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Abstract. Timed automata (TA) are a widely used model for real-time systems.
Several tools are dedicated to this model, and they mostly implement arébrwa
analysis for checking reachability properties. Though diagonal ainttrdo not
add expressive power to classical TA, the standard forward analggisthm is

not correct for this model. In this paper we survey several appesato han-

dle diagonal constraints and propose a refinement-based methatdbimg the
usual algorithm: erroneous traces found by the classical algorithmnaigzed,
and used for refining the model.

1 Introduction

Model checking.The development of reactive, critical or embedded systemsires

the use of formal verification methods. Model checking cstissin verifying automati-
cally that a model fulfills its specification and has been Widad successfully applied
to industrial systems. It is often necessary to considentifadive informations on time
elapsing in both the model description and the property tedoified. Timed automata
(TA) have been proposed by Alur and Dill [AD94] to model suelalrtime systems.
Since then, many theoretical results have been obtainaitiatglity of reachability

properties [AD94], model checking for timed temporal IJACD93,HNSY94]etc

Reachability in timed automataDecidability of reachability properties in timed au-
tomata is based on the construction of the so-called regitongaton, which finitely
abstracts behaviours of timed automata [AD94]. Howeverattice this construction

is not implemented, and symbolic on-the-fly algorithms hagen proposed to over-
come the complexity blow-up induced by timing constraiiiisese procedures are of-
ten based omonesandDBMSsto represent the sets of clock valuations. In particular, an
on-the-fly forward reachability algorithm using zones hasrbdeveloped and imple-
mented in tools like BPAAL [LPY97] or KRONOS[DOTY96]. Even if timed automata
form a decidable class, the exact forward computation méayenminate. To overcome
this problem, armbstractionoperator over zones needs to be used [DT98].

Guards in timed automataClassical timed automata [AD94] consider only simple
constraints ~ ¢ anddiagonal constraints: —y ~ c. Surprisingly the standard forward
reachability algorithm based on zones has been recentlyrstmbe correct only for
TA with simple constraints, but not always correct for TAngsidiagonal constraints
[Bou03,BY03]: locations of TA with diagonal constraints ynlae found reachable by



the algorithm while they are not! This problem comes fromubke of the abstraction
operator over zones.

From [AD94,BDGP98] we know that diagonal constraints camrdmoved from TA.
This gives a procedure for verifying TA with diagonal coastits: construct a TA with-
out diagonal constraints and then apply the standard foramaalysis algorithm. How-
ever, removing diagonal constraints induces a blowup instke of the model (it is
exponential in the number of diagonal constraints). Thidaarly too expensive to be
used on real-life systems. Moreover diagonal constraiotsad always raise wrong di-
agnosis (only few examples can be found in the literaturd)aasystematic removal of
all diagonal constraints may therefore not be pertinent.

Our contribution. In this paper we propose a refinement-based method whichnddes
systematically remove all diagonal constraints. The cémiomethod is an algorithm

which analyzes an erroneous trace provided by the classpadithm and selects a set
G of diagonal constraints which causes the error. We thenverdiagonal constraints

of G from the model and re-run the classical algorithm on the eefimodel.

Outline of the paperIn Section 2 we introduce basic notions of timed automata, fo
ward reachability analysis, zones and abstractions. Itide8 we survey several ap-
proaches to handle diagonal constraints and propose amefinebased method for
patching the usual algorithm. In section 4 we describe @oréghm for selecting perti-
nent diagonal constraints. For this, we introduce an eidaraf the DBM data structure
which allows us to store information on the dependence ofpeded zones w.r.t. diag-
onal constraints. We prove correctness and progress oeinbement-based method.

2 Forward Analysis of Timed Automata

Basic definitions, timed automataWe consider as time domaih the setQ* of non-
negative rationals or the s&™ of non-negative reals. We consider a finite 3eof
variables, calledlocks A clock valuationover X is a mapping : X — T that assigns
to each clock a time value. The set of all clock valuations o¥es denotedlX. Let

t € T, the valuatiorv + t is defined by(v + t)(z) = v(z) + ¢, Vo € X. For a subset

of X, we denote byr « 0]v the valuation such that for eaehe r, ([r < 0Jv)(z) =0
and for eaclr € X \ r, ([r — OJv)(z) = v(z).

Given a set of clocks(, we introduce two sets of clock constraints ovér The most
general one, denoted I8} X), is defined by the grammag“:=x ~c |z —y ~ ¢/|
gAg | &"wherez, y € X,c € 7Z,~ € {<,=,>} andt stands for true. We also
use the proper subs€jy (X) of diagonal-freeconstraints where the constraints of the
form z — y ~ ¢ (calleddiagonal constrainfsare not allowed. To simplify, we do not
consider strict inequalities, but everything presentatlimpaper extends easily to strict
inequalities. We writer = g when the clock valuation satisfies the clock constraigt

A clock constraint is sai&-boundedwhenever it only uses constraints with constants
between-k and+k.

