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Abstract

A standard bridge between automata theory and logic is provided by the notion of character-
istic formula. This paper investigates this problem for theclass of event-recording automata. An
attempt to express in Event-recording logic (ERL) characteristic formula for timed simulation and
bisimulation can be found in Sorea’s thesis, but appears to be erroneous. We introduce an exten-
sion of the logic ERL, called WTµ . We prove it is strictly more expressive than ERL, and that its
model-checking problem against event-recording automatais EXPTIME-complete. We provide con-
structions for characterizing event-recording automata up to timed bisimilarity, and timed similarity.
Finally, combining these two results we obtain decision procedures for checking timed similarity and
timed bisimilarity for event-recording automata and we study the complexity issues.

1 Introduction

In the untimed setting, automata and logics are central tools for the formal verification of reactive sys-
tems. While the system is usually modelled as an automaton, the specification may be described both
as a formula of a logic or as an automaton. In the first case the correctnessof the system reduces to a
model checking problem, whereas in the second case it requires to compare the two automata, and dif-
ferent relations can be envisaged, such as bisimulation or language inclusion. A standard bridge between
automata theory and logic is provided by the notion ofcharacteristic formula[?, ?]. A characteristic
formula is a formula in a temporal logic that completely characterizes the behaviour of an automaton
modulo some chosen relation. For the class of timed automata [3], a solution has first been proposed
in [7], providing formulae in greatest only fixpoint logicLν . Then, these results have been improved
in [1], yielding linear constructions.

Event-recording automata (ERA) [4] and timed automata [3] are timed extensionof finite automata
through addition of a finite set of real-valuedclocks. They have been put forward to model continuous-
time real-time systems. Event-recording Automata is a restricted class of timed automata. Whereas
transitions in (untimed) finite automata are labelled with actions, every transition in ERA and timed
automata is labelled with a triplet made of a constraint on clocks, an action and a set of clocks to be
reset when the transition is taken. In both timed models the time elapses continuously in states and the
values of clocks do change accordingly. A transition is firable when theclock constraintin it is satisfied
by the current values of clocks. Timed automata neither restrict clocks andactions in models, nor the
set of clocks to be reset when transitions are taken. ERA considers a bijective mapping between the
set of clocks and the set of actions; and when a transition is taken, only theunique clock associated to
the action of the transition is reset. In the opposite of timed automata, ERA are closed under boolean
operations [3]. It has thus attracted attention to characterize its expressive power in terms of some timed
logic [10, 6], using linear-time logics. This paper investigates the problem ofidentifying a branching-
time logic devoted to event-based specifications that allows to construct characteristic formulae for ERA.
Sorea introduced such a logic, named Event-Recording Logic (ERL), which extends the fixpoint mu-
calculus by allowing the use of event-clocks. However, the construction proposed in her PhD Thesis [12]
for bisimulation is erroneous, and we will see that ERL cannot express timedbisimilarity for ERA.

After recalling standard definitions in Section 2, we consider in Section 3 the fixpoint timed logic
WTµ [9], to express the characteristic formulae. The definition of this logic is closer from the defi-
nition of Lν as it separates quantification over discrete successors and time successors. We prove that
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it is strictly more expressive than ERL, and that its model-checking problem over ERA is EXPTIME-
complete. Finally, we provide formulae constructions in WTµ for timed (bi)similarity together with
complexity issues in Section 4. Then we present a bug in the ERL-based construction proposed in [12].
Due to lack of space, omitted proofs can be found in [8].

