Xε corresponds to the trivial suffix ε. The resulting
equivalent 1-bounded SST is depicted on Figure 5.10.(b).

One can observe that this information on flow of variables is contained in the monoid
MT . However, assuming that the image of the current suffix av in MT is some element m,
one cannot, in a deterministic left-to-right fashion, determine the value m′ of the next suffix
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v. There can indeed be several candidates m1, . . . ,m`. As we have to build a deterministic
input automaton, we will use a subset construction on these possible elements of MT .

More formally, the 1-bounded SST TSST has the set of states Q′ = {(q, S) | q ∈ Q,S ⊆
MT }. The transitions are of the form (q, S)

a−→ (q′, S′) where q′ = δ(q, a) and S′ = {m ∈MT |
ηT (a)m ∈ S}.

We use variables of the form Xm
i for X ∈ X , 1 ≤ i ≤ k and m ∈ M . The successors of

an element m ∈ MT by letter a are the elements m1, . . . ,m` ∈ MT such that m = ηT (a)mj .
The variables indexed by m may thus flow to variables indexed by m1, . . . ,m`. As we stored
enough copies for m, we can produce enough copies for each mj . Observe also that the
update from m to mj is copyless (for each j). As variables associated with mj and mj′ with
j 6= j′ are never recombined (the current suffix belongs to exactly one of the mj ’s), we get
the 1-boundedness of the construction.

The aperiodicity of the produced SST comes from the fact that its runs are of the form
(q, S)

u−→ (q′, S′) where q
u−→T q′ and S′ = {m ∈ MT | ηT (u)m ∈ S}, which holds by

construction. The update for such a run is then the update of T over the run q
u−→T q′,

where variables are labelled by elements from S and S′ and numbered accordingly. As MT is
aperiodic, this implies that the transition function of the new SST is aperiodic, as well as its
update function.

As a corollary, we obtain that for every integer k ∈ N>0, the class of aperiodic k-bounded
SST is expressively equivalent to first-order definable string-to-string transductions. This con-
stitutes a new result, as the equivalence was only known for the class of 1-bounded aperiodic
SST (see Figure 5.6). Combining with existing results, we obtain:

Corollary 5 ([FKT14, CD15],[11]). Let f : Σ∗ → Σ∗ be a string-to-string function. The
following assertions are equivalent:

• f is realized by an aperiodic 2DFT,

• f is realized by an aperiodic 1-bounded SST,

• f is realized by an aperiodic k-bounded SST for some k,

• f is realized by an FOT.

5.5 Perspectives

The decidability of rational functions among regular ones presented in Section 5.2 is a promis-
ing result, since we introduced combinatorics techniques that could be useful for other decid-
ability problems. Moreover, there are also direct extensions which are worth being studied:
one could consider other semi-rings (our proof implies the known result in the case of a com-
mutative semi-ring), infinite words. . . Another research direction concerns the complexity of
our decision procedure. Due to our proof approach (Rabin and Scott procedure), we obtain a
non elementary procedure. However, we only have a PSpace lower bound, and we conjecture
that the problem is elementary, more precisely it may be decidable in 2-ExpTime. We have al-
ready studied the possibility of an adaptation of the construction of Shepherdson [She59], but
this approach is highly technical. Recently, Anca Muscholl and other colleagues in Bordeaux
have proposed in [BGMP15] a procedure in order to build a one-way transducer equivalent to
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a given sweeping transducer, when it exists (a sweeping transducer is a deterministic two-way
transducer that only turn back at the extremities of the input word). Last, another line of
works consists in trying to directly characterize the class DFT inside that of 2DFT. This class
enjoys indeed several characterizations, as explained in Section 5.3.

Concerning our generalized twinning property presented in Section 5.3, there are also some
promising extensions, as we have a very general characterization of the required number of
variables (for consistency with the rest of this document, we presented it in the setting of
transducers, but it holds for more general weighted automata). The long-term objective is of
course to solve the minimization problem for the general setting of copyless SST. However,
this requires the development of new tools, as we have to deal with concatenation of variables.
A different (and probably easier) objective is to lift our results from functions on words to
functions defined on nested-words, as described in the next Chapter. These functions would be
given as weighted visibly pushdown automata. Indeed, we have identified a twinning property
(the matched TP presented in Section 6.4) that characterizes the weighted visibly pushdown
automata that can be determinized. It seems thus possible to apply our proof approach
to this setting, though we have already identified some notable differences. For instance,
while unambiguous weighted automata are can be encoded using finitely many variables, this
does not hold for unambiguous weighted automata on nested words. This leads to another
interesting decision problem.

Very recently, a variation of the twinning property has been introduced in [JF15] in
order to characterize rational relations that can be represented as a finite union of sequential
transducers (the class of so-called multi-sequential relations). One can notice that this class
also owns a nice characterization as the restriction of right-appending SST (considered with
generalized output function) to updates of the form X := Xu (instead of X := Y u). An
open problem for the class of multi-sequential relations consists in minimizing the size of
the union. A natural perspective thus consists in identifying an adequate twinning property
characterizing the number of variables in the previous subclass of right-appending SST.

Last, a very ambitious project is to develop algebraic tools characterized by the trans-
formation itself. Indeed, the monoids considered in Section 5.4 rely on the structure of the
transducer, and thus they do not characterize the transformation. As a consequence, though
we have expressiveness results, we have no decision procedure to determine whether or not a
regular string function is definable in FOT. In [RS91], a congruence is defined directly via the
transformation, and is used to characterize rational functions. This tool has recently been
used in [Lho15] to derive a procedure determining, given a rational function, whether it is
FOT-definable. Similar algebraic tools do exist also for subsequential functions, but it is still
a big challenge to extend them to regular string functions.

Regarding first-order definable transformations, another research direction concerns star-
free expressions. Indeed, the well-known equivalence between first-order logic and star-free
expressions on words has been lifted to a weighted setting in [DG08, MR13] under some hy-
potheses on the semi-ring under consideration. The extension of these results to transductions
constitutes an interesting objective, and the description of regular string functions using a
kind of regular expressions that has been recently proposed in [ADR15] could serve as a good
starting point.
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Chapter 6

Tree-to-string transductions

Contents
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While the previous section was concerned with transformations of strings, we want to
consider trees as input. With the widespread of the XML data model, trees, and more
precisely unranked trees (or hedges), are widely used to organize information. Motivated by
the study of the streamability of transformations, we will be interested in the model of nested
words, which correspond to linearizations of trees, as they are used in XML documents.

6.1 Visibly pushdown automata

Nested words Nested words are finite sequences of symbols equipped with a nesting struc-
ture. The term nesting structure refers to a structure that is organized on the basis of layers
some of which are contained into the others. Special symbols, namely call and return sym-
bols, can be used to add a nesting structure, through a call/return matching relation. Other
(untyped) symbols are called internal symbols. Formally, a structured alphabet is a triple
Σ = (Σc,Σr,Σι) composed of the sets of call, return and internal symbols. A nested word is
an element of Σ∗. The set of well-nested words over Σ, denoted Σ∗wn, is the smallest subset of
Σ∗ such that Σ∗ι ⊆ Σ∗wn, and for all u, v ∈ Σ∗wn, for all c ∈ Σc, r ∈ Σr, we have uv ∈ Σ∗wn and
cur ∈ Σ∗wn. In a nested word, some call symbols (resp. return symbols) may be pending if
they do not match any return symbol (resp. call symbol). Well-nested words are nested words
without any pending symbols. We say that a nested word is open-call (resp. open-return) if
it only contains call pending symbols (resp. return pending symbols), which holds precisely
if it is the prefix (resp. the suffix) of some well-nested word. Given an open-call nested word
u, we define the current height of u as the number of pending calls. We denote it by hc(u).
Given a well-nested word u, the height of u is the maximal number of pending calls on any
prefix of u, and is denoted h(u).
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Nested words arise naturally in many applications as models of data which are both
linearly and hierarchically ordered. As mentioned above, XML documents are examples of
data naturally modeled as nested words, but this is also the case of executions of structured
programs [AM09]. The sequence of calls and returns (resp. opening and closing tags), adds
nesting structures to program executions and XML data respectively. More generally, any
tree-structured data can be linearized into a nested word by considering a depth-first left-to-
right traversal of the tree.

