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Abstract. This paper presents the Monotone-Pruning algorithm (MP) for computing the minimal
coverability set of Petri nets. The original Karp and Milleralgorithm (K&M) unfolds the reachabil-
ity graph of a Petri net and uses acceleration on branches to ensure termination. The MP algorithm
improves the K&M algorithm by adding pruning between branches of the K&M tree. This idea was
first introduced in the Minimal Coverability Tree algorithm(MCT), however it was recently shown
to be incomplete. The MP algorithm can be viewed as the MCT algorithm with a slightly more
aggressive pruning strategy which ensures completeness. Experimental results show that this algo-
rithm is a strong improvement over the K&M algorithm as it dramatically reduces the exploration
tree.

1. Introduction

Petri nets form an important formalism for the description and analysis of concurrent systems. While
the state space of a Petri net may be infinite, many verification problems are decidable. The minimal
coverability set (MCS) [2] is a finite representation of a well-chosen over-approximation of the set of
reachable markings. As proved in [10], it can be used to decide several important problems. Among
them we mention thecoverabilityproblem to which many safety problems can be reduced (is it possible
to reach a marking dominating a given one?); theboundednessproblem (is the set of reachable markings
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finite?); theplace boundednessproblem (given a placep, is it possible to bound the number of tokens in
p in any reachable marking?); thesemi-livenessproblem (is there a reachable marking in which a given
transition is enabled?). Finally, theregularity problemasks whether the set of reachable markings is
regular.

Karp and Miller (K&M) introduced an algorithm for computingthe MCS [8]. This algorithm builds
a finite tree representation of the (potentially infinite) unfolding of the reachability graph of the given
Petri net. It uses acceleration techniques to collapse branches of the tree and ensure termination. By
taking advantage of the fact that Petri nets are strictly monotonic transition systems, the acceleration
essentially computes the limit of repeatedly firing a sequence of transitions. The MCS can be extracted
from the K&M tree. The K&M Algorithm thus constitutes a key tool for Petri nets, and has been
extended to other classes of well-structured transition systems [1].

However, the K&M Algorithm is not efficient and in real-worldexamples it often does not terminate
in reasonable time. This inefficiency is due to processing comparable but inequal markings. This ob-
servation led to the Minimal Coverability Tree (MCT) algorithm [2]. This algorithm introduces clever
optimizations for ensuring that all markings in the tree areincomparable. At each step the new node
is added to the tree only if its marking is not smaller than themarking of an existing node. Then, the
tree is pruned: each node labelled with a marking that is smaller than the marking of the new node is
removed together with all its successors. The idea is that a node that is not added or that is removed
from the tree should be covered by the new node or one of its successors. It was recently shown that
the MCT algorithm is incomplete [9, 7]. The flaw is intricate and, according to [7], difficult to patch.
As an illustration, an attempt to resolve this issue has beendone in [9]. However, as proved in [6], the
algorithm proposed in [9] may not terminate. In [7], an alternative algorithm, the CoverProc algorithm,
is proposed for the computation of the MCS of a Petri net. Thisalgorithm follows a different approach
and is not based on the K&M Algorithm.

We propose here the Monotone-Pruning algorithm (MP), an improved K&M algorithm with prun-
ing. This algorithm can be viewed as the MCT Algorithm with a slightly more aggressive pruning
strategy which ensures completeness. The MP algorithm constitutes a simple modification of the K&M
algorithm, and is thus easily amenable to implementation and to extensions to other classes of sys-
tems [1, 3, 4]. Moreover, as the K&M Algorithm, and unlike thealgorithm proposed in [7], any strategy
of exploration of the Petri net is correct: depth first, breadth first, random. It is thus possible to develop
heuristics for subclasses of Petri nets. Finally experimental results show that our algorithm is a strong
improvement over the K&M Algorithm, it indeed dramaticallyreduces the exploration tree. In addition,
optimizations based on symbolic computations (as those proposed in [5] for MCT) can be integrated in
the MP Algorithm.

While the algorithm in itself is simple and includes the elegant ideas of the original MCT Algorithm,
the proof of its correctness is long and technical. The main difficulty is to prove the completeness of
the algorithm, i.e. to show that the set returned by the algorithm covers every reachable marking. To
overcome this difficulty, we reduce the problem to the correctness of the algorithm for a particular class
of finite state systems, which we call widened Petri nets (WPN). These are Petri nets whose semantics
is widened w.r.t. a given markingm: as soon as the number of tokens in a placep is greater than
m(p), this value is replaced byω. Widened Petri nets generate finite state systems for which the proof
of correctness of the Monotone-Pruning algorithm is easieras accelerations can be expressed as finite
sequences of transitions.

Definitions of Petri nets and widened Petri nets are given in Section 2, together with the notions of
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minimal coverability set and reachability tree. In Section3, we recall the K&M Algorithm and present
the Monotone-Pruning Algorithm. We prove its termination and correctness under the assumption that
it is correct on WPN. In Section 4, we develop the proof of correctness of MP Algorithm on widened
Petri nets. In Section 5, we give a comparison of MP and MCT algorithms, and illustrate them on the
Petri net proposed in [7] to prove the incompleteness of MCT.Finally, implementation and experimental
results are discussed in Section 6.

2. Preliminaries

N denotes the set of natural numbers. To denote that the union of two setsX andY is disjoint, we write
X

⊎

Y . A quasi order≤ on a setS is a reflexive and transitive relation onS. Given a quasi order≤ on
S, a states ∈ S and a subsetX of S, we writes ≤ X iff there exists an elements′ ∈ X such thats ≤ s′.

Given a finite alphabetΣ, we denote byΣ∗ the set of words onΣ, and byε the empty word. We
denote by≺ the (strict) prefix relation onΣ∗: givenu, v ∈ Σ∗ we haveu ≺ v iff there existsw ∈ Σ∗

such thatuw = v andw 6= ε. We denote by� the relation obtained as≺ ∪ =.

2.1. Markings,ω-markings and labelled trees

Given a finite setP , a marking onP is an element of the setMark(P ) = N
P . The setMark(P ) is

naturally equipped with a partial order denoted≤.
Given a markingm ∈ Mark(P ), we represent it by giving only the positive components. Forin-

stance,(1, 0, 0, 2) onP = (p1, p2, p3, p4) is represented by the multiset{p1, 2p4}. An ω-marking onP
is an element of the setMarkω(P ) = (N∪{ω})P . The order≤ onMark(P ) is naturally extended to this
set by lettingn < ω for anyn ∈ N, andω ≤ ω. Addition and subtraction onMarkω(P ) are obtained
using the rulesω + n = ω − n = ω for anyn ∈ N. Theω-marking(ω, 0, 0, 2) onP = (p1, p2, p3, p4)
is represented by the multiset{ωp1, 2p4}.

Given two setsΣ1 andΣ2, a labelled tree is a tupleT = (N,n0, E,Λ) whereN is the set of
nodes,n0 ∈ N is the root,E ⊆ N × Σ2 × N is the set of edges labelled with elements ofΣ2, and
Λ : N → Σ1 labels nodes with elements ofΣ1. We extend the mappingΛ to sets of nodes: forS ⊆ N ,
Λ(S) = {Λ(n) | n ∈ S}. Given a noden ∈ N , we denote byAncestorT (n) the set of ancestors ofn in
T (n included). Ifn is not the root ofT , we denote byparentT (n) its first ancestor inT . Finally, given
two nodesx andy such thatx ∈ AncestorT (y), we denote bypathT (x, y) ∈ E∗ the sequence of edges
leading fromx to y in T . We also denote bypathlabelT (x, y) ∈ Σ∗

2 the label of this path.

2.2. Petri nets
Definition 2.1. (Petri net (PN))
A Petri netN is a tuple(P, T, I,O,m0) whereP is a finite set ofplaces, T is a finite set oftransitions
with P ∩ T = ∅, I : T → Mark(P ) is the backward incidence mapping, representing theinput tokens,
O : T → Mark(P ) is the forward incidence mapping, representingoutput tokens, andm0 ∈ Mark(P )
is the initial marking.

The semantics of a PN is usually defined on markings, but can easily be extended toω-markings. We
define the semantics ofN = (P, T, I,O,m0) by its associated labelled transition system(Markω(P ),m0,
⇒) where⇒⊆ Markω(P )×Markω(P ) is the transition relation defined bym ⇒ m′ iff ∃t ∈ T s.t.m ≥
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(b) Prefix of its reachability tree.

Figure 1. A Petri net with its reachability tree.

I(t) ∧ m′ = m − I(t) + O(t). For convenience we will write, fort ∈ T , m
t
⇒ m′ if m ≥ I(t) and

m′ = m−I(t)+O(t). In addition, we also writem′ = Post(m, t), this defines the operatorPost which
computes the successor of anω-marking by a transition. We naturally extend this operatorto sequences

of transitions. Given anω-markingm and a transitiont, we writem
t
⇒ · iff there existsm′ ∈ Markω(P )

such thatm
t
⇒ m′. The relation⇒∗ represents the reflexive and transitive closure of⇒. We say that a

markingm is reachable inN iff m0 ⇒∗ m. We say that a Petri net is bounded if the set of reachable
markings is finite.

Example 2.1. We consider the Petri netN depicted on Figure 1(a), which is a simplification of the
counter-example proposed in [7], but is sufficient to present our definitions. The initial marking is{p1},
depicted by the token in the placep1. For any integern, we havePost({p1}, t1(t3t4)n) = {p3, np5}. In
particular, this net is not bounded as placep5 can contain arbitrarily many tokens. y

2.3. Minimal Coverability Set of Petri Nets

We recall the definition of minimal coverability set introduced in [2].

Definition 2.2. A coverability set of a Petri netN = (P, T, I,O,m0) is a finite subsetC of Markω(P )
such that the two following conditions hold:

1) for every reachable markingm of N , there existsm′ ∈ C such thatm ≤ m′,

2) for everym′ ∈ C, eitherm′ is reachable inN or there exists an infinite strictly increasing sequence
of reachable markings(mn)n∈N converging tom′.

A coverability set is minimal iff no proper subset is a coverability set.