2 Preliminaries

Let Σ be a finite alphabet,Σ∗ is the set of finite words overΣ. The setsN, Q, Q≥0, R andR≥0 are
respectively the sets of natural, rational, non-negative rational, real and non-negative real numbers. We
consider as time domainT the setQ≥0 or the setR≥0. We consider a finite setX of variables, called
clocks. A clock valuationover X is a mappingv : X → T that assigns to each clock a time value.
The set of all clock valuations overX is denotedTX . Let t ∈ T, the valuationv+ t is defined by
(v+ t)(x) = v(x) + t, ∀x ∈X . For a subsetr of X , we denote byv[r ← 0] the valuation such that
for eachx ∈ r, (v[r ← 0])(x) = 0 and for eachx ∈X \ r, (v[r ← 0])(x) = v(x). Finally, 0 denotes the
valuation mapping every clock on 0.

Given a set of clocksX , we introduce the sets of clock constraints overX denoted byC (X ), and
defined by the grammar “g ::= x∼ c | g∧g” wherex∈X , c∈Q≥0,∼ ∈ {<,≤,=,≥,>} and we define
the always true constrainttt :=

∧

x∈X x≥ 0. The set of guardsover X is defined by the grammar ”
ξ ::= g | ξ ∨ξ | ¬ξ ” whereg is a clock constraint overX. We writev |= ξ (or v∈ Jξ K) when the clock
valuationv satisfiesξ . The guard¬ξ stands for the negation ofξ : v∈ J¬ξ K iff v /∈ Jξ K.

2.1 Timed Transition Systems and Timed Behavioral Relations

Timed transition systems describe systems which combine discrete and continuous evolutions. They are
used to define the behavior of timed systems [3, 4]. Atimed transition system (TTS) over the alphabet
Σ is a transition systemS = 〈Q,q0,Σ,→〉, whereQ is the set of states,q0 ∈ Q is the initial state, and

the transition relation→⊆ Q× (Σ∪T)×Q consists of continuous transitionsq
d
−→ q′ (with d ∈ T), and

discrete transitionsq
a
−→ q′ (with a ∈ Σ). Moreover, we require the following standard properties for

TTS: TIME-DETERMINISM (if q
d
−→ q′ and q

d
−→ q′′ with d ∈ R≥0, thenq′ = q′′), 0-DELAY (q

0
−→ q),

ADDITIVITY (if q
d
−→ q′ andq′

d′
−→ q′′ with d, d′ ∈ R≥0, thenq

d+d′
−−−→ q′′), and CONTINUITY (if q

d
−→ q′,

then for everyd′ andd′′ in R≥0 such thatd = d′+d′′, there existsq′′ such thatq
d′
−→ q′′

d′′
−→ q′). With these

properties, arun of S is defined as a finite sequence of movesρ = q0
d0−→ q′0

a0−→ q1
d1−→ q′1

a1−→ q2 . . .
an−→

qn+1 where discrete and continuous transitions alternate. To such a run corresponds the timed word
w = (ai ,τi)0≤i≤n overΣ, whereai occurs at timeτi = ∑i

j=0d j ; and we say thatw belong to the language
of S denoted byL (S ).

Definitions of timed simulation and timed bisimulation are given for TTS and they will beused for
ERA. Consider two TTSS1 = 〈Q1,q1

0,Σ,→1〉 andS2 = 〈Q2,q2
0,Σ,→2〉. A timed simulation between

S1 andS2 is a relationR ⊆Q1×Q2 such that wheneverq1Rq2 andα ∈ Σ∪T, then:

• If q1
α
−→ q′1 then there existsq′2 ∈Q2 such thatq2

α
−→ q′2 andq′1Rq′2.

A timed bisimulation betweenS1 and S2 is a relationR ⊆ Q1×Q2 such that wheneverq1Rq2 and
α ∈ Σ∪T, then:

• If q1
α
−→ q′1 then there existsq′2 ∈Q2 such thatq2

α
−→ q′2 andq′1Rq′2.