Visibly pushdown automata Rajeev Alur and Parthasarathy Madhusudan introduced
visibly pushdown automata (VPA) as a pushdown machine to define languages of nested words
[AM09], called visibly pushdown languages. More precisely, VPA operate on a structured
alphabet, and when reading a call symbol the automaton must push one symbol onto its
stack, when reading a return symbol it must pop the symbol on top of its stack, and when
reading an internal symbol it cannot touch its stack. Nested words can be naturally viewed as
trees (and conversely), and back and forth translations between visibly pushdown automata
and tree automata have been proposed. As a consequence, VPA inherit several good properties
of tree automata [CDG+07]. Most notably, they are closed under all Boolean operations, and
all the classical decision problems such as emptiness, universality and finiteness are decidable.
This is in contrast to general pushdown automata that define context-free languages, for which
it is well-known that most interesting problems are undecidable. The fundamental reason why
VPA enjoy good properties is that the stack behavior, i.e. whether it pops, pushes or does
not change, is driven by the input symbol. Therefore, all the stacks on a same input have
the same height (we say that the stacks are synchronized). Although VPA are equivalent to
tree automata, they run on words and operate from left to right, i.e. on linearization of the
input tree (or hedge), which is often the case in practice. This perspective has led to many
applications, such as new logics for nested words [AAB+08], streaming XML validation and
queries [Alu07, GNT09, MV09, KMV07], and program analysis [HHP10, HJR12, AC10b].

Formally, a VPA is a tuple A = (Q, I, F,Γ, δ) where Q is a finite set of states, I ⊆ Q,
is the set of initial states, F ⊆ Q, is the set of final states, Γ is the (finite) stack alphabet,
and ⊥ /∈ Γ is the bottom of the stack symbol, and δ = δc ] δr ] δι is the transition relation
partitioned into subrelations on call, return and internal symbols respectively.

Due to the constraints associated with the structure of the alphabet, the type of the
elements of δ depends indeed on the input symbol. We detail the example of call symbols.
Given c ∈ Σc, an element of δc on c is of the form (p, c, γ, q) ∈ Q × Σc × Γ × Q, with the
intended meaning that the stack symbol γ is pushed onto the stack when this transition is
used in state p, reaching state q. Let us also recall that elements of δr may include return
transitions on the empty stack.

A configuration of A is a pair (q, σ) where q ∈ Q is a state and σ ∈ ⊥ · Γ∗ a stack. Let
w = a1 . . . a` be a word on Σ, and (q, σ), (q′, σ′) be two configurations of A. A run of the VPA
A over w from (q, σ) to (q′, σ′) is a sequence of transitions ρ = t1t2 . . . t` ∈ δ∗ such that there
exist q0, q1, . . . q` ∈ Q and σ0, . . . σl ∈ ⊥ · Γ∗ with (q0, σ0) = (q, σ), (q`, σ`) = (q′, σ′), and for
each 0 < k ≤ `, we have either:

• tk = (qk−1, ak, γ, qk) ∈ δc and σk = σk−1γ,

• tk = (qk−1, ak, γ, qk) ∈ δr, and σk−1 = σkγ or σk−1 = σk = γ = ⊥, or

• tk = (qk−1, ak, qk) ∈ δi, and σk−1 = σk.
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Figure 6.1: A run of a VPA exhibiting matched loops.

Such a run is accepting if q ∈ I, σ = ⊥, and q′ ∈ F . The definitions of accepted word and
accepted language follow. The latter one is denoted L(A).

A language L over Σ is a visibly pushdown language if there is a VPA A over Σ such that
L(A) = L.

A VPA A = (Q, I, F,Γ, δ) is said to be deterministic if |I| = 1 and given any configuration
(q, σ) and any symbol σ ∈ Σ, there exists at most one t ∈ δ labelled by σ and which can be
executed from (q, σ). The set of deterministic VPA is denoted dVPA.

Loops of VPA We present some elementary facts on loops in VPA.

Loops in finite-state machines are simply runs on some input word u around some state
q. Such loops have their counter part in VPA as runs on some input word u around some
configuration (q, σ). Note that this does not imply that u is a well-nested word, but we can
in general consider a well-nested conjugate u′ of u which induces a loop. Such loops induce
a ”horizontal” concatenation in terms of hedges: consider a well-nested accepting run on the
input word u1u2u3 such that there is a loop on the well-nested word u2. Then the words
u1u

n
2u3 are accepted for all n ≥ 0. In terms of hedges, u1 and u3 represent a context in which

the hedge represented by u2 is inserted. We can thus copy this hedge as many times as we
want.

Viewing VPA as tree automata, one obtains a second type of loops, which corresponds to
the repetition of some context. This situation is present in VPA as a pair of so called matched
loops: consider an accepting run (i,⊥)

u1−→ (p, σ)
u2−→ (p, σσ′)

u3−→ (q, σσ′)
u4−→ (q, σ)

u5−→ (f,⊥)
where the words u1u5, u2u4 and u3 are well-nested. We thus have two loops, one on u2, which
is increasing the content of the stack, and a second one on u4 which pops from the stack
exactly what the first loop pushed. This is illustrated in Figure 6.1. We verify easily that the
words u1u

n
2u3u

n
4u5 are accepted for all n ≥ 0. In terms of hedges, the pair (u2, u4) represents

the context which is iterated.

We will use these observations when we will define twinning properties for VPT in Sec-
tion 6.4.

Trimming VPA Trimming a finite state automaton amounts to removing useless states,
i.e. states that do not occur in some accepting computation of the automaton: every state
of the automaton should be both reachable from an initial state, and co-reachable from a
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final state. This property is important from both a practical and a theoretical point of view.
Indeed, most of the algorithmic operations performed on an automaton will only be relevant
on the trimmed part of this automaton. Removing useless states may thus avoid the study of
irrelevant paths in the automaton, and speed up the analysis. From a theoretical aspect, there
are several results holding for automata provided they are trimmed. For instance, consider the
twinning property introduced by Choffrut in [Cho77], and presented in Chapter 4. Similarly,
the boundedness of finite-state automata with multiplicities can be characterized by means
of simple patterns for trimmed automata (see [MS77, SdS08]).

As we will see in our further developments, this property will also be important for VPA.
However, the notion itself of trimmed automaton is not clear when considering pushdown
automata. Indeed, the set of final configurations is too large (recall that any stack content is
allowed), and thus it would be too strong to require that every final configuration is reachable
from an initial configuration.

Together with Jean-Marc Talbot and our PhD student Mathieu Caralp, we studied the
problem of trimming VPA. Our results have been published in [8, 9] and we only give here
a short description of our results. First, we provide a simple (polynomial time) construction
which allows to trim (in the natural sense) so called well-nested VPA, in which we require
that acceptance is only with empty stack, and in which return transitions on the empty stack
are disallowed. Then, we propose to address the issue of final configurations by restring our
attention to final configurations that are reachable from some initial configuration. This yields
a notion of trimmed (arbitrary) VPA. We then provide a polynomial time construction that,
given a VPA, returns an equivalent trimmed VPA. Last, we have also proven that one can
combine our trimming procedure with the standard determinization procedure, which implies
the non-trivial result stating that every visibly pushdown language can be recognized by a
visibly pushdown automaton which is both trimmed and deterministic.

6.2 Visibly pushdown transducers

We introduce now visibly pushdown transducers (VPT) as the extension of VPA with outputs.
While the input alphabet is some structured alphabet Σ, the output alphabet ∆, however,
may not be structured. VPT are therefore nested word to word transducers. If the output
alphabet is structured, then obviously VPT output nested words. The particular case of
transducers producing as output well-nested words is considered in the next section.

The goal of this set of results that have been published in [16] is to show that, like VPA,
VPT enjoy good properties and form a robust class of transducers. To this end, we will succes-
sively consider basic properties of this new class of transducers, namely expressiveness, closure
properties, and decidability of the main problems such as functionality and equivalence.

