
Diagonal Constraints in Timed Automata
Forward Analysis of Timed Systems

Patricia Bouyer, François Laroussinie, Pierre-Alain Reynier

LSV – CNRS & ENS Cachan – France
{bouyer,fl,reynier}@lsv.ens-cachan.fr

Abstract. Timed automata (TA) are a widely used model for real-time systems.
Several tools are dedicated to this model, and they mostly implement a forward
analysis for checking reachability properties. Though diagonal constraints do not
add expressive power to classical TA, the standard forward analysisalgorithm is
not correct for this model. In this paper we survey several approaches to han-
dle diagonal constraints and propose a refinement-based method for patching the
usual algorithm: erroneous traces found by the classical algorithm areanalyzed,
and used for refining the model.

1 Introduction

Model checking.The development of reactive, critical or embedded systems requires
the use of formal verification methods. Model checking consists in verifying automati-
cally that a model fulfills its specification and has been widely and successfully applied
to industrial systems. It is often necessary to consider quantitative informations on time
elapsing in both the model description and the property to beverified. Timed automata
(TA) have been proposed by Alur and Dill [AD94] to model such real-time systems.
Since then, many theoretical results have been obtained: decidability of reachability
properties [AD94], model checking for timed temporal logics [ACD93,HNSY94],etc.

Reachability in timed automata.Decidability of reachability properties in timed au-
tomata is based on the construction of the so-called region automaton, which finitely
abstracts behaviours of timed automata [AD94]. However in practice this construction
is not implemented, and symbolic on-the-fly algorithms havebeen proposed to over-
come the complexity blow-up induced by timing constraints.These procedures are of-
ten based onzonesandDBMsto represent the sets of clock valuations. In particular, an
on-the-fly forward reachability algorithm using zones has been developed and imple-
mented in tools like UPPAAL [LPY97] or KRONOS[DOTY96]. Even if timed automata
form a decidable class, the exact forward computation may not terminate. To overcome
this problem, anabstractionoperator over zones needs to be used [DT98].

Guards in timed automata.Classical timed automata [AD94] consider only simple
constraintsx ∼ c anddiagonal constraintsx−y ∼ c. Surprisingly the standard forward
reachability algorithm based on zones has been recently shown to be correct only for
TA with simple constraints, but not always correct for TA using diagonal constraints
[Bou03,BY03]: locations of TA with diagonal constraints may be found reachable by

the algorithm while they are not! This problem comes from theuse of the abstraction
operator over zones.
From [AD94,BDGP98] we know that diagonal constraints can beremoved from TA.
This gives a procedure for verifying TA with diagonal constraints: construct a TA with-
out diagonal constraints and then apply the standard forward analysis algorithm. How-
ever, removing diagonal constraints induces a blowup in thesize of the model (it is
exponential in the number of diagonal constraints). This isclearly too expensive to be
used on real-life systems. Moreover diagonal constraints do not always raise wrong di-
agnosis (only few examples can be found in the literature) and a systematic removal of
all diagonal constraints may therefore not be pertinent.

Our contribution. In this paper we propose a refinement-based method which doesnot
systematically remove all diagonal constraints. The core of our method is an algorithm
which analyzes an erroneous trace provided by the classicalalgorithm and selects a set
G of diagonal constraints which causes the error. We then remove diagonal constraints
of G from the model and re-run the classical algorithm on the refined model.

Outline of the paper.In Section 2 we introduce basic notions of timed automata, for-
ward reachability analysis, zones and abstractions. In Section 3 we survey several ap-
proaches to handle diagonal constraints and propose a refinement-based method for
patching the usual algorithm. In section 4 we describe our algorithm for selecting perti-
nent diagonal constraints. For this, we introduce an extension of the DBM data structure
which allows us to store information on the dependence of computed zones w.r.t. diag-
onal constraints. We prove correctness and progress of our refinement-based method.

2 Forward Analysis of Timed Automata

Basic definitions, timed automata.We consider as time domain
�

the set�+ of non-
negative rationals or the set�+ of non-negative reals. We consider a finite setX of
variables, calledclocks. A clock valuationoverX is a mappingv : X →

�
that assigns

to each clock a time value. The set of all clock valuations over X is denoted
�X . Let

t ∈
�

, the valuationv + t is defined by(v + t)(x) = v(x) + t, ∀x ∈ X. For a subsetr
of X, we denote by[r ← 0]v the valuation such that for eachx ∈ r, ([r ← 0]v)(x) = 0
and for eachx ∈ X \ r, ([r ← 0]v)(x) = v(x).

Given a set of clocksX, we introduce two sets of clock constraints overX. The most
general one, denoted byC(X), is defined by the grammar “g ::= x ∼ c | x − y ∼ c |
g ∧ g | tt” wherex, y ∈ X, c ∈ �, ∼ ∈ {≤,=,≥} andtt stands for true. We also
use the proper subsetCdf (X) of diagonal-freeconstraints where the constraints of the
form x − y ∼ c (calleddiagonal constraints) are not allowed. To simplify, we do not
consider strict inequalities, but everything presented inthis paper extends easily to strict
inequalities. We writev |= g when the clock valuationv satisfies the clock constraintg.
A clock constraint is saidk-boundedwhenever it only uses constraints with constants
between−k and+k.

A timed automaton(TA for short) over
�

is a tupleA = (Σ,X,L, `0, T), whereΣ

is a finite alphabet of actions,X is a finite set of clocks,L is a finite set of locations,
`0 ∈ L is the initial location, andT ⊆ L × [C(X) × Σ × 2X] × L is a finite set

of edges (or transitions). If only diagonal-free constraints are used on transitions, the
timed automaton is said to bediagonal-free. A stateof A is a pair〈`, v〉 where` ∈ L

is the current location andv ∈ �X represents the current values of clocks. The initial
state is〈`0, v0〉 wherev0 is the valuation mapping all clocks inX to 0. The semantics
of A can be described as an infinite transition system whose states are states ofA and
whose transitions correspond to time elapsing followed by an enabled edge inA. More
precisely, from a state〈`, v〉, it is possible to reach a state〈`′, v′〉 if there existδ ∈ �
and(`, g, a, r, `′) ∈ T such thatv+δ |= g andv′ = [r ← 0](v+δ). Now we can define
a run of A as a finite sequence of such steps, it is denoted:

〈`0, v0〉
g1,a1,r1

−−−−−→
t1

〈`1, v1〉
g2,a2,r2

−−−−−→
t2

. . .
gp,ap,rp

−−−−−→
tp

〈`p, vp〉

whereti is the amount of time elapsed since state〈`0, v0〉—the duration of time elapsing
in the i-th location is thenδi = ti+1 − ti. In the following we abstract away names of
actions because we will only consider reachability properties.