One can prove (see [2]) that a PNN admits a unique minimal coverability set, which we denote by
by MCS(N ).
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Note that every two elements of a minimal coverability set are incomparable. Computing the minimal
coverability set from a coverability set is easy. Note also that if the PN is bounded, then the set of
reachable markings is finite, and thus the notion of reachable maximal marking is well-defined. In this
case, a set of markings is a coverability set iff it contains all maximal reachable markings.

Example 2.2. (Example 2.1 continued)
The MCS of the Petri netN is composed of the followingω-markings: {p1}, {p6}, {p3, ωp5}, and
{p4, ωp5}.

2.4. Reachability tree of Petri nets

We recall the notion of a reachability tree for a PN. This definition corresponds to the execution of the
PN as a labelled tree. We require it to be coherent with the semantics of PN (soundness), to be complete
w.r.t. the fireable transitions, and to contain no repetitions. Naturally, if the PN has an infinite execution,
then this reachability tree is infinite.

Definition 2.3. (Reachability tree of a PN)
The reachability tree of a PNN = (P, T, I,O,m0) is (up to isomorphism) a labelled treeR =
(N,n0, E,Λ), with E ⊆ N × T ×N andΛ : N → Mark(P ), such that:

Root: Λ(n0) = m0

Soundness:∀(n, t, n′) ∈ E,Λ(n)
t
⇒ Λ(n′)

Completeness:∀n∈N,∀t∈T, (Λ(n)
t
⇒ ·) implies (∃n′∈N | (n, t, n′)∈E)

Uniqueness:∀n, n′, n′′ ∈ N,∀t ∈ T, (n, t, n′) ∈ E ∧ (n, t, n′′) ∈ E impliesn′ = n′′

Using notations introduced for labelled trees, the following property holds:

Lemma 2.1. ∀x, y ∈ N,x ∈ AncestorR(y) impliesΛ(y)=Post(Λ(x),pathlabelR(x, y)).

Example 2.3. (Example 2.1 continued)
A prefix of the reachability tree ofN is depicted on Figure 1(b). Each node is represented by its label (a
marking). y

2.5. Widened Petri nets

We present an operation which, given a (potentially unbounded) Petri net, turns it to a finite state sys-
tem. LetP be a finite set, andϕ ∈ Mark(P ) be a marking. We consider thefinite set ofω-markings
whose finite components (i.e. values different fromω) are less or equal thanϕ. Formally, we define
Markωϕ(P ) = {m ∈ Markω(P ) | ∀p ∈ P,m(p) ≤ ϕ(p) ∨m(p) = ω}. The widening operatorWidenϕ

maps anω-marking into an element ofMarkωϕ(P ): ∀m ∈ Markω(P ),∀p ∈ P ,

Widenϕ(m)(p) =

{

m(p) if m(p) ≤ ϕ(p)

ω otherwise.

Note that this operator trivially satisfiesm ≤ Widenϕ(m).
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Definition 2.4. (Widened Petri net)
A widened Petri net (WPN for short) is a pair(N , ϕ) composed of a PNN = (P, T, I,O,m0) and of a
markingϕ ∈ Mark(P ) such thatm0 ≤ ϕ.

The semantics of(N , ϕ) is given by its associated labelled transition system(Markωϕ(P ),m0,⇒ϕ)

where form,m′ ∈ Markωϕ(P ), andt ∈ T , we havem
t
⇒ϕ m′ iff m′ = Widenϕ(Post(m, t)). We

carry over from PN to WPN the relevant notions, such as reachable marking and reachability tree. We
define the operatorPostϕ by Postϕ(m, t) = Widenϕ(Post(m, t)). Subscriptϕ may be omitted when
it is clear from the context. Finally, the minimal coverability set of a widened Petri net(N , ϕ) is simply
the set of its maximal reachable states as its reachability set is finite. It is denoted MCS(N , ϕ).

We state the following result, whose proof easily follows byinduction.

Proposition 2.1. Let (N , ϕ) be a WPN, andm be a reachable marking ofN . Then there exists an
ω-markingm′ reachable in(N , ϕ) such thatm ≤ m′.

Example 2.4. (Example 2.1 continued)
Consider the mappingϕ associating1 to placesp1, p3, p4 andp6, and3 to placep5, and the widened
Petri net(N , ϕ). Then for instance from marking{p4, 3p5}, the firing of t4 results in the marking
{p3, ωp5}, instead of the marking{p3, 4p5} in the standard semantics. Similarly, consider the prefix
of the reachability tree ofN depicted on Figure 1(b). For(N , ϕ), the prefix of the reachability tree is
obtained by substituting the marking{p3, 4p5} with theω-marking{p3, ωp5}, as we haveϕ(p5) = 3.
One can compute the MCS of this WPN. Due to the choice ofϕ, it coincides with the MCS ofN . y

3. Monotone-Pruning Algorithm

3.1. Karp and Miller Algorithm.

The K&M Algorithm [8] is a well known solution to compute a coverability set of a PN. It is represented
as Algorithm 1 (with a slight modification as in [8], the algorithm computes simultaneously all the
successors of a marking). The K&M algorithm uses an externalacceleration functionAcc : 2Markω(P )×
Markω(P ) → Markω(P ) which is defined as follows:

∀p ∈ P,Acc(M,m)(p) =

{

ω if ∃m′ ∈ M | m′ < m ∧m′(p) < m(p) < ω

m(p) otherwise.

The K&M Algorithm builds a tree in which nodes are labelled byω-markings and edges by transi-
tions of the Petri net. Roughly, it consists in exploring thereachability tree of the PN, and in applying the
acceleration functionAcc on branches of this tree. Note that the acceleration may computeω-markings
that are not reachable. The correctness of this procedure relies on the strict monotonicity of the firing
rule of PN and on the fact that the order≤ onω-markings is well-founded.

Theorem 3.1. ([8])
LetN be a PN. The K&M algorithm terminates and computes a coverability set ofN .
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Algorithm 1 The K&M Algorithm
Require: A Petri netN = (P, T, I,O,m0).
Ensure: A labelled treeC = (X,x0, B,Λ) such thatΛ(X) is a coverability set ofN .

1: Let x0 be a new node such thatΛ(x0) = m0.

2: X := {x0}; Wait := {(x0, t) | Λ(x0)
t
⇒ ·}; B := ∅;

3: while Wait 6= ∅ do
4: Pop(n′, t) from Wait. m := Post(Λ(n′), t);
5: if 6 ∃y ∈ AncestorC(n′) | Λ(y) = m then
6: Let n be a new node s.t.Λ(n) = Acc(Λ(AncestorC(n′)),m);
7: X := X ∪ {n}; B = B ∪ {(n′, t, n)}; Wait := Wait ∪ {(n, u) | Λ(n)

u
⇒ ·};

8: end if
9: end while

10: ReturnC = (X,x0, B,Λ).

3.2. Definition of the algorithm

The K&M Algorithm uses comparisons along the same branch to stop exploration (test of Line 5), that
we call vertical pruning. We present in this section our algorithm which we call Monotone-Pruning
Algorithm as it includes a kind ofhorizontal pruningin addition to the vertical one. We denote this
algorithm by MP. It involves the acceleration functionAcc used in the Karp and Miller algorithm.
However, it is applied in a slightly different manner.

Algorithm 2 Monotone Pruning Algorithm for Petri Nets.
Require: A Petri netN = (P, T, I,O,m0).
Ensure: A labelled treeC = (X,x0, B,Λ) and a setAct ⊆ X such thatΛ(Act) = MCS(N ).

1: Let x0 be a new node such thatΛ(x0) = m0;

2: X := {x0}; Act := X; Wait := {(x0, t) | Λ(x0)
t
⇒ ·}; B := ∅;

3: while Wait 6= ∅ do
4: Pop(n′, t) from Wait.
5: if n′ ∈ Act then
6: m := Post(Λ(n′), t);
7: Let n be a new node such thatΛ(n) = Acc(Λ(AncestorC(n′) ∩ Act),m);
8: X := X ∪ {n}; B := B ∪ {(n′, t, n)};
9: if Λ(n) 6≤ Λ(Act) then

10: Act := Act \ {x | ∃y ∈ AncestorC(x) s.t.Λ(y) ≤ Λ(n)∧ (y ∈ Act ∨ y /∈ AncestorC(n))};
11: Act := Act ∪ {n}; Wait := Wait ∪ {(n, u) | Λ(n)

u
⇒ ·};

12: end if
13: end if
14: end while
15: ReturnC = (X,x0, B,Λ) andAct.

As Karp and Miller Algorithm, the MP Algorithm builds a treeC in which nodes are labelled by
ω-markings and edges by transitions of the Petri net. Therefore it proceeds in an exploration of the
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reachability tree of the Petri net, and uses acceleration along branches to reach the “limit” markings. In
addition, it can prune branches that are covered by nodes on other branches (what we callhorizontal
pruning). Therefore, nodes of the tree are partitioned intotwo subsets: active nodes, and inactive ones.
Intuitively, active nodes will form the minimal coverability set of the Petri net, while inactive ones are
kept to ensure completeness of the algorithm.

Given a pair(n′, t) popped fromWait, the introduction inC of the new node obtained from(n′, t)
proceeds in the following steps:

1. noden′ should be active (test of Line5) ;

2. the “regular” successor marking is computed:m = Post(Λ(n′), t) (Line 6) ;

3. this marking is accelerated w.r.t. theactive ancestorsof noden′, and a new noden is created with
this marking:Λ(n) = Acc(Λ(AncestorC(n′) ∩ Act),m) (Lines7 and8) ;

4. the new noden is declared as active if, and only if, it is not covered by an existing active node (test
of Line 9 and Line11) ;

5. update ofAct: some nodes are “deactivated”, i.e. removed from setAct (Line 10).

We detail the update of the setAct. Intuitively, one wants to deactivate nodes (and their descendants)
that are covered by the new noden. This would lead to deactivate a nodex iff it has an ancestory
dominated byn, i.e. such thatΛ(y) ≤ Λ(n). This condition has to be refined to ensure the termination
of the algorithm (see Remark 3.1). In MP Algorithm (see Line10), nodex is deactivated iff its ancestor
y is either active (y ∈ Act), or is not itself an ancestor ofn (y 6∈ AncestorC(n)). In this case, we say
thatx is deactivated byn. This subtle condition constitutes the main difference between MP and MCT
Algorithms (see Section 5).