A timed automator{TA for short) overT is a tupled = (X, X, L,¢,,T), whereX
is a finite alphabet of actionsy is a finite set of clocks[ is a finite set of locations,
ly € L is the initial location, and’ C L x [C(X) x X x 2X] x L is a finite set



of edges (or transitions). If only diagonal-free constimiare used on transitions, the
timed automaton is said to lskagonal-free A stateof A is a pair(¢, v) where? € L

is the current location and € T represents the current values of clocks. The initial
state is(¢y, vo) whereuwy is the valuation mapping all clocks ik to 0. The semantics
of A can be described as an infinite transition system whosessatestates ofl and
whose transitions correspond to time elapsing followedrbgrzabled edge il. More
precisely, from a staté/, v), it is possible to reach a stat¢,«’) if there existd € T
and(¢,g,a,r,¢') € T suchthat+¢ | g andv’ = [r < 0](v+ ). Now we can define
arun of A as a finite sequence of such steps, it is denoted:

<£0,U0> gl’:’i)wl’vﬁ 921:2,T2 gpvftlpa’r’p <£p7vp>
1 2 P

wheret; is the amount of time elapsed since stdtge vo)—the duration of time elapsing
in thei-th location is the; = ¢; 1 — ¢;. In the following we abstract away names of
actions because we will only consider reachability prapsrt

Reachability in timed automataReachability is a fundamental problem in verification.
For timed automata, it is stated as follows: given a timedmaton.4 and a set of
locations L, does there exist a run leading to some stdfe), with [ € L;? This
problem has been proved decidable (and PSPACE-comple#&byand Dill [AD94].
The proof is based on the well-knowegion construction: the (infinite) set of states of
A is partitioned into a finite set of regions such that two statkich belong to the same
region satisfy the same reachability properties.

Algorithms for reachability. In practice the region construction is not used to check
reachability properties because the number of regionsoisigh: it is not abstracted
enough to be applied successfully over non-trivial systéfosthis purpose, symbolic
and on-the-fly algorithms have been proposed and implerdéiY 97]. They use the
constraints of (X ) as symbolic representations for the sets of valuation$isrftame-
work such a constraint is calledzaneand is usually implemented with DBMs (Dif-
ference Bound Matrices [BM83,Dil90]). Backward analysises no real problem but
forward analysis is more convenient for verifying timedauata with useful features
like integer variables. Given a zotkand an edge = (¢, g, a,r,{'), Post(Z, e) denotes
the zone corresponding to the $ét < 0](v+t) € TX | v € Z, t > 0,andv+t |= g}.
Symbolic transitions can then be defined osgmbolic state$/, Z) using thePost(-)
operator. The symbolic graph may however be infinite, bexaoastants used in zones
may grow for ever. The forward computation does not terneimatgeneral. To avoid
this phenomenon, an abstraction operator, calledktegtrapolation(k is a constant
supposed to be greater than the maximal constant occurridg, iis used at each iter-
ation: Extra;(Z) denotes the smallest zone containigind defined by &-bounded
clock constraint. Together with inclusion checking (Itlhef the algorithm), this clearly
entails the termination of the classical procedure desdrés AlgorithnmFRA (see Al-
gorithm 1). If a location ofL s is found as reachable, AlgorithFRA returns a witness
trace (.e.a sequence of consecutive edges).



Algorithm 1 Forward Reachability Analysis FRA

1. Algorithm FRA (\A: timed automaton; L;: set of final locations) {
Define k as the maximal constant appearing in A;

2
3. Visited := ; (x Visited stores the visited states *)
4.  Waiting := {(o,Extrai(Zo))}; (* Zo = {wo} *)
5. Repeat
6 Get and Remove (¢,7) from Waiting;
7 If¢e Ly (x £ is a final location x)
8 then {Return “Yes” and a witness trace;}
9. else {If there is no (¢,Z’) € Visited s.t. Z C Z’ (% inclusion checking )
10. then {Visited := Visited U {(¢,2)};
11. Succ = {(¢,Extra,(Post(Z,e))) | e edge from £ to ¢'};
12. Waiting := Waiting U Succ; }}

13.  Until (Waiting = 0);
14. Return “No”; }

Completeness and correctnes@bviously, as thé-extrapolation of zones is an over-
approximation, this algorithm is complete: any reachattation is found as reachable
by the algorithm. The correctness (“only reachable locatiare found as reachable by
the algorithm”) is more difficult to state. In [Bou03,BY03Jgorithm FRA has been
proved correct for diagonal-free timed automata and it le@mishown to beot correct
for timed automata using also diagonal constraints. FiguHlestrates this correctness
problem: AlgorithmFRA sees location “Error” of4 as reachable whereas it is not (see
Appendix A for details). This problem is not due to the chadeonstant: or to the
definition of Extray (-): if we replace the operatdixtray(-) by any operatoExtra(-)

for someK or even by any abstraction operatdss such that for every zon#, Abs(Z2)

is a zone containing’, and{Abs(Z) | Z zon& is finite (to ensure termination of the
forward analysis algorithm), then the algorithm will not d@rrect and will announce
state “Error” as reachable iA (see [Bou04]).

! x3 <3

: {z3,21} :=0 o :=0

O

O T2 <1 +1 . 1 =3 O To =2
> ! = =
Error T4 2% 12\ 0 0

Fig. 1. AutomatonA



Extrapolation and zones.As explained above, zones are a suitable symbolic repre-
sentation for clock valuations but contrary to what is some$ assumed, zones are
not a symbolic way of handling regions: there is indeed ngnsorrespondence be-
tween zones and (sets of) regions, which explains the doesgs problem encountered
in Algorithm FRA. For example, in the diagonal-free case, there éxlsbunded zones
which are strictly included in a region. Concerning modeithwliagonal constraints,
one can compute (using AlgorithFRA) a zoneZ such that there is a regiaR with

Z N R = ( while Extrax(Z) N R # 0. Such a phenomenon appears for example in the
automaton of Figure 1. This emphasizes the fact that we Hasagsto be careful when
handling regions and zones, and to separately consideon®tiased on regions and
methods based on zones. This seems related to abstracililems encountered in the
verification of infinite-state systems, and we will use dieasrefinement techniques
[CGJt00] to solve our problem.