Reachability in timed automata.Reachability is a fundamental problem in verification.
For timed automata, it is stated as follows: given a timed automatonA and a set of
locationsLf , does there exist a run leading to some state〈`, v〉, with l ∈ Lf ? This
problem has been proved decidable (and PSPACE-complete) byAlur and Dill [AD94].
The proof is based on the well-knownregionconstruction: the (infinite) set of states of
A is partitioned into a finite set of regions such that two states which belong to the same
region satisfy the same reachability properties.

Algorithms for reachability. In practice the region construction is not used to check
reachability properties because the number of regions is too high: it is not abstracted
enough to be applied successfully over non-trivial systems. For this purpose, symbolic
and on-the-fly algorithms have been proposed and implemented [LPY97]. They use the
constraints ofC(X) as symbolic representations for the sets of valuations. In this frame-
work such a constraint is called azoneand is usually implemented with DBMs (Dif-
ference Bound Matrices [BM83,Dil90]). Backward analysis raises no real problem but
forward analysis is more convenient for verifying timed automata with useful features
like integer variables. Given a zoneZ and an edgee = (`, g, a, r, `′), Post(Z, e) denotes
the zone corresponding to the set{[r ← 0](v+t) ∈�X | v ∈ Z, t ≥ 0, andv+t |= g}.
Symbolic transitions can then be defined oversymbolic states(`, Z) using thePost(·)
operator. The symbolic graph may however be infinite, because constants used in zones
may grow for ever. The forward computation does not terminate in general. To avoid
this phenomenon, an abstraction operator, called thek-extrapolation(k is a constant
supposed to be greater than the maximal constant occurring inA), is used at each iter-
ation:Extrak(Z) denotes the smallest zone containingZ and defined by ak-bounded
clock constraint. Together with inclusion checking (line9. of the algorithm), this clearly
entails the termination of the classical procedure described as AlgorithmFRA (see Al-
gorithm 1). If a location ofLf is found as reachable, AlgorithmFRA returns a witness
trace (i.e.a sequence of consecutive edges).

Algorithm 1 Forward Reachability Analysis –FRA
1. Algorithm FRA (A: timed automaton; Lf : set of final locations) {
2. Define k as the maximal constant appearing in A;
3. Visited := ∅; (? Visited stores the visited states ?)
4. Waiting := {(`0,Extrak(Z0))}; (? Z0 = {v0} ?)
5. Repeat
6. Get and Remove (`,Z) from Waiting;
7. If ` ∈ Lf (? ` is a final location ?)
8. then {Return “Yes” and a witness trace;}
9. else {If there is no (`,Z′) ∈ Visited s.t. Z ⊆ Z′ (? inclusion checking ?)

10. then {Visited := Visited ∪ {(`,Z)};
11. Succ := {(`′,Extrak(Post(Z, e))) | e edge from ` to `′};
12. Waiting := Waiting ∪ Succ;}}
13. Until (Waiting = ∅);
14. Return “No”; }

Completeness and correctness.Obviously, as thek-extrapolation of zones is an over-
approximation, this algorithm is complete: any reachable location is found as reachable
by the algorithm. The correctness (“only reachable locations are found as reachable by
the algorithm”) is more difficult to state. In [Bou03,BY03],Algorithm FRA has been
proved correct for diagonal-free timed automata and it has been shown to benot correct
for timed automata using also diagonal constraints. Figure1 illustrates this correctness
problem: AlgorithmFRA sees location “Error” ofA as reachable whereas it is not (see
Appendix A for details). This problem is not due to the choiceof constantk or to the
definition ofExtrak(·): if we replace the operatorExtrak(·) by any operatorExtraK(·)
for someK or even by any abstraction operatorAbs such that for every zoneZ, Abs(Z)
is a zone containingZ, and{Abs(Z) | Z zone} is finite (to ensure termination of the
forward analysis algorithm), then the algorithm will not becorrect and will announce
state “Error” as reachable inA (see [Bou04]).

x3 ≤ 3

{x3, x1} := 0

x2 = 3

x2 := 0

x1 = 2, x1 := 0

x2 = 2, x2 := 0

x1 = 2,

x1 := 0

x2 = 2

x2 := 0

x1 = 3

x1 := 0

x2 ≤ x1 + 1

x4 ≥ x3 + 2
Error

A0

Fig. 1.AutomatonA

Extrapolation and zones.As explained above, zones are a suitable symbolic repre-
sentation for clock valuations but contrary to what is sometimes assumed, zones are
not a symbolic way of handling regions: there is indeed no simple correspondence be-
tween zones and (sets of) regions, which explains the correctness problem encountered
in Algorithm FRA. For example, in the diagonal-free case, there existk-bounded zones
which are strictly included in a region. Concerning models with diagonal constraints,
one can compute (using AlgorithmFRA) a zoneZ such that there is a regionR with
Z ∩R = ∅ while Extrak(Z) ∩R 6= ∅. Such a phenomenon appears for example in the
automaton of Figure 1. This emphasizes the fact that we have always to be careful when
handling regions and zones, and to separately consider methods based on regions and
methods based on zones. This seems related to abstraction problems encountered in the
verification of infinite-state systems, and we will use classical refinement techniques
[CGJ+00] to solve our problem.

3 Methods for Handling Diagonal Constraints

Our aim is to propose an efficient forward algorithm based on zones for checking reach-
ability properties in timed automata with diagonal constraints. We can distinguish two
main approaches. First there are the ones based on a systematic removal of diagonal
constraints: the original TA is replaced by a diagonal-freeTA and a standard algorithm
is then applied. Secondly there are methods in which diagonal constraints are treated
only when they induce spurious traces: if the constraints generate no problem, then these
methods provide no extra-cost compared with the standard reachability algorithm. This
last criterion is very important because there are only few problematic cases.

3.1 Systematic Removal of Diagonal Constraints

It is well known that given a TAA with diagonal constraints, it is possible to build a
diagonal-free TAA′ s.t.A andA′ verify the same reachability properties [BDGP98].
This construction combined with the classical reachability algorithm for diagonal-free
TA provides a correct forward algorithm for TA, and such a method avoids the expensive
region automaton construction. Nevertheless removing diagonal constraints entails a
complexity blow-up: ifn is the number of diagonal constraints inA, the size ofA′

is inO(|A| · 2n). This approach is clearly too expensive, especially if we assume that
diagonal constraints mostly raise no error.

Intuitively, if we want to avoid problems with diagonal constraints, it seems sufficient
to ensure the following property:∀Z computed,∀g diagonal, Z ⊆ g ∨ Z ⊆ ¬g (∗).
The method proposed by Bengtsson and Yi in [BY04] relies on this criterion: after
each application of the extrapolation operator, the zone which is obtained is split so
that Property(∗) holds. Like the construction of [BDGP98], this solution suffers from
an exponential blow-up of the number of zones visited duringthe computation. Indeed,
the complexity of AlgorithmFRA crucially depends on the number of zones which need
to be handled, and with both two previous methods, the numberof zones is multiplied
by 2n, wheren is the number of diagonal constraints of the initial automaton.