Consider the introduction of a new noden obtained from(n′, t) ∈ Wait, and a nodey such that
Λ(y) ≤ Λ(n), y can be used to deactivate nodes in two ways:

• if y 6∈ AncestorC(n), then no matter whethery is active or not, all its descendants are deactivated
(represented in gray on Figure 2(a)),

• if y ∈ AncestorC(n), theny must be active (y ∈ Act), and in that case all its descendants are
deactivated, except noden itself as it is added toAct at Line11 (see Figure 2(b)).

Remark 3.1. Note that if one considers the simple conditionΛ(y) ≤ Λ(n) to deactivate nodes, i.e. one
considers all active and inactive nodes to discard nodes, then one looses the termination of the algorithm.
Consider Example 3.1. With this condition, noden9 covers noden7 and thus deactivates noden8 (this
does not happen in MP asn7 is an inactive ancestor ofn9). But then, noden10 coversn8 and deactivates
n10, and so on.

The main result of the paper is that MP Algorithm terminates and is correct:

Theorem 3.2. LetN be a PN. The MP algorithm terminates and computes the minimalcoverability set
of N .
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Example 3.1. (Example 2.1 continued)
We consider the execution of the MP Algorithm on the PNN . Three intermediary steps (5, 6 and10)
are represented on Figure 3. The numbers written on the left (before the separator “:”) of nodes indicate
the order in which nodes are created. Nodes that are deactivated are represented in light gray, and dashed
arrows indicate how nodes are deactivated. In addition, thestep of the algorithm at which the node is
deactivated is represented at the right (after the separator “:”). In the following explanations, nodeni

denotes the node that has been created at stepi:

• At step5, the new noden5 ({p3, p5}) covers noden3 ({p3}), which is thus deactivated, together
with its descendants, except noden5 that is just added.

• At step6, the new noden6 ({p4, 2p5}) covers noden4 ({p4}). This node was already deactivated
but as it lies on another branch, it can be used to discard its descendants. As a consequence node
n5 is deactivated.

• At step10, the new noden10 is covered by noden8, which is still active. Thusn10 is immediately
declared as inactive.

After step10, MP terminates and the active nodes give the MCS ofN . y

Remark 3.2. (MP Algorithm for widened Petri nets.)
In the sequel, we will consider the application of the MP Algorithm on widened Petri nets. Let(N , ϕ) be
a WPN. The only difference is that the operatorPost (resp.⇒) must be replaced by the operatorPostϕ
(resp.⇒ϕ). For WPN, the MP Algorithm satisfies an additional property: we prove in Lemma 4.1 that
all markings computed by MP are reachable in(N , ϕ). Indeed, the acceleration is consistent with the
semantics of(N , ϕ), i.e. all markings computed byAcc belong toMarkωϕ(P ) (whereP denotes the set
of places ofN ), provided the arguments ofAcc do.

Example 3.2. (Example 2.4 continued)
Consider the WPN(N , ϕ) introduced in Example 2.4. Running MP on this WPN also yieldsthe trees
depicted on Figure 3.

3.3. Termination of the MP Algorithm

The proof of the termination of the MP Algorithm relies on twofacts. First, only a finite number of
accelerations can occur on each branch of the exploration tree built by MP. Second, a branch with no
acceleration is finite. This last assertion is a consequenceof the fact thatMarkω(P ) equipped with partial
order≤ is a well-founded quasi-order, yielding the contradiction.

Theorem 3.3. The MP Algorithm terminates.

Proof:
We proceed by contradiction, and assume that the algorithm does not terminate. LetC = (X,x0, B,Λ)
andAct ⊆ X be the labelled tree and the set computed by MP. AsC is of finite branching (bounded by
|T |), there exists by König’s lemma an infinite branch in this tree. We fix such an infinite branch, and

write it b = x0
t0−→ x1

t1−→ x2 . . ., with (xi, ti, xi+1) ∈ B, for all i.



P.-A. Reynier, F. Servais / Monotone Pruning Algorithm 11

Let us show that only a finite number of accelerations may occur on this branchb. By definition of
the acceleration functionAcc, two cases may occur when a new noden is built: either one of the active
ancestors ofn is strictly dominated, in that case at least one newω will appear in the resulting marking
(∃p | Λ(n)(p) = ω > m(p)), or no active ancestor is strictly dominated, and then the mappingAcc has
no effect on markingm (Λ(n) = m). We say that in the first case, there is an “effective acceleration”.
By definition of the semantics of a Petri net onω-markings, once a marking has valueω on a placep, so
will all its successors. Thus, as there are finitely many places, a finite number of effective accelerations
can occur on branchb.

We consider now the largest suffix of the branchb containing no effective accelerations: leti be the
smallest positive integer such that for anyj ≥ i, we haveΛ(xj+1) = Post(Λ(xj), tj). We will prove
that the setS = {xj | j ≥ i} is an infinite set of active nodes with pairwise incomparablemarkings,
which is impossible as the setMarkω(P ) equipped with partial order≤ is a well-founded quasi-order,
yielding the contradiction.

First note that if a noden deactivates a nodexj of the branchb thenn is a node ofb. Indeed, all the
descendants ofxj are also deactivated exceptn if it is a descendant ofxj (line 10 of Algorithm 2). Ifn
does not belong tob, this implies that for anyk ≥ j, xk is deactivated. This is impossible because branch
b is infinite and the algorithm only computes successors of active nodes (test of Line5).

Let us show that all nodesxj, j ≥ i are active (never deactivated). Indeed ifxj is deactivated by
n thenn is a node ofb as shown in the previous paragraph. This implies thatn dominates an active
ancestor ofxj and therefore that an acceleration occurs. This is a contradiction with the definition ofi.

Finally, the markings of nodes ofS are all pairwise incomparable. Indeed, letxj andxk with i ≤
j < k. If Λ(xj) < Λ(xk) an acceleration occurs which is impossible by definition ofi. Otherwise, if
Λ(xj) ≥ Λ(xk), then the branch is stopped, which is also a contradiction. ⊓⊔

3.4. Correctness of the MP Algorithm

We reduce the correctness of the MP Algorithm for Petri nets to the correctness of this algorithm for
widened Petri nets, which are finite state systems. This latter result is technical, and proved in the next
section:

Theorem 3.4. The MP Algorithm for WPN terminates and computes the MCS.

We use this theorem to prove:

Theorem 3.5. The MP Algorithm for Petri nets is correct.

Proof:
LetN = (P, T, I,O,m0) be a PN,C = (X,x0, B,Λ) andAct ⊆ X be computed by the MP Algorithm
on N . As the MP Algorithm terminates, all these objects are finite. We will prove thatΛ(Act) is the
minimal coverability set ofN .

First note that elements ofΛ(Act) are pairwise incomparable: this is a simple consequence of Lines 9,
10 and 11. Thus, we only have to prove that it is a coverabilityset.

The soundness of the construction, i.e. the fact that elements of Λ(Act) satisfy item2 of Defini-
tion 2.2, follows from the correctness of the acceleration function. To prove the completeness, i.e. item
1 of Definition 2.2, we use the correctness of the MP Algorithm on widened Petri nets. We can consider,
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for each placep ∈ P , the largest value appearing in a marking during the computation. This defines a
markingϕ ∈ Mark(P ).

We consider now the widened Petri net(N , ϕ) and the execution of the MP Algorithm on it (see
Remark 3.2). We claim that there exists an execution of this algorithm which builds the same labelled
treeC and the same partition. This execution is obtained by picking the same elements in the listWait.
This property can be proven by induction on the length of the execution of the algorithm. Indeed, by
definition of markingϕ, operatorsPost and Postϕ are equivalent on the markings computed by the
algorithm. Thus, both algorithms perform exactly the same accelerations and compute the sameω-
markings.

By correctness of the MP Algorithm on WPN (see Theorem 3.4), we obtainΛ(Act) = MCS(N , ϕ).
By Proposition 2.1, any marking reachable inN is covered by a reachable marking of(N , ϕ), and thus
by MCS(N , ϕ) = Λ(Act). ⊓⊔

4. MP Algorithm for WPN

We devote this section to the proof that the MP Algorithm is correct on WPN.

4.1. Outline

The main difficulty is to prove the completeness of the setAct returned by MP. We have to show that
any reachable marking is covered by an element ofAct. In this section, we illustrate our approach using
the WPN introduced in Example 2.4 and the execution of the MP algorithm on this WPN described in
Example 3.2 and illustrated in Figure 3.

Given a reachable markingm, we consider a sequence of transitionsρ such thatm0
ρ
⇒ m. For

instance, we consider marking{p3, p5} reachable from{p1} with the fireable sequenceρ = t1t3t4. We
want to find an active noden that coversm. We will try to follow this sequence of transitionsρ in the
labelled tree built by MP Algorithm, and reach an active node. To describe this walk in the labelled tree,
we consider a sequence of pairs(xi, ρi) composed of an active nodexi of the tree, and a sequence of
transitionsρi fireable from the node’s labelΛ(xi). The invariant of this walk is thatρi is fireable from
Λ(xi) andPost(Λ(xi), ρi) covers the markingm considered initially. This sequence of pairs is called
the covering path and formally defined in Definition 4.5.

The first element of the covering path is the pair(n1, ρ) composed of the root, and the sequence of
transitions that we want to follow. In our running example, this first element is the pair(n1, t1t3t4).
Obviously, following this sequence may lead us to an inactive node. For instance, the successor of node
n1 by the transitiont1 is the inactive noden3. We would thus reach the pair(n3, t3t4), in which n3

is inactive. To reach an active node, we use the explanation of the deactivation of noden3. In this
example, noden3 has been covered by noden5. We thus consider that we have to fire the remaining
sequencet3t4 from noden5, we thus obtain the pair(n5, t3t4). Again, noden5 has been deactivated,
because its ancestorn4 has been covered by noden6. We will thus “jump” to noden6. However,n6

does not covern5, but an ancestor of noden5. Roughly, we thus have to include in the sequence of
transitions that remain to be fired the path fromn4 ton5. It may however not be sufficient to consider the
sequence of transitions labeling this path, as it may hide some accelerations. This is precisely why our
proof relies on the model of widened Petri nets: asω corresponds to a finite value, we can represent the
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accelerations explicitly by finite sequences of transitions. In this example, the new pair we consider is
the pair(n6, t4(t3t4)

4(t3t4)). Again, asn6 is inactive, it will be replaced by noden8, and so on. Finally,
the core of our proof consists in showing that the walks we define this way in the labelled tree are finite,
i.e. end up with a pair of the form(n, ε). The result then trivially follows from the above invariant.

