
From Two-Way Transducers
to Regular Function Expressions

Nicolas Baudru1 and Pierre-Alain Reynier1

Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
{nicolas.baudru,pierre-alain.reynier}@lis-lab.fr

Abstract. Transducers constitute a fundamental extension of automata.
The class of regular word functions has recently emerged as an important
class of word-to-word functions, characterized by means of (functional, or
unambiguous, or deterministic) two-way transducers, copyless streaming
string transducers, and MSO-definable graph transformations. A funda-
mental result in language theory is Kleene’s Theorem, relating finite state
automata and regular expressions. In [3], the authors introduced a set
of regular function expressions and proved a similar result for regular
word functions, by showing the equivalence with copyless streaming string
transducers. In this paper, we propose a direct, simplified and effective
translation from unambiguous two-way transducers to regular function
expressions extending the Brzozowski and McCluskey algorithm. In addi-
tion, we identify a subset of regular function expressions characterizing
the (strict) subclass of functional sweeping transducers.

1 Introduction

The theory of regular languages has been extended in numerous directions, includ-
ing finite and infinite trees. Another natural extension is moving from languages
to transductions. One of the strengths of the class of regular languages is their
equivalent presentation by means of automata, logic, algebra and regular expres-
sions. Regular expressions are of particular interest for specification purposes in
a declarative manner. We are interested in this paper in regular expressions for
specifying word-to-word functions.

While finite state automata are very robust under modifications in the model,
the situation is different for transducers. It is well known that non-determinism
and two-wayness increase the expressive power, even when one only considers
functional transductions. The class of functions realized by non-deterministic
two-way transducers, so-called regular functions, has attracted recently a strong
interest [1–4, 13, 6, 14, 8]. It is very expressive and allows to express natural
transformations that are not definable by one-way transducers (e.g. duplicate
the input word, or produce its mirror image). This class also enjoys a logical
characterization using Monadic Second-Order graph transductions interpreted
on strings [10], and can also be defined using the model of copyless streaming
string transducers (SST) [1].

A natural line of research concerns the identification of adequate regular
expressions to specify different classes of word functions, as investigated in [9, 15].

2 N. Baudru and P.-A. Reynier

It is well known that rational relations (realized by non-deterministic one-way
transducers) can be described using standard regular expressions on pairs of
input and output words, as a special case of Schützenberger theorem for weighted
automata [17]. Imposing on these regular expressions the restriction of being
unambiguous on their input part yields a presentation of rational functions [5].
More recently, a set of regular combinators has been introduced in order to
characterize the class of regular functions [3]. The equivalence goes through the
model of copyless SST, and relies on a very involved proof.

In this paper, we propose a new construction showing that any regular func-
tion can be expressed using the regular functions expressions of [3]. Unlike [3], we
take as input unambiguous two-way finite state transducers. Intuitively, our con-
struction lifts the standard state-elimination algorithm proposed by Brzozowski
and McCluskey in [7] for one-way finite state automata to unambiguous two-way
finite state transducers. The difficulty lies in two aspects: going from a one-way
to a two-way model, and going from automata to transducers. In order to address
these issues, we use the construction of the Shepherdson automaton [18] and the
notion of traversals of two-way automata, that allow to describe the computation
flow of a two-way automaton over some input word. In addition, we label the
edges of these flow graphs with regular function expressions.

More precisely, the state-elimination algorithm requires to be able to compute
the union, concatenation and Kleene star of transitions of the automaton. We
thus have to be able to perform these operations on flows. Unlike union and
concatenation, the operation of Kleene iteration may yield complex behaviors
that are difficult to describe by means of regular function expressions. A key
contribution of our work is a deep investigation of these flows, and the identifi-
cation of an important characteristic: the number of crossing edges. Using this
parameter, we first identify a subclass of flows for which the representation of the
Kleene iteration by means of regular function expressions is rather simple, and
then present a construction allowing to reduce the Kleene iteration of arbitrary
flows to that of the subclass. This results in a very simple proof, which we believe
will be useful for further extensions. A side-result of our work is the exhibition of
a set of operators characterizing the class of sweeping transducers (this result
could also be deduced from [15]). Sweeping transducers induce a third class of
functions in-between rational and regular functions.