Finally we could also restrict the removal of the two previous methods to theactive
diagonal constraints in the current control location, following the idea proposed for
clocks by Daws and Yovine in [DY96], and generalized in [BBFL03].
Note that all these methods induce a complexity blow-up evenif there is no false-
positive execution. Indeed, timed automata with diagonal constraints are exponentially
more succinct than diagonal-free timed automata [BC05].

3.2 Target Methods for Spurious Traces

In this case, the aim is to develop special heuristics when a false-positive is found.
This would permit to have algorithms as efficient as the standard one when there is no
problem with diagonal constraints.
First note that given a symbolic execution, it is easy to check whether it is consistent
(i.e. whether a corresponding run actually exists inA) or if it is a false positive. This
can be done by using a forward computation with no extrapolation (the finiteness of the
execution ensures termination).
Therefore a natural (but wrong!) method could be: (1) use thestandard reachability
algorithm, (2) if a location is found reachable through a symbolic executionρ, check
whetherρ is a false positive, (3) ifρ is a false positive, run further the algorithm. But this
procedure is not complete: some reachable locations may be missed by this algorithm.
For example, assume that a false positive contains a symbolic state(`, Z), and assume
that later in the algorithm, a symbolic state(`, Z ′) is computed withZ ′ ⊆ Z. Because of
the inclusion checking, AlgorithmFRA will stop the computation, whereas it is possible
that a valid run goes through symbolic state(`, Z ′): inclusion between extrapolated
zones does not imply inclusion between exact zones. Such a situation is illustrated in
Appendix B. On the other hand, removing states of the false positive trace from the list
of visited states could prevent termination of the computation.
We now consider two methods that extend this idea in order to have a complete and
correct algorithm.

Combining forward and backward computation.Since diagonal constraints are cor-
rectly handled with the backward computation, a possible approach consists in combin-
ing forward and backward computations. This algorithm works in two steps. First one
performs a forward analysis: If a location is found reachable with a correct execution,
the algorithm stops; If a false-positive execution is found, it is stored in the visited states
list and the algorithm continues. At the end of the first step,either a correct execution
has been found (and the answer is YES), or no spurious execution has been found (and
the answer is NO), otherwise the second step begins. It consists in a backward compu-
tation from the target states of the spurious executions. This backward computation is
restricted to the set of visited states computed in the first step. Such a method would
work, but it has an important drawback: the backward computation does not handle ad-
ditional data: in UPPAAL for ex., it is possible to add integer variables and operations
over these data, they can be treated in forward computationsbut not in backward. This
restricts a lot the applicability of the method.

A refinement-based and pure forward method.We now propose to use a refinement-
based method (illustrated on Figure 2): (a) use the standardalgorithm over a model
M , (b) when a false positiveρ is found, refine the model in such a way thatρ will be
correctly treated in the refined modelM ′, and (c) restart the procedure overM ′. Such
a methodology has been proposed in [CGJ+00] and has been applied to many kinds of
infinite-state systems (constraint-based programs [HJMS02], hybrid systems [ADI03],
etc). In our case, a refinement step will consist in removing somediagonal constraints of
the initial automaton. Termination is clearly ensured if atleast one diagonal constraint
is selected at each iteration. As removing diagonal constraints is expensive, the key
idea is to refine w.r.t. diagonal constraints only if it is necessary: when a false positive
ρ is found, we want to find as few diagonal constraints as possible such that if we
remove these diagonal constraints in the model, then the same false positive will not
be found again by AlgorithmFRA. Selecting pertinent diagonal constraints is the core
of our algorithm and will be presented in the next section. Wenow briefly present the
refinement step of our algorithm.

newA

FRA(A)No!
witness
trace

consistent
trace ?refinement

selection of
diagonals Yes!

A

no yes

no yes

Fig. 2. Refinement-based method

Refinement w.r.t. a constraintg. Given a TAA = (Σ,X,L, `0, T) and a diagonal
constraintg = (x− y ∼ c), we consider the method proposed in [BDGP98] to remove
g from A: the truth value ofg is encoded into locations of the refined automatonAg.
This boolean value is not changed by time elapsing, it can only be modified by a reset
of x or y. Locations ofAg are pairs(`, ε) with ` ∈ L andε ∈ {>,⊥}, and edges are
directly derived from those ofA: they either relate locations with the same or opposite
truth value depending on the reset of the corresponding edgein A, and the occurrences
of the guardx− y ∼ c are just replaced by their truth value in the current location. This
construction can be directly extended to a set of diagonal constraints. IfG is a finite set
of diagonal constraints andA a TA, we noteSplit(A, G) the TA which is obtained after
refinement w.r.t. the constraints inG.

4 Diagonal Constraint Analysis

We assume a timed automatonA = (Σ,X,L, `0, T) is given, and we setn the cardinal
of setX. Let k be an integer greater than the maximal constant occurring inA. Let
Diag(A) be the set of diagonal constraints occurring in the guards ofA. In this section,
we propose an algorithm which, given an erroneous traceρ, selects a set of diagonal
guardsG ⊆ Diag(A) which satisfies the two following conditions:(i) G 6= ∅, and
(ii) in Split(A, G), the erroneous traceρ doesn’t exist anymore. Condition(i) ensures
termination of the refinement method (asDiag(A) is a finite set), and condition(ii) is
aprogresscondition: a given erroneous path will never be found twice.
Of course, the set of all diagonal guards appearing along theerroneous trace satisfies
both conditions. But our aim is to select as few guards as possible. Our algorithm builds
a possibly much smaller set of guards, and it does not increase the complexity: it is
linear in the length of the run, like the consistency checking.

4.1 Erroneous Traces

Algorithm FRA returns a witness trace whenever a final state is found as reachable (a
traceρ is a sequence of consecutive edges ofA). Such a trace iserroneouswhenever
no real run follows the same edges as the trace. To formalize this notion, we associate
with a traceρ two zones: the zoneZe

ρ which corresponds to all valuations which are
reachable following traceρ, andZa

ρ which corresponds to all valuations which are found
as reachable when applying the abstract symbolic computation1 alongρ. We can define
these two families of zones inductively as follows. For the empty trace (denotedε),
Ze

ε = Za
ε = {v0}, and ifρ is a trace andα an edge such thatρ.α is also a trace, we have

Ze
ρ.α = Post(Ze

ρ , α), andZa
ρ.α = Extrak(Post(Za

ρ , α)). Note that the zones defined
here only depend onρ and not on automatonA. A traceρ is saiderroneous(we also
say that it is afalse positive) for A whenZe

ρ = ∅ whereasZa
ρ 6= ∅.

Algorithm FRA is correct for diagonal-free timed automata. Thus, ifρ is an erroneous
trace, there must exist some diagonal guard alongρ which is the cause of the error.
One hope could be that when the exact and the abstract computations disagree, the last
guard encountered is diagonal (as it is the case for the automaton in Figure 1), and
that it is sufficient to refineA w.r.t. this guard to get rid of the erroneous trace. This is
however not the case: this guard can be a simple non diagonal constraint. Automaton
in Figure 3 illustrates this point (A0 refers to the automaton depicted on Figure 1): the
last transition, whose guard is non-diagonal, leads to an empty exact computation while
the abstract one is not empty. Understanding the role of diagonal constraints along an
erroneous trace thus requires a precise analysis of the whole execution.