3 Methods for Handling Diagonal Constraints

Our aim is to propose an efficient forward algorithm basedaes for checking reach-
ability properties in timed automata with diagonal constia We can distinguish two
main approaches. First there are the ones based on a syisteemadval of diagonal
constraints: the original TA is replaced by a diagonal-fféeand a standard algorithm
is then applied. Secondly there are methods in which didgmrestraints are treated
only when they induce spurious traces: if the constraimtegge no problem, then these
methods provide no extra-cost compared with the standahedility algorithm. This
last criterion is very important because there are only fevblematic cases.

3.1 Systematic Removal of Diagonal Constraints

It is well known that given a TA4 with diagonal constraints, it is possible to build a
diagonal-free TAA’ s.t. A and A’ verify the same reachability properties [BDGP98].
This construction combined with the classical reachabdlgorithm for diagonal-free
TA provides a correct forward algorithm for TA, and such almoetavoids the expensive
region automaton construction. Nevertheless removingatial constraints entails a
complexity blow-up: ifn is the number of diagonal constraints /) the size ofA’

is in O(|A] - 2™). This approach is clearly too expensive, especially if wsuaee that
diagonal constraints mostly raise no error.

Intuitively, if we want to avoid problems with diagonal carsnts, it seems sufficient
to ensure the following property/Z computedvg diagonal Z C gV Z C —g (x).
The method proposed by Bengtsson and Yi in [BY04] relies as thiterion: after
each application of the extrapolation operator, the zonetwis obtained is split so
that Property(x) holds. Like the construction of [BDGP98], this solutionfeu$ from

an exponential blow-up of the number of zones visited duttiregcomputation. Indeed,
the complexity of Algorithn=RA crucially depends on the number of zones which need
to be handled, and with both two previous methods, the numibsones is multiplied

by 2™, wheren is the number of diagonal constraints of the initial autamat



Finally we could also restrict the removal of the two prewauethods to thactive
diagonal constraints in the current control location,dafing the idea proposed for
clocks by Daws and Yovine in [DY96], and generalized in [BERBIL

Note that all these methods induce a complexity blow-up ef/¢here is no false-
positive execution. Indeed, timed automata with diagopaktraints are exponentially
more succinct than diagonal-free timed automata [BCO5].

3.2 Target Methods for Spurious Traces

In this case, the aim is to develop special heuristics whealse{positive is found.
This would permit to have algorithms as efficient as the steshdne when there is no
problem with diagonal constraints.

First note that given a symbolic execution, it is easy to khebether it is consistent
(i.e. whether a corresponding run actually exists4por if it is a false positive This
can be done by using a forward computation with no extrajpoigthe finiteness of the
execution ensures termination).

Therefore a natural (but wrong!) method could be: (1) usesthadard reachability
algorithm, (2) if a location is found reachable through a bygfit executionp, check
whetherp is a false positive, (3) if is a false positive, run further the algorithm. But this
procedure is not complete: some reachable locations mayids=dby this algorithm.
For example, assume that a false positive contains a syodtalie(¢, 7), and assume
that later in the algorithm, a symbolic stdte Z’) is computed withZ’ C Z. Because of
the inclusion checking, AlgorithfARA will stop the computation, whereas itis possible
that a valid run goes through symbolic stéfeZ’): inclusion between extrapolated
zones does not imply inclusion between exact zones. Sudhatien is illustrated in
Appendix B. On the other hand, removing states of the falséipe trace from the list
of visited states could prevent termination of the componat

We now consider two methods that extend this idea in ordeat@ fa complete and
correct algorithm.

Combining forward and backward computationSince diagonal constraints are cor-
rectly handled with the backward computation, a possibfg@ach consists in combin-
ing forward and backward computations. This algorithm wsdrktwo steps. First one
performs a forward analysis: If a location is found reachabith a correct execution,
the algorithm stops; If a false-positive execution is fouhis stored in the visited states
list and the algorithm continues. At the end of the first sasfhier a correct execution
has been found (and the answer is YES), or no spurious egeduis been found (and
the answer is NO), otherwise the second step begins. Itstsrinia backward compu-
tation from the target states of the spurious executions Baickward computation is
restricted to the set of visited states computed in the fiegt. SSuch a method would
work, but it has an important drawback: the backward contmrtaloes not handle ad-
ditional data: in WpPAAL for ex., it is possible to add integer variables and openatio
over these data, they can be treated in forward computabiatnsot in backward. This
restricts a lot the applicability of the method.



A refinement-based and pure forward methodVe now propose to use a refinement-
based method (illustrated on Figure 2): (a) use the stanagatithm over a model
M, (b) when a false positivg is found, refine the model in such a way thawill be
correctly treated in the refined mod®l’, and (c) restart the procedure over'. Such

a methodology has been proposed in [€GJ] and has been applied to many kinds of
infinite-state systems (constraint-based programs [HRY|$@brid systems [ADI03],
etd). In our case, a refinement step will consist in removing sdiagonal constraints of
the initial automaton. Termination is clearly ensured ifegtst one diagonal constraint
is selected at each iteration. As removing diagonal coinstrds expensive, the key
idea is to refine w.r.t. diagonal constraints only if it is asgary: when a false positive
p is found, we want to find as few diagonal constraints as ptessibch that if we
remove these diagonal constraints in the model, then the $alse positive will not
be found again by AlgorithnFrRA. Selecting pertinent diagonal constraints is the core
of our algorithm and will be presented in the next section.ndle briefly present the
refinement step of our algorithm.