The very recent work [11] adopts an approach similar to ours in order to lift
the results of [3] to infinite words. However, to deal with Kleene iteration, they
resort to an unambiguous version of Simon’s factorization forest theorem.

It is worth mentioning that our results are presented for word transducers
but they could be easily adapted to the setting of transducers producing output
in some monoid, as in [3].

We introduce the model of transducers and the regular function expressions
in Section 2, and our labelled flow graphs in Section 3. In Section 4, we present
the algorithm, and the main results concerning the representation of the Kleene
star of flow graphs. The case of sweeping transducers is dealt with in Section 4.5.

The second author is funded by the DeLTA project (ANR-16-CE40-0007).

From Two-Way Transducers to Regular Function Expressions 3

2 Definitions

2.1 Words, Languages and Transducers

Given a finite alphabet A, we denote by A∗ the set of finite words over A, and
by ε the empty word. The length of a word u ∈ A∗ is its number of symbols,
denoted by |u|. For all i ∈ {1, . . . , |u|}, we denote by u[i] the i-th letter of u.
Given n > 0, we denote by [n] the set {0, 1, . . . , n − 1}. A language over A is
a set L ⊆ A∗. Given two languages L,L′ over A, the concatenation of L and
L′, denoted LL′, is defined as {uv | u ∈ L, v ∈ L′}. We say that L and L′ are
unambiguously concatenable whenever for every word w ∈ LL′, there exist unique
words u ∈ L and v ∈ L′ such that w = uv. Given a language L over A, the Kleene
star of L, denoted by L∗, is defined as {u1 · · ·un | n > 0 and ∀i, ui ∈ L}. The
Kleene plus of L, denoted by L+, is defined as LL∗. When ε 6∈ L, we say that
L is unambiguously iterable if for every word w ∈ L∗, there exist unique words
u1, . . . , un ∈ L such that w = u1 · · ·un.

A monoid is a set M equipped with an associative internal law and a neutral
element. Given an alphabet A and a monoid M , a transduction from A to M is
a relation R ⊆ A∗ ×M . A transduction R is functional if it is a function. The
transducers we will introduce will define transductions. We will say that two
transducers T, T ′ are equivalent whenever they define the same transduction.

When dealing with two-way machines, we assume the alphabet A to be
extended into A by adding two special symbols `,a, and we consider input words
with left and right markers. The automaton then reads the input word `ua, and
we set u[0] = ` and u[|u|+ 1] = a. We also define D = {←,→}.
Automata. A two-way finite state automaton (2NFA) over a finite alphabet A
is a tuple A = (Q, q0, F, δ) where Q is a finite set of states, q0 ∈ Q is the initial
state, F ⊆ Q is a set of final states, and δ ⊆ Q × A ×Q × D is the transition
relation. We describe the behaviour of A on some input word `ua. Informally, a
2NFA has a reading head pointing between symbols (and possibly on the left of
` and on the right of a). A configuration of A is a triple (q, i, d) ∈ Q× N× D,
where 0 6 i 6 |u|+ 2 is the position of the reading head on the input tape. The
direction d indicates whether the next input letter read is on the left or on the
right of the reading head. The configurations (q, i, d) and (q′, i′, d′) are consecutive
if we have (q, u[i+md], q

′, d′) ∈ δ, where m→ = 0 and m← = −1, and i′ = i+ 1
if d = d′ = →, i′ = i− 1 if d = d′ = ←, and i′ = i otherwise. A run is a finite
sequence of consecutive configurations. It is accepting if the first configuration
is (q0, 0,→), and the last configuration is (q, |u|+ 2,→) with q ∈ F . Note that
this latter configuration does not allow additional transitions. An exemple of run
is depicted in Figure 2. The language of A is the set of words u ∈ A∗ such that
there exists an accepting run of A on `ua.

A two-way finite state automaton is:

– deterministic if we may write δ as a function from Q×A to Q× {←,→}.
– unambiguous if for any u ∈ A∗, there is at most one accepting run on `ua.
– one-way it it does not have transitions of the form (q, a, q′,←).
– sweeping if the head can change direction only at the extremities of the input.