4.2 Propagation of Constraints, the EDBM Data Structure

For analyzing an erroneous traceρ which is output by AlgorithmFRA, we will use
a forward computation. We want to understand precisely the effect of each diagonal

1 e stands for exact anda for abstract.

ErrorA0

x2 ≤ 1x4 − x3 ≥ 2

Fig. 3.The problem occurs on the simple constraintx2 ≤ 1.

constraint and therefore we will study the differences between the zonesZe
− andZa

−.
We won’t directly reason on these zones but on their representations with DBMs. A
DBM M = (mi,j)0≤i,j≤n is a square matrix of sizen + 1 (wheren is the number
of clocks) whose entries belong to�∪ {∞}. Its semantics is the zoneJMK = {v ∈
T

X | ∀i, j xi − xj ≤ mi,j} (we use a clockx0 assumed to be equal to0 in order
to represent constraintsxi ∼ c as a difference constraintxi − x0 ∼ c). To have a
non-ambiguous representation of zones by DBMs, we need to computenormal forms:
it consists in applying Floyd’s Algorithm for shortest paths over the implicit weighted
oriented graph described by such a matrix (see [Dil90,Bou04] for classical results over
DBMs).

As we use a shortest paths algorithm, the values of the entries depend not only on the
last guard we intersect but also on other entries. Just as it is done in Floyd’s Algorithm
in order to compute all shortest paths, we will store the “dependence” of each entry.

For example, if the current zone isx2 ≤ 5, and if the next transition of the trace is
g,{x2}
−−−−−→ whereg is x1 − x2 ≤ 3, the next zone which is computed isx1 ≤ 8 ∧ x2 =
0 ∧ x1 − x2 ≤ 8, and we will store that the constraintsx1 ≤ 8 andx1 − x2 ≤ 8
depend ong (because they are inherited from the intersection ofg with x2 ≤ 5). On
the contrary, the constraintx2 = 0 does not depend ong (it is solely due to the reset of
clockx2). For storing such a dependence information, we need to enrich the DBMs, we
thus define the EDBM data structure:

Definition 1 (Extended DBM — EDBM). An extended DBMis a pair (M,S) of
square matrices of sizen + 1 whereM is a classical DBM andS is a matrix whose
entries are non-empty sets of subsets ofDiag(A).

Let (M,S) be an EDBM withM = (mi,j)i,j=0...n andS = (Si,j)i,j=0...n. This EDBM
represents the same zone asM , and the setSi,j informally contains all diagonal guards
on which entrymi,j may depend. In a weighted graph, it may exist several shortest paths
between two vertices. The same holds for dependence sets: the setSi,j may contain sev-
eral subsets ofDiag(A), each one contains sufficient information on the dependenceof
mi,j w.r.t. diagonal guards. Each setG ∈ Si,j will be a candidate set for the refinement
step whenever entrymi,j is detected as non correct. We store every possible set so as to
choose the minimal (i.e.smallest) one at the end.

Operations on EDBMs. Given a constraintg, we useSet(g) to denote{{g}} if g

is diagonal and{∅} otherwise. We first define the two following basic operationson
non-empty sets of sets:

(i) S1 ·∨S2 = {G | G ∈ S1 ∪ S2}
(ii) S1 .∧S2 = {G1 ∪G2 | G1 ∈ S1 andG2 ∈ S2}

We can now extend classical operations on DBMs (needed by Algorithm FRA) to
EDBMs. We consider two EDBMs(M,S) and (M ′,S ′) with M = (mi,j)i,j=0...n,
S = (Si,j)i,j=0...n, M ′ = (m′i,j)i,j=0...n, andS ′ = (S ′i,j)i,j=0...n. We assume in
addition that the DBMM is in normal form.

Future. (M ′,S ′) =
−−−−→
(M,S) whenever:

(m′i,j ,S
′
i,j) =

{

(∞, {∅}) if j = 0

(mi,j ,Si,j) otherwise

Reset of clockxk. (M ′,S ′) = [xk ← 0](M,S) whenever

(m′i,j ,S
′
i,j) =



















(0, {∅}) if i, j ∈ {0, k}

(mi,0,Si,0) if j = k,

(m0,j ,S0,j) if i = k,

(mi,j ,Si,j) otherwise

Intersection withg = (xk − xl ≤ c). (M ′,S ′) = Inter((M,S), g) whenever:

(m′i,j ,S
′
i,j) =











(mi,j ,Si,j) if mi,j < m

(mi,j ,Si,j ·∨S) if mi,j = m

(m,S) if mi,j > m

wherem = mi,k + c + ml,j andS = Si,k
.∧Set(g) .∧Sl,j

Note that the intersection operation contains a normalization step in order to tighten
every entry w.r.t. the new constraintg. In fact, the resulting DBMM ′ is in normal form
after each of these three operations. Following UPPAAL implementation of forward
analysis [BBLP05], these operations are sufficient for computing the exact reachable
zones along a trace. Computing successors w.r.t. an edge

g,r
−−−→ is done by computing

the future, then computing successively the intersection with all atomic guards forming
g2, and finally computing resets of all clocks inr:

`
∧p

j=1
gj ,r

−−−−−−→ `′ is transformed into `
Fut.
7−→

∩g1

7−→ · · ·
∩gp

7−→
r←0
7−→ `′

From now on, we decompose in this way every transition and then the whole traceρ into
elementary steps(αi)i=1...p (even if it is an abuse of notation, we writeρ = α1 . . . αp)
such that each step is either an intersection with an atomic guard, a reset of clock, or a
future operation. This decomposition allows us to considereach atomic guard succes-
sively and then to detect the atomic guard causing the error (emptiness is of course due
to an intersection). Computing the symbolic execution along ρ then corresponds to ap-
plying successively each operationαi (for i = 1 . . . p). We keep previous notationsZe

ρ

andZa
ρ , and we denote(Mρ,Sρ) the EDBM obtained after having applied successively

operationsαi to the EDBM(Mε,Sε) where each entry ofMε is 0, whereas each entry
of Sε is {∅}. Obviously, for every traceρ, JMρK = Ze

ρ . To ease the reading, we write
Mρ(i, j) (resp.Sρ(i, j)) the entry(i, j) of the matrixMρ (resp.Sρ). We are now ready
for presenting our algorithm which selects diagonal guardsfor the refinement step.