new.A

no yes witness
No!l «<—— FRA(A) trace

A

consistent yes Yes!
—
trace ? ’

selection of
diagonals

Fig. 2. Refinement-based method

Refinement w.r.t. a constraing. Given a TAA = (X, X, L, 4y, T) and a diagonal
constrainty = (x — y ~ ¢), we consider the method proposed in [BDGP98] to remove
g from A: the truth value ol is encoded into locations of the refined automaton
This boolean value is not changed by time elapsing, it cay balmodified by a reset
of z or y. Locations ofA4, are pairs(¢, e) with £ € L ande € {T,_L}, and edges are
directly derived from those ofl: they either relate locations with the same or opposite
truth value depending on the reset of the corresponding iedgeand the occurrences
of the guardr — y ~ c are just replaced by their truth value in the current locatithis
construction can be directly extended to a set of diagonadtcaints. IfG is a finite set

of diagonal constraints and a TA, we noteSplit(.A, G) the TA which is obtained after
refinement w.r.t. the constraints @i



4 Diagonal Constraint Analysis

We assume a timed automatdn= (X, X, L, ¢y, T) is given, and we set the cardinal
of set X. Let k be an integer greater than the maximal constant occurring. ihet
Diag(.A) be the set of diagonal constraints occurring in the guards. &f this section,
we propose an algorithm which, given an erroneous tyacelects a set of diagonal
guardsG C Diag(.A) which satisfies the two following conditionéi) G # (), and
() in Split(A, G), the erroneous tragedoesn’t exist anymore. Conditidm) ensures
termination of the refinement method (@&g(.A) is a finite set), and conditiofi:) is
aprogresscondition: a given erroneous path will never be found twice.

Of course, the set of all diagonal guards appearing alongitemeous trace satisfies
both conditions. But our aim is to select as few guards asiipes©ur algorithm builds
a possibly much smaller set of guards, and it does not inerthees complexity: it is
linear in the length of the run, like the consistency chegkin

4.1 Erroneous Traces

Algorithm FRA returns a witness trace whenever a final state is found ababk(a
trace p is a sequence of consecutive edgesAdf Such a trace isrroneouswhenever
no real run follows the same edges as the trace. To formdligenbtion, we associate
with a tracep two zones: the zong? which corresponds to all valuations which are
reachable following trace, andZ; which corresponds to all valuations which are found
as reachable when applying the abstract symbolic computatilongp. We can define
these two families of zones inductively as follows. For timepéy trace (denoted),

z¢ = Z* ={w}, and ifpis atrace and an edge such that« is also a trace, we have
Z5 o, = Post(Z,a), andZg , = Extray(Post(Z5,a)). Note that the zones defined
here only depend op and not on automatosd. A tracep is saiderroneous(we also
say that it is dalse positivgfor A whenZ$ = () whereasZ§ # (.

Algorithm FRA is correct for diagonal-free timed automata. Thug, ii§ an erroneous
trace, there must exist some diagonal guard alenghich is the cause of the error.
One hope could be that when the exact and the abstract caiopstdisagree, the last
guard encountered is diagonal (as it is the case for the attmmin Figure 1), and
that it is sufficient to refined w.r.t. this guard to get rid of the erroneous trace. This is
however not the case: this guard can be a simple non diagonatraint. Automaton

in Figure 3 illustrates this point4, refers to the automaton depicted on Figure 1): the
last transition, whose guard is non-diagonal, leads to gutyeaxact computation while
the abstract one is not empty. Understanding the role ofodialgconstraints along an
erroneous trace thus requires a precise analysis of thesveltekution.

4.2 Propagation of Constraints, the EDBM Data Structure

For analyzing an erroneous trapewhich is output by AlgorithmFRA, we will use
a forward computation. We want to understand precisely ffezteof each diagonal

1 e stands for exact andfor abstract.
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Fig. 3. The problem occurs on the simple constraint< 1.

constraint and therefore we will study the differences leetwthe zoneg¢ and Z°.
We won't directly reason on these zones but on their reptaens with DBMs. A
DBM M = (m; ;)o<i,j<n IS @ Square matrix of size + 1 (wheren is the number
of clocks) whose entries belong B U {oc}. Its semantics is the zord@/] = {v €
TX | Vi,j x; — z; < m,;;} (we use a clock:, assumed to be equal in order
to represent constraints; ~ ¢ as a difference constraint; — o ~ ¢). To have a
non-ambiguous representation of zones by DBMs, we neednpetenormal forms
it consists in applying Floyd’s Algorithm for shortest patbver the implicit weighted
oriented graph described by such a matrix (see [Dil90,BbidiLlassical results over
DBMs).

As we use a shortest paths algorithm, the values of the srdepend not only on the
last guard we intersect but also on other entries. Just ssldrie in Floyd’s Algorithm
in order to compute all shortest paths, we will store the &tefence” of each entry.

For example, if the current zone is < 5, and if the next transition of the trace is

& whereg is 1 — zo < 3, the next zone which is computedas < 8 A zo =
0Ax1 —xz9 < 8, and we will store that the constraints < 8 andz; — z9 < 8
depend ory (because they are inherited from the intersectiog ofith z, < 5). On
the contrary, the constraint = 0 does not depend an(it is solely due to the reset of
clock zs). For storing such a dependence information, we need toletire DBMs, we
thus define the EDBM data structure:

Definition 1 (Extended DBM — EDBM). An extended DBMis a pair (M,S) of
square matrices of size + 1 where M is a classical DBM andS is a matrix whose
entries are non-empty sets of subsetBiag(.A).

Let (]\47 S) be an EDBM withM = (mi,j)ivjzomn andS = (Si,j)i,jzo...n- This EDBM
represents the same zonelds and the sef; ; informally contains all diagonal guards
on which entrym; ; may depend. In a weighted graph, it may exist several shiquédiss
between two vertices. The same holds for dependence seteif) ; may contain sev-
eral subsets dbiag(.A), each one contains sufficient information on the dependehce
m; ; W.I.t. diagonal guards. Each sgte S; ; will be a candidate set for the refinement
step whenever entny; ; is detected as non correct. We store every possible set 80 as t
choose the minimal .. smallest) one at the end.