The rest of this section formalizes the above intuition. We introduce in Subsection 4.2 a notion of
exploration of aWPN which corresponds to a tree built on the reachability tree of the WPN, with some
additional properties. This structure allows to make explicit the effect of accelerations. We prove in
Subsection 4.3 that MP indeed builds an exploration. In fact, other algorithms like K&M or MCT also
do build explorations. Then, we prove that the exploration built by MP is complete in Subsection 4.4:
we define the notion of covering path and prove that all covering paths are finite.

4.2. Exploration of a WPN

To build a coverability set the different algorithms we consider (K&M, MCT and MP) proceed in a
similar way. Roughly, the algorithm starts with the root of the reachability tree and picks a fireable
transitiont. Then it picks a descendant that may either be the direct child by t (no acceleration) or a
descendant obtained after skipping a few nodes (acceleration), this descendant must be strictly greater
than the direct child (byt). Then if this node is not covered by the previously selected(and active) nodes,
it can be used to prune other branches (not in the K&M algorithm): some active nodes are deactivated,
intuitively because the subtree rooted at the new node should cover those nodes. The process continues
with active nodes.

This process can be viewed as an exploration of the reachability tree
x

z

y

t

t

Figure 4. Condition(v).(a)
of Def. 4.1.

R = (N,n0, E,Λ) in the following sense. We define below an exploration
as a tupleE = (X,B,α, β), whereX is the subset ofN explored by the
algorithm,B is an edge relation onX, such that(x, t, x′) ∈ B if x′ is the
node built by the algorithm when processing the transitiont fireable from
x. The functionα gives the order in which nodes ofX are explored by the
algorithm. The functionβ gives the position at which a node is deactivated,
i.e. β(n) = i if n is deactivated (pruned) when thei-th node appears.

Definition 4.1. (Exploration)
Given a WPN(N , ϕ) and its reachability treeR = (N,n0, E,Λ), an exploration ofR is a tupleE =
(X,B,α, β) such that

• X is a finite subset ofN ,

• B ⊆ X × T ×X,

• n0 ∈ X,

• (X,n0, B,Λ|X) is a labelled tree,

• α is a bijection fromX to {1, . . . , |X|}, and

• β is a mapping fromX to {1, . . . , |X|} ∪ {+∞}.
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For any1 ≤ i ≤ |X|, we define the setsXi = {x ∈ X | α(x) ≤ i}, Inacti = {x ∈ X | β(x) ≤ i},
andActi = Xi \ Inacti. We letAct = Act|X| andInact = Inact|X|.

In addition, we require the following conditions:

(i) ∀x ∈ X,α(x) ≤ β(x),

(ii) ∀x, y ∈ X, x ∈ AncestorR(y) impliesα(x) ≤ α(y),

(iii) ∀(x, t, y) ∈ B,α(y) ≤ β(x),

(iv) T -completeness:∀x ∈ Act,∀t ∈ T s.t.Λ(x)
t
⇒ϕ ·,∃y ∈ X | (x, t, y) ∈ B,

(v) ∀(x, t, y) ∈ B, there existsz ∈ N such that:

(a) (x, t, z) ∈ E, andz ∈ AncestorR(y),

(b) Postϕ(Λ(x), t) = Λ(z) ≤ Λ(y).

The first condition states that nodes cannot be deactivated strictly before being selected. The second
condition states that nodes are selected downward: one cannot select a node that has a descendant already
selected. Condition(iii) states that the algorithm explores subtrees of active nodesonly. Condition(iv)
enforces that all fireable transitions of active nodes are explored. The last condition (see Figure 4, where
the cone below nodez denotes the descendants ofz in R) requires that the selected descendant is either
the direct child by the selected transitiont or a descendant of this child whose marking is greater than
the marking of the child (acceleration). In the sequel, we denote byAncestorE(·) the ancestor relation
considered in the labelled tree(X,n0, B,Λ|X). By definition, we have the following simple property:
∀x ∈ X,AncestorE(x) = AncestorR(x) ∩X.

It is easy to verify that setsActi andInacti form a partition ofXi (Xi = Acti
⊎

Inacti) and that sets
Inacti are increasing (Inacti ⊆ Inacti+1,∀i < |X|).

Remark 4.1. A trivial case of exploration is obtained when relationB coincides with the restriction of
relationE to the setX. This case in fact corresponds to the exploration obtained by an algorithm that
would perform no acceleration.

Remark 4.2. It can be proven that K&M and MCT applied on WPN do build explorations. Consider
the K&M Algorithm. As it deactivates no node, it yieldsβ(n) = +∞ for any noden. However, it uses
some accelerations and therefore some nodes are skipped butit respects condition(v).

4.3. MP-exploration of a WPN

Let (N , ϕ) be a WPN withN = (P, T, I,O,m0), andC = (X,x0, B,Λ), Act ⊆ X be the labelled tree
and the set returned by the MP Algorithm. We define here the twomappingsα andβ that allow to show
that the labelled treeC can be interpreted as an exploration in the sense of Definition 4.1.

Mapping α. It is simply defined as the order in which elements ofX are built by the MP Algorithm.
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Mapping β. Initially, the setAct contains the nodex0. Any new noden can be added only once in set
Act, immediately when it is added inX (Line 11) (and can thus be removed fromAct at most once). We
define mappingβ as follows:

• if a nodex never enters setAct, then we letβ(x) = α(x).

• if a nodex enters setAct and is never removed, then we letβ(x) = +∞.

• finally, in the last case, letx be a node which enters setAct and is removed from it during the
execution of the algorithm. Nodes can only be removed from set Act at Line10. Then letn be the
node added toX at Line8 during this execution of thewhile loop, we defineβ(x) = α(n).

Remark 4.3. Using these definitions of mappingsα andβ, one can verify that intermediary values of
setsX andAct computed by the algorithm coincide with setsXi andActi defined in Definition 4.1.

Example 4.1. (Example 3.2 continued)
On Figure 3, numbers indicated on the left and on the right of nodes correspond to values of mappingsα
andβ. When no number is written on the right, this means that the node is active, and then the value of
β is+∞.

Embedding of C = (X,x0, B,Λ) in the reachability tree. In the labelled treeC built by the algo-
rithm, the label of the new noden obtained from the pair(n′, t) is computed by functionAcc. To prove
thatC can be embedded in the reachability tree of(N , ϕ), we define a mapping called the concretization
function which expresses the marking resulting from the acceleration as a marking reachable in(N , ϕ)
from markingΛ(n′). Intuitively, an acceleration represents the repetition of some sequences of transi-
tions until the upper bound is reached. As the system is finite(we consider widened Petri nets), we can
exhibit a particular sequence of transitions which allows to reach this upper bound.

Definition 4.2. (Concretization function)
The concretization function is a mappingγ fromB∗ toT ∗. Given a sequence of adjacent edgesb1 . . . bk ∈
B, we defineγ(b1 . . . bk) = γ(b1) . . . γ(bk). We letM = max{ϕ(p) | p ∈ P}+ 1.

Let b = (n′, t, n) ∈ B. The definition ofγ proceeds by induction onα(n′): we assumeγ is defined
on all edges(x, u, y) ∈ B such thatα(x) < α(n′).

Letm = Postϕ(Λ(n′), t), then there are two cases, either :

1. Λ(n) = m (t is not accelerated), then we defineγ(b) = t, or

2. Λ(n) > m. LetX ′ = {x1, . . . , xk} (xi’s are ordered w.r.t.α) defined by:
X ′ = {x ∈ AncestorC(n′) ∩ Actα(n)−1 | Λ(x) ≤ m ∧ ∃p.Λ(x)(p) < m(p) < ω}.
For eachj ∈ {1, . . . , k}, letwj = pathC(xj , n

′) ∈ B∗. Then we define:
γ(b) = t.(γ(w1).t)

M . . . (γ(wk).t)
M .

The following Lemma states the expected property of the concretization function:

Lemma 4.1. Let x, y ∈ X such thatx ∈ AncestorC(y), and letw = pathC(x, y). Then we have
Postϕ(Λ(x), γ(w)) = Λ(y).
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Proof:
We prove the result for the case wherew is a single edge, that isw = (x, t, n) ∈ B. The general result
follows easily. We letm = Postϕ(Λ(x), t).

We distinguish two cases :
If Λ(n) = m: then by definition we haveγ(w) = t and the result is trivial.
If Λ(n) > m: then an acceleration has been applied. We prove the propertyby induction onα(x).

• if α(x) = 1, then the acceleration is necessarily applied w.r.t. nodex, that isPostϕ(Λ(x), t) >
Λ(x). Letadd ∈ Markωϕ(P ) be defined byadd(p) = Postϕ(Λ(x), t)(p)−Λ(x)(p) for anyp ∈ P .
Naturally, the vector is positive exactly for placesp which have strictly increased, and which will
thus be accelerated. For these places, afterM iterations oft, the value in these places has exceeded
the maximum value,i.e. valueϕ(p), and thus is equal toω. In the other places, the value is let
unchanged. As a consequence, we exactly obtainPostϕ(Λ(x), tM ) = Λ(n).

• otherwise, we haveα(x) > 1. Following the definition of the concretization function, letx1, . . . , xk
denote the nodes used to compute the concretized pathγ(w), andw1, . . . , wk the paths associ-
ated. Leti ∈ {1, . . . , k}. By definition, wi = pathC(xi, x) ∈ B∗. In particular, any edge
b = (z, u, z′) ∈ B composing this path is such thatα(z) < α(x). We can thus apply the induction
hypothesis on pathwi, for anyi = 1 . . . k. Therefore we havePostϕ(Λ(xi), γ(wi)) = Λ(x) for
anyi = 1 . . . k. By definition, we haveγ(w) = t.(γ(w1).t)

M . . . (γ(wk).t)
M . Fori ∈ {0, . . . , k},

let macc
i denote the marking reached fromΛ(x) by the sequencet.(γ(w1).t)

M . . . (γ(wi).t)
M ,

i.e. such thatmacc
i = Postϕ(Λ(x), t.(γ(w1).t)

M . . . (γ(wi).t)
M ). We prove, by induction on

i ∈ {0, . . . , k}, the following property:

∀p ∈ P,macc
i (p) =

{

ω if ∃1 ≤ j ≤ i s.t.Λ(xj)(p) < m(p) < ω

m(p) otherwise.