2 An atomic guard is a guard of the formx ∼ c or x− y ∼ c with ∼ ∈ {≤,≥}.

4.3 Correctness and Progress of the Algorithm

Algorithm 2 Selection of diagonal guards –Select guards

1. Algorithm Select guards (ρ = α1 . . . αp an erroneous trace in A) {
2. Initialize EDBMs (M,S) and (M ′,S ′) to (Mε,Sε);
3. i := 0;
4. Repeat
5. i := i + 1;
6. (M,S) := (M ′,S ′);

7. If αi is the future operation, (M ′,S ′) :=
−−−−→
(M,S);

8. If αi is the intersection with gi , (M ′,S ′) := Inter((M,S), gi);
9. If αi is the reset of clock x, (M ′,S ′) := [x← 0](M,S);

10. Until JM ′K = ∅
11. Return Sl,k

.∧Set(gi); } (? the last αi is a guard gi of the form xk − xl ≤ c ?)3

Presentation of the algorithm.Our algorithm for selecting diagonal guards along an
erroneous trace is presented as Algorithm 2 and is calledSelect guards. At the i-th
step of the iteration, the EDBM stored in(M ′,S ′) is the EDBM(Mρi

,Sρi
) with ρi =

α1 . . . αi−1. As ρ is an erroneous trace, there exists some1 ≤ i ≤ p such thatJMρi
K 6=

∅ whereasJMρi.αi
K = ∅. The elementary stepαi is an intersection with some guard

gi = (xk − xl ≤ c) and we get thatMρi
(l, k) + c < 0 (otherwiseJMρi.αi

K would not
be empty). Note that this inequality does not hold for the abstract computation because
Za

ρi.αi
6= ∅. As a consequence, we get that the entry(l, k) is not correct in the abstract

computation (i.e. in Za
ρi

). That’s why AlgorithmSelect guards outputs the dependence
setSρi

(l, k), and adds the guardgi whenever it is a diagonal guard. The refinement step
will split the original automaton along all diagonals in some G ∈ Sρ′(l, k) .∧Set(gi).
Note that addinggi is necessary: consider the automaton in Figure 3 in which thetwo
last transitions are switched; there is no diagonal guard before the last transition. We
will now prove correctness of this selection algorithm.

Correctness of the algorithm.If ρ is a trace, andG a subset ofDiag(A), we denote
ρ[G ← tt] the trace where the transitions labelled by someg ∈ G are replaced by
a transition labelled by the constrainttt. Roughly, the first lemma states that diagonal
guards which are not selected by our algorithm are not involved in the computation of
the corresponding entry.

Lemma 1. LetA be a timed automaton, andρ a trace inA. Consider a pair(i, j) and
a set of diagonal guardsG.

If
(

∃G0 ∈ Sρ(i, j) s.t.G0 ∩G = ∅
)

thenMρ[G←tt](i, j) = Mρ(i, j).

Proof (Sketch).The proof can be done by induction on the length of the traceρ. It relies
on the fact that all guards which may have been used for computing the current entry

3 k or l is possibly0.

have been selected. Therefore, other guards can be removed safely. (See Appendix C
for a complete proof.) ut

Our algorithm outputs a set of setsG of diagonal guards, each setG contains candidates
for splitting the original automaton during the refinement step. The following proposi-
tion states that if there is an erroneous trace in a timed automaton, then each setG
which is part of the output of our algorithm is non-empty. This proves correctness of
the refinement step: each time we need to refine, we will be ableto do so.

Proposition 1. Let A be a timed automaton, andρ an erroneous trace inA. Then
Select guards(ρ) does not contain the empty set.

Proof. The proof is done by contradiction. Suppose this set contains the empty set.
Using the previous lemma, we can remove all diagonal constraints appearing along this
path and obtain an erroneous path which does not contain any diagonal constraint. This
contradicts the correctness of the algorithm in the non-diagonal case. ut

The following proposition states that any setG selected by our algorithm is pertinent
w.r.t. ρ. In the refined automatonSplit(A, G), the guards ofG have been removed, and
every location ofA is split into2|G| locations so as to encode the truth value of guards
in G. The traceρ inA corresponds to a set of traces – denotedπA,G(ρ) – inSplit(A, G).
The next proposition states that AlgorithmFRA will not output as a witness trace any
ρ′ ∈ πA,G(ρ). This is formally expressed as follows:

Proposition 2. LetA be a TA, andρ an erroneous trace inA. LetG ∈ Select guards(ρ)
andA′ = Split(A, G). For all ρ′ ∈ πA,G(ρ), the abstract computation inA′ for ρ′

leads to an empty state, i.e.Za
ρ′ = ∅

Proof. ρ = ρ1.α is an erroneous trace such thatZe
ρ1
6= ∅, Ze

ρ = ∅ while Za
ρ 6= ∅.

Assume that the entry which is not correct inZa
ρ1

is (l, k). Algorithm Select guards

returnsSρ1
(l, k) .∧Set(g) whereg is the guard labellingα.

Now considerG = Diag(A)\G. Lemma 1 ensures that the traceρ1[G← tt] leads inA
to a zone with the same entry(l, k) viaan exact forward computation:Mρ1[G←tt](l, k) =

Mρ1
(l, k). Emptiness ofZe

ρ then implies emptiness ofZe

ρ[G←tt]
.

Let A1 be the timed automaton obtained fromA by replacing any guard inG by tt.
The traceρ[G ← tt] is a trace ofA1 and it leads also to an empty zone, as for the
computation inA, because this depends only on the trace and not on the automaton.
Now letA2 be Split(A1, G). Any traceρ2 in πA1,G(ρ[G ← tt]) leads, asA1 along
ρ[G ← tt], to an empty zone:Ze

ρ2
= Ze

ρ[G←tt]
= ∅. There is no more diagonal con-

straint inA2. Thus, the abstract forward computation along traceρ2 leads also to an
empty zone:Za

ρ2
= ∅.

ClearlyA2 accepts more runs thanA′ = Split(A, G) because some guards have been
replaced bytt. This holds for the exact and the abstract computation. Any traceρ′ in
πA,G(ρ) thus leads to an empty zone in the abstract computation:Za

ρ′ = ∅. ut

The two propositions show the correctness of our algorithm for selecting diagonal con-
straints.

4.4 Comments on the Method

Whenρ is an erroneous trace,Select guards(ρ) may output several non-empty sets of
diagonal guards. For the refinement step, we can choose any such set. In particular, we
can choose the smallest one, so that the refinement is not too expensive.

The key point of the method we propose is theSelect guards algorithm because it may
avoid the removal of all diagonal constraints. Note that ourmethod is not formally op-
timal in the sense that it is possible that refining w.r.t. a proper subset of the selected
set is sufficient to treat correctly the current trace. However, we may find such a subset
with an incremental test: add successively each selected guard until the erroneous trace
is eliminated (this procedure is linear in|ρ|). It is clearly more efficient than any method
consisting in splitting every constraint inDiag(A), especially because most of the di-
agonal constraints do not raise wrong diagnosis. For example, as explained in [BY04],
they are very useful for modeling scheduling problems (see for example [FPY02]).
Such systems contain a lot of diagonal constraints4 but, as the clocks of these systems
are bounded, our algorithm will never find erroneous traces,and no refinement is needed
(for this class of models the classical forward algorithmFRA will be correct). Then a
systematic splitting is expensive and useless. In AppendixD, we give several examples
of computations of AlgorithmSelect guards.