Visibly pushdown transducers A visibly pushdown transducer (VPT) from Σ to ∆ is a
pair T = (A,Ω) where A = (Q, I, F,Γ, δ) ∈ VPA is the underlying automaton and Ω is a
morphism from δ to ∆∗ called the output.

A run ρ of T over a word u = a1 . . . al is a run of its underlying automaton A, i.e. it is a
sequence of transition ρ = t1 . . . tl ∈ δ∗. The output of ρ is the word v = Ω(ρ) = Ω(t1 . . . tl) =

Ω(t1) . . .Ω(tl). We write (q, σ)
u/v−−→ (q′, σ′) when there exists a run on u from (q, σ) to (q′, σ′)

producing v as output.

96



The transducer T defines a binary word relation JT K = {(u, v) | ∃q ∈ I, q′ ∈ F, σ ∈
Γ∗, (q,⊥)

u/v−−→ (q′, σ)}. We say that a transduction is a VPT transduction whenever there
exists a VPT that defines it.

We use the (naturally defined) notions of domain and range of T and the classes of
functional, resp. deterministic, VPT, denoted by fVPT, resp. dVPT.

Remark 1. As VPA do not allow ε-transitions, neither do VPT on the input. However some
transitions might output the empty word ε. In that sense the class of VPT we define is the
class of real-time VPT.

Visibly pushdown transducers have been first introduced in [RS08] and independently in [TVY08].
The definition considered in these papers do allow for ε-transitions that can produce outputs
and only a single letter can be produced by each transition. However, such a definition causes
many interesting problems to be undecidable, such as functionality and equivalence (even of
functional transducers). Therefore we prefer to stick to our definition of VPT, they are exactly
the so called nested word to word transducers of [SLLN09] and correspond to the definition
of [16].

Relations between the classes of transducers (and thus, of transductions) we have consid-
ered so far can be depicted as :

dVPT ( fVPT ( VPT

The last inclusion is trivially strict. For the first one, we give an example below proving that
the inclusion is strict.

q0 q1
r | ba,−γ

c | a,+γ r | a,−γ

Figure 6.2: A deterministic VPT T1 on Σc = {c} and Σr = {r}.

Example 12. This first example is a deterministic VPT T1 = (A,Ω) represented in Fig-
ure 6.2. The input alphabet is composed of the call symbol c, and the return symbol r. The
output alphabet is ∆ = {a, b}. Clearly T1 implements the following transduction:

cnrm → anbam for all 1 ≤ m ≤ n

The range of T1 is a context-free language but it is not a visibly pushdown language for
any partition of the output alphabet:

range(T1) = {anbam | 1 ≤ m ≤ n}

The next example contains a non-deterministic VPT. This VPT is, however, functional,
furthermore one can easily show that there is no equivalent deterministic VPT. In other
words, it is an example of non-determinizable functional VPT.
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p3 p2 p1 i q1 q2 q3
c/a, γ

c/a, γ

r/c, γ

r/c, γ

r/c, γ c/b, γ

c/b, γ

r/c, γ

r/c, γ

r′/c, γ

c/b, γc/a, γ

Figure 6.3: A functional VPT T2 with Σc = {c}, Σr = {r, r′} and Σι = {a, b}

Example 13. Consider the VPT T2 of Figure 6.3 represented in plain arrows. It starts
in state i, first reads letter c and guesses non-deterministically the last letter to be either r
or r′, deciding to move left or right. The left and right parts accept indeed the same input
words except for the last letter of the word. The domain of T2 is dom(T2) = {cnrn | n ≥
2} ∪ {ccnrnr′ | n ≥ 1}. Any word cnrn is translated into ancn, and any word ccnrnr′ is
translated into bn+1cn+1. Therefore the translation of the first sequence of calls depends on
the last letter r or r′.

Expressiveness The domain of a VPT is the language accepted by its underlying automa-
ton, therefore the domain is a visibly pushdown language. The range of a VPT is the image
of the language of its runs by the output morphism. The runs of a VPA form a CFL (even a
VPL), and as the image of a CFL by a morphism is a CFL, so is the range of a VPT. Finally,
it is easy to show that for any CFL L there exists a VPT such that its range is L.

The class of VPT is a strict subclass of pushdown transducers. Indeed, any VPT is clearly
a non-deterministic pushdown tranducer. But some non-deterministic pushdown transduc-
tions are not VPT transduction, for instance those non-deterministic pushdown transduction
whose domain is a context-free language but not a VPL. Obviously, VPT forms a strict
superclass of finite state transducers.

Closure properties The closure status under boolean operations is the same as for NFT.
Thanks to non-determinism, transductions defined by VPT are closed under union. However,
the classes of VPT and dVPT are not closed under intersection, complement, nor inverse.
Last, the class of dVPT is not closed under union. The proofs of these results are similar to
those for NFT.

The difference with NFT comes from the composition. Indeed, VPT are not closed under
composition, nor dVPT. However, this makes sense as we did not consider a structured output
alphabet. In the next section, we prove that the closure under composition can be obtained
when structured output alphabets are considered.

Decision problems We study relevant decision problems for transductions for the class of
VPT: emptiness, membership, type checking, functionality and k-valuedness, inclusion and
equivalence.

The emptiness and translation membership problems are decidable in PTime for push-
down transducers. Therefore, since VPT are pushdown transducers, these results trivially
hold for VPT.

We consider the type checking problem for a VPT T against VPL. By reducing the inclusion
of a CFL in a VPL to this problem, we easily show that this type checking problem is
undecidable. One way to overcome this problem is to restrict the class of (output) languages
used for testing to regular languages. In this case, the type checking becomes decidable in
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ExpTime. Another way that we will detail later to get decidability of type checking against
VPA is by restricting the class of VPT.

Functionality Recall that a VPT T is functional if R(T ) is a function. We will prove:

Theorem 37 ([16]). Functionality of VPT is decidable in PTime.

Let us start with some example.

q0

q4 q6q5

q2q1 q3

q7

c1 | dfc, γ1
c3 | a, γ3 r3 | ε, γ3

c1 | d, γ1
c3 | f, γ3 r3 | cab, γ3

r1 | g, γ1

r1 | bg, γ1

c2 | ε, γ2 r2 | cabcab, γ2

c2 | abc, γ2 r2 | bca, γ2

Figure 6.4: A functional VPT T3 on Σc = {c1, c2, c3} and Σr = {r1, r2, r3}.

Example 14. Consider the VPT T3 of Figure 6.4. Call (resp. return) symbols are denoted
by c (resp. r). The domain of T3 is dom(T3) = {c1(c2)nc3r3(r2)nr1 | n ∈ N}. For each word
of dom(T3), there are two accepting runs, corresponding respectively to the upper and lower
part of T3 (therefore it is not unambiguous). For instance, when reading c1, it pushes γ1 and
produces either d (upper part) or dfc (lower part). By following the upper part (resp. lower
part), it produces words of the form dfcab(cabcab)ng (resp. dfc(abc)na(bca)nbg).

It is not difficult to verify that the VPT T3 of Example 14 is functional. Recall that
the characterization of functional NFT provided in [BCPS03] relies on the notion of delay
between runs on the same input word. It states that these delays are bounded. The challenge
for deciding functionality for VPT lies in the fact that for some functional VPT outputs
are produced in some desynchronised manner and the difference in their lengths might get
arbitrarily long. As shown by this example, the delay between two outputs for a VPT can
grow arbitrarily, even if it is functional. Indeed, after reading c1c

n
2 , the upper part outputs

just d, while the lower part outputs dfc(abc)n: the delay between both outputs is fc(abc)n

and grows linearly with the height of the stack. For T to be functional, the upper run must
catch up its delay before reaching an accepting state. In this case, it will catch up with the
outputs produced on the return transitions.

The decision procedure for functionality of VPT is based on the squaring construc-
tion [BCPS03] and on the decidability of the morphism equivalence problem [Pla94]. The
square T 2 of a VPT T is realized through a product construction of the underlying automa-
ton with itself. Intuitively, it is a transducer that simulates any two parallel transductions
of T , where by parallel transductions we mean two transductions over the same input word.
Each transition of the square simulates two transitions of T that have the same input letter.
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The output of a transition t of T 2 that simulates the transitions t1 and t2 of T is the pair of
output words formed by the outputs of t1 and t2. If Ω is the output morphism of T , we write
OT for Ω(δ), that is, the set of words that are output of transitions of T , then the output
alphabet of T 2 is the set of pairs of words in OT , i.e. OT ×OT .

