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Abstract

A standard bridge between automata theory and logic is gealvby the notion of character-
istic formula. This paper investigates this problem for thess of event-recording automata. An
attempt to express in Event-recording logic (ERL) chamstie formula for timed simulation and
bisimulation can be found in Sorea’s thesis, but appear®tertbneous. We introduce an exten-
sion of the logic ERL, called WJ. We prove it is strictly more expressive than ERL, and that it
model-checking problem against event-recording autom&XPTIME-complete. We provide con-
structions for characterizing event-recording automattouimed bisimilarity, and timed similarity.
Finally, combining these two results we obtain decisiorcpdures for checking timed similarity and
timed bisimilarity for event-recording automata and wedgtthe complexity issues.

1 Introduction

In the untimed setting, automata and logics are central tools for the formakteaédfi of reactive sys-
tems. While the system is usually modelled as an automaton, the specification meschieetl both
as a formula of a logic or as an automaton. In the first case the correciggssystem reduces to a
model checking problem, whereas in the second case it requires to ethpawo automata, and dif-
ferent relations can be envisaged, such as bisimulation or languageanclastandard bridge between
automata theory and logic is provided by the notiorcléracteristic formuld?, ?]. A characteristic
formula is a formula in a temporal logic that completely characterizes the beinasfi@n automaton
modulo some chosen relation. For the class of timed automata [3], a solutiondtdseéin proposed
in [7], providing formulae in greatest only fixpoint loglg,. Then, these results have been improved
in [1], yielding linear constructions.

Event-recording automata (ERA) [4] and timed automata [3] are timed exteoffante automata
through addition of a finite set of real-valuelbcks They have been put forward to model continuous-
time real-time systems. Event-recording Automata is a restricted class of timed tatoviibereas
transitions in (untimed) finite automata are labelled with actions, every transitioRA d&d timed
automata is labelled with a triplet made of a constraint on clocks, an action agtdo&d docks to be
reset when the transition is taken. In both timed models the time elapses conlynnaiates and the
values of clocks do change accordingly. A transition is firable whewltiek constrainin it is satisfied
by the current values of clocks. Timed automata neither restrict clocka@rmhs in models, nor the
set of clocks to be reset when transitions are taken. ERA considerscéivigijenapping between the
set of clocks and the set of actions; and when a transition is taken, onlynitpee clock associated to
the action of the transition is reset. In the opposite of timed automata, ERA aezlaosler boolean
operations [3]. It has thus attracted attention to characterize its ex@@ssier in terms of some timed
logic [10, 6], using linear-time logics. This paper investigates the probleitienttifying a branching-
time logic devoted to event-based specifications that allows to construattiiastic formulae for ERA.
Sorea introduced such a logic, named Event-Recording Logic (ERLEhwdxtends the fixpoint mu-
calculus by allowing the use of event-clocks. However, the constructapoged in her PhD Thesis [12]
for bisimulation is erroneous, and we will see that ERL cannot express timgdilarity for ERA.

After recalling standard definitions in Section 2, we consider in Section 3 theifiktimed logic
WT, [9], to express the characteristic formulae. The definition of this logic iseclsem the defi-
nition of L, as it separates quantification over discrete successors and time susc&¥s prove that
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it is strictly more expressive than ERL, and that its model-checking problemBRA is EXPTIME-

complete. Finally, we provide formulae constructions in yMor timed (bi)similarity together with
complexity issues in Section 4. Then we present a bug in the ERL-basstiziion proposed in [12].
Due to lack of space, omitted proofs can be found in [8].

2 Preiminaries

Let X be a finite alphabef* is the set of finite words oveX. The setN, Q, Q=o, R andR>q are
respectively the sets of natural, rational, non-negative rational, nelah@an-negative real numbers. We
consider as time domalfi the setQ-q or the sefR-o. We consider a finite seZ” of variables, called
clocks A clock valuationover 2" is a mappingv : 2" — T that assigns to each clock a time value.
The set of all clock valuations ovet is denotedT# . Lett € T, the valuationv+t is defined by
(V+1t)(x) =Vv(X)+t, Vxe 2". For a subset of 2", we denote by[r — O] the valuation such that
for eachx € r, (V[r < 0])(x) = 0 and for eactkx € 2"\ r, (V[r < 0])(X) = v(x). Finally, O denotes the
valuation mapping every clock on 0.