• If q2
α
−→ q′2 then there existsq′1 ∈Q1 such thatq1

α
−→ q′1 andq′1Rq′2.
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We writeq1 ≺ q2 (resp.q1 ∼ q2) iff there exists a timed simulation (resp. a timed bisimulation)R with
q1Rq2. Finally, we say thata TTS S2 simulates aTTS S1 (resp.S1 andS2 are bisimilar) whenever
there exists a timed simulation (resp. a timed bisimulation) betweenS1 andS2 such that the pair(q1

0,q
2
0)

of their initial states belongs to the relationR, and then we writeS1≺S2 (resp.S1∼S2).

2.2 Event-Recording Automata

We consider the class of Event-Recording Automata (ERA), introduced in [4]. In this context, each clock
refers to a specific action. Then, we associate clocks with letters of an alphabet. Given an alphabetΣ, we
then denote byXΣ the set of clocks{xa | a∈ Σ}. Intuitively, in any configuration, the value of the clock
xa represents the delay elapsed since the last occurrence of the actiona (or since the beginning of the run
if no actiona occurred yet).

An event-recording automaton(ERA) [4] over the alphabetΣ is a tupleA = 〈L, ℓ0,Σ,T〉 where,L
is a finite set of locations,ℓ0 ∈ L is the initial location, andT ⊆ L×C (XΣ)×Σ× L is a finite set of
transitions. An ERA is deterministic if[[g′∧g′′]] = /0 whenever(ℓ,g′,a, ℓ′) and(ℓ,g′′,a, ℓ′′).

The semantics of an event-recording automatonA , is defined in the terms of a timed transition
system. Intuitively, it manipulates exactly one clock per action, which allows to measure time elapsed
since the last occurrence of this action. The formal definition is given by:given an ERAA = 〈L, ℓ0,Σ,T〉,
its semantics is given by the TTSSA defined bySA = 〈Q,q0,Σ,→〉 whereQ = L×TXΣ , q0 = (ℓ0,0),
and→ consists of continuous and discrete moves:

Delay steps: ∀d ∈ T, we have(ℓ,ν)
d
−→ (ℓ,ν +d),

Discrete steps: ∀a∈ Σ, we have(ℓ,ν)
a
−→ (ℓ′,ν ′) iff there exists a transitiont = (ℓ,g,a, ℓ′) ∈ T such

thatν |= g andν ′ = ν [xa := 0].

The language of an ERAA , denotedL (A ), is the languageL (SA ) of its TTS SA . A basic
problem on ERA consists in testing the emptiness of its language. AsSA is infinite, a standard solution
is based on a finite time abstract bisimulation called the region construction [4]. We assume the reader
is familiar with theregion constructionof [3] for timed automata. Given an integerK, we denote by
RK(A ) the region automaton w.r.t. constantK. Recall that the number of clock regions for ERA on
alphabetΣ and maximal constantK is in 2O(|Σ| logK|Σ|) (see [4]). A standard solution to the emptiness
testing considers region automata w.r.t maximal constant that occurs in ERAs.

Let A andB be two ERA. We say thatA simulatesB and we writeA ≺B, (resp.A andB are
bisimilar and we writeA ∼B ) whenever there exists a timed simulation (resp. a timed bisimulation)
betweenSA andSB. It is standard that: ifA ≺B, thenL (A ) ⊆L (B); and, ifB is deterministic
andL (A )⊆L (B), thenA ≺B.

LetA be an ERA. We say that a sentenceϕ is a characteristic formula forA if and only if, according
to the behavioural relation considered, the following equivalence holds:
[Simulation:] ∀B ∈ ERA,A ≺B ⇐⇒ B |= ϕ

[Bisimulation:] ∀B ∈ ERA,A ∼B ⇐⇒ B |= ϕ.