Note that the square T 2 is a VPT and therefore its range is a context-free language over
the alphabet OT ×OT .

The procedure to decide functionality of a VPT T is based on the following observation.
A run ρ = (t1, t

′
1) . . . (tk, t

′
k) of T 2 simulates two runs, say ρ1 = t1 . . . tk and ρ2 = t′1 . . . t

′
k,

of T over a same input word. The output of ρ is the sequence of pairs of words Ω′(ρ) =
Ω′((t1, t

′
1) . . . (tk, t

′
k)) = (Ω(t1),Ω(t′1)) . . . (Ω(tk),Ω(t′k)). Therefore the projection on the first

component, resp. second, of the output of ρ gives the output of the corresponding run of T ,
that is Ω(ρ1) and Ω(ρ2) respectively. These projections on the first and second components
can be defined by two morphisms Π1 and Π2 as follows: Π1((u1, u2)) = u1 and Π2((u1, u2)) =
u2. Clearly, T is functional if and only if these two morphisms are equal on any output
of T 2, i.e. if for all w = (u1, u

′
1) . . . (uk, u

′
k) ∈ range(T 2) we have Π1(w) = Π2(w) that is

u1 . . . uk = u′1 . . . u
′
k. In other words the two morphisms must be equivalent on the range of

T 2.
Given two morphisms and a language, checking whether the two morphisms are equivalent

on this language is known as the morphism equivalence problem. Plandowski has shown that
this problem is decidable in PTime for context-free languages given by a grammar in Chomsky
normal form. This concludes the proof of Theorem 37.

Equivalence and inclusion The equivalence and inclusion problems are already undecid-
able for finite-state transducers [Gri68]. Therefore, they are also undecidable for VPT.

Let us consider now functional VPT: given two functional VPT, T1 and T2, they are
equivalent, resp. T1 is included into T2, if and only if their union is functional and they have
the same domains, resp. the domain T1 is included into the domain of T2. The domains being
VPL, testing their equivalence or the language inclusion is ExpTime-c [AM09]. Testing the
equivalence or the inclusion of the domains is easier when the VPT are deterministic, it can
be done in PTime [AM09]. Therefore both procedures, i.e. equivalence or inclusion testing,
can be done in PTime when the VPT are deterministic. If we assume that both transducers
are total, then obviously we do not have to test the equivalence or inclusion of their domains.
Therefore, in that case equivalence and inclusion of their transductions can also be tested in
PTime.

Theorem 38 ([16]). The inclusion and the equivalence problems are :

• undecidable for VPT

• ExpTime-c for functional VPT

• in PTime for deterministic VPT [SLLN09], resp. for total functional VPT

k-valuedness Given some (fixed) integer k ∈ N, the k-valuedness problem asks, given as
input a VPT T , whether it is k-valued.

The k-valued transductions are an interesting generalization of functional transductions.
In the case of finite state transducers, k-valued and functional transducers share the important
characteristic to have decidable equivalence and inclusion problems. In this section we sketch
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how to decide k-valuedness for VPT in co-NPTime. We, however, leave open the question of
deciding the equivalence or the inclusion of k-valued VPT.

The idea is to generalize the construction for deciding functionality presented in the previ-
ous section. This previous construction is based on the square and the morphism equivalence
problem. We use here the k-power and the multiple morphisms equivalence problem [HIKS02],
which generalizes the morphism equivalence problem to k morphisms, instead of 2.

The main tool of the decision procedure is the class of bounded reversal counter automata
introduced by Ibarra [Iba78]. We proceed in three steps:

1. The procedure of [Iba78] for deciding emptiness of such machines can be executed in
co-NPTime. This relies on a recent result allowing the construction in linear time
of an existential Presburger formula representing the Parikh image of a context-free
language [VSS05]. 1

2. As a direct consequence, the procedure for deciding the multiple morphism equivalence
problem in [HIKS02] can be executed in co-NPTime.

3. This last result allows to decide the k-valuedness problem for VPT in co-NPTime using
a product construction similar to that described for functionality.

Theorem 39 ([16]). Let k ≥ 0 be fixed. The problem of deciding whether a VPT is k-valued
is in co-NPTime.

We conjecture that the equivalence of two k-valued VPT is decidable, but leave it as an
open problem. Using techniques based on reversal bounded counter machines, we have proven
the following decidability result in a journal version of [16] which is under submission:

Theorem 40 (Unpublished). The following problem is decidable: given k1 functional VPT
T1, . . . , Tk1, and k2 functional VPT G1, . . . , Gk2, does

⋃k1
i=1R(Ti) =

⋃k2
i=1R(Gi) hold ?

For k-valued NFT, the equivalence problem is known to be decidable, and the procedure
relies on the existence of a decomposition of any k-valued NFT as a finite union of functional
NFT [Web93, SdS10]. This decomposition is based on a notion of delay between output of
runs on the same input. Generalising this notion of delay to VPT is a challenging open
problem, and would likely lead to an effective decomposition result for k-valued VPT, as
finite unions of functional VPT. As a consequence of the above decidability result, such a
decomposition result for VPT would give decidability of equivalence for k-valued VPT.

6.3 Tree-to-tree transformations

Tree-to-tree transformations arise in many natural applications such as database management
systems, or transformations of XML documents, in which we need to model transformations of
(the linearization of) some input tree into (the linearization of) some output tree. Moreover,
as we will see, considering a structured output alphabet and restricting the VPT so as to only
produce well-nested output words yields a more robust class of VPT.

1This result has been improved in [HL11] where it is shown that the co-NPTime upper bound still holds
even if the number of counters is not fixed, for a slightly more general model. Moreover, [HL11] shows that
this co-NP upper bound is also a lower bound.
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The main results of the previous section showed that functionality and, more generally,
k-valuedness are decidable for VPT. As a consequence, the equivalence and inclusion prob-
lems for functional VPT are decidable. All these problems are undecidable for pushdown
transducers.

On the other hand, contrary to the class of NFT, the class of VPT is not closed under
composition and the type checking problem against VPA is undecidable. A closer look at
the reason for this non-closure and undecidability results points to an interesting subclass of
VPT. Both of these weaknesses of the model can be solved by adding a ’visibly’ constraint
on the output of the VPT.

Indeed, the non-closure under composition can be viewed as a consequence of the fact
that the stack of the two involved VPT are not synchronized. The stack of the first VPT is
guided by the input word, while the stack of the second is guided by the output of the first
VPT. Constraining the VPT with some synchronization between its input and its output
yields closure under composition. This leads to the definition of locally well-nested VPT that
we will study in the first part of this section.

Secondly, we will prove that replacing this syntactical condition by a semantical one,
which only requires that every output word is well-nested is sufficient to obtain a class of
VPT closed under composition and for which type-checking against VPA is decidable.

Locally well-nested VPT A locally well-nested VPT (lwnVPT for short) is a VPT with a
notion of synchronization between the input and the output. This synchronization is enforced
with the following syntactic restriction: for all call and return transitions that use the same
stack symbol, the concatenation of the output word of the call transition with the output
word of the return transition must be a well-nested word. Moreover the output word of any
internal transition must be a well-nested word. We can thus interpret this condition as a
mapping s : Γ→ N which gives, for each stack symbol γ, the number s(γ) of unmatched calls
(respectively returns) of the output words produced on some call transition pushing γ onto
the stack (resp. some return transition popping γ from the stack).

Let us consider a rule q(f(x1, x2))→ C[q1(x1), q2(x2)] of some ranked tree transducer. In
such a rule, C is a context, and thus the linearization of the right-hand side of the rule is a
well-nested word. This is the intuition underlying the definition of lwnVPT.