4 N. Baudru and P.-A. Reynier

0 1 2 3 4

a, b/ε,→

#,a /ε,←

a, b/ε,→

` /ε,→

a/a,←, b/b,←

#,` /ε,→

#/#,→

a /ε,→

Fig. 1. A 2NFT realizing the function f of Example 2.

Transducers. Given two finite alphabets A and B, two-way finite state trans-
ducers (2NFT) from A to B extend 2NFA over A with a one-way left-to-right
output tape containing elements of B∗. They are defined as 2NFA except that
the transition relation δ is extended with outputs: δ ⊆ Q×A×B∗×Q×{←,→}.
When a transition (q, a, w, q′, d) is fired, the word w is appended to the right of
the output tape. The transduction defined by a 2NFT T is the relation R(T)
defined as the set of pairs (u, v) ∈ A∗ × B∗ such that v is the output of an
accepting run on the word `ua.

We say that a 2NFT T is functional if the relation R(T) is a function. We
say that a 2NFT T is deterministic (resp. unambiguous, one-way, sweeping) if
its underlying 2NFA is. Observe that if T is deterministic or unambiguous, there
is at most one accepting run for each input word, and thus R(T) is a function.

Theorem 1. [12] The classes of functional, deterministic and unambiguous
2NFT are equivalent, and strictly more expressive than that of functional sweeping
transducers, which in turn is strictly more expressive than the class of functional
one-way transducers.

We call rational functions (resp. sweeping functions, regular functions) the
ones that are definable by one-way transducers (resp. sweeping transducers,
two-way transducers).

` a b # b b a a
0 1 2 3 4 5 6 7 8

0 1 1 1

222

3 3 3 1 1 1 1

2222

3 3 3 3 4

ε ε ε

ba

ε ε # ε ε ε

abb

ε ε ε ε

ε

ε

ε

ε

Fig. 2. A run of the 2NFT of Example 2.

Example 2. Given a word u, we denote
by mirror(u) its mirror image. Given
A = {a, b,#}, we consider the func-
tion mirror∗ mapping an input word
u, whose decomposition according to
#’s is u = u1#u2# . . .#un, to the
word v = v1#v2# . . .#vn, with vi =
mirror(ui) for all i. This function is
realized by the deterministic 2NFT
depicted in Figure 1. An execution
of this transducer on the input word
u = ab#bba is depicted in Figure 2.

2.2 Shepherdson automaton construction

A crossing sequence is a sequence of states encountered by a run at a given
position in the input word. For instance, if we consider the run depicted in

From Two-Way Transducers to Regular Function Expressions 5

Figure 2, the crossing sequence at position 0 (resp. position 8) is the tuple (0)
(resp. (4)), while all the other crossing sequences are equal to the triple (1, 2, 3).
It is well-known that the crossing sequences of accepting runs of unambiguous
2NFA have size bounded by 2|Q|, as a state cannot appear twice in a crossing
sequence at two indices of same parity (otherwise a loop is entered).

Unlike one-way automata, partial runs of a two-way automaton on some
factor of an input word do not all go through the input word from left to right.
Flows are graphs allowing to describe these partial runs between two crossing
sequences. More precisely, a flow of size (n,m), n,m > 0, is a particular directed
graph F with set of vertices [n]× {L}

⊎
[m]× {R}. Vertices in [n]× {L} (resp.

[m]× {R}) are called left (resp. right) vertices, satisfying additional conditions
that intuitively imply that it connects two crossing sequences (see [4]). An edge
is a crossing edge if it is between two vertices on different sides, it is a return
edge otherwise. From now on, we fix an integer M and only consider flows of size
(n,m) with n,m ≤M . We denote by F this finite set of flows. It is well-known
that F can be equipped with an operation of composition (denoted by F ◦ F ′),
yielding a monoid. This operation can be understood as the identification of
paths in the concatenation of the two graphs. We state a simple property of flows:

Lemma 3. Let F, F ′ be two flows with k and l crossing edges respectively. Then
F ◦ F ′ has at most min(k, l) crossing edges.