The splitting step could be implemented in several ways and we could avoid building
explicitly Split(A, G). First we could consider on-the-fly techniques where the truth
of guards inG are stored using a vector of booleans. Another possibility could be to
modify the computation ofPost operator in order to integrate the splitting of diagonal
constraints.

4.5 Related Work

Several refinement-based methods have already been proposed in the past for timed
systems [AIKY95,MRS02,Sor04] and more generally for hybrid systems [ADI03]. In
these works the verification process starts assuming there is no timing information in
the system, and then, when a spurious trace is found, the system is refined using relevant
constraints (or predicates) of this spurious trace. For timed systems, predicates which
are used for refining the model are predicates which separateregions, which ensures that
the refinement process stops. In those works, abstraction and refinement are used either
to avoid computing the regions or to compute the coarsest time-abstract bisimulation
[TY01] before verifying the system.
In our work, the aim and the techniques are different. We do not want to propose a
verification algorithm fully based on abstraction and refinement, but we want to use
the refinement paradigm for patching the classical forward analysis algorithm with no
over-cost when no spurious trace is detected. Indeed, this algorithm, which is for ex-
ample implemented in UPPAAL, has already proven its efficiency in many case studies.
Moreover, as this algorithm is correct for TA without diagonal constraints, we select
predicates only among the diagonal constraints of the TA we verify.

4 There aren2 diagonal constraints wheren is the number of tasks to be scheduled.

5 Conclusion

In this paper we have studied the role of diagonal constraints in a forward analysis
computation. We have described several approaches to handle diagonal constraints and
proposed a refinement-based purely forward method for verifying reachability proper-
ties of timed automata with diagonal constraints. As diagonal constraints do not always
raise wrong diagnosis, a systematic removal of all diagonalconstraints appears as too
expensive, and a refinement-based learning from erroneous traces of the classical algo-
rithm seems more appropriate to patch the usual algorithm, as there will be no over-cost
if no spurious trace is found. We think that, in practice, thecost of this approach is lower
than the cost of the systematic removal of all diagonal constraints. As further develop-
ments, we would like to combine techniques we have proposed in this paper with more
efficient refinement-based methods, as the lazy abstractionapproach of [HJMS02]. We
also plan to implement this method and to compare it with other approaches.

References

[ACD93] Rajeev Alur, Costas Courcoubetis, and David Dill. Model-checking in dense real-
time. Information and Computation, 104(1):2–34, 1993.

[AD94] Rajeev Alur and David Dill. A theory of timed automata.Theoretical Computer
Science, 126(2):183–235, 1994.

[ADI03] Rajeev Alur, Thao Dang, and Franjo Ivančić. Counter-example guided predicate ab-
straction of hybrid systems. In9th International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, volume 2619 ofLecture Notes in Com-
puter Science, pages 208–223. Springer, 2003.

[AIKY95] Rajeev Alur, Alon Itai, Robert P. Kurshan, and Mihalis Yannakakis. Timing verifi-
cation by successive approximation.Information and Computation, 118(1):142–157,
1995.

[BBFL03] Gerd Behrmann, Patricia Bouyer, Emmanuel Fleury, and Kim G. Larsen. Static guard
analysis in timed automata verification. InProc. 9th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’03), vol-
ume 2619 ofLecture Notes in Computer Science, pages 254–277. Springer, 2003.

[BBLP05] Gerd Behrmann, Patricia Bouyer, Kim G. Larsen, and Radek Pel̀anek. Zone based
abstractions for timed automata exploiting lower and upper bounds.Software Tools
for Technology Transfer, 2005. To appear.

[BC05] Patricia Bouyer and Fabrice Chevalier. On conciseness of extensions of timed au-
tomata.Journal of Automata, Languages and Combinatorics, 2005. To appear.

[BDGP98] B́eatrice B́erard, Volker Diekert, Paul Gastin, and Antoine Petit. Characterization of
the expressive power of silent transitions in timed automata.Fundamenta Informati-
cae, 36(2–3):145–182, 1998.

[BM83] Bernard Berthomieu and Miguel Menasche. An enumerative approach for analyzing
time Petri nets. InProc. IFIP 9th World Computer Congress, volume 83 ofInforma-
tion Processing, pages 41–46. North-Holland/ IFIP, 1983.

[Bou03] Patricia Bouyer. Untameable timed automata! InProc. 20th Annual Symposium on
Theoretical Aspects of Computer Science (STACS’03), volume 2607 ofLecture Notes
in Computer Science, pages 620–631. Springer, 2003.

[Bou04] Patricia Bouyer. Forward analysis of updatable timed automata.Formal Methods in
System Design, 24(3):281–320, 2004.

[BY03] Johan Bengtsson and Wang Yi. On clock difference constraintsand termination in
reachability analysis of timed automata. InProc. 5th International Conference on
Formal Engineering Methods (ICFEM 2003), volume 2885 ofLecture Notes in Com-
puter Science, pages 491–503. Springer, 2003.

[BY04] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools. In
Proc. 4th Advanced Course on Petri Nets (ACPN’03), volume 3098 ofLecture Notes
in Computer Science, pages 87–124. Springer, 2004.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. InProc. 12th International Confer-
ence on Computer Aided Verification (CAV’00), volume 1855 ofLecture Notes in
Computer Science, pages 154–169. Springer, 2000.

[Dil90] David Dill. Timing assumptions and verification of finite-state concurrent systems.
In Proc. of the Workshop on Automatic Verification Methods for Finite State Systems
(1989), volume 407 ofLecture Notes in Computer Science, pages 197–212. Springer,
1990.

[DOTY96] Conrado Daws, Alfredo Olivero, Stavros Tripakis, and Sergio Yovine. The toolKRO-
NOS. In Proc. Hybrid Systems III: Verification and Control (1995), volume 1066 of
Lecture Notes in Computer Science, pages 208–219. Springer, 1996.

[DT98] Conrado Daws and Stavros Tripakis. Model-checking of real-time reachability prop-
erties using abstractions. InProc. 4th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS’98), volume 1384 of
Lecture Notes in Computer Science, pages 313–329. Springer, 1998.

[DY96] Conrado Daws and Sergio Yovine. Reducing the number of clock variables of timed
automata. InProc. 17th IEEE Real-Time Systems Symposium (RTSS’96), pages 73–
81. IEEE Computer Society Press, 1996.

[FPY02] Elena Fersman, Paul Petterson, and Wang Yi. Timed automata with asynchrounous
processes: Schedulability and decidability. InProc. 8th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’02), vol-
ume 2280 ofLecture Notes in Computer Science, pages 67–82. Springer, 2002.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Lazy
abstraction. InProc. 29th ACM Symposium on Principles of Programming Languages
(POPL’02), pages 58–70. ACM Press, 2002.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model-checking for real-time systems.Information and Computation, 111(2):193–
244, 1994.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL in a nutshell. Journal of
Software Tools for Technology Transfer (STTT), 1(1–2):134–152, 1997.