Operations on EDBMs. Given a constrainy, we useSet(g) to denote{{g}} if g
is diagonal and(} otherwise. We first define the two following basic operations
non-empty sets of sets:



(7) S1VSy = {G | GesS USQ}

(412) S1ASy = {Gl UGy | G € S andGy € 82}
We can now extend classical operations on DBMs (needed bygritthgn FRA) to
EDBMs. We consider two EDBM$M, S) and (M’,S’) with M = (m; ;)i j=0..n,
S = (Sij)ij=0..ns M' = (m;j)i,jzomn, andS’ = (S,{J-),-,j:o“_n. We assume in
addition that the DBMV/ is in normal form.

P ——
Future. (M',S") = (M, S) whenever:
i
ot sy = { 00D =0

CA (m; ;,Si;) otherwise
Reset of clocky. (M',S') = [z < 0](M,S) whenever
o, {VJ}) ifi,j €{0,k}
(mio,Sio) ifj=k,
(m07,80] ifi:k’,
(my,;,Si;) otherwise

(mi ;S j) =

7,5

Intersection witty = (2, — 2; < ¢). (M’',S’) = Inter((M, S), g) whenever:

(mi,j,Siyj) if m; <m
(m”,S' ) (mi,j,8i7j\'/§) if m;; =m
(m,g) if m;; > m

wherem = m; ;, + ¢+ my andS = S;  ASet(g)AS

Note that the intersection operation contains a normadizagtep in order to tighten
every entry w.r.t. the new constraintIn fact, the resulting DBMV/’ is in normal form
after each of these three operations. FollowingPlaL implementation of forward
analysis [BBLPO5], these operations are sufficient for catimg the exact reachable
zones along a trace. Computing successors w.r.t. an €dgeis done by computing
the future, then computing successively the intersectibima¥l atomic guards forming
¢, and finally computing resets of all clockssin

NS_19;5,T Fut. N Ngp r—0
¢ =, ¢ istransformedinto ¢+ 9 L. SBIS

From now on, we decompose in this way every transition andttiewhole trace into
elementary step&y;);=1..., (even if it is an abuse of notation, we write= «; . .. o)
such that each step is either an intersection with an atoododg a reset of clock, or a
future operation. This decomposition allows us to conséeth atomic guard succes-
sively and then to detect the atomic guard causing the ezropiiness is of course due
to an intersection). Computing the symbolic execution gletthen corresponds to ap-
plying successively each operation(for i = 1...p). We keep previous notatioris;
andZg, and we denotéM,, S,,) the EDBM obtained after having applied successively
operationsy; to the EDBM (M., S.) where each entry af/, is 0, whereas each entry
of S is {(}. Obviously, for every trace, [M,] = Z;. To ease the reading, we write
M,(i,7) (resp.S, (4, j)) the entry(i, j) of the matrix}, (resp.S,). We are now ready
for presenting our algorithm which selects diagonal guéodghe refinement step.

2 An atomic guard is a guard of the form~ c orz — y ~ cwith ~ € {<, >}.



4.3 Correctness and Progress of the Algorithm

Algorithm 2 Selection of diagonal guardsSelect_guards
1. Algorithm Select_guards (p = a1 ... o, @n erroneous trace in A) {

2. Initialize EDBMs (M, S) and (M’,S’) to (M., S.);
3. i:=0;
4. Repeat
5. 1=+ 1,
6. (M,S8) = (M',S");
—_—
7. If o; is the future operation, (M’,S’) := (M, S);
8. If o; is the intersection with g; , (M’,S’) := Inter((M, S), g:);
9. If ; is the reset of clock z, (M',S’) = [z < 0](M, S);
10.  Until [M'] =0
11. Return S; xASet(g:); }  (x the last o; is a guard g; of the form z;, — z; < ¢ %)®

Presentation of the algorithm.Our algorithm for selecting diagonal guards along an
erroneous trace is presented as Algorithm 2 and is c&léstt_guards. At the i-th
step of the iteration, the EDBM stored (i{’, S’) is the EDBM(M,,,S,,) with p; =

a1 ...i—1. Aspis an erroneous trace, there exists sdmed < p such thafM,,] #

() whereag[M,, »,] = 0. The elementary step; is an intersection with some guard
gi = (xx — x; < ¢) and we get thab/,, (I, k) + ¢ < 0 (otherwise[M,, ,,] would not

be empty). Note that this inequality does not hold for thetralos computation because
280 # (. As a consequence, we get that the efitry) is not correct in the abstract
computationi¢e.in Z7.). That's why AlgorithmSelect_guards outputs the dependence
setS,, (I, k), and adds the guakgd whenever it is a diagonal guard. The refinement step
will split the original automaton along all diagonals in sed € S,/ (I, k)ASet(g;).
Note that addingy; is necessary: consider the automaton in Figure 3 in whiclvtbe
last transitions are switched; there is no diagonal guafdreehe last transition. We
will now prove correctness of this selection algorithm.

Correctness of the algorithm.If p is a trace, and> a subset oDiag(.A), we denote
p|G — t] the trace where the transitions labelled by sgme G are replaced by
a transition labelled by the constraist Roughly, the first lemma states that diagonal
guards which are not selected by our algorithm are not imein the computation of
the corresponding entry.

Lemma 1. Let.A be a timed automaton, anda trace in.A. Consider a pair(é, j) and
a set of diagonal guard§'.

If (3@0 €S,(i,j) stGy NG = @) then Mg (i, ) = M, (i, j).