As a model of tree transducers, lwnVPT will only be considered on well-nested input
words. It is then easy to prove that every output word is well-nested. Actually, when consid-

ering a run (p,⊥)
u|v−−→ (q, σ) in some lwnVPT, we know precisely the ”form” of the output

word v. Indeed, while u is an open-call word with |σ| unmatched call symbols, the word v
is an open-call word with

∑
γ∈σ s(γ) unmatched call symbols. This formalizes the intuition

that the input and the output are synchronized.

Given two transducers T1 and T2, we sketch the construction of a transducer T3 accepting
their composition. Intuitively, T3 needs to simulate the execution of T2 on the output of T1.

States of T3 are simply pairs of states of T1 and T2. Consider some transition (p1,⊥)
c|v−−→

(q1, γ1) in T1. As v contains s(γ1) unmatched calls, the simulation of T2 on v will be of the

form (p2,⊥)
v|w−−→ (q2, σ2), where |σ2| = s(γ1). We thus consider a kind of product stack

alphabet composed of stack symbols of the form (γ1, σ2), where γ1 is a stack symbol of T1

and σ2 is a stack word of T2 of length s(γ1). This allows us to prove:
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Theorem 41 ([16]). Let T1, T2 be two VPT. If T1 is locally well-nested, then we can construct
in PTime a VPT T3 such that JT3K = JT2K ◦ JT1K. Moreover, if T2 is local well-nested, then
so is T3. As a consequence, the class lwnVPT is closed under composition.

VPL are closed under complement, and it is easy to define the identity function on some
VPL as a lwnVPT. Using this and the closure under composition of lwnVPT, we easily prove:

Theorem 42 ([16]). The type checking problem for lwnVPT against VPA is ExpTime-c.
It is in PTime if the VPA constraining the output language is deterministic.

Globally well-nested VPT The class of locally well-nested VPT is defined by a syntactic
condition which can very easily be checked on a VPT. However, the lwnVPT-definability
problem, which consists in determining, given a VPT T , whether there exists an equivalent
lwnVPT T ′, is open, and seems to be non trivial. Another drawback of the class lwnVPT
is that there exist simple VPT-definable tree-to-tree transformations which are not lwnVPT
definable.

To overcome these issues, we introduce the new class of globally well-nested VPT (gwnVPT
for short) which is defined semantically. Given a VPT T from the structured alphabet Σ to
the structured alphabet ∆, we simply require that every output of some well-nested word over
Σ is a well-nested word over ∆. We will prove the following results showing that we obtain
an interesting class of VPT for modeling tree-to-tree transformations:

1. gwnVPT are strictly more expressive than lwnVPT

2. the gwnVPT-definability problem is decidable in PTime

3. the class gwnVPT is closed under composition, and its type-checking problem against
VPA is decidable in 2-ExpTime

We start with an example, showing point 1. Consider the VPT T4 depicted on Figure 6.5.
It is easy to verify that it belongs to gwnVPT. However, we can prove that there exists
no equivalent lwnVPT T ′. Indeed, assuming the existence of such a T ′, it should own two
matched loops corresponding to the two loops around states p1 and p2 in T4. By a case
analysis on the form of the outputs of these loops, one obtains a contradiction.

i p1 p2 f
c|ccc, γ i|rr r|r, γ

c|cr, γ′ r|cr, γ′

Figure 6.5: The VPT T4 with input/output alphabet Σ = ({c}, {r}, {i}).

Let us consider now the gwnVPT-definability problem. Let T be a VPT from Σ∗ to ∆∗.
By definition, T belongs to the class gwnVPT iff T (Σ∗wn) ⊆ ∆∗wn. As we have shown before,
the range of a VPT may be any CFL, and the language ∆∗wn is a VPL. As it is well-known
that the inclusion of a CFL into a VPL is undecidable, we don’t get a solution to our problem
directly. However, the recent work [BCR11] provides tractable cases of the above undecidable
problem. In particular, the inclusion of a CFL into a Dyck language is in PTime. Using this
result, we prove:
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Theorem 43 ([26]). Let A be a VPT. Whether A ∈ gwnVPT can be decided in PTime.

We turn now to the closure under composition, from which the decidability of the type-
checking problem against VPL easily follows. The construction of composition for lwnVPT
heavily relies on the synchronisation between the stacks of the two composed transducers,
which itself directly follows from the definition of the class lwnVPT. This is not anymore the
case for gwnVPT, and we need new tools to prove that such a synchronization does exist.

To this end, we study a superclass, defined as those VPT such that the supremum of
the number of unmatched symbols over all output words is finite. As this corresponds to a
boundedness property, we manage to characterize this property by means of patterns on loops
of the transducers. Using these patterns, we prove the following key lemma:

Lemma 19. Let T ∈ gwnVPT and consider a run (p,⊥)
u|v−−→ (q,⊥) in T , such that p and

q are respectively reachable and co-reachable with the same stack σ. Then the number of
unmatched calls in v (as well as its number of unmatched returns) is bounded exponentially
in the number of states of T .

We use this result to prove:

Theorem 44 ([26]). Let T1, T2 be two VPT. If A is globally well-nested, then one can compute
in exponential time in the size of T1 and T2 a VPT T3 such that JT3K = JT2K◦JT1K. Moreover,
if T2 is also globally well-nested, then so is T3. As a consequence, the class gwnVPT is closed
under composition.

Intuitively, Lemma 19 gives us a bound on the buffer of stack symbols of T2 that we need
to store. However, unlike the construction used for lwnVPT, part of this buffer needs to be
stored in the states of T3.

Corollary 6 ([26]). The type checking problem for gwnVPT against VPA is in 2-ExpTime.
It is in ExpTime if the VPA constraining the output language is deterministic.

Comparison with other models of tree transducers We investigate the relative expres-
sive power of VPT and different classes of tree transducers. We characterize the expressive
power of VPT w.r.t. their ability to express hedge-to-string (H2S), and hedge-to-hedge (H2H)
transformations.
Hedges Let Λ be an alphabet. We let S(Λ) be the signature {0, ·} ∪ {a | a ∈ Λ} where 0
is a constant symbol, a ∈ Λ are unary symbols and · is a binary symbol. The set of hedges
HΛ over Λ is the quotient of the free S(Λ)-algebra by the associativity of · and the axioms
0 · h = h · 0 = h. The constant 0 is called the empty hedge. We may write a instead of
a(0), and omit · when it is clear from the context. Unranked trees are particular hedges of
the form a(h) where h ∈ HΛ. Note that any hedge h is either empty or can be decomposed
as h = a(h1) · h2. Hedges over Λ can be naturally encoded as well-nested words over the
structured alphabet Λs that contains the call symbol cf (resp. the return symbol rf ) for each
f ∈ Λ. We denote by lin(h) the linearization of an hedge h. Conversely, any well-nested word
over a structured alphabet Σ can be encoded as an hedge over the product alphabet Σc×Σr.
Hedge-to-string transducers We present now a model of hedge-to-string transducers (H2S)
that run directly on hedges, and is closer to classical transducers than VPT are. In particular,
this model is a syntactic subclass of macro forest transducers (MFT) [PS04] with no param-
eters, no swapping and no copy. Let Λ and ∆ be two finite alphabets. An hedge-to-string
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transducer from Λ to ∆ (the class is denoted H2S(Λ,∆)) is a tuple T = (Q, I, δ) where Q is
a set of states, I ⊆ Q is a set of initial states and δ is a set of rules of the form: 2

q(0)→ ε q(f(x1) · x2)→ w1q1(x1)w2q2(x2)w3

where q, q1, q2 ∈ Q, f ∈ Λ and w,w1, w2, w3 ∈ ∆∗.
The semantics of T is defined via mappings JqK : HΛ → 2∆∗ for all q ∈ Q as follows:

JqK(0) =

{
{ε} if q(0)→ ε ∈ δ
∅ otherwise

JqK(f(h) · h′) =
⋃

q(f(x1)·x2)→
w1q1(x1)w2q2(x2)w3

w1 · Jq1K(h) · w2 · Jq2K(h′) · w3

The transduction of an H2S T = (Q, I, δ) is defined as the relation {(h, s) | ∃q ∈ I, s ∈ JqK(h)}.
We say that T is tail-recursive whenever in any rule, we have w3 = ε. We denote by H2Str

the class of tail-recursive H2S.