– For i = 0, the property is trivial by definition ofm.

– Let i < k, assume property holds fori and let prove it fori+ 1. To prove the result we split
the set of placesP into three parts and successively prove that for each case the property is
satisfied:

(i) P1: ∃1 ≤ j ≤ i | Λ(xj)(p) < m(p) < ω. Intuitively, P1 represents places accelerated
by one of the nodesx1, . . . , xi. By the induction hypothesis, we havemacc

i (p) = ω, and
we thus we will still havemacc

i+1(p) = ω, as expected.

(ii) P2: p 6∈ P1∧Λ(xi+1)(p) < m(p) < ω. Intuitively, P2 denotes places not accelerated by
one ofx1, . . . , xi, but that should be accelerated byxi+1. By the induction hypothesis
of the external induction, we haveΛ(x) = Postϕ(Λ(xi+1), γ(wi+1)). Thus we obtain
m = Postϕ(Λ(xi+1), γ(wi+1).t). By definition ofxi+1, we haveΛ(xi+1) ≤ m and
by induction hypothesis, we havem ≤ macc

i . Thus sequenceγ(wi+1).t can be iterated
from markingmacc

i . Let p ∈ P2. By definition ofP2, we haveΛ(xi+1)(p) < m(p).
This entails that the firing of sequenceγ(wi+1).t adds tokens in placep. By the choice
of M , the valueϕ(p) will be exceeded and we obtainmacc

i+1(p) = ω as expected.

(iii) P3: p 6∈ P1 ∧ p 6∈ P2. This last case concerns places that should not be accelerated by
any of thexj ’s, with j ≤ i+ 1. Thus induction hypothesis entails thatmacc

i (p) = m(p)
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and we have to prove thatmacc
i+1(p) = m(p). As in the previous case, we havem =

Postϕ(Λ(xi+1), γ(wi+1).t). Let p ∈ P3, then we haveΛ(xi+1)(p) = m(p) = macc
i (p).

Here, the iteration of the sequenceγ(wi+1).t will let the value of placep unchanged.
We thus obtainmacc

i+1(p) = m(p) as expected.

It is then trivial to verify that the application of this property for i = k leads to the result.

This concludes the proof. ⊓⊔

This result allows to prove by induction that the labelled tree built by MP is, up to an isomorphism,
included in the reachability tree of the WPN, and is thus an exploration:

Proposition 4.1. (MP-exploration)
The execution of the MP Algorithm on a WPN(N , ϕ) defines an explorationE of (N , ϕ). We call this
exploration an MP-exploration of(N , ϕ).

Proof:
To embedC in R, we define the mappingη from X to N which maps a nodex ∈ X to a noden ∈ N
that is labelled with the same marking.η is recursively defined by:

• η(x0) = n0,

• let b = (x, t, y) ∈ B, n = η(x), and̺ = γ(b). By Lemma 4.1, we haveΛ(n)
̺
⇒ ·. Thus there

exists a unique noden′ ∈ N such thatn ∈ AncestorR(n′) andpathlabelR(n, n
′) = ̺. We define

η(y) = n′.

One can verify that using this definition, theC-labelling of a nodex ∈ X coincides with theR-labelling
of the nodeη(x) ∈ N . As a consequence, we identify in the sequel nodex ∈ X with nodeη(x) ∈ N .

It is then routine to verify that properties(i) to (v) hold. ⊓⊔

4.4. Proof of Theorem 3.4

We prove in this section the:

Theorem 3.4. The MP Algorithm for WPN terminates and computes the MCS.

Termination of MP for WPN can be proved as in Theorem 3.3. As a consequence of Lemma 4.1,
MP algorithm only computes markings that are reachable in the WPN, therefore the algorithm is sound.
We devote the rest of this section to the proof of its completeness.

Fix a WPN(N , ϕ), with N = (P, T, I,O,m0), and letE = (X,B,α, β) be an MP-exploration of
(N , ϕ). We will use notationsX, Act andInact of Definition 4.1.

4.4.1. Preliminary properties.

Given a noden ∈ X, we define the predicatedisc(n) asβ(n) = α(n). When this holds, we say thatn
is discarded as it is immediately added to the setInact. In that case, no other node is deactivated.

Given two nodesn, x ∈ X such thatα(n) ≤ α(x) and n ∈ Inact, we define the predicate
prune(n, x) as∃y ∈ AncestorE (n).Λ(y) ≤ Λ(x) ∧ (y ∈ Actβ(n)−1 ∨ y 6∈ AncestorE(x)).
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y n ∈ Act

x

≤

Figure 5. Illustration of Proposition 4.3.

One can check that the MP-explorationE satisfies the following properties. Arbitrary explorations
do not satisfy them.

Proposition 4.2. Let n ∈ Inact, then:

(i) disc(n) ⇐⇒ Λ(n) ≤ Actα(n)−1.

(ii) ¬disc(n) impliesprune(n, x), wherex = α−1(β(n)).

(iii) ∀x ∈ X s.t.α(n) ≤ α(x), if prune(n, x) ∧ ¬disc(x), thenβ(n) ≤ α(x)

Proposition 4.3. Let E an MP-exploration, andi ∈ {1, . . . , |X|}. Let three distinct nodesx, y, n ∈ X
such thatn ∈ Act, Λ(y) ≤ Λ(n), y ∈ AncestorE(x) andy 6∈ AncestorE(n). Then we haveβ(x) ≤
α(n).

Proof:
The property is illustrated on Figure 5. First note thatα(n) < α(y) cannot hold. Otherwise, asn ∈ Act
andΛ(y) ≤ Λ(n), nodey would have been immediately deactivated by noden (predicatedisc(y) would
hold). This is impossible as nodey owns a descendant, nodex. Thus, we haveα(n) > α(y) (the equality
is impossible asy andn are distinct). Then, one can verify that the introduction ofn will deactivate node
x, if it has not yet been deactivated: nodey is an ancestor ofx, covered byn, andy is not an ancestor of
n. We obtainβ(x) ≤ α(n). ⊓⊔

4.4.2. Covering Function.

We introduce a functionTemp-Cover which explicits why nodes are deactivated. Intuitively, for a node
n ∈ Inact, if we haveTemp-Cover(n) = (x, ̺) ∈ X × T ∗, this means that nodex is in charge of
deactivation ofn, and that the firing of the sequence̺ from Λ(x) leads to a state dominatingΛ(n).
Note that to identify the sequence inT ∗, we use the path between nodesin the reachability tree. This is
possible as by definition, the exploration is embedded in thereachability tree.

Definition 4.3. (Temp-Cover)
The mappingTemp-Cover is defined fromInact to X × T ∗ as follows. Letn ∈ Inact, andi = β(n).
We distinguish two cases:1

1In the following definitions, any choice ofx andy is correct.
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Discarded: If disc(n), then by Proposition 4.2.(i), there exists a nodex ∈ Acti−1 such thatΛ(n) ≤
Λ(x). We fix such a nodex and defineTemp-Cover(n) = (x, ε).

Not discarded: Otherwise,¬disc(n) holds. By Proposition 4.2.(ii), prune(n, x) holds, wherex =
α−1(i). We fix a witnessy of propertyprune(n, x), and let̺ = pathlabelR(y, n) ∈ T ∗. We
defineTemp-Cover(n) = (x, ̺).

The following property easily follows from Definition 4.3 and Lemma 2.1:

Lemma 4.2. Let n ∈ Inact, Temp-Cover(n) = (x, ̺). ThenΛ(n) ≤ Postϕ(Λ(x), ̺).

The next proposition follows from the strategy of exploration of MP Algorithm.

Lemma 4.3. Let n ∈ Inact, Temp-Cover(n) = (x, ̺) andc such thatpathlabelR(c, n) = ̺. Then we
have:

(i) β(n) < β(x) ;

(ii) ̺ 6= ε impliesβ(n) = α(x) ;

(iii) if ̺ 6= ε, then∀y ∈ X, c ∈ AncestorE(y) ∧ x 6∈ AncestorE(y) impliesβ(y) ≤ α(x).

Proof:
Property(i) is a consequence of the following property: we havex ∈ Actβ(n). Intuitively, this means
thatx is active when it deactivates noden.

Property(ii): by definition ofTemp-Cover(n), ̺ 6= ε implies that property¬disc(n) holds. Then
we obtainx = α−1(β(n)), as expected.

Last, consider property(iii). As for the previous property, by definition ofTemp-Cover(n), ̺ 6= ε
implies thatprune(n, x) holds and thatc is a witness of the propertyprune(n, x). Then, by definition
of the pruning of MP Algorithm, the whole subtree rooted inc is deactivated by nodex, except nodex
itself if it belongs to the subtree. Lety ∈ X such thatc ∈ AncestorE (y) ∧ x 6∈ AncestorE(y). Theny
belongs to the subtree rooted inc, but not to the subtree rooted inx. As a consequence, it is deactivated
by nodex, and we obtainβ(y) ≤ α(x). ⊓⊔

The previous definition is temporary, in the sense that it describes how a node is deactivated. How-
ever, active nodes may be deactivated, and thus nodes referenced by mappingTemp-Cover may not
belong to setAct. In order to recover an active node from which a dominating node can be obtained, we
define a mapping which records for each inactivate node the successive covering informations:

Definition 4.4. (Covering function)
The covering functionCover is a mapping fromX to (X × T ∗)∗. It is recursively defined as follows.
Let n ∈ X.