Proof (Sketch)The proof can be done by induction on the length of the tratterelies
on the fact that all guards which may have been used for cdnwptltie current entry

8k orl is possibly0.



have been selected. Therefore, other guards can be remafadgd §See Appendix C
for a complete proof.) ad

Our algorithm outputs a set of s&tsof diagonal guards, each s&tcontains candidates
for splitting the original automaton during the refinemeteps The following proposi-
tion states that if there is an erroneous trace in a timednzaton, then each sét
which is part of the output of our algorithm is non-empty. § proves correctness of
the refinement step: each time we need to refine, we will betalzle so.

Proposition 1. Let A be a timed automaton, anad an erroneous trace ind. Then
Select_guards(p) does not contain the empty set.

Proof. The proof is done by contradiction. Suppose this set cositia empty set.
Using the previous lemma, we can remove all diagonal canssrappearing along this
path and obtain an erroneous path which does not containiaggrtal constraint. This
contradicts the correctness of the algorithm in the nogatial case. O

The following proposition states that any getselected by our algorithm is pertinent
W.r.t. p. In the refined automatdsplit(A, G), the guards o& have been removed, and
every location ofA4 is split into2/¢! locations so as to encode the truth value of guards
in G. The tracep in A corresponds to a set of traces — denatgd; (p) — in Split(A, G).

The next proposition states that AlgoritHeRA will not output as a witness trace any
p' € mac(p). Thisis formally expressed as follows:

Proposition 2. Let.Abe a TA, ang an erroneous trace inll. LetG € Select_guards(p)
and A’ = Split(A4,G). For all p’ € m4,c(p), the abstract computation ifl’ for p’
leads to an empty state, i.8;, =

Proof. p = pi. is an erroneous trace such thgf, # 0, Z5 = 0 while Z3 # 0.
Assume that the entry which is not correctif, is (I, k). Algorithm Select_guards
returnsS,, (I, k) ASet(g) whereg is the guard labelling.

Now consideiG = Diag(.4)\G. Lemma 1 ensures that the traggéG « t] leads in4
to a zone with the same entfl k) viaan exact forward computation?, . (l, k) =
M,, (I, k). Emptiness ofZ; then implies emptiness (ﬁ;@_t].
Let A; be the timed automaton obtained frafmby replacing any guard iG! by t.
The tracep[G < tt] is a trace of4; and it leads also to an empty zone, as for the
computation in4, because this depends only on the trace and not on the asiomat
Now let Ay be Split(A;, G). Any traceps in m4, ¢(p[G — t]) leads, as4; along
p|G « t], to an empty zonez;, = ZS[E—«;] = (). There is no more diagonal con-
straint in.A,. Thus, the abstract forward computation along tragdéeads also to an
empty zoneZg, = 0.

Clearly A accepts more runs that#' = Split(A, G) because some guards have been
replaced byts. This holds for the exact and the abstract computation. Asgeto’ in
7., (p) thus leads to an empty zone in the abstract computatign:= 0. O

The two propositions show the correctness of our algoritbnsélecting diagonal con-
straints.



4.4 Comments on the Method

Whenp is an erroneous trac8elect_guards(p) may output several non-empty sets of
diagonal guards. For the refinement step, we can choose ahysst In particular, we
can choose the smallest one, so that the refinement is notpensve.

The key point of the method we propose is 8atect_guards algorithm because it may
avoid the removal of all diagonal constraints. Note thatrmethod is not formally op-
timal in the sense that it is possible that refining w.r.t. aper subset of the selected
set is sufficient to treat correctly the current trace. Havewe may find such a subset
with an incremental test: add successively each selectad guntil the erroneous trace
is eliminated (this procedure is linear|in)). It is clearly more efficient than any method
consisting in splitting every constraint Diag(.4), especially because most of the di-
agonal constraints do not raise wrong diagnosis. For ex@raplexplained in [BY04],
they are very useful for modeling scheduling problems (sgeckample [FPY02]).
Such systems contain a lot of diagonal constréibts, as the clocks of these systems
are bounded, our algorithm will never find erroneous traged no refinement is needed
(for this class of models the classical forward algoritRRA will be correct). Then a
systematic splitting is expensive and useless. In AppeDdixe give several examples
of computations of Algorithnbelect_guards.

The splitting step could be implemented in several ways aaadould avoid building
explicitly Split(A, G). First we could consider on-the-fly techniques where ththtru
of guards inG are stored using a vector of booleans. Another possibibiyld be to
modify the computation oPost operator in order to integrate the splitting of diagonal
constraints.

4.5 Related Work

Several refinement-based methods have already been pdopotiee past for timed
systems [AIKY95,MRS02,Sor04] and more generally for hgilsystems [ADIO3]. In
these works the verification process starts assuming there timing information in
the system, and then, when a spurious trace is found, thensystefined using relevant
constraints (or predicates) of this spurious trace. Foedirsystems, predicates which
are used for refining the model are predicates which sepagitens, which ensures that
the refinement process stops. In those works, abstractbrefinement are used either
to avoid computing the regions or to compute the coarses-&ibstract bisimulation
[TYO1] before verifying the system.