Example 15. Let Λ be a finite alphabet. Consider T1 ∈ H2S(Λ,Λ) defined by Q = I = {q, q′}
and the following rules, for all f ∈ Λ:

q(0)→ ε q′(0)→ ε q(f(x1) · x2)→ q′(x1)q(x2)f

The domain of T1 is the set of strings over Λ (viewed as a particular case of hedges) and T1

defines the mirror image of strings.

Example 16. Let Λ be a finite alphabet and Λs be its structured version. We define T2 ∈
H2S(Λ,Λs ∪ {c#, r#}) which can non-deterministically root any subhedge of the input hedge
under a new symbol # and output the linearization of the new hedge. For instance, the input
tree f(abcd) can be non-exhaustively translated into the string lin(f(a#(bc)d)) or the string
lin(f(#(ab)#(cd))). Formally, T2 is defined by Q = {q0, q1, q2}, I = {q0} and δ defined as the
following set of rules: (observe that T2 ∈ H2Str) qi(0)→ ε ∀i ∈ {0, 2}, and

q0(f(x1) · x2)→ cfq0(x1)rfq0(x2) q1(f(x1) · x2)→ cfq2(x1)rfr#q0(x2)
q0(f(x1) · x2)→ c#cfq2(x1)rfr#q0(x2) q1(f(x1) · x2)→ cfq2(x1)rfq1(x2)
q0(f(x1) · x2)→ c#cfq2(x1)rfq1(x2) q2(f(x1) · x2)→ cfq2(x1)rfq2(x2)

Hedge-to-hedge transducers We consider now transducers running on hedges but produc-
ing (representations of) hedges as well-nested words. We define them as restrictions of the
two models we have considered so far. Of course, lwnVPT and gwnVPT can be interpreted
as hedge-to-hedge transducers.

We assume the output alphabet ∆ to be structured as (∆c,∆r). We define an H2S(Λ,∆) to
be an hedge-to-hedge transducer (H2H(Λ,∆)) if any rhs w1q1(x1)w2q2(x2)w3 of its transition
rules satisfies w1w2w3 ∈ ∆∗wn. We denote H2Htr the class of H2H that are additionally tail-
recursive.

Let us consider two structured alphabets Σ and ∆, and the H2S transducer T1 of Exam-
ple 15 over the input alphabet Σc × Σr. We naturally have lin(dom(T1)) = (Σc.Σr)

∗. Over
such input words, any VPT is equivalent to some NFT, and it is well-known that the mirror
transformation is not NFT-definable. We obtain: (VPT(Σ,∆) denotes the class of VPT from
Σ∗ to ∆∗)

2We consider linear and order-preserving rules only.

105



Lemma 20. There exists T ∈ H2S(Σc×Σr,∆) such that for all T ′ ∈ VPT(Σ,∆), JT K 6= JT ′K.

Intuitively, this is due to the ability that H2S have to ”complete” the output once the
current hedge is processed. This ability vanishes when tail-recursive H2S are considered, and
we prove:

Theorem 45 ([6]). The class H2Str(Σc×Σr,∆) is as expressive as the class VPT(Σ,∆).

(Sketch). Intuitively, in order to transform A ∈ VPT(Σ,∆) into T ∈ H2Str(Σc×Σr,∆), we
proceed as follows. States of T are pairs of states of A, corresponding to states reached
respectively at the beginning and at the end of the processing of an hedge. More formally,

the following rule exists in T iff there exist a call transition p
c|w1,γ−−−−→ p1, a matching return

transition p2
r|w2,γ−−−−→ q1, and the hedge represented by x1 (resp. by x2) can be processed from

state p1 to state p2 (resp. from q1 to q):

(p, q)((c, r)(x1) · x2)→ w1 · (p1, p2)(x1) · w2 · (q1, q)(x2)

It is worth observing that this encoding directly implies the tail-recursive property of T .
The converse construction follows the same ideas. The stack is used to store the transition

used on the call symbol, to recover it when reading the return symbol.

Lemma 20 still holds even if we restrict H2S to H2H, because the transducer defining
the transduction of Example 15 is actually an H2H. Similarly, Theorem 45 also holds when
restricted to hedge-to-hedge transductions (the same constructions apply):

Theorem 46 ([6]). The class H2Htr(Σc×Σr,∆) is as expressive as the class lwnVPT(Σ,∆).

6.4 Streamability

We present now our results concerning the streamability of nested-word to word transfor-
mations, represented as visibly pushdown transducers. More precisely, we investigate static
analysis of memory usage for this kind of programs on nested words, which are well-suited to
represent XML transformations.

As for finite-state transducers, some transductions defined by (functional and non-determi-
nistic) VPT cannot be evaluated efficiently in streaming (consider for instance the transforma-
tion swapping the first and last letter of a nested word). Our aim is thus to identify decidable
classes of transductions for various memory requirements that are suitable to space-efficient
streaming evaluation. We first consider the bounded memory requirement already introduced
for string-to-string transformations. However when dealing with nested words in a streaming
setting, the bounded memory requirement is quite restrictive. Indeed, even performing such
a basic task as checking that a word is well-nested or checking that a nested word belongs to
a regular language of nested words requires a memory dependent on the height (the level of
nesting) of the input word [SS07]. This observation leads us to the second question: decide,
given a transducer, whether the transduction can be evaluated with a memory that depends
only on the size of the transducer and the height of the word (but not on its length). In that
case, we say that the transduction is height bounded memory (HBM). This is particularly rel-
evant to XML transformations as XML documents can be very long but have usually a small
depth [BMV05]. HBM does not specify how memory depends on the height. This motivates
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the introduction of a third class of nested word transductions which we prove decidable, and
whose evaluation can be done with a memory that depends polynomially on the height of the
input word.

Bounded memory transformations

In Chapter 5, we have defined bounded memory string transformations, and proved that
this property is decidable for both rational functions (Corollary 1) and regular functions
(Corollary 2) using their equivalence with subsequential functions.

We can also prove the following negative result using a reduction of the problem of deciding
whether a CFL is regular:

Theorem 47 ([13]). It is undecidable whether a pushdown transduction is BM.

For VPT, BM is quite restrictive as it imposes to verify whether a word is well-nested by
using a bounded amount of memory. This can be done only if the height of the words of the
domain is bounded by some constant which depends on the transducer only: 3

Theorem 48 ([13]). Let T be a functional VPT with n states.

1. JT K is BM iff (i) for all u ∈ dom(T ), h(u) ≤ n2, and (ii) JNFT(T, n2)K is BM;

2. It is decidable in Co-NPTime whether JT K is BM.

To prove property 2., the decision procedure first checks condition i) in PTime. In the
sequel, we define the class of height bounded memory transductions, and show it is decidable
in Co-NPTime (Theorem 49). On words of bounded height, this class collapses with bounded
memory transductions, hence the result.

An algorithm for efficient evaluation of VPT

We present an online algorithm LcpIn to evaluate functional word transductions defined by
fVPT. We first introduce some notations. We fix some fVPT T and define, given an input

word u, the set reach(u) = {(q, σ, v) | ∃q0 ∈ I, (q0,⊥)
u|v−−→ (q, σ)}. The algorithm LcpIn

only applies on trimmed fVPT. The functionality of T then ensures that, for a given input
word u and a configuration (q, σ), there is at most one word v such that (q, σ, v) ∈ reach(u).

The output word produced by LcpIn after reading some input word u is the longest com-
mon prefix of the set π3(reach(u)), where π3 denotes the projection on the third component.
We denote this word by lcpout(u).

To achieve this, the core task of algorithm LcpIn is to maintain the set reachlcp(u) defined
as reachlcp(u) = {(q, σ, w) | (q, σ, lcpout(u)w) ∈ reach(u)}.

The set of reachable configurations may be of exponential size in the height of the input
word (consider for instance the VPT of Figure 6.6.(a)). To avoid this blow-up, we use a DAG
structure which aims at compacting this set. We illustrate it using an example depicted in
Figure 6.6.(b)-(d).