1. if n ∈ Act, thenCover(n) = ε ;

2. otherwise, letTemp-Cover(n) = (x, ̺). We defineCover(n) = (x, ̺) · Cover(x).
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Example 4.2. (Example 3.2 continued)
We illustrate the definition of the covering function on Example 3.2. The MP Algorithm terminates at
step10. Consider noden3, deactivated at step5. We haveTemp-Cover(n3) = (n5, ε). Indeed, it is
directly covered by noden5. Noden5 is deactivated at step6 by noden6 through noden4, which is its
ancestor by transitiont4. Looking at the definition of the concretization function with respect to mapping
ϕ, one can observe that we haveTemp-Cover(n5) = (n6, t4.(t3t4)

4). We indeed have that the maximal
value ofϕ is 3. Noden6 is deactivated at step8 because it is directly covered by noden8, thus we have
Temp-Cover(n6) = (n8, ε). We finally obtainCover(n3) = (n5, ε) · (n6, t4.(t3t4)

4) · (n8, ε). One can
verify thatΛ(n3) ≤ Postϕ(Λ(n8), t4.(t3t4)

4). y

We state the next property which follows from Lemma 4.2 by induction:

Lemma 4.4. Let n ∈ Inact be such thatCover(n) = (x1, ̺1) · · · (xk, ̺k). Then we haveΛ(n) ≤
Postϕ(Λ(xk), ̺k̺k−1 . . . ̺1).

We now state a core property of mappingCover, holding for MP-explorations. It is fundamen-
tal to prove the absence of cycles, and thus the fact that the exploration yields a minimal coverability
set. Roughly, it states that intermediary markings skippedby accelerations would not modify activa-
tions/deactivations:

Proposition 4.4. Letx ∈ Inact be such thatCover(x) = (x1, ̺1) · · · (xk, ̺k). Define̺ = ̺k̺k−1 . . . ̺1,
and letn ∈ Act and̺′ ∈ T ∗. Then we have:

(̺′ ≺ ̺ ∧ Λ(n) ≥ Postϕ(Λ(xk), ̺′)) impliesβ(x) ≤ α(n)

Proof:
As ̺′ ≺ ̺, there exists a unique indexj such that1 ≤ j ≤ k and ̺′ = ̺k̺k−1 . . . ̺j+1̺

′′ with
ε � ̺′′ ≺ ̺j . In particular, this yields that̺j 6= ε.

By definition ofCover, we have that for anyℓ ∈ {1, . . . , k}, (xℓ, ̺ℓ) = Temp-Cover(xℓ−1) (where
we let x0 = x). By Lemma 4.3.(i), this impliesβ(xℓ−1) < β(xℓ). We thus obtain the inequality
β(x) ≤ β(xj−1), asx0 = x (the inequality is non strict as we may havej = 1).

Consider the peculiar casexj ∈ AncestorE(n). This impliesα(xj) ≤ α(n). As ̺j 6= ε, we have
by Lemma 4.3.(ii) the equalityβ(xj−1) = α(xj), which yields the result. In the sequel we thus assume
xj 6∈ AncestorE(n).

Nodexj−1 is deactivated by nodexj, and with sequence̺j . This means the ancestor of nodexj−1

by the sequence̺j in the reachability tree, which we denote byc, belongs toX and is covered byxj. As
̺′′ ≺ ̺j, we can consider the successor ofc by the sequence̺′′ (in the reachability tree), and denote this
node byy, which is thus a (strict) ancestor ofxj−1 ∈ X. We now distinguish two cases: eithery ∈ X
or y 6∈ X. Consider the second case: nodey lies in between nodesc andxj−1 and as it does not belong
to X, it is “skipped” by an acceleration. We denote by(y1, t, y2) ∈ B the edge of the exploration that
skips the nodey. By the minimal-completeness property (see Appendix A) of the explorationE applied
on edge(y1, t, y2) and nodey, there exist two nodesz andy′ in X verifying the following properties:

(i) z ∈ AncestorE(y1) andβ(z) = α(y2),

(ii) y′ ∈ AncestorR(y) ∩X, Λ(y′) < Λ(y) andz ∈ AncestorE(y′).
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We will prove that in the first case (y ∈ X ), and respectively in the second one (y 6∈ X), we can apply
Proposition 4.3 to nodesxj−1, y andn (resp.xj−1, y′ andn in the second case). Therefore, we prove
each of the hypotheses:

• First, propertiesn ∈ Act andy ∈ AncestorE(xj−1) (resp.y′ ∈ AncestorE(xj−1)) are trivial. In
addition, we obviously havexj−1 6= y (resp.xj−1 6= y′) asy is a strict ancestor ofxj−1 (andy′ is
itself a strict ancestor ofy). We also havexj−1 6= n asn ∈ Act while xj−1 is deactivated byxj.

• Second, we prove thatΛ(n) ≥ Λ(y) (resp. Λ(n) ≥ Λ(y′) in the second case). Indeed, we can
prove using Lemma 4.2 thatPostϕ(Λ(xk), ̺k̺k−1 . . . ̺j+1) ≥ Λ(xj). By definition ofc, we have
Λ(xj) ≥ Λ(c). By definition ofy, this yieldsPostϕ(Λ(xk), ̺) ≥ Λ(y), and thusΛ(n) ≥ Λ(y). In
the second case, the property follows fromΛ(y) > Λ(y′).

• Third, we prove thaty 6∈ AncestorE(n) (resp. y′ 6∈ AncestorE(n)), which also entailsy 6= n
(resp.y′ 6= n). Consider the first case and proceed by contradiction: assume thaty is an ancestor of
noden. This implies thatc ∈ AncestorE (n), and then by Lemma 4.3.(iii), asxj 6∈ AncestorE(n)
and̺j 6= ε, we obtainβ(n) ≤ α(xj) which is impossible asn ∈ Act.

Consider now the second case and proceed by contradiction: assume thaty′ ∈ AncestorE(n).
Theny2 is necessarily an ancestor ofn, otherwisen is deactivated at stepα(y2) (see Lemma 4.3.(iii)).
But then we can apply a reasoning similar to that of the first case and prove thatn is deactivated
by nodexj, what yields a contradiction.

Finally, we obtain by Proposition 4.3 the inequalityβ(xj−1) ≤ α(n). Combined with a previous in-
equality, this entailsβ(x) ≤ α(n) as expected. ⊓⊔

4.4.3. Covering Path.

Before turning to the proof of Theorem 3.4, we introduce an additional definition. Our aim is to prove
that any reachable states is covered by some active node. Therefore we define a notion ofcovering
path, which is intuitively a path through active nodes in which each node is labelled with a sequence (a
stack) of transitions that remain to be fired to reach a states′ dominating the desired states. Formally, a
covering path is defined as follows:

Definition 4.5. (Covering Path)
A covering pathis a sequence(ni, ̺i)i≥1 ∈ (Act × T ∗)N such thatΛ(n1)

̺1
⇒ϕ · and for anyi ≥ 1, we

have either

(i) ̺i = ε, and then it has no successor, or

(ii) ̺i = ti̺
′
i, then letn be such that(ni, ti, n) ∈ B (possible asE is T -complete). Ifn ∈ Act then

(ni+1, ̺i+1) = (n, ̺′i). Otherwise, letCover(n) = (x1, η1) · · · (xk, ηk), we define(ni+1, ̺i+1) =
(xk, ηk . . . η1 · ̺

′
i).

Note that given a noden ∈ Act and̺ ∈ T ∗ such thatΛ(n)
̺
⇒ϕ ·, there exists a unique covering path

(ni, ̺i)i≥1 such that(n1, ̺1) = (n, ̺). We say that this path isassociated with the pair(n, ̺).
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Example 4.3. (Example 4.2 continued)
We illustrate the definition of covering path on Example 3.2.Consider the covering path associated
with the pair (n1, t1t3t4). Successor of noden1 by transitiont1 is the inactive noden3. We have
already shown in Example 4.2 thatCover(n3) = (n5, ε) · (n6, t4.(t3t4)

4) · (n8, ε). In addition, successor
of noden8 by transitiont4 is the active noden9, and as the successor of noden9, i.e. noden10, is
covered by noden8, firing t3 in n9 leads to noden8. Finally, one can verify that the covering path is
of the following form: (n1, t1t3t4), (n8, t4(t3t4)

4t3t4), (n9, (t3t4)
4t3t4), (n8, t4(t3t4)

3t3t4) . . . (n9, ε).
Note that the marking{p3, p5} reached from noden1 by the sequencet1t3t4 is covered by the marking
{p3, ωp5} of noden9. y

Lemma 4.5. Let (ni, ̺i)i≥1 be a covering path. Then we havePostϕ(Λ(n1), ̺1) ≤ Postϕ(Λ(ni), ̺i)
for all i. In particular, if for somei we have̺ i = ε, we obtainPostϕ(Λ(n1), ̺1) ≤ Λ(ni).

Proof:
We prove that for anyi, we havePostϕ(Λ(ni), ̺i) ≤ Postϕ(Λ(ni+1), ̺i+1). In the definition of covering
path, we extend the path only in case(ii). Two cases can occur, in the first one, the property is trivial. In
the second one, the property follows from Lemma 4.4. ⊓⊔

As a consequence of this lemma, to prove the completeness result, it is sufficient to show that for any
reachable marking, there exists a finite covering path that covers it. We introduce a notion of cycle for
covering paths:

Definition 4.6. Let (n, t) ∈ Act×T such thatΛ(n)
t
⇒ϕ ·, and(ni, ̺i)i≥1 be the covering path associated

with (n, t). The pair(n, t) is said to besingular if there existsi > 1 such that(ni, ̺i) = (n, t̺), with
̺ ∈ T ∗.

The following lemma states that all infinite covering paths are periodic:

Lemma 4.6. Let (n, ̺) ∈ Act × T ∗ such thatΛ(n)
̺
⇒ ·, andp = (ni, ̺i)i≥1 be the covering path s.t.

(n1, t1) = (n, ̺). If p is infinite, then there exists a positioni ≥ 1 such that the pair(ni, ti) is singular,
where̺i = ti̺

′
i.

Proof:
We distinguish two cases:

• If there exists a boundk ∈ N
∗ such that infinitely often, the length of the sequence̺i is smaller

thank. Then, as the number of sequences of length bounded byk and the number of active nodes
are finite, there exist two positions1 ≤ j < l such that(nj, ̺j) = (nl, ̺l). Let i be an index in the
interval [j, l] such that the length of the sequence̺i is minimal. This implies that the construction
of the coverability path from(ni, ̺i) only depends on the first transitionti of ̺i: the pair(ni, ti)
is singular.