[MRS02] M. Oliver Möller, Harald Rueß, and Maria Sorea. Predicate abstraction for dense real-
time systems. InProc. Theory and Practice of Timed Systems (TPTS’02), volume
65(6) of Electronic Notes in Theoretical Computer Science, pages 1–20. Elsevier,
2002.

[Sor04] Maria Sorea. Lazy approximation for dense real-time systems. In Proc. Joint Con-
ference on Formal Modelling and Analysis of Timed Systems and Formal Techniques
in Real-Time and Fault Tolerant System (FORMATS+FTRTFT’04), volume 3253 of
Lecture Notes in Computer Science, pages 363–378. Springer, 2004.

[TY01] Stavros Tripakis and Sergio Yovine. Analysis of timed systems using time-abstracting
bisimulations.Formal Methods in System Design, 18(1):25–68, 2001.

A Note on AutomatonA of Figure 1

Consider the automatonA depicted in Figure 1. Consider a run along which the first
transition is performed at dated (with 1 ≤ d ≤ 3), and where the loop is takenα
times, then the clock valuationv when arriving in the black state verifies:v(x1) = 0,
v(x2) = d, v(x3) = 2α + 5 andv(x4) = 2α + 5 + d. In particular, the constraint
x2 − x1 = x4 − x3 is always satisfied, which implies that the last transition is never
enabled, and thus that state “Error” is not reachable. Ifα is large enough, then the exact
and abstracted symbolic computations along the corresponding traceρ are respectively
the following zones5:

Ze
ρ































x1 = 0

1 ≤ x2 − x1 ≤ 3

1 ≤ x4 − x3 ≤ 3

x3 − x1 = 2α + 5

x4 − x2 = 2α + 5

Za
ρ































x1 = 0

1 ≤ x2 − x1 ≤ 3

1 ≤ x4 − x3 ≤ 3

x3 − x1 > k

x4 − x2 > k

Let g be the guardx2 − x1 ≤ 1 ∧ x4 − x3 ≥ 2. We clearly haveZe
ρ ∩ g = ∅ but

Za
ρ ∩ g 6= ∅, and then the last transition is found as reachable by AlgorithmFRA. Note

that strict inequalities are due to the extrapolation operator.

B “Checking Witness Traces, and Running Further the
Algorithm” is not Correct (Section 3)

Error

A0

q
x2 ≤ x1 + 1

x4 ≥ x3 + 2

r0 r1 r2

1 ≤ x1 ≤ 3
{x1, x2, x3} := 0

x1 = 1
x1 := 0

x1 = 1 ∧ x3 ≥ 3

x1 := 0

x1 = 1

{x1, x2} := 0

1 ≤ x1 ≤ 3
x1 := 0

Consider the automaton depicted above and assume that the extrapolation constant is3.
An execution going through the statesr0, r1, r2 until q allows to reach the Error loca-
tion. Indeed with such an execution, the (exact) valuation when arriving inq depends
on three parameters: the amount of timeδ0 spent in the initial state (1 ≤ δ0 ≤ 3), the
numberβ of times the loop onr0 has been taken (β ≥ 3), and the amount of time
δ1 spent inr2 (1 ≤ δ1 ≤ 3). The valuationv is defined by:v(x1) = 0, v(x2) = δ1,
v(x3) = β +2+ δ1 andv(x4) = δ0 +β +2+ δ1. Then it is sufficient to chooseδ0 = 1
andδ1 = 2 to satisfy the constraintx4 − x3 ≥ 2 ∧ x2 − x1 ≤ 1.

5 Computations have been done automatically to present the zones in a concise way.

Now consider AlgorithmFRA, we assume it uses a breadth first search. It finds the
abstract symbolic execution leading to the black stateq in 5 edges (without taking the
loop) throughA0 : the abstract computed zone isZa

1 = 3 < x3∧1 ≤ x2 ≤ 3∧x1 = 0∧
1 ≤ x4−x3 ≤ 3∧3 < x4−x2∧2 ≤ x3−x2 and then the symbolic state(q, Za

1) is stored
in Visited. From this state, the location Error is found reachable, then the algorithms
returns the corresponding witness. As it is a false positive, the algorithm continues its
breadth first search. Then it will discover the symbolic state (r2, Z

a
2) – reaching this

state requires6 edges – and the corresponding abstracted zone isZa
2 = 3 < x3 ∧ x1 =

0 ∧ 1 ≤ x4 − x3 ≤ 3 ∧ x2 − x1 ≤ 0. And we have:Extra3(Post(Za
2 ,

1≤x1≤3,x1:=0
−−−−−−−−−→

)) = 1 ≤ x2 ≤ 3 ∧ x1 = 0 ∧ 1 ≤ x4 − x3 ≤ 3 ∧ 3 < x3 − x2, it is included inZa
1 ,

and its successor will not be considered because it already belongs toVisited. Then the
correct execution leading to Error won’t be discovered by the algorithm.

C Proof of Lemma 1

First we have:

Lemma 2. Let ρ be a path in a timed automatonA and G a set of diagonal guards.
Then, for all pairs(i, j), Mρ(i, j) ≤Mρ[G←tt](i, j).

Proof. By definition, the pathρ[G ← tt] is less restrictive than the pathρ. We have
thus the following inclusions between zones:Ze

ρ ⊆ Ze
ρ[G←tt]. ut

The proof of Lemma 1 is done by induction on the length ofρ: we consider a pathρ1

and we extend it with an edge
α
−−→ to getρ2. We assume the property holds forρ1, and

we will prove it forρ2 by distinguishing possible cases forα. We fix two indicesi and
j and a set of diagonal guardsG0 such that∃G ∈ Sρ2

(i, j) s.t.G0 ∩ G = ∅. We fix
such aG.

– Caseα is the constraint (γ : xk − xl ≤ c).
Let first recall the definition of the operatorInter(M,γ):

Sρ2
(i, j) =











Sρ1
(i, j) if Mρ1

(i, j) < m

Sρ1
(i, j) ·∨S0 if Mρ1

(i, j) = m

S0 if Mρ1
(i, j) > m

wherem = Mρ1
(i, k) + c + Mρ1

(l, j) andS0 = Sρ1
(i, k) .∧Set(γ) .∧Sρ1

(l, j).
Therefore, asG ∈ Sρ2

(i, j), we haveG ∈ Sρ1
(i, j) or G ∈ S0 (or both) and so we

always can apply the induction hypothesis to at least one ofSρ1
(i, j) andS0.

• (a) We apply induction hypothesis toSρ1
(i, j).

By definition ofInter, this can occur ifMρ1
(i, j) ≤Mρ1

(i, k)+ c+Mρ1
(l, j).