Let us introduce some notations. Given an ERAA = 〈L, ℓ0,Σ,T〉, a locationℓ ∈ L and a lettera∈ Σ,
we denote byOut(ℓ,a) = {t = (ℓ,g,a, ℓ′) ∈ T}, the set ofa-labelled transitions leavingℓ and we denote
by F(ℓ,a) = {ℓ′ | ∃(ℓ,g,a, ℓ′) ∈ Out(ℓ,a)}, the set of locations reached by ana from locationℓ. We
also define the guardEn(ℓ,a) =

∨

{g | ∃(ℓ,g,a, ℓ′) ∈ Out(ℓ,a)}, the disjunction of clock constraints of
a-labelled transitions leavingℓ.
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3 A µ-calculus for Event-Recording Automata

We present here a weak timedµ-calculus for ERA that has been introduced in [9]. Its definition distin-
guishes between delay successors and discrete successors, as it is done in the logicLν for instance. We
show that it is strictly more expressive than the logic ERL. We will show in the next section that it allows
to express timed (bi)similarity for ERA while ERL does not.

3.1 The Logic WTµ

Let Σ be a finite alphabet andVar be a finite set of variables. A formulaϕ of WTµ is generated using
the following grammar:ϕ ::= tt | ff | X | ϕ ∧ϕ | ϕ ∨ϕ | 〈a〉ϕ | 〈g〉ϕ | [a]ϕ | [g]ϕ | µX.ϕ | νX.ϕ where
g∈ C (XΣ), a∈ Σ andX ∈Var.

As for the logic ERL, the semantics is defined for TTS associated with ERA. Weuse auxiliary
assignment functions, and the notions of free (bound) variable, sentence...

For a given ERAA = 〈L, ℓ0,Σ,T〉 with associated TTSSA = 〈Q,q0,Σ,→〉, a given formulaϕ ∈
WTµ , and an assignment functionV : Var→P(Q), we define the set of states satisfying the formula,
denotedJϕKA

V
, inductively as follows:

• JttKA
V

:= Q

• JffKA
V

:= /0

• JXKA
V

:= V (X)

• Jϕ1∧ϕ2K
A
V

:= Jϕ1K
A
V
∩ Jϕ2K

A
V

• Jϕ1∨ϕ2K
A
V

:= Jϕ1K
A
V
∪ Jϕ2K

A
V

• J〈a〉ϕKA
V

:= {(ℓ,v) ∈Q | ∃(ℓ,g,a, ℓ′) ∈ T s.t. v |= g and(ℓ′,v′) ∈ JϕKA
V

, wherev′ = v[xa := 0]}

• J〈g〉ϕKA
V

:= {(ℓ,v) ∈Q | ∃ d ∈ T s.t. v+d |= g and(ℓ,v+d) ∈ JϕKA
V
}

• J[a]ϕKA
V

:= {(ℓ,v) ∈Q | ∀(ℓ,g,a, ℓ′) ∈ T,v |= g⇒ (ℓ′,v′) ∈ JϕKA
V

, wherev′ = v[xa := 0]}

• J[g]ϕKA
V

:= {(ℓ,v) ∈Q | ∀ d ∈ T,v+d |= g⇒ (ℓ,v+d) ∈ JϕKA
V
}

• JµX.ϕKA
V

:= ∩{Q′ ⊆Q | JϕKA

V [X:=Q′] ⊆Q′}

• JνX.ϕKA
V

:= ∪{Q′ ⊆Q |Q′ ⊆ JϕKA

V [X:=Q′]}

An ERA A = 〈LA , ℓA
0 ,Σ,TA 〉 is a model of a sentenceϕ, and we writeA |= ϕ if (ℓ0,0) ∈ JϕKA .

Note that the valuation in the subscript ofJK is removed for sentences.
Let ξ ,g1,g2 be three constraints such thatJξ K = Jg1K∪Jg2K. One [9] can show that〈ξ 〉ϕ is equivalent

to 〈g1〉ϕ ∨ 〈g2〉ϕ and [ξ ]ϕ is equivalent to[g1]ϕ ∧ [g2]ϕ . In consequence we can extend the syntax of
WTµ by allowing guards to occurs in the modalities〈〉 and[].