Given a set of clocks?”, we introduce the sets of clock constraints os#rdenoted bys'(Z"), and
defined by the grammag®:=x~ c| gA g’ wherexe 27, c € Q>o, ~ € {<,<,=,>,>} and we define
the always true constraint := A,.x X > 0. The set of guardsover 2" is defined by the grammar ”
§=9g|&VvE&| & " wheregis a clock constraint oveX. We writev |= & (or v € [€]) when the clock
valuationv satisfies{. The guard-¢ stands for the negation ¢f v e [-&] iff v ¢ [&].

2.1 Timed Transition Systemsand Timed Behavioral Relations

Timed transition systems describe systems which combine discrete and coatavadutions. They are
used to define the behavior of timed systems [3, 4}inded transition systenT({'S) over the alphabet
> is a transition systen¥’ = (Q, 0o, Z, —), whereQ is the set of statesg)p € Q is the initial state, and

the transition relatior-C Q x (XU T) x Q consists of continuous transitioqsi g (with d € T), and
discrete transitions| LN g (with a € ). Moreover, we require the following standard properties for

TTS: TIME-DETERMINISM (if q 9 q andq LN g’ with d € R, thend = q"), 0-DELAY (q 2 Q),

ADDITIVITY (if g 9, q andd L q’ with d, d’ € R, thenq ad, q’), and ®ONTINUITY (if q 9q q,

then for everyd’ andd” in R such thatl = d’ +d”, there existg” such that LA q’ LiN g). With these
properties, aun of Sis defined as a finite sequence of moyes o %, do S, 01 4, o &, Oo... iR
On+1 Where discrete and continuous transitions alternate. To such a rurspomds the timed word
w = (&, Tj)o<i<n OVerZ, wherea; occurs at time; = zijzodj; and we say that belong to the language
of . denoted byZ'(.¥).

Definitions of timed simulation and timed bisimulation are given for TTS and they willdszl for
ERA. Consider two TTS; = (Q1, 5,3, —1) and.%2 = (Q2,03,%, —2). A timed simulation between
1 and. . is a relationZ C Q1 x Q» such that whenevepZq, anda € UT, then:

e If 1 — q} then there existg), € Q, such that, —— g, andg,Zap.

A timed bisimulation betweerys and .% is a relationZ C Q1 x Q. such that whenevaZq, and
a € >UT, then:

e If 1 — q} then there existg, € Q, such that, —— ¢, andg,Zap.

e If o - q, then there existg; € Q; such thaty, —— g} andg,Zap.
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We writeq: < g2 (resp.q1 ~ @) iff there exists a timed simulation (resp. a timed bisimulatighyvith
Q1 Z 2. Finally, we say thad TTS ., simulates al' TS .71 (resp..#1 and.#, are bisimilar) whenever
there exists a timed simulation (resp. a timed bisimulation) betwéeand.#> such that the pa(rqcl,, qg)
of their initial states belongs to the relatigf, and then we write”; < .% (resp..%1 ~ .%%).

2.2 Event-Recording Automata

We consider the class of Event-Recording Automata (ERA), introduce].itn this context, each clock
refers to a specific action. Then, we associate clocks with letters of aabaplGiven an alphab&t we
then denote byZs the set of clockgx, | a € X}. Intuitively, in any configuration, the value of the clock
Xa represents the delay elapsed since the last occurrence of theaditsince the beginning of the run
if no actiona occurred yet).

An event-recording automatoBRA) [4] over the alphabel is a tuple«” = (L, /¢y, Z, T) where,L
is a finite set of locations/g € L is the initial location, and” C L x ¥(Z5) x Z x L is a finite set of
transitions. An ERA is deterministic ffg’ A g”]] = 0 whenevel/,d',a,¢") and(¢,9",a,¢").

The semantics of an event-recording automatdnis defined in the terms of a timed transition
system. Intuitively, it manipulates exactly one clock per action, which allows @sore time elapsed
since the last occurrence of this action. The formal definition is givegivgn an ERAs = (L, 00,2, T),
its semantics is given by the TTS,, defined by.7,, = (Q,qo,Z, —) whereQ = L x T#>, go = (£o,0),
and— consists of continuous and discrete moves:

Delay steps: vd € T, we have(l,v) LN (¢,v+d),

Discrete steps: Va € 2, we have(/, v) N (¢',v") iff there exists a transition= (¢,g,a,¢') € T such
thatv = gandv’ = v[x; :=0].