,,

{a,b}, #,

(0) (4)(1,2,3)

Fig. 3. The Shepherdson automaton of the underlying 2NFA of Example 2. Flows
associated with transitions are indicated for clarity.

The Shepherdson automaton of an unambiguous two-way automaton A is an
equivalent one-way automaton obtained as follows: states are crossing sequences,
and there is a transition between two states on some letter a if there exists an
adequate flow on this letter. This automaton may be of exponential size. W.l.o.g.,
we assume that the Shepherdson automaton is trimmed, meaning that every
state appears in some accepting run. Note that as A is unambiguous, then so is
its Shepherdson automaton. More precisely, for every transition, there is a single
flow that can be associated with it. An example is depicted in Figure 3.

2.3 Function Expressions

We recall the function expressions introduced in [3] to specify word-to-word
functions from A∗ to B∗. First observe that in [3], these operators are mappings
from elements of A∗ to elements of some monoid M . We have chosen to present
our results in the setting of transducers but they could easily be extended to an
arbitrary monoid as output. Observe also that we do not follow the terminology
used in [3], and rather adopt a terminology coming from formal power series (see

6 N. Baudru and P.-A. Reynier

for instance [9, 15]). It is however trivial to verify that the operators we introduce
correspond to the ones of [3].
Constant functions. Given a language L ⊆ A∗ and v ∈ B∗, the constant
function L/v is such that dom(L/v) = L and for all u ∈ L, L/v(u) = v.
Sum. Given two functions f, g such that dom(f) ∩ dom(g) = ∅, the sum f ⊕ g
is such that dom(f ⊕ g) = dom(f)] dom(g) and for all u ∈ dom(f ⊕ g),
(f ⊕ g)(u) = f(u) if u ∈ dom(f); (f ⊕ g)(u) = g(u) if u ∈ dom(g).
Hadamard product. Given two functions f, g, the Hadamard product f ⊗ g
is such that dom(f ⊗ g) = dom(f) ∩ dom(g) and for all u ∈ dom(f ⊗ g),
(f ⊗ g)(u) = f(u)g(u).
Cauchy products. Given two functions f, g such that dom(f) and dom(g) are
unambiguously concatenable, the Cauchy product f • g and the left Cauchy

product f
←• g are such that dom(f • g) = dom(f

←• g) = dom(f)dom(g) and:

∀u = u1u2 with u1 ∈ dom(f), u2 ∈ dom(g),

{
(f • g)(u) = f(u1)g(u2)

(f
←• g)(u) = g(u2)f(u1)

Kleene stars. Given f such that dom(f) is unambiguously iterable, the Kleene

star f∗ and the left Kleene star f
←∗ are s. t. dom(f∗) = dom(f

←∗) = L∗ and:

∀u = u1u2 . . . un with ∀i, ui ∈ dom(f),

{
f∗(u) = f(u1)f(u2) . . . f(un)

f
←∗ (u) = f(un)f(un−1) . . . f(u1)

Chained stars. Given a function f and a language L such that L2 ⊆ dom(f)
and L is unambiguously iterable, the chained star 〈f, L〉~, and the left chained

star 〈f, L〉
←
~, are such that dom(〈f, L〉~) = dom(〈f, L〉

←
~) = L>2, and:

∀u = u1u2 . . . un with ∀i, ui ∈ L,

{
〈f, L〉~(u) = f(u1u2)f(u2u3) . . . f(un−1un)

〈f, L〉
←
~(u) = f(un−1un) . . . f(u2u3)f(u1u2)

We consider the following grammars: (L is a regular language over A, v ∈ B∗)

Reg 3 f, g ::= L/v | f ⊕ g | f ⊗ g | f • g | f ←• g | 〈f, L〉~ | 〈f, L〉
←
~

Rat 3 f, g ::= L/v | f ⊕ g | f • g | f∗

A function expression obtained from some grammar G is called a G-expression.
Reg-expressions are called regular function expressions.

Example 4. We give examples to illustrate these operators:

– the identity function mapping on A∗ can be defined as idA∗ =
(⊕

a∈A{a}/a
)∗

,

– the mirror image on A∗ can be defined as mirrorA∗ =
(⊕

a∈A{a}/a
)←∗

,
– the function last mapping word ua ∈ A∗ to a|ua|, for every a ∈ A, can be

defined as last =
⊕

a∈A
(
(A/a)

∗ • {a}/a
)
.