Remark (On greatest fixpoints). To express characteristic formulae, we shall see later that we need
greatest fixpoints on systems of inequations. In this case, we will use a slightly different presentation.
Given a finite setVar of variables, we will associate to each variableX a formulaD(X) over the variables
Var. D is then called a declaration, and the semantics associated with this definition is the largest solution
of the system of inequationsX ⊆D(X) for anyX ∈Var. It can be proved (see [5]) that this presentation
is equivalent. To specify the declaration used, we will add it as subscriptof the satisfaction relation|=,
writing A ,q |=D X.
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3.2 Expressiveness and Model-Checking results

Relation with Lν . The logicLν over the finite set of clocksX , the set of identifiersVar, and the set of
eventsΣ is defined as the set of formulas generated by the following grammar1:
“ϕ ::= tt |ff |ϕ ∨ϕ |ϕ ∧ϕ |x inϕ |x ⊲⊳ c| 〈a〉ϕ | [a]ϕ | 〈δ 〉ϕ | [δ ]ϕ |X | νX.ϕ(X)”, wherea∈ Σ, x∈X is
a clock variable,c∈Q≥0, X is a variable, and⊲⊳∈ {≤,≥,<,>}.

The logicLν allows for the recursive definition of formulas by including a setVar of variables.Lν
allows only the greatest fixpoint operator. A formula is interpreted over timedautomata. Here, we adapt
the interpretation on an ERAA with associated TTSSA = 〈Q,q0,Σ,→〉. Formulas are interpreted over
statesof the form(ℓ,v)∈Q whereℓ is a location ofA , v is a valuation of clocks inXΣ. We only present
the semantics for the non standard operatorsx ⊲⊳ c,〈δ 〉, [δ ], andx in ϕ :

• Jxa ⊲⊳ cKA
V

:= {(ℓ,v) ∈Q | v(xa) ⊲⊳ c}

• J[δ ]ϕKA
V

:= {(ℓ,v) ∈Q | ∀d ∈ T,(ℓ,v+d) ∈ JϕKA
V
}

• J〈δ 〉ϕKA
V

:= {(ℓ,v) ∈Q | ∃d ∈ Ts.t.(ℓ,ν +d) ∈ JϕKA
V
}

• Jxa in ϕKA
V

:= {(ℓ,v) ∈Q | (ℓ,v[xa := 0]) ∈ JϕKA
V
}

For ERA, the fragment of WTµ without the least fixpoint operator is a fragment ofLν [7]. This inclusion
follows from the fact that the modal operators[g]ϕ , 〈g〉ϕ , [a]ϕ and 〈a〉ϕ of WTµ are respectively
equivalent to[δ ](¬g∨ϕ)2, 〈δ 〉(g∧ϕ), [a](xa in ϕ) and〈a〉(xa in ϕ) of Lν . As Lν is a fragment of Tµ
without the least fixpoint operator, we get that WTµ is a fragment of Tµ , what justifies its name.

Relation with ERL. We compare WTµ with ERL. The syntax of ERL [11] is similar to the syntax of
WTµ , except that the modal operators for ERL are only of the form〈g,a〉 or [g,a]. Their semantics is as
follows:

• J〈g,a〉ϕKA
V

:= {(ℓ,v)∈Q | ∃ d∈T, ∃(ℓ,g,a, ℓ′)∈ T s.t. v+d |= g and(ℓ′,v+d[xa := 0])∈ JϕKA
V
}

• J[g,a]ϕKA
V

:= {(ℓ,v) ∈Q | ∀ d ∈ T,∀(ℓ,g,a, ℓ′) ∈ T,v+d |= g⇒ (ℓ′,v+d[xa := 0]) ∈ JϕKA
V
}

Theorem 1. WTµ is strictly more expressive thanERL.