It’s what we assume now. Then we haveMρ2
(i, j) = Mρ1

(i, j). By induction
hypothesis, we getMρ1

(i, j) = Mρ1[G0←tt](i, j). Two cases may arise for
Mρ2[G0←tt](i, j):
∗ (i) eitherMρ1[G0←tt](i, j) ≤Mρ1[G0←tt](i, k) + c + Mρ1[G0←tt](l, j)
∗ (ii) or Mρ1[G0←tt](i, j) > Mρ1[G0←tt](i, k) + c + Mρ1[G0←tt](l, j).

In the first case, we get thatMρ2[G0←tt](i, j) = Mρ1[G0←tt](i, j) = Mρ1
(i, j) =

Mρ2
(i, j) this gives the result.

We will prove that the second case cannot happen. By definition of Inter, we
have in this caseMρ2[G0←tt](i, j) = Mρ1[G0←tt](i, k) + c + Mρ1[G0←tt](l, j).

By induction hypothesis, we haveMρ1
(i, j) = Mρ1[G0←tt](i, j). By (ii), we

haveMρ1[G0←tt](i, j) > Mρ1[G0←tt](i, k)+c+Mρ1[G0←tt](l, j). By Lemma 2,
we haveMρ1[G0←tt](i, k) ≥Mρ1

(i, k) andMρ1[G0←tt](l, j) ≥Mρ1
(l, j) , then

Mρ1
(i, j) > Mρ1

(i, k)+c+Mρ1
(l, j) which contradicts the initial hypothesis.

• (b) We apply induction hypothesis toS0 = Sρ1
(i, k) .∧Set(γ) .∧Sρ1

(l, j). By
definition ofInter, this can occur ifMρ1

(i, j) ≥Mρ1
(i, k)+c+Mρ1

(l, j). It’s
what we assume now. Then we haveMρ2

(i, j) = Mρ1
(i, k) + c + Mρ1

(l, j).
As G ∈ S0, we haveG = G1 ∪ {γ} ∪ G2 (or G = G1 ∪ G2 whetherγ
is diagonal or not), whereG1 ∈ Sρ1

(i, k) andG2 ∈ Sρ1
(l, j). Then we can

apply induction hypothesis to bothSρ1
(i, k) andSρ1

(l, j) and finally we get
Mρ1

(i, k) = Mρ1[G0←tt](i, k) andMρ1
(j, l) = Mρ1[G0←tt](j, l). Two cases

may arise forMρ2[G0←tt](i, j):

∗ (i) eitherMρ1[G0←tt](i, j) ≥Mρ1[G0←tt](i, k) + c + Mρ1[G0←tt](l, j)
∗ (ii) or Mρ1[G0←tt](i, j) < Mρ1[G0←tt](i, k) + c + Mρ1[G0←tt](l, j).

In the first case, we get thatMρ2[G0←tt](i, j) = Mρ1[G0←tt](i, k) + c+
Mρ1[G0←tt](l, j) = Mρ1

(i, k) + c + Mρ1
(l, j) = Mρ2

(i, j) which provides
the result.
We will prove that the second case cannot happen. By definition of Inter ,
we have in this caseMρ2[G0←tt](i, j) = Mρ1[G0←tt](i, j). By (ii), we have
Mρ1[G0←tt](i, j) < Mρ1[G0←tt](i, k) + c + Mρ1[G0←tt](l, j). The ind. hyp.
givesMρ1[G0←tt](i, k) = Mρ1

(i, k) andMρ1[G0←tt](l, j) = Mρ1
(l, j), then

we have:Mρ1[G0←tt](i, j) < Mρ1
(i, k)+ c+Mρ1

(l, j). But the initial hypoth-
esis givesMρ1

(i, k) + c + Mρ1
(l, j) = Mρ2

(i, j) . The Lemma 2 provides
Mρ2

(i, j) ≤Mρ2[G0←tt](i, j) what gives us a contradiction.

– Caseα is the future.
If j 6= 0, then by the definition of

−−−−→
(M,S), , we haveSρ2

(i, j) = Sρ1
(i, j). So

we can apply the induction hypothesis toSρ1
(i, j) what gives usMρ1

(i, j) =
Mρ1[G0←tt](i, j). Moreover, we also haveMρ2[G0←tt](i, j) = Mρ1[G0←tt](i, j) and
Mρ2

(i, j) = Mρ1
(i, j) becausej 6= 0. We thus get the result we want.

If j = 0, bothMρ2[G0←tt](i, j) andMρ2
(i, j) are+∞.

– Caseα is the reset of clockxk.
In case(i, j) ∈ {(k, k), (0, k), (k, 0)}, bothMρ2[G0←tt](i, j) andMρ2

(i, j) are0.
If j = k (resp.i = k), we can apply the induction hypothesis to the setSρ1

(i, 0)
(resp.Sρ1

(0, j)). As above, we obtain the result we want.
Otherwise we can apply induction hypothesis toSρ1

(i, j) and conclude in the same
way.

Finally, we obtain in every case thatMρ2
(i, j) = Mρ2[G0←tt](i, j), what ends the proof.

D Examples of Applications

In this section we illustrate how AlgorithmSelect guards behaves on several small
examples. To help understanding these examples we recall that the zone obtained by an
exact computation when reaching the black state isx1 = 0 ∧ 1 ≤ x2 − x1 ≤ 3 ∧ 1 ≤
x4 − x3 ≤ 3 ∧ x3 − x1 = 2α + 5 ∧ x4 − x2 = 2α + 5 (see Appendix A).

ErrorA0

x2 ≤ x1 + 1 x4 ≥ x3 + 2

When reaching the grey state, the constraint on the differencex4 − x3 is x4 − x3 ≤ 1,
and this is due to diagonal guardx2 ≤ x1 + 1. Algorithm Select guards thus outputs
{{x2 ≤ x1 + 1, x4 ≥ x3 + 2}}. In this case, too many diagonal guards are selected,
because it would be sufficient to split along one of the two diagonal constraints.

ErrorA0

x2 ≥ x1 + 1

x2 ≤ 1

x4 ≥ x3 + 2

For the above automaton, AlgorithmSelect guards outputs{{x4 ≥ x3 +2}}. Only one
of the two diagonal constraints is selected.

ErrorA0

x4 ≤ x3 + 2 x4 ≥ x3 + 2 x2 ≤ 1

For the above automaton, AlgorithmSelect guards outputs{{x4 ≥ x3 +2}}. Only one
of the two diagonal constraints is selected.

ErrorA0

x2 ≤ x1 + 1

x2 ≤ 1

x4 ≥ x3 + 2

For the above automaton, AlgorithmSelect guards outputs{{x4 ≥ x3 + 2}, {x4 ≥
x3 + 2, x2 ≤ x1 + 1}}: there are two possible sets of diagonal constraints which can
be used for splitting. This is because the constraintx2 − x1 ≤ 1 in the grey state is
due tox2 ≤ 1 or x2 ≤ x1 + 1. As explained in the paper, when computing normal
forms of DBMs, it may be the case that, as in Floyd’s algorithm, a minimal path can
be obtained in two different ways. Of course, for splitting,we choose the set of guards
{x4 ≥ x3 + 2} which is the smallest one.