The language of an ERA/, denoted ¥ (), is the language?(.7,,) of its TTS.¥,,. A basic
problem on ERA consists in testing the emptiness of its language? Ass infinite, a standard solution
is based on a finite time abstract bisimulation called the region construction gths#ime the reader
is familiar with theregion constructiorof [3] for timed automata. Given an integkr, we denote by
Zx (<) the region automaton w.r.t. constadtt Recall that the number of clock regions for ERA on
alphabet= and maximal constari is in 2°(Z/109K[X) (see [4]). A standard solution to the emptiness
testing considers region automata w.r.t maximal constant that occurs in ERAs.

Let &7 and % be two ERA. We say that” simulatesZ and we writee < 4, (resp.«/ and % are
bisimilar and we writees’ ~ % ) whenever there exists a timed simulation (resp. a timed bisimulation)
between¥,, and.”4. Itis standard that: ifZ < %, then.Z (<) C £ (A); and, if # is deterministic
and.Z (o) C £ (%), thensZ < A.

Let.# be an ERA. We say that a sentergcis a characteristic formula foy” if and only if, according
to the behavioural relation considered, the following equivalence holds:
[Simulation:] VABEERA & < B <— B¢

[Bismulation:] VA €ERA & ~ % <— A= ¢.

Let us introduce some notations. Given an ERA= (L, /y,%,T), alocatiord € L and a lettea € Z,
we denote byout(¢,a) = {t = (¢,g,a,¢') € T}, the set ofa-labelled transitions leavingand we denote
by F(¢,a) = {¢' | 3(¢,9,a,¢") € Out(¢,a)}, the set of locations reached by arfrom location/. We
also define the guarin(¢,a) = \/{g | 3(¢,9,a,¢') € Out(¢,a)}, the disjunction of clock constraints of
a-labelled transitions leaving
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3 A pu-calculusfor Event-Recording Automata

We present here a weak timgdcalculus for ERA that has been introduced in [9]. Its definition distin-
guishes between delay successors and discrete successors, asd iis the logid_, for instance. We
show that it is strictly more expressive than the logic ERL. We will show in tix¢ section that it allows

to express timed (bi)similarity for ERA while ERL does not.

31 ThelLogicWT,

Let Z be a finite alphabet andar be a finite set of variables. A formuti of WT, is generated using
the following grammargp =t | | X | ¢ AP | oV O | (@) | (9@ | [ad | [0]¢ | uX.¢ | vX.¢ where
ge % (Zs),ac ZandX € Var.

As for the logic ERL, the semantics is defined for TTS associated with ERAusgeauxiliary
assignment functions, and the notions of free (bound) variable, senten

For a given ERAs = (L, {y,%, T) with associated TTS”,, = (Q, 0o, Z,—), a given formulap €
WT,, and an assignment functiofi : Var — &(Q), we define the set of states satisfying the formula,
denoted¢]¢, inductively as follows:

o [#]7:=Q
o [£]:=0
o [X]7 :=7(X)

[92A §2]F = (9] N[92]¥

[91V §2]7 = [9a]5 U[2]¥

[(@¢]7 ={(t,v) €Q|3(¢,g,al)eTstvE=gand(l,V) e [¢]7, whereV = v[x, := 0]}
(9917 == {((,v) €Q|3Id e Tst.v+d}=gand((,v+d) € [¢]7}

[[ae]y ={(t,v) eQ[V(L,9,a¢) e TvE=g= (V) € [¢];, whereV = V[xa := 0]}
[lG¢]7 :={(t,v) €Q|¥deT,v+d = g= ((,v+d) € [$]7}

[uX.¢]5 == {Q C Q| [#]Y;x.—q| S Q}

[vX.0]7 :={Q CQ|Q C [#]¥ix.—o}

An ERA o7 = (L, ,0¢,3,T,,) is a model of a senteng, and we writee? |= ¢ if (£o,0) € [¢p]7.
Note that the valuation in the subscript[dfis removed for sentences.

Let&, 01,02 be three constraints such tHfdf] = [g1] U[g2]. One [9] can show thd€ )¢ is equivalent
to (g1)9 Vv (92)¢ and[&]¢ is equivalent tdgi|¢ A [g2]¢. In consequence we can extend the syntax of
WT, by allowing guards to occurs in the modalitigsand|].