The inclusion of ERL in WTµ is trivial (replace any operator[g,a], resp. 〈g,a〉, by the two operators
[g][a], resp.〈g〉〈a〉). To show that WTµ is strictly more expressive than the logic ERL, one may consider
the formula[0≤ xa ≤ 1]〈a〉; this formula requires the existence ofsomediscrete move with the eventa
in all the time instants at which the value ofxa is between 0 and 1; such an alternation of quantification
cannot be expressed in ERL. An alternative proof can be found in [8].

Model-Checking. Given an ERAA and a WTµ sentenceϕ , the model-checking problem ofA against
ϕ consists in determining whether the relationA |= ϕ holds or not.

Theorem 2. The model-checking problem forERA againstWTµ sentences is EXPTIME-complete.

EXPTIME membership can be deduced from the EXPTIME membership of the same problem for
timed automata againstLν [2]. More precisely, for an ERAA and a WTµ formula ϕ , one can solve
the problem in timeO((|RK(A )|× |ϕ|)n+1), whereK is the maximal constant inA andϕ , andn is the
number of alternations of greatest and least fixpoints quantifiers inϕ . EXPTIME hardness follows from
the EXPTIME hardness of the model-checking of ERA against ERL [12],as WTµ extends ERL.

1This grammar is different, but equivalent to the one in [7]
2Note that the negation of a clock constraint is a disjunction of clock constraints, i.e. a guard.
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4 Characteristic Formulae Constructions

In the sequel, we consider an ERAA = 〈LA , ℓA
0 ,Σ,TA 〉 over the alphabetΣ. Let ℓ ∈ LA anda ∈ Σ,

we first introduce an operation, denotedSplit(ℓ,a), related to the determinization of ERA.Split(ℓ,a) is
a finite set of constraints{g1, . . . ,gn} ⊆ C (XΣ) such that: it partitionsEn(ℓ,a) meaning thatJ

∨

i giK =
JEn(ℓ,a)K and∀i 6= j,JgiK∩ Jg jK = /0; and secondly, its elements ”match” the clock constraints ofa-
labelled transitions leavingℓ manning that∀i ∈ {1, . . . ,n},∀(ℓ,g,a, ℓ′) ∈ TA ,JgiK ⊆ JgK or JgiK∩ JgK =
/0. We do not investigate here how such an operator can be defined as itis not the purpose of this
work. It can for instance be defined using the region construction [3],and then be optimized using some
merging operations on zones. It is worth noticing that in the worst case, thesize of Split(ℓ,a) may
be |Out(ℓ,a)|×2O(|Σ| logK|Σ|), with K the largest integer constant ofA (due to the region construction).
However, if the ERAA is deterministic, then its size is linear in the size ofOut(ℓ,a). Indeed, the
determinism implies that the clock constraints ofa-labelled transitions leavingℓ are disjoint.

4.1 Characteristic Formulae for Timed Bisimulation

A characteristic formula characterising a location of an ERA up to timed bisimilarity should offer a
description of: all the actions from the alphabet that are enabled in the location; which node is entered
by taking a given transition, together with the reset associated with it; and the fact that arbitrary delays
are allowed in the location.

We define a declarationD∼A associating a formula to each locationℓ of A , and consider the greatest
solution of this system of fixpoint equations.

Φ∼A (ℓ)
D∼A=























∧

a∈Σ

∧

(ℓ,g,a,ℓ′)∈TA

[g]〈a〉 Φ∼A (ℓ′) ∧ [tt]Φ∼A (ℓ) (C1)

∧
∧

a∈Σ

∧

g∈Split(ℓ,a)

[g][a]
∨

(ℓ,g′,a,ℓ′)∈TA |JgK⊆Jg′K

Φ∼A (ℓ′) ∧
∧

a∈Σ
[¬En(ℓ,a)][a]ff (C2)

We give some intuition on its definition. LetB be an ERA and analyze how the definition ofΦ∼A (ℓ)
constrains a locationmof B that satisfiesΦ∼A (ℓ). Assume that the current state inSA is (ℓ,v) and the
current state inSB is (m,v).
The partC1 expresses the simulation constraints (A ≺B). The left-hand side ofC1 is the sub-formula
∧

a∈Σ
∧

(ℓ,g,a,ℓ′)∈TA
[g]〈a〉 Φ∼A (ℓ′) which requires that any discrete transition from(ℓ,v) also exists from