In our work, the aim and the techniques are different. We dowant to propose a
verification algorithm fully based on abstraction and refieat, but we want to use
the refinement paradigm for patching the classical forwaalyeis algorithm with no
over-cost when no spurious trace is detected. Indeed, lgnsitam, which is for ex-
ample implemented in RPAAL, has already proven its efficiency in many case studies.
Moreover, as this algorithm is correct for TA without diagbiconstraints, we select
predicates only among the diagonal constraints of the TA eviw

4 There aren? diagonal constraints whereis the number of tasks to be scheduled.



5 Conclusion

In this paper we have studied the role of diagonal consgadamia forward analysis
computation. We have described several approaches toehdiagjonal constraints and
proposed a refinement-based purely forward method foryiegfreachability proper-
ties of timed automata with diagonal constraints. As diajjoonstraints do not always
raise wrong diagnosis, a systematic removal of all diagoaaktraints appears as too
expensive, and a refinement-based learning from erroneseestof the classical algo-
rithm seems more appropriate to patch the usual algorithitineae will be no over-cost
if no spurious trace is found. We think that, in practice,¢bst of this approach is lower
than the cost of the systematic removal of all diagonal cairgs. As further develop-
ments, we would like to combine techniques we have propastds paper with more
efficient refinement-based methods, as the lazy abstraatiproach of [HIMS02]. We
also plan to implement this method and to compare it with rodipproaches.
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A Note on Automaton A of Figure 1

Consider the automatad depicted in Figure 1. Consider a run along which the first
transition is performed at daté (with 1 < d < 3), and where the loop is takem
times, then the clock valuationwhen arriving in the black state verifies(z,) = 0,
v(xg) = d, v(zz) = 2a + 5 andv(z4) = 2a + 5 + d. In particular, the constraint
xo —x1 = x4 — x3 IS always satisfied, which implies that the last transitiomever
enabled, and thus that state “Error” is not reachable.i¢flarge enough, then the exact
and abstracted symbolic computations along the correspgmidicep are respectively
the following zones:

1 =0 1 =0

1<z —21 <3 1<z —21 <3
Zypsl<zy—23<3 Zyl1<zy—23<3

r3—x1 =200+ 5 r3—x1 >k

Ty —To=20+5H T4 — 20 >k

Let g be the guardey — 21 < 1 A2y — 23 > 2. We clearly haveZ; N g = () but
Z3 N g # 0, and then the last transition is found as reachable by AlgorFRA. Note
that strict inequalities are due to the extrapolation ojpera

B “Checking Witness Traces, and Running Further the
Algorithm” is not Correct (Section 3)

r/ A \\
| Oq T <z +1 O
! >
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S omy >3+ 2 Error
1<z <3 1<2, <3
{x1,22,25}:=0 z1:=0

171:1/\x323m Ilzl

.13121
x1:=0

Consider the automaton depicted above and assume thattapaation constant i3.
An execution going through the states r1, r» until ¢ allows to reach the Error loca-
tion. Indeed with such an execution, the (exact) valuatibenvarriving ing depends
on three parameters: the amount of tilgespent in the initial statel(< §p < 3), the
number( of times the loop oy has been taken3(> 3), and the amount of time
01 spentinre (1 < §; < 3). The valuatiorw is defined byw(z;) = 0, v(zs) = 61,
v(zg) = 42+ andv(zs) = dp + B+ 2+ 1. Theniitis sufficient to choosk) = 1
andd; = 2 to satisfy the constrainty — z3 > 2 Az — 2z < 1.

5 Computations have been done automatically to present the zones in aecoayis



Now consider AlgorithmFRA, we assume it uses a breadth first search. It finds the
abstract symbolic execution leading to the black siate5 edges (without taking the
loop) throughA, : the abstract computed zoned§ = 3 < z3A1 < 29 < 3Az; = 0A

1 <zy—x3 < 3A3 < z4—x2A2 < z3—25 and then the symbolic stafe, Z¢) is stored
in Visited. From this state, the location Error is found reachablen the algorithms
returns the corresponding witness. As it is a false positive algorithm continues its
breadth first search. Then it will discover the symbolicestat, Z5) — reaching this
state requires edges — and the corresponding abstracted zo#Ag is 3 < z3 A z1 =
0N1 < z4—23 <3Axze— 21 <0.ANnd we haveExtraz(Post(Z3, S
N=1<23<3Ax1=0A1<uz4—x23 <3AN3 < x3— 29, itisincluded inZ¢,
and its successor will not be considered because it alregldnds toVisited. Then the
correct execution leading to Error won't be discovered leydtgorithm.

C Proof of Lemma 1l

First we have:

Lemma 2. Let p be a path in a timed automatad and G a set of diagonal guards.
Then, for all pairs(i, j), M,(4,7) < Myig—x(i,)-

Proof. By definition, the pattp[G « tt] is less restrictive than the path We have
thus the following inclusions between zone§: C 27, _ ;. O

The proof of Lemma 1 is done by induction on the lengtlpoive consider a path;
and we extend it with an edge— to getp,. We assume the property holds far, and
we will prove it for po by distinguishing possible cases tor We fix two indices and
J and a set of diagonal guardg, such thaG € S,,(i,j) s.t. Go N G = (. We fix
such aG.

— Caseqx is the constraint (v : zx — z; < ¢).
Let first recall the definition of the operatbiter(M, ~):

Spy (1, ) if M, (i,5) <
892 (’Lv]) = SPI (i7j)\'/8() |f M (17])
So if M, (i,7) >

wherem = M, (i,k) + ¢ + M, (I,5) andSy = S,, (i, k)ASet(v)AS,, (1, 7).
Therefore, a&r € S,, (4, j), we haveG € S, (i, j) or G € Sy (or both) and so we
always can apply the induction hypothesis to at least o, dfi, j) andSy.
¢ (a) We apply induction hypothesis t),, (¢, j).
By definition ofInter, this can occur ifV/,, (i, j) < M,, (i,k)+c+ M, (1, j).
It's what we assume now. Then we havVg,, (i, j) = M,, (¢, 7). By induction
hypothesis, we gebdl,, (i,7) = M, |, (i,7). Two cases may arise for
Mp2[G0<—t] (Z,j)
* (Z) eitherM Gm—t]( ) J ) < Mpl[Gm—t (Za ) +c+ M [Gm—t](l ])
* (it) or M, gy (4, 5) > My, 1o (i, k) + ¢+ M, G0<—t](l 7)-



Inthe first case, we getthad,, ) (7, 1) = M, (Gy—t)(4,5) = My, (1,7) =
M,, (i, j) this gives the result
We will prove that the second case cannot happen. By definitidnter, we

have in this casé/,, ¢, —x) (i,5) = Mpl[Gohﬂ( k)+c+ M, (o] €, 9).