[
[

Remark (On greatest fixpoints) To express characteristic formulae, we shall see later that we need
greatest fixpoints on systems of inequations. In this case, we will use #\sliifferent presentation.
Given a finite seVar of variables, we will associate to each varialla formulaZ (X) over the variables

Var. 7 is then called a declaration, and the semantics associated with this definition rgjds $alution

of the system of inequations C Z(X) for anyX € Var. It can be proved (see|[5]) that this presentation
is equivalent. To specify the declaration used, we will add it as subsafrtpe satisfaction relatiop-,
writing <7, q =4 X.



On Characteristic Formulae for Event-Recording Automata Nguena-Tinymi&e

3.2 Expressiveness and Model-Checking results

Relation with L,. The logicL, over the finite set of clock$", the set of identifier¥ar, and the set of
eventss is defined as the set of formulas generated by the following gre@nmar

‘b=t |H|PV P A|xing|xsc|(@)e|[alg]|(5)][5]¢|X | vX.$(X)", whereac I, xe 2 is
a clock variablec € Qxo, X is a variable, andie {<,>, <, >}.

The logicL, allows for the recursive definition of formulas by including a'g¢at of variables.L,
allows only the greatest fixpoint operator. A formula is interpreted over timomata. Here, we adapt
the interpretation on an ER4/ with associated TTS”,, = (Q,qo, 2, —). Formulas are interpreted over
statesof the form(¢,v) € Q where/ is a location ofe7, v is a valuation of clocks irZs. We only present
the semantics for the non standard operatorsc, (9),[], andx in ¢:

o [Xaac]¥ :={(¢,v) € Q| V(Xa) > C}
o [[3]9] :={(t,v) eQ|Vd €T, (¢,v+d) € [¢]y}
o [(0)0]7 :={(t,v) €Q|3d e Ts.t.(¢,,v+d) € [¢]}

o [xain ¢ :={(¢.v) € Q| (¢,v[xa:=10]) € [$]7}

For ERA, the fragment of W without the least fixpoint operator is a fragmentoff7]. This inclusion
follows from the fact that the modal operatdm¢, (9)¢, [al¢ and (a)¢ of WT,, are respectively
equivalent tgd](—gV ¢ﬂ (0)(gN @), [a(Xain ¢) and(a)(Xa in ¢) of L,. AsL, is afragment of T,
without the least fixpoint operator, we get that YW1s a fragment of J;, what justifies its name.

Relation with ERL. We compare W} with ERL. The syntax of ERL [11] is similar to the syntax of
WT, except that the modal operators for ERL are only of the fagra) or [g,a]. Their semantics is as
follows:

e [(g.a)¢]y :={(t,v)€Q|IdeT, 3(¢,9,a¢) €T s.t.v+d=gand(¢,v+dxa:=0]) € [$]5}
o [[,d¢]7 :={(t,v) eQ|VdeT\V(gal)cT,v+dE=g= (¢',v+dxs:=0]) € [¢]7}
Theorem 1. WT, is strictly more expressive thdRL.

The inclusion of ERL in WT, is trivial (replace any operatdg,a, resp. (g,a), by the two operators
[g][a], resp.(g)(a)). To show that WT, is strictly more expressive than the logic ERL, one may consider
the formulal0 < x5 < 1](a); this formula requires the existencesdimediscrete move with the eveat

in all the time instants at which the valuexfis between 0 and 1; such an alternation of quantification
cannot be expressed in ERL. An alternative proof can be found in [8]

Model-Checking. Given an ERA« and a W1, sentence, the model-checking problem of against
¢ consists in determining whether the relatiehi= ¢ holds or not.

Theorem 2. The model-checking problem f&RA againstWT,, sentences is EXPTIME-complete.

EXPTIME membership can be deduced from the EXPTIME membership ofatime problem for
timed automata againgt, [2]. More precisely, for an ERA# and a WT, formula ¢, one can solve
the problem in timeD((| %« (<7)| x |¢|)™1), whereK is the maximal constant i” and¢, andn is the
number of alternations of greatest and least fixpoints quantifighs EXPTIME hardness follows from
the EXPTIME hardness of the model-checking of ERA against ERL HWVT, extends ERL.