(m,v); or more precisely, for any transition inA from (ℓ,v) andfor all delaysafter which it is firable,
there existsa corresponding transition from(m,v) leading to a related (bisimilar) state. The right hand-
side of C1, [tt]Φ∼A (ℓ), handles the case of delay transitions. Note that it would be easy to handle
invariants in ERA. The partC2 requires any discrete transition from(m,v) to be related to some discrete
transition from(ℓ,v); it also requires the target state of any discrete transition from(m,v) to be related
to the target state of some discrete transition from(ℓ,v). The right-hand side ofC2,

∧

a∈Σ[¬En(ℓ,a)][a]ff
states thata-transitions can happen from(m,v) only in the time instants at whicha-transitions can hap-
pen from(ℓ,v). The left-hand side ofC2,

∧

a∈Σ
∧

g∈Split(ℓ,a)[g][a]
∨

(ℓ,g′,a,ℓ′)∈TA |JgK⊆Jg′K Φ∼A (ℓ′) uses the
decompositionSplit(ℓ,a) of the guardEn(ℓ,a) to express that anya-transition firable from(m,v) corre-
sponds to some firablea-transition of(ℓ,v). In case of non determinism, the target state of ana-transition
from (m,v) is non deterministically related to the target state of somea-transition from(ℓ,v); this choice
is done according to the constraint satisfied by the valuationv. Note that the second property of the
operatorSplitensures the completeness of this construction.

Let us comment the size of the formulas. Due to the use of the operatorSplit, these formulae are
in the worst case of size|A | × 2O(|Σ| logK|Σ|), with K the largest integer constant ofA , whereas ifA
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is deterministic, then their size is linear in the size ofA . We believe that this exponential blow-up is
not avoidable, and detail why formulae of [1], which have a linear size, cannot be used directly in our
context. In the second part of the formulae (C2), they indeed compare, after the discrete firing, the clock
valuation with the guards ofA . As for ERA, when a discrete transition labelled bya is fired the clockxa

is reset, one can not recover the value of this clockxa before the firing. We solve this problem by splitting
the setEn(ℓ,a) to determine which transitions ofA were firable. Moreover, note that this exponential
blow-up has no consequences on the theoretical time complexity of timed bisimilaritychecking, as linear
formulae would lead to the same complexity.

The following result states the correctness of the previous construction.

Theorem 3. Let A and B be twoERA over Σ and considerℓ and m two locations ofA and B

respectively. Then for any valuation v∈ TΣ, we have :(ℓ,v)∼ (m,v) ⇐⇒ B,(m,v) |=D∼A
Φ∼A (ℓ)

In particular, we have:A ∼B ⇐⇒ B |=D∼A
Φ∼A (ℓA

0 ).

We only present a sketch of proof. It proceeds by double implication. The direct implication is proved
by using the co-induction principle.in showing that, considering the assignment function V over the
variablesΦ∼A (ℓ) defined byV (Φ∼A (ℓ)) = {(m,v) ∈ QB | (ℓ,v) ∼ (m,v)} for any ℓ ∈ LA , we have:
∀ℓ ∈ LA ,JΦ∼A (ℓ)KB

V
⊆ JD∼A (Φ∼A (ℓ))KB

V
. This follows from an examination of the different con-

juncts ofΦ∼A (ℓ). Conversely, we consider the relationR ⊆QA ×QB defined asR = {((ℓ,v),(m,v)) |
B,(m,v) |=D∼A

Φ∼A (ℓ)} and show that it is a timed bisimulation. Intuitively conjunctC1 is used to
prove thatR is a timed simulation betweenA andB, andC2 is used to prove thatR−1 is a timed
simulation betweenB andA .