• Otherwise, for any boundk, there exists a position after which all sequences of transitions have
a length larger thank. For eachk, we notel(k) the first position verifying this property:∀l ≥
l(k), |̺l| ≥ k. Note that the sequence starting atl(k) only depends on the nodenl(k) and the
transitiontl(k) such that̺ l(k) = tl(k)̺

′
l(k). As the number of active nodes and the set of transitions
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are finite, there existk < k′ such thatl(k) < l(k′), nl(k) = nl(k′) andtl(k) = tl(k). Then the pair
(nl(k), tl(k)) is singular.

⊓⊔

4.4.4. Proof of Theorem 3.4.

We will prove that any reachable marking of(N , ϕ) is covered by some active node. Letm ∈ Markωϕ(P )

be a reachable marking. There exists̺ ∈ T ∗ such thatm0
̺
⇒ϕ m. One can prove that there exists a

noden′
0 ∈ Act such thatΛ(n0) ≤ Λ(n′

0) (n′
0 covers the root):

Lemma 4.7. Let E be an MP-exploration with rootn0. Then there exists a noden′
0 ∈ Act such that

Λ(n0) ≤ Λ(n′
0).

Proof:
We prove that the property holds for the setActi all i ≤ |X|. For alli such thatn0 ∈ Acti, there is nothing
to prove. Consider, if it exists, the smallesti such thatn0 ∈ Acti andn0 6∈ Acti+1. Letn = α−1(i+ 1).
Following definition ofActi+1, asn0 is the root of the tree, we must haveΛ(n0) < Λ(n). As i has been
chosen to be minimal,n can not be covered by another node, and thusn ∈ Acti+1. As a consequence,
the property is true at stepi + 1. Moreover, note that asn0 is the root of the tree,n is necessarily a
descendant ofn0. As a consequence, the definition of active and inactive nodes yields that the only
remaining active node after stepi + 1 is the noden. We thus haveActi+1 = {n}. In other terms, this
means that from this step, the exploration will start from a new root, and thus by the all new (active or
node) nodes are descendant ofn. Then, we can inductively apply the same reasoning to noden, and
conclude by the transitivity of relation≤. ⊓⊔

As a consequence, there existsm′ ∈ Markωϕ(P ) such thatΛ(n′
0)

̺
⇒ϕ m′ andm ≤ m′. We can then

consider the covering path associated with the pair(n′
0, ̺).

We now prove that all covering paths are finite. This will con-

tl

ti
̺2

̺1

ti

(nl, σl) (nl+1, σl+1) (ni, σi)· · ·

Figure 6. Stacks of a singular pair.

clude the proof by Lemma 4.5. By Lemma 4.6, if a covering path is
infinite, then it contains a singular pair. Therefore we prove that
the MP-explorationE cannot admit a singular pair. Consider a
singular pair(n, t) ∈ Act × T , and denote by(ni, σi)i≥1 its in-
finite covering path. As it is singular, there existsk > 1 such that
(nk, σk) = (n, tσ′

k). For any1 ≤ i ≤ k, we writeσi = tiσ
′
i (this

is possible as the path is infinite and thus never contains empty
stacks).

For each1 < i ≤ k, we define the positionprod(i) = max{1 ≤
j < i | |σj | ≤ |σi|}. This definition is correct as|σ1| = |t| = 1,
and for any1 < i ≤ k, we have|σi| ≥ 1 asσi 6= ε. Intuitively, the valueprod(i) gives the position
which is responsible of the addition in the stack of transition ti. Indeed, let1 < i ≤ k andl = prod(i).
As for any positionj such thatl < j < i, we have|σj | > |σi|, the transitionti is present inσj “at the
same height”.

Consider now the position1 < i ≤ k such thatα(ni) is minimal among{α(nj) | 1 ≤ j ≤ k} (recall
thatn1 = nk), and letl = prod(i). By theT -completeness ofE , there exists a nodex ∈ X such that
edge(nl, tl, x) belongs toB. As we have|σl| ≤ |σl+1|, this implies thatx ∈ Inact.
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We write the covering function associated with nodex as follows:Cover(x) = (x1, η1) . . . (xk, ηk).
Following the definition of a covering path, we obtainxk = nl+1. In addition, following the above
mentioned property ofl = prod(i), there exist two sequences̺1, ̺2 ∈ T ∗ such thatηk . . . η1 = ̺1ti̺2,
and verifying:

σl+1 = ̺1ti̺2σ
′
l andσi = ti̺2σ

′
l

This means that the head of the stackσl, i.e. transitiontl, has been replaced by the sequence̺1ti̺2, and
that between positionsl + 1 andi, transitionti (which is the head of the stackσi), is never consumed.
This situation is depicted on Figure 6. In particular, this implies the following property:

Λ(ni) ≥ Postϕ(Λ(nl+1), ̺1)

Indeed, there are two cases, eitheri = l + 1, and then we necessarily have̺1 = ε and the property is
trivial, or l+1 < i, and then we have that the covering path starting in pair(nl+1, ̺1) ends in pair(ni, ε).
The result then follows from Lemma 4.5.

To conclude, we use the key Proposition 4.4. Indeed, one can verify that the proposition can be
applied on nodesx andni using sequences̺ = ̺1ti̺2 and̺′ = ̺1. This result yields the following
inequality: β(x) ≤ α(ni). As x is the successor ofnl by transitiontl, property(ii) of an exploration
impliesα(nl) < α(x). As we always haveα(x) ≤ β(x), we finally obtainα(nl) < α(ni), which is a
contradiction with our choice ofi.

5. Comparison with the MCT Algorithm

The MP Algorithm has been proposed as a modification of the MCTAlgorithm to obtain completeness,
using a slightly different pruning strategy. Apart from minor structural differences in the presentation of
the algorithm, the main difference comes from the deactivation of nodes. In MP, inactive nodes can be
used to deactivate nodes. In MCT, only active nodes are used to deactivate nodes. More precisely, the
pruning strategy of the MCT Algorithm is obtained by replacing Line10 by the following line :

10′ : Act := Act \ {x | ∃y ∈ AncestorC(x) s.t.Λ(y) ≤ Λ(n) ∧ y ∈ Act};

Thus, condition(y ∈ Act ∨ y /∈ AncestorC(n)) in MP is replaced by the stronger conditiony ∈ Act
to obtain MCT. In particular, this shows that MP pruning strategy is more aggressive than MCT one,
i.e. for a given partial exploration and a given new node, MP always deactivates nodes whenever MCT
does, but the reverse is not always true. This last observation does not imply that the exploration tree of
MP is always smaller than MCT’s. Indeed, one can build an example where a node is deactivated in MP
but not in MCT, this node is then used in MCT to deactivate a newnodem (successors ofm are not
explored in MCT), while successors ofm are explored in MP.

While the exploration trees of MP and of MCT are in general incomparable (none is included into
the other), we proved that the MP Algorithm is complete. The incompleteness of the MCT Algorithm
is illustrated with the Petri net first published in [7] and depicted in Figure 7. Let us show that MCT is
already incomplete for WPN. Consider the WPN(Ncex, ϕ) whereϕ = {p1, p2, p3, p4, 3p5, p6, p7} (see
Definition 2.4). We represent in Figure 8 an execution of the MCT Algorithm on this WPN2. The set

2Actually running MCT on the Petri netNcex yields the exact same tree.
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•p1
p2 p3

p4
p5

p6

p7

t1

t2 t3

t4

t5
t6

t7
t8

2

Figure 7. The counter-example of [7]: Petri netNcex.

1 : p1

2 : p6 3 : p2 : 10 4 : p7

5 : p3 : 7

6 : p4 : 7

7 : p3, ωp5 : 10

8 : p4, 2p5

9 : p3, 3p5 : 9

10 : p2, p5

11 : p3, p5

12 : p4, p5 : 12

t5
t1

t7

t8

t2

t6 t2

t3

t4

t4 t2

t3

Figure 8. An execution of the MCT Algorithm onNcex.

returned by MCT is{{p1}, {p7}, {p2, p5}, {p3, p5}, {p6}, {p4, 2p5}}, this set is incomplete as it should
include{p3, ωp5} and{p4, ωp5}. The problem arises from the following fact: successors of noden8

(node created at step 8) are not explored on the hypothesis that they will be covered by noden7 and its
successors; noden7 and its successors are not explored on the hypothesis that they will be covered by
noden10 and its successors; but noden12, a successor of noden10, is not explored on the hypothesis that
it will be covered by noden8 and its successors. This cycle in the hypothesis leads to theincompleteness.

The marking{p3, 3p5} is reachable for instance by the sequencet5t6t4, it is not covered by the set
returned by MCT in Figure 8. The covering path associated with the root noden1 and the sequence of
transitionst5t6t4 is:

(n1, t5t6t4) · (n2, t6t4) · (n8, t4) · (n10, t2(t3t4)
4) · (n11, (t3t4)

4) · (n8, t4(t3t4)
3) · · ·

note that(n10, t2(t3t4)
4) comes from the ”unfolding” of the acceleration in the WPN (Definition 4.2),

this covering path is infinite (a loop starts with(n8, t4)). One can check that the pair(n8, t4) is singular
(Definition 4.6). The crux of our proof of the completeness ofMP for WPN is to show that no singular
pair occurs in the exploration trees built by MP.

Figure 9 illustrates an execution of the MP Algorithm onNcex. The difference with the execution
of the MCT Algorithm occurs at step 8: noden7 is deactivated because noden6 is covered by noden8.
This deactivation does not happen in MCT because noden6 is inactive. This exactly corresponds to the
difference between the two algorithms.
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1 : p1

2 : p6 3 : p2 : 13 4 : p7

5 : p3 : 7

6 : p4 : 7

7 : p3, ωp5 : 8

8 : p4, 2p5 : 10

9 : p3, 3p5 : 10

10 : p4, ωp5

11 : p3, ωp5

12 : p4, ωp5 : 12

13 : p2, p5

14 : p3, p5 : 14

t5
t1

t7

t8

t2

t6 t2

t3

t4

t4

t3

t4

t3

Figure 9. An execution of the MP Algorithm onNcex.