IThis grammar is different, but equivalent to the one in [7]
2Note that the negation of a clock constraint is a disjunction of clock contram a guard.
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4 Characteristic Formulae Constructions

In the sequel, we consider an ERX = (Ld,ﬁg‘“,Z,T@ over the alphabeX. Let/ L, andac Z,
we first introduce an operation, denot8dlit(/,a), related to the determinization of ERA&plit(¢,a) is

a finite set of constraint§gs,...,gn} € ¢ (Z%) such that: it partition&n(¢,a) meaning thaf\/; gi] =
[En(¢,a)] andVi # j,[g] N [g;] = 0; and secondly, its elements "match” the clock constrainta-of
labelled transitions leaving manning that/i € {1,...,n},V(¢,9,a,¢') € T, [ai] € [g] or [ai] N [g] =
0. We do not investigate here how such an operator can be definedsasoit the purpose of this
work. It can for instance be defined using the region constructioraf] then be optimized using some
merging operations on zones. It is worth noticing that in the worst casesizkeof Split(¢,a) may
be |Out(¢,a)| x 2°(=109K[Z]) "with K the largest integer constant of (due to the region construction).
However, if the ERA is deterministic, then its size is linear in the size@it(¢,a). Indeed, the
determinism implies that the clock constraintsadfbelled transitions leavingare disjoint.

4.1 Characteristic Formulaefor Timed Bisimulation

A characteristic formula characterising a location of an ERA up to timed bisimilahibwyld offer a
description of: all the actions from the alphabet that are enabled in theédiocevhich node is entered
by taking a given transition, together with the reset associated with it; an@d¢héhkt arbitrary delays
are allowed in the location.

We define a declaratiof.. ., associating a formula to each locatibaf <7, and consider the greatest
solution of this system of fixpoint equations.

AN ld@eTW) A e () (1)

acz (4,g,al)eTy

A
A A ldd V o~ (¢) A N\[FEnCa)]falt (¢2)

acz geSplit(/,a) (0.9 .a,0)eT,|[gl<[g] acx

Dst

™~ (0)

We give some intuition on its definition. Le# be an ERA and analyze how the definitiordaf< (¢)
constrains a locatiom of 4 that satisfiesp™“ (¢). Assume that the current state.ifi, is (¢,v) and the
current state in’z is (m,v).

The part#; expresses the simulation constraintg & %). The left-hand side o#; is the sub-formula
Nacs Ne.gaeer, [91(a) ®~“ (¢') which requires that any discrete transition frofov) also exists from
(m,v); or more precisely, for any transition i’ from (¢,v) andfor all delaysafter which it is firable,
there existsa corresponding transition frofm, v) leading to a related (bisimilar) state. The right hand-
side of ¢, [tt]®~“(¢), handles the case of delay transitions. Note that it would be easy to handle
invariants in ERA. The paf#, requires any discrete transition fram, v) to be related to some discrete
transition from(¢,v); it also requires the target state of any discrete transition frmmw) to be related

to the target state of some discrete transition f(ém). The right-hand side 682, A cx[~EN(¢,a)][a]
states thaa-transitions can happen frotm,v) only in the time instants at whicktransitions can hap-
pen from(¢,v). The left-hand side 082, \acs Agespiite.a) (911 Vie.g.ameT, [gclo] ©~“(¢') uses the
decompositiorsplit(¢,a) of the guardEn(/,a) to express that ang-transition firable from(m,v) corre-
sponds to some firabketransition of(¢,v). In case of non determinism, the target state odi-aransition
from (m,v) is non deterministically related to the target state of sartransition from(¢,v); this choice

is done according to the constraint satisfied by the valuatiohlote that the second property of the
operatorSplitensures the completeness of this construction.

Let us comment the size of the formulas. Due to the use of the ope&ptigrthese formulae are
in the worst case of sizgr/| x 20(21°09KZ]) "with K the largest integer constant of, whereas ife/

6
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is deterministic, then their size is linear in the sizexdf We believe that this exponential blow-up is
not avoidable, and detail why formulae of [1], which have a linear siaenot be used directly in our
context. In the second part of the formul&g), they indeed compare, after the discrete firing, the clock
valuation with the guards of/. As for ERA, when a discrete transition labelleddig fired the clockky
is reset, one can not recover the value of this chodbefore the firing. We solve this problem by splitting
the setEn(¢,a) to determine which transitions ¥ were firable. Moreover, note that this exponential
blow-up has no consequences on the theoretical time complexity of timed bisimilagitking, as linear
formulae would lead to the same complexity.

The following result states the correctness of the previous construction.