The depth of the DAG is always equal to the current height of the input word read so
far, and the DAG structure only stores the output words that have not been produced yet.

3In this result, the notation NFT(T, k) denotes the NFT obtained from the VPT T by restricting it to
input words u such that h(u) ≤ k.
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b
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(q0,⊥, 0)

(q1, γ1, 1) (q1, γ2, 1)

aa ba

(a) A VPT. (b) After reading c. (c) After reading cc. (d) After reading ccr1.

Figure 6.6: Data structure used by LcpIn.

Assume we have read the input word u and we want to handle a new symbol a. We can
prove that we can use the DAG structure representing reachlcp(u) to perform the following
operations: i) update the set reachlcp(u) with the transitions labeled by a, ii) compute the
output word v as the lcp of the resulting set, and iii) remove this word v so as to obtain a
DAG representing the set reachlcp(ua).

In order to establish the complexity of LcpIn, we introduce some notations. Let out6=(u)
be the maximal size of outputs of T on u where their common prefix is removed: out6=(u) =
max{|w| | (q, σ, w) ∈ reachlcp(u)}. We prove the following complexity result:

Proposition 13 ([13]). Given an fVPT T , one can build in PTime a Turing transducer,
denoted MLcpIn(T ), such that JMLcpIn(T )K = JT K, and which, after reading a prefix u′ of a
well-nested word u ∈ Σ∗, uses space in O((hc(u′) + 1) · out6=(u′)) on the working tape.

Height bounded memory transformations

We formalize the fact the a transformation can be evaluated with a memory whose size only
depends on the height of the input word using the notion of Turing transducer:

Definition 11. A (functional) transduction R ⊆ Σ∗×Σ∗ is height bounded memory (HBM)
if there exists a Turing transducer M and a function f : N → N such that JMK = R and on
any input word u ∈ Σ∗, M runs in space at most f(h(u)).

Example 17. Consider the VPT T2 of Figure 6.3 page 98 represented in plain arrows. As
we have seen it is functional but not sequentializable, and thus the transformation JT2K cannot
be evaluated with a bounded amount of memory. However, one can verify that it is possible
with a memory that depends on the height of the input word.

Recall that we have seen that BM functional NFT-transductions are characterized by the
so called twinning property, which is decidable in PTime. We introduce a similar characteriza-
tion of HBM fVPT-transductions, called the horizontal twinning property (HTP). Intuitively,
the HTP requires that two runs on the same input cannot accumulate increasing output delay
on loops.

Definition 12. Let T be an fVPT. T satisfies the horizontal twinning property (HTP) if for
all u1, u2, v1, v2, w1, w2 ∈ Σ∗ such that u2 is well-nested, for all q0, q

′
0 ∈ I, for all q, q′ ∈ Q,

and for all σ, σ′ ∈ Γ∗ such that (q, σ) and (q′, σ′) are co-accessible,

if

 (q0,⊥)
u1/v1−−−→ (q, σ)

u2/v2−−−→ (q, σ)

(q′0,⊥)
u1/w1−−−−→ (q′, σ′)

u2/w2−−−−→ (q′, σ′)
(1) then delay(v1, w1) = delay(v1v2, w1w2).
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Proposition 14 ([13]). The HTP is decidable in Co-NPTime for fVPT.

Sketch. Let T be a fVPT. We construct in polynomial time a pushdown automaton with s
counters4 (one reversal) that accepts any word u = u1u2u3 such that u1u2 satisfies the premise
of the HTP but such that delay(v1, w1) 6= delay(v1v2, w1w2) (i.e. the HTP is not satisfied).
Therefore the HTP holds if and only if no word is accepted by the automaton. This can be
checked in Co-NPTime [16].

We now show that HTP characterizes HBM fVPT-transductions.

Theorem 49 ([13]). Let T be an fVPT. JT K is HBM iff the HTP holds for T , which is
decidable in Co-NPTime. In this case, the Turing transducer MLcpIn(T ) runs, on an input
stream u, in space complexity exponential in the height of u.

We can state more precisely the space complexity of MLcpIn(T ) when T is reduced. In
this case, it is in O(3(h(u) + 1)3 · |Q|2(h(u)+1) ·M), where M = max{|v| | (q, a, v, γ, q′) ∈ δ}.

Example 18. Consider the VPT T ′2 obtained from the VPT T2 of Figure 6.3 page 98 by
including dashed arrows. We can prove that JT ′2K is not HBM. Indeed, T ′2 does not satisfy the
HTP: the delays increase when looping on cr around states p2 and q2.

Online bounded memory transformations

We have shown that a VPT-transduction is in HBM iff the horizontal twinning property holds.
The notion of height-bounded memory is quite permissive as for instance, any transformation
of ranked tree linearizations (given a fixed rank) is HBM. In this section, we introduce a
stronger constraint on memory: the amount of memory must depend only, at each moment
(i.e. at any position in the stream), on the current height of the nested word. We call this
requirement online bounded memory (OBM).

We give an effective characterization of OBM VPT-definable transformations using a new
twinning property (matched twinning property, or MTP for short). Since it is a characteri-
zation of transformations, this property does not depend on the VPT that implement them:
two equivalent VPT that implement the same transformation both satisfy, or both do not
satisfy, this twinning property. Another appealing property of OBM, compared to HBM,
is that the maximal amount memory needed when running the algorithm LcpIn is at most
quadratic in the current height of the input nested word, while it is exponential for HBM
transformations, and this latter bound is tight.

Definition 13. A (functional) transduction R ⊆ Σ∗×Σ∗ is online bounded memory (OBM)
if there exists a Turing transducer M and a function f : N → N such that JMK = R and on
any input word u ∈ Σ∗, if M has read the prefix v of u (but not more), then the amount of
memory of M on the working tape is less than f(hc(v)).

The matched twinning property is a strengthening of the horizontal twinning property
obtained by adding some new delay contraints on the matched loops. Intuitively, the MTP
requires that two runs on the same input cannot accumulate increasing output delay on
matched loops. They can accumulate delay on loops with increasing stack but this delay has
to be caught up on the matching loops with descending stack. We show that this property
is decidable, and that subsequential VPT satisfy it. Therefore the class of OBM VPT-
transformations subsumes the class of subsequentializable VPT.

4The number s does not depend on the transducer T .
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Definition 14. Let T = (Q, I, F,Γ, δ) be an fVPT. T satisfies the matched twinning property
(MTP) if for all ui, vi, wi ∈ Σ∗ (i ∈ {1, . . . , 4}) such that u3 is well-nested, and u2u4 is well-
nested, for all i, i′ ∈ I, for all p, q, p′, q′ ∈ Q, and for all σ1, σ2 ∈ ⊥.Γ∗, for all σ′1, σ

′
2 ∈ Γ∗,

such that (q, σ1) and (q′, σ2) are co-accessible:

if

 (i,⊥)
u1/v1−−−→ (p, σ1)

u2/v2−−−→ (p, σ1σ
′
1)

u3/v3−−−→ (q, σ1σ
′
1)

u4/v4−−−→ (q, σ1)

(i′,⊥)
u1/w1−−−−→ (p′, σ2)

u2/w2−−−−→ (p′, σ2σ
′
2)

u3/w3−−−−→ (q′, σ2σ
′
2)

u4/w4−−−−→ (q′, σ2)

then delay(v1v3, w1w3) = delay(v1v2v3v4, w1w2w3w4). We say that a VPT T is twinned
whenever it satisfies the MTP.

Note that any twinned VPT also satisfies the HTP (with u3 = u4 = ε). Note also that,
as a consequence of Theorem 50 below, any subsequentializable VPT satisfies the MTP, but
the converse is false, as witnessed by the following example.

Example 19 (MTP does not imply subsequentializable). The VPT of Figure 6.3 with plain
arrows does not satisfy the MTP, as the delay between the two branches increases when it-
erating the loops. Consider now the VPT obtained by replacing r by r′ in the transition
(q1, r, c, γ, q2). It is obviously twinned, as we cannot construct two runs on the same input
which have the form given in the premises of the MTP. However this transducer is not sub-
sequentializable, as the output on the call symbols cannot be delayed to the matching return
symbols.