Using our constructions, one can decide timed bisimilarity of two ERAA andB over Σ in time
|A |× |B|×2O(|Σ| logK|Σ|) (K denotes the largest constant ofA andB). Using the previous theorem, this
problem reduces to the model checking problem ofB against formulaΦ∼A (ℓA

0 ) under the declaration
D∼A . Note thatΦ∼A contains only greatest fixpoints and thus is alternation-free. From the model-
checking results, the time complexity of this problem is inO(|RK(B)|× |Φ∼A |).

The result follows from the size ofRK(B) and previous remarks on the size of the formulaeΦ∼A .

4.2 Characteristic Formulae for Timed Simulation

We define a declarationD≻A associating a formula to each locationℓ of A , and consider the greatest
solution of this system of fixpoint equations.

Φ≻A (ℓ)
D≻A=

∧

a∈Σ

∧

(ℓ,g,a,ℓ′)∈T

[g]〈a〉 Φ≻A (ℓ′) ∧ [tt] Φ≻A (ℓ) (C ′1)

This construction leads to formulae ofsize linearin the size ofA . Observe thatC ′1 is justC1 in the
formula for timed bisimulation. The following result states the correctness of theprevious construction.

Theorem 4. Let A and B be twoERA over Σ and considerℓ and m two locations ofA and B

respectively. Then for any valuation v∈ TΣ, we have :(ℓ,v)≺ (m,v) ⇐⇒ B,(m,v) |=D≻A
Φ≻A (ℓ)

In particular, we have:A ≺B ⇐⇒ B |=D≻A
Φ≻A (ℓA

0 )

The proof is similar to that of Theorem 3. As for bisimilarity, one can decide timedsimilarity of
two ERA A and B over Σ in time |A | × |B| × 2O(|Σ| logK|Σ|) (K denotes the largest constant ofA

andB). Moreover, using the determinization procedure for ERA, this procedure can also be used to
decide in EXPTIME the language inclusion between two ERAA andB (first determinizeB, and then
check timed simulation). Note that the problem of language inclusion is PSPACE-complete [4], thus this
procedure is not optimal. However, the known algorithm matching the lower bound consists in guessing
a path in the region automaton. A zone-based version of this procedure maythus be an interesting
alternative.
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4.3 Reporting a Bug in [12]

In [12], the author addresses the problem of constructing characteristic bisimulation formulae for ERA
using ERL formulae with greatest fixpoints. In Section 3, we established thatthe formula[0≤ xa ≤
1]〈a〉tt is not equivalent to any ERL formula. In general, WTµ formulae having a sequence of the form
[g]〈a〉ϕ 3 4 are not equivalent to some ERL formula. In the above subsection, characteristic formulae for
timed bisimulation and timed simulation involve such kind of sequences. This is intuitively the reason
why the construction in [12] is erroneous. More generally, using the sameidea, we prove in [8]:

Theorem 5. The logicERL can not express neither timed bisimilarity nor timed similarity forERA.

We only give here a sketch of the proof. We consider an ERAA composed of two locations and
a single edge labelled bya, with the constraint 0≤ xa ≤ 1. The proof proceeds by contradiction and
assumes the existence of an ERL formulaϕ characterizingA up to timed bisimilarity. As we can
suppose thatϕ is guarded (see [11]), it is possible to unfold the fixpoints ofϕ , and restrict the unfolding
to depth 2 (because of the structure ofA ). Then, the formula contains no more fixpoints, and can be
rewritten in conjunctive normal form (

∧

i ϕi). We finally build an ERAB with two locations, asA , that
has strictly less behaviours thanA , thus is not bisimilar toA , but which satisfiesϕ . Therefore we pick
for eachϕi whose outermost modality is of the form〈g,a〉 a rational numberr in g, and add a transition
in B with constraintxa = r. We can then verify that all formulaeϕi are satisfied byB.
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