By induction hypothesis, we havil,, (i,7) = M, ¢ —x (i, 7). By (i), we
haveM,,, ¢y—«) (i, 7) > 1[GOH,:](i k)+c+M, g, (l,7). By Lemma2,
we haveM,, (¢, —«) (i, k) > M), (i, k) andM, ¢, —x) (1, 7) = M, (1, 5) , then
M, (i,7) > M,, (i,k)+c+M,, (I, 7) which contradlcts the initial hypothesis.

¢ (b) We apply induction hypothesis 6§y = S,, (i, k) ASet(7)AS,, (1, 7). By
definition ofInter, this can occur iV, (¢, 7) > M,, (i, k) +c+ M, (I, 5). It's
what we assume now. Then we ha\B, (i, j) = M,, (i, k) + ¢+ M, (L, j).
As G € 8y, we haveG = G, U {v} UGs (or G = G U G2 whethery
is diagonal or not), wheré&/;, € S,,(i,k) andGy € S, (I,). Then we can
apply induction hypothesis to bot},, (i, k) andS,, (I, j) and finally we get
Mpl (i’ k) = Mm[Gm—t] (ka) and M, (]7l) = Mp1[Go<—t] (]’l) Two cases
may arise forM (G, —«] (i, J):

* ( ) E|therM GoHt](Z .]) 1[G0<—1t] (Z k) +c+ M 1[G0<—t](l .])
* (i )Oer[Gm—t]( J) < Mp,(Go—s) (i, k) + ¢+ My, gy —v) (1, )

In the first case, we get thall,, ¢ (1, 5) = M, (go—r)(i, k) + c+

M, 1Go—t)(l,5) = My, (i,k) + c+ M, (l,j) = M,,(i,7) which provides
the result.

We will prove that the second case cannot happen. By defindfonter ,

we have in this casé/,,c,—x)(i,7) = M, [G,—x(i,7). By (i), we have
Mpl[Goet](iaj) < Mpl[Gm—t](Z‘a k) +c+ Mpl[Gm—t]'(lvj)' The Ind hyp

glveSMpl[Go«—t](ka) = MP1 (Z7k) andel[Goht] (la]) = Mﬂl (la])' then

we have:M,, qy—v) (i, J) < M), (i, k) +c+ M,, (1, ). But the initial hypoth-

esis givesM,, (i,k) + ¢+ M, (l,j) = M,,(i,j) . The Lemma 2 provides

M, (i,7) < M, 1c,—x (i, j) What gives us a contradiction.

— Casex is the future.

If 7 # 0, then by the definition o(M S), , we haveS,, (i,j) = S,,(¢,7). So
we can apply the induction hypothesis &, (¢, j) what gives usM,, (i,j) =
M, G, (i, j). Moreover, we also havil,,c, ] (i, ) = M, [q,—¢)(4,7) and
M,,(i,j) = M,, (i, ) becausg # 0. We thus get the result we want.

If j =0, bothM,,c,— (i,5) andM,, (i, j) are+4-oc.

— Caseqx is the reset of clockzy,.
In case(i, j) € {(k, k), (0,k), (k,0)}, both M 1, (i, ) @andM,, (i, j) areO.
If j = k (resp.i = k), we can apply the induction hypothesis to theSgt(i, 0)
(resp.S,, (0, 5)). As above, we obtain the result we want.
Otherwise we can apply induction hypothesisio(:, j) and conclude in the same
way.

Finally, we obtain in every case thaf,,, (i, j) = M,,(c,—+ (i, ), what ends the proof.



D Examples of Applications

In this section we illustrate how AlgorithrBelect_guards behaves on several small
examples. To help understanding these examples we reatthhzone obtained by an
exact computation when reaching the black statgis= 0A 1 < x5 — 21 <3A1 <
Ty —ax3 <3Nx3—11 =200+ 5N xg — 22 =200+ 5 (See Appendix A).

: .21’2§1‘1+1'O 1742134’270

" Ap ! Error

When reaching the grey state, the constraint on the differene- x5 isxz4 — z3 <1,

and this is due to diagonal guard < z; + 1. Algorithm Select_guards thus outputs
{{z2 < 21 + 1,24 > x3 + 2}}. In this case, too many diagonal guards are selected,
because it would be sufficient to split along one of the twgdisal constraints.

Vg >+ 1 T4 > a3+ 2
—0O e —-O——0

A K Error

For the above automaton, Algorith$elect_guards outputs{{z4 > x5+ 2}}. Only one
of the two diagonal constraints is selected.

T4 2> x3+2 z2 <1

M )

N\ i\ O
' Ao ) Error

e <x3+2

For the above automaton, Algorith$elect_guards outputs{{x4 > x5+ 2}}. Only one
of the two diagonal constraints is selected.

Vg <+ 1 X4 > a3+ 2
—0O & - —0——0

Ay K Error

For the above automaton, AlgorithBelect_guards outputs{{zs > x5 + 2}, {z4 >

x3 + 2,29 < 1 + 1}}: there are two possible sets of diagonal constraints whéch ¢
be used for splitting. This is because the constraint- x; < 1 in the grey state is
due tozs < 1oraxzy < x7 + 1. As explained in the paper, when computing normal
forms of DBMs, it may be the case that, as in Floyd’s algoritnminimal path can
be obtained in two different ways. Of course, for splittimgs choose the set of guards
{z4 > x3 + 2} which is the smallest one.