Theorem 3. Let & and % be twoERA over ~ and consider/ and m two locations of7/ and %
respectively. Then for any valuatioreVT’%, we have :(£,v) ~ (mV) <= %, (mV) |=q_, @ (¢)
In particular, we have:s/ ~ B < %=, , O~ (6g).

We only present a sketch of proof. It proceeds by double implicatioe. ditect implication is proved
by using the co-induction principle.in showing that, considering the assignfumection 7" over the
variables®™~“ (¢) defined by? (&~ (¢)) = {(mv) € Qg | (¢,v) ~ (m,v)} for any/ € L,,, we have:
Ve € Loy, [ (0)]7 C [Py (@ (£))]7. This follows from an examination of the different con-
juncts of®~ (¢). Conversely, we consider the relatighC Q,, x Q4 defined asZ = {((£,v),(m,v)) |
B,(MV) g, ®(¢)} and show that it is a timed bisimulation. Intuitively conjurt is used to
prove thatZ is a timed simulation betweew and %, and%> is used to prove tha# ! is a timed
simulation betweer# and.<7 . O

Using our constructions, one can decide timed bisimilarity of two E&®Aand % over % in time
|7 | x | 8| x 2C(F1109K[Z)) (K denotes the largest constant@fand ). Using the previous theorem, this
problem reduces to the model checking problen¥bégainst formuIaDN"’f(Eéf) under the declaration
9..,. Note thatd™~? contains only greatest fixpoints and thus is alternation-free. From thelmode
checking results, the time complexity of this problem i€ii%x (2)| x |®~]).

The result follows from the size oFx (%) and previous remarks on the size of the formutag” .

4.2 Characteristic Formulaefor Timed Simulation

We define a declaratiofy. ., associating a formula to each locatiéwof <7, and consider the greatest
solution of this system of fixpoint equations.

o) N N D@ O~ A [w] @7 (0) (¢1)
acz (¢,g,al)eT

This construction leads to formulae size linearin the size ofe7. Observe tha¥] is just%; in the
formula for timed bisimulation. The following result states the correctness girth@ous construction.

Theorem 4. Let &/ and % be twoERA over X and consider/ and m two locations of7 and %
respectively. Then for any valuatiorevl'%, we have :(£,v) < (mV) <= %, (mV) =g_, @ (¢)
In particular, we have:s/ < B <= % =g , O (L§)

The proof is similar to that of Theorem 3. As for bisimilarity, one can decide tisialarity of
two ERA 7 and % over X in time |o/| x | 4| x 2°(21o9KIZ) (K denotes the largest constant.of
and %). Moreover, using the determinization procedure for ERA, this prosedan also be used to
decide in EXPTIME the language inclusion between two ERAaNd 4 (first determinizeZ, and then
check timed simulation). Note that the problem of language inclusion is PSAGBiete [4], thus this
procedure is not optimal. However, the known algorithm matching the lowandoonsists in guessing
a path in the region automaton. A zone-based version of this procedurehmaye an interesting
alternative.
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4.3 ReportingaBugin [12]

In [12], the author addresses the problem of constructing chardictdrisimulation formulae for ERA
using ERL formulae with greatest fixpoints. In Section 3, we establishedtbadbrmulal0 < x; <
1j(a)t is not equivalent to any ERL formula. In general, YWibrmulae having a sequence of the form
[g(a)9 34 are not equivalent to some ERL formula. In the above subsection,atbestic formulae for
timed bisimulation and timed simulation involve such kind of sequences. This is intyithe reason
why the construction in [12] is erroneous. More generally, using the sd@ag we prove in [8]:

Theorem 5. The logicERL can not express neither timed bisimilarity nor timed similarity EdRA.

We only give here a sketch of the proof. We consider an ERAomposed of two locations and
a single edge labelled by, with the constraint &< x; < 1. The proof proceeds by contradiction and
assumes the existence of an ERL formglacharacterizingeZ up to timed bisimilarity. As we can
suppose thap is guarded (see [11]), it is possible to unfold the fixpointg péind restrict the unfolding
to depth 2 (because of the structure«d). Then, the formula contains no more fixpoints, and can be
rewritten in conjunctive normal formy\; ¢;). We finally build an ERAZ with two locations, as7, that
has strictly less behaviours tha#, thus is not bisimilar toZ, but which satisfieg. Therefore we pick
for eachg; whose outermost modality is of the forfg,a) a rational number in g, and add a transition
in % with constraintx, = r. We can then verify that all formulagy are satisfied by?. Ol
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