As for the HTP, we can decide the MTP using a reduction to the emptiness of a pushdown
automaton with bounded reversal counters:

Proposition 15 ([13]). The matched twinning property is decidable in Co-NPTime for
fVPT.

The next result states the equivalence between the matched twinning property and the
class of online bounded memory transformations. This is a strong result, as it shows that the
matched twinning property is a machine independent characterization. Proving that the MTP
implies the membership in the class OBM follows from an analysis of the algorithm LcpIn.
Conversely, while our proof in [13] was a tedious case analysis using word combinatorics, we
recently managed to give a short proof using a recent result of Saarela [Saa15], pointed to us
by Sylvain Salvati.

Theorem 50 ([13]). Let T be an fVPT. T satisfies the MTP iff JT K is OBM. In particular,
it is decidable in Co-NPTime whether JT K is OBM. In this case, the Turing transducer
MLcpIn(T ) runs, on an input stream u, in space complexity quadratic in the height of u.

To conclude this section, we give a summary of the relations between the different classes
of VPT we have considered. While the classes BM, OBM and HBM are decidable in Co-
NPTime, the decidability status of subsequentializable VPT is open.

BM ( subsequentialVPT ( OBM ( HBM ( fVPT
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6.5 Perspectives

Visibly pushdown automata have been successful to transfer decidability results and closure
properties from finite state automata. Similarly, we believe that the model of visibly push-
down transducers we have introduced enjoys most of the decidability properties of finite state
transducers. We have already proven this for functionality and k-valuedness. When the
output alphabet is structured, we have also proven the closure under composition, and the
decidability of type checking.

However, there are still some important problems that are decidable for finite state trans-
ducers but open for VPT. In particular, the three following problems are worth being studied:
first, the sequentiality problem asks, given a functional VPT, whether there exits an equivalent
deterministic VPT; second, the decomposition problem aims at decomposing a finite valued
VPT as a finite union of functional VPT, this would yield the decidability of equivalence for
finite valued VPT; third, the finite valuedness problem consists in determining whether there
exists an integer k such that a given VPT is k-valued.

Concerning the sequentiality, we have already addressed this problem unsuccessfully. We
have for instance introduced a new twinning property (the matched twinning property defined
in Section 6.4) adapted to the nested structure of the input words of a VPT, but we have
shown that it characterizes a strict superclass of sequentializable VPT. However, it is possible
to prove that this twinning property, when considered over a commutative semi-ring, does
characterize subsequential functions (this is an unpublished result).

The problem of finite valuedness was one of the objectives of the PhD thesis of Mathieu
Caralp, and we obtained partial results. For instance, our work on the boundedness of
weighted visibly pushdown automata solves the problem for one-letter output alphabets.
There are essentially two approaches to solve the finite valuedness problem for finite state
transducers, and both rely on the use of patterns. The first one studied by Andreas Weber and
Helmut Seidl in [Web90, Sei94], uses a decomposition of the automaton in strongly connected
components in order to prove that the valuedness is finite when the patterns are satisfied.
The second one, proposed by Jacques Sakarovitch and Rodrigo De Souza in [SdS08], uses
the notion of delay (also considered in this thesis) in order to reduce the finite valuedness
of a transducer to a boundedness problem for weighted automata. For a subclass of visibly
pushdown transducers, we have identified a set of patterns and proven that they constitute a
necessary condition. In order to prove that they are sufficient, we are currently investigating
an adequate notion of delay. Such a notion would allow us to apply the approach of De Souza
and Sakarovitch, hence reducing the finite valuedness problem to the boundedness problem
for weighted visibly pushdown automata that we solved in [7]. It is worth observing that the
delay is also at the core of the decomposition result as presented in [SdS10].

Last, models equipped with variables as SST constitute another perspective. A model
adapted to nested words has been proposed in [AD12], in which the authors prove that the
model is expressively equivalent to MSO-definable transformations of nested words. The prob-
lem of variable minimization for such a highly expressive model seems very challenging. A less
ambitious objective is to study such models for commutative semi-rings. This would require
to adapt to nested words the generalized twinning property we introduced in Section 5.3, a
perspective already mentioned in the previous chapter.
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Conclusion

This thesis summarizes some of my contributions in the area of formal verification for soft-
ware systems. These results are organized in two parts: the first one addresses the issue of
robustness in timed systems, and the second one the efficient evaluation of transformations.
They consist mostly of decidability results, as well as characterizations of different subclasses.

Most of the decidability results on timed systems, for model checking or controller syn-
thesis, rely on adequate refinements of the region automaton, or on suitable representations
of clock constraints. It is worth mentioning that for each decision problem studied so far
(model checking of several temporal logics, controller synthesis for different kind of plants),
the theoretical complexities we obtain are the same for the robust and the standard version
of the problem. This validates the interest of the enlarged semantics.

Regarding transducers, we managed to obtain a characterization of different classes of
transformations using patterns and combinatorics of words. Such characterizations constitute
a powerful tool that allows in particular to derive efficient algorithms for deciding classes of
transformations. Using automata-logic connections, we can then decide fragments of logics
(for instance order-preserving MSOT inside MSOT). This kind of problems is known to be
difficult, and often addressed by means of algebraic tools, but such tools are currently missing
in this context.

At the end of each chapter, I have already given detailed perspectives. I describe now
some additional possible developments that I have not investigated yet. Of course, several
other research directions could be considered, as automata based approaches can be used for
various purposes, from verification to performance evaluation. For instance, let us mention
that robustness issues have recently been considered in transducers [SDC13, HOS14], and
even more recently in a model of timed transducers [HOS15].

Timed systems Stochastic perturbations and timed automata We have already considered
different stochastic models of perturbations in our work on robust controller synthesis. It
seems also relevant to consider such models for robust model checking. More generally, it
would be interesting to generalize our works to timed automata including stochastic transi-
tions. Such models have indeed already been studied as they are useful to describe real systems
or protocols in which some behaviors are naturally modeled using a probability distribution.

Nash equilibria The games underlying our controller synthesis problems are two-player
zero-sum games. In the more general setting of non-zero-sum games, the notion of equilibrium
is relevant: a Nash equilibrium is a behavior of the players (i.e. a strategy for each player –
there may be more than two players) such that no player can get a better payoff by modifying
its strategy. It could be interesting to study how to introduce a notion of robustness in this
setting: for instance, given some Nash equilibrium, could it be the case that even if the players
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slightly diverge from their strategy, the resulting global behavior of the system stays close
from the Nash equilibrium?

Transformations From transducers to quantitative functions. Several results presented in
this thesis also hold for functions from words to a structure more general than that of words.
In particular, cost register automata generalize the model of streaming string transducers,
and our results presented in Section 5.3 do apply to this more general setting. Lifting some
of our results to such a general setting is thus a promising research direction.

Streamability of regular hedge-to-string transformations For string-to-string functions, we
managed to characterize the class of rational functions among regular ones. One of our
objectives is to extend this result to hedge-to-string transformations. Regular hedge-to-string
transformations correspond to the class of MSO-definable transformations from hedges to
strings. A first step consists in identifying an equivalent model based on two-way VPT
and to this end we conjecture that the class of two-way VPT extended with regular look-
around and satisfying a finite-visit property coincides with the class of regular hedge-to-
string transformations. The second step will then consist in generalizing the Rabin and Scott
procedure described in Section 5.2 from words to nested words.

Specification languages for transformations An important asset of the model-checking ap-
proach is the specification logic LTL. This logic can also be used to specify input/ouput
constraints of reactive systems. While temporal operators present in LTL are adequate to
specify correctness properties of programs, it is not the case to describe programs manipu-
lating strings. The recently introduced language Drex allows to describe any regular string-
to-string function and a fragment of this language has been identified in order to admit an
efficient evaluation (cubic in the size of the input word). However, the translation of Drex
programs into transducers may be non-elementary. An interesting objective is then to in-
troduce a specification formalism for transformations, and more generally for quantitative
functions. This formalism should be sufficiently expressive to modelize standard programs
manipulating strings, and should admit efficient translations into automata/transducers.
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