6. Implementation and Experiments

We implemented the MP algorithm in Python3. In order to minimize the overhead of the inactive nodes,
our implementation takes advantage of the following observation. One of the following two cases occurs
when a nodex, different from the new noden, is deactivated:

• if the new noden is not a descendant ofx, thenx and its subtree are completely removed (indeed
the algorithm will not need them anymore);

• if the new noden is a descendant ofx an acceleration has occurred betweenn and an ancestor
y of x; the nodex could be used later to deactivate one of the descendants of node n; in our
implementationx is removed and the set of markings of the deactivated nodes lying betweeny
andn (includingx) is associated withn; nevertheless, note that we only need to keep the minimal
elements of this set.

Therefore our implementation maintains a tree data structure containing only the active nodes and for
each active noden it maintains the set of the minimal markings of the inactive ancestors ofn (up to the
first active ancestory of n).

We compare the MP Algorithm with the K&M Algorithm (also available in our implementation)
and with the procedure CoverProc introduced in [7]. This latter procedure is an alternative for the com-
putation of the MCS. Instead of using a tree structure as in the K&M Algorithm, it computes a set of
pairs of markings, with the meaning that the second marking can be reached from the first one. This is
sufficient to apply acceleration. To improve the efficiency,only maximal pairs are stored.

Experimental results, obtained on a 3 Ghz Xeon computer, arepresented in Table 1. The test set is
the one from [7]. We recall in the last column the values obtained for the CoverProc [7] algorithm. Note
that the implementation of [7] also was in Python, and the tests were run on the same computer. We

3Our prototype can be downloaded athttp://www.lif.univ-mrs.fr/~preynier/coverability/.
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report for each test the number of places and transitions of the net and the size of its MCS, the time the
K&M and MP Algorithms took and the number of elements passed in the waiting list.

As expected the MP Algorithm is a lot faster than the K&M Algorithm and the tree it constructs
is, in some instances, dramatically smaller. The K&M Algorithm could not compute the MCS for the
last five tests (we time out after 20 minutes), while the MP Algorithm took less than 20 seconds for all
five tests. Note that the time reported for the K&M Algorithm is the time to build the K&M tree, from
this tree one has to extract the minimal coverability set which maybe costly if the set is big (see K&M
results in [7]). The MP Algorithm directly computes the minimal coverability set (Act), i.e. no additional
computation is needed.

We also compare two versions of the MP Algorithm, the Depth-First (DFS) and Breadth-First (BFS)
ones. To be more precise, we give the number of nodes of the tree built by the algorithm (# X), and
among them how many are deactivated (#Inact). Note that we recover that the number of nodes of
the tree that remain active coincides with the size of the MCS. In all the instances we considered, the
BFS is slightly faster than the BFS. This illustrates the interest of having an algorithm correct for any
exploration strategy.

Regarding CoverProc, the procedure is significantly slowerthan MP. This can be explained by the
fact that considering pairs of markings may increase the number of elements to be stored. Moreover,
the MP Algorithm has, in our view, another important advantage over CoverProc. In MP, the order of
exploration is totally free (any exploration strategy yields the MCS) while, in the CoverProc procedure,
each time an acceleration is applied, the successors of the resulting node must be explored in a depth-first
search. This is particularly relevant as we have seen that the MP Algorithm is more efficient in BFS than
in DFS on the tests set we consider.

Finally, we have also implemented the (potentially incomplete) MCT procedure. For all instances
we considered, the time needed by the MCT procedure is similar to the ones of the MP Algorithm, the
difference being less than 1%. Also note that, as already mentioned in [7], the error in MCT is rare, in
our experiments MCT always computed the correct MCS.

7. Conclusion

We have proposed in this paper the Monotone-Pruning algorithm, an improved K&M algorithm with
pruning. This algorithm is a correction of the MCT Algorithm, based on a slightly more aggressive
pruning strategy which ensures completeness. The MP algorithm constitutes a simple modification of
the K&M algorithm, and is thus easily amenable to implementation and to extensions to other classes of
systems. Moreover, as the K&M Algorithm, and unlike the algorithm proposed in [7], any strategy of
exploration of the Petri net is correct: depth first, breadthfirst, random. The empirical results presented
in Section 6 show that our algorithm drastically outperforms K&M and CoverProc algorithms.

A natural continuation of this work is to develop a more efficient prototype based on symbolic data
structures. Another issue is the complexity of the current proof of correctness. It would be worthwhile
to look for a simpler proof based on an invariant representing the pruning strategy of the MP algorithm.
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name #P #T # MCS # Wait time (s) # Wait # X # Inact time (s) # Wait # X # Inact time (s) time (s)

BasicME 5 4 3 5 < 0.01 5 5 2 < 0.01 5 5 2 < 0.01 0.12

Kanban 16 16 1 72226 9.1 114 59 58 < 0.01 111 100 99 < 0.01 0.19

Lamport 11 9 14 83 0.02 24 24 10 < 0.01 24 24 10 < 0.01 0.17

Manufacturing 13 6 1 81 0.01 30 20 19 < 0.01 30 23 22 < 0.01 0.14

Peterson 14 12 20 609 0.2 35 35 15 0.02 35 35 15 0.02 0.25

Read-write 13 9 41 11139 6.33 76 76 35 .07 76 76 35 .07 1.75

Mesh2x2 32 32 256 x x 6241 4998 4742 15.1 5401 3876 3620 10.5 330

Multipool 18 21 220 x x 2004 1908 1688 5.2 1854 1828 1608 4.7 365

pncsacover 31 36 80 x x 1615 1177 1097 1.5 1462 1040 960 1.5 113

csm 14 13 16 x x 102 93 77 .03 122 105 89 .03 0.34

fms 22 20 24 x x 809 623 599 0.24 867 577 553 0.20 2.1

Table 1. The K&M, MP and CoverProc algorithms comparison. #P, #T, # MCS : number of places and transitions and size of the MCS of the Petri
net. #Wait: number of elements passed in the waiting list. # X : number ofnodes in the tree constructed by the algorithm. #Inact: number of nodes
deactivated by the algorithm. For the MP Algorithm, the sizeof the MCS is recovered as (# X - #Inact).
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A. Complements for the proof of Proposition 4.4

We prove an additional property of MP Algorithm related to its accelerations. Intuitively, some nodes
may be hidden when an acceleration is performed. The property states that if a nodey is hidden, then it
owns an ancestory′ which has been explored (y′ ∈ X), and whose label is strictly less than the label of
y. We call this property the minimal completeness of the exploration.

Lemma A.1. (Minimal Completeness)
For any edgeb = (x, t, x′) ∈ B corresponding to an acceleration (i.e. such thatΛ(x′) > Postϕ(Λ(x), t)),
there exists a nodez such that:

(i) z ∈ AncestorE(x) andβ(z) = α(x′),

(ii) for any nodey ∈ AncestorE(x′) \ AncestorE(x), there exists a nodey′ ∈ AncestorR(y) ∩ X
such thatΛ(y′) < Λ(y) andz ∈ AncestorE(y′).

Proof:
The proof proceeds by induction onα(x). If α(x) = 1 (x is the root), then one can easily verify that one
can choosez = x, and for any nodey that is skipped by the acceleration,y′ = x is a correct candidate.

We now considerx such thatα(x) > 1, and consider an edgeb = (x, t, x′) ∈ B. We consider the no-
tations introduced in the definition of the concretization function, and letγ(b) = t(γ(w1)t)

M . . . (γ(wk)t)
M ,
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wherewi is the path inB∗ associated with nodexi. We assume that nodesxi’s are ordered w.r.t.α, and
thusx1 is an ancestor of allxi’s. We letz = x1, it verifies property(i).

Let us prove property(ii). Let y ∈ N be a node of the reachability tree such that there exists a
word ε 6= ̺ � γ(b) verifying Λ(y) = Postϕ(Λ(x), ̺). As ̺ � γ(b), there exists a uniquei such that
t(γ(w1)t)

M . . . (γ(wi)t)
M ≺ ̺ and̺ � t(γ(w1)t)

M . . . (γ(wi+1)t)
M .

We can thus decompose̺as̺ = t(γ(w1)t)
M . . . (γ(wi)t)

M (γ(wi+1)t)
lη where0 ≤ l < M and

ε ≺ η � γ(wi+1)t.
Consider the nodey′ in the reachability tree defined as follows: it is the successor of nodexi+1 by

the sequenceη.
We first prove thatΛ(y′) ≤ Λ(y). Following notations introduced in the proof of Lemma 4.1, we

have thatΛ(y) can be reached from markingmacc
i by the sequence(γ(wi+1)t)

lη. According to previous
properties, we obtainm ≤ macc

i ≤ Postϕ(macc
i , (γ(wi+1)t)

l) and thusΛ(y′) = Postϕ(Λ(xi+1), η) ≤
Postϕ(m, η) ≤ Λ(y).

Now, we prove that the inequality is strict. By contradiction, if Λ(y′) = Λ(y), according to pre-
vious inequalities, we obtainPostϕ(Λ(xi+1), η) = Postϕ(m, η). By completingη to obtain the se-
quenceγ(wi+1)t, we obtainPostϕ(Λ(xi+1), γ(wi+1)t) = Postϕ(m,γ(wi+1)t). By Lemma 4.1, we
havePostϕ(Λ(xi+1), γ(wi+1)) = Λ(x). By definition ofm, we obtainm = Postϕ(m,γ(wi+1)t).
This is a contradiction with our choice ofxi+1! Indeed, in Definition 4.2, we require the following
property:∃p.Λ(xi+1)(p) < m(p) < ω. One can prove that this implies the following strict inequality:
m(p) < Postϕ(m,γ(wi+1)t)(p), yielding the contradiction

Then, we distinguish two cases:

• if y′ ∈ X, then we are done (z = x1 is an ancestory′).

• otherwise (y′ 6∈ X), this implies thaty′ is skipped by an acceleration on the path betweenxi+1

andx, related to an edgeb′ = (n, u, n′). But then we can apply the induction hypothesis on this
edge as we haveα(n) < α(x), and obtain two nodesz′ andy′′ verifying properties(i) and(ii).
By transitivity, we trivially obtainy′′ ∈ AncestorR(y) ∩ X andΛ(y′′) < Λ(y). It remains to
prove thatz ∈ AncestorE (y′′). Asxi+1 is an ancestor of noden, active at stepα(x), it can not be
deactivated by the acceleration related to edgeb′, what implies thatz′ must be “below”xi+1, i.e.
xi+1 ∈ AncestorE (z′). This yields the result.

This concludes the proof. ⊓⊔