– the function mirror∗ of Example 2 can be defined as (mirror{a,b}∗ • {#}/#)∗ •
mirror{a,b}∗ .

Theorem 5. The following equivalences hold:

– Rational functions are equivalent to Rat-expressions [5].
– Regular functions are equivalent to Reg-expressions [3].

From Two-Way Transducers to Regular Function Expressions 7

3 Function Expression Flow Automata

Intuitively, we refine the Shepherdson automaton construction by labelling tran-
sitions with flows, in which each edge is labelled by a function expression. From
now on, we fix an input alphabet A and an output alphabet B.

Definition 6. A word flow W is a flow of F whose edges are labelled by words
of B∗. The set of word flows is denoted by W.

Composition of flows can be lifted to word flows, by labelling new edges with the
concatenation of words labelling edges along the path. We denote it by W ◦W ′.

Definition 7. A function expression flow (FEF) E over domain L is a flow of
F whose edges are labelled by function expressions from A∗ to B∗ of domain L.

We denote by E the set of all function expression flows, by dom(E) the domain
of a FEF E and by flow(E) its underlying flow (flow(E) ∈ F).

A function expression flow E ∈ E of size (n,m) defines a functional transduc-
tion from A∗ to W: for all u ∈ dom(E), E(u) is the word flow W of size (n,m)
such that (x, f(u), y) is an edge of W iff (x, f, y) is an edge of E.

We say that two FEFs E,E′ ∈ E are disjoint if dom(E) ∩ dom(E′) = ∅.

Definition 8. A label of size (n,m), with n,m > 0, is a non-empty set of FEFs
of size (n,m) that are pairwise disjoint.

We denote by L the set of labels and define the domain of a label as the union
of the domains of the FEFs it contains: dom(L) =

⊎
E∈L dom(E). A label also

defines a functional transduction from A∗ to W: for any u ∈ dom(L), L(u) = E(u)
for the unique FEF E of L such that u ∈ dom(E).

Definition 9. A function expression flow automaton (FEFA for short) is a tuple
A = (Q, q0, qf , δ) where Q is a finite set of states, q0 (resp. qf) is the initial
(resp. final) state, and δ ⊆ Q× L×Q is the finite transition relation. We require
that there is no incoming (resp. outgoing) transition to the initial state (resp.
from the final state), and that there exists a mapping size : Q → N such that
size(q0) = size(qf) = 1 and, for every (q,L, q′) ∈ δ, L is of size (size(q), size(q′)).

Given a word u ∈ A∗, an execution on u of a FEFA A = (Q, q0, qf , δ) is a
decomposition u1 · · ·uk of u and a sequence (qi,Li, qi+1)16i6k of consecutive
transitions such that ui ∈ dom(Li) for all i. The execution is accepting if
q1 = q0 and qk+1 = qf . We say that a FEFA is unambiguous if for every word
u, there is at most one accepting execution on u. When this holds, following
above notations, the word flow associated with such an execution is out(u) =
L1(u1) ◦ L2(u2) ◦ . . . ◦ Lk(uk). The properties of the mapping size ensure that
this composition is well defined.

The semantics of a FEFA A is a functional transduction from A∗ to B∗.
Indeed, given a word u with some accepting execution which produces the word
flow out(u), the properties of the mapping size in the definition of FEFA ensure

8 N. Baudru and P.-A. Reynier

that out(u) is of size (1, 1), hence reduced to a single left-to-right crossing edge,
labelled by some word v ∈ B∗. We thus consider that A maps u to v.

The following lemma follows from Shepherdson automaton construction:

Lemma 10. Given an unambiguous 2NFT, one can build an equivalent unam-
biguous FEFA.

4 A Brzozowski and McCluskey-like Algorithm

4.1 Presentation of the algorithm

The standard Brzozowski and McCluskey (BMC for short) algorithm takes as
input a one-way finite-state automaton A, with distinguished initial and final
states, and proceeds as follows: it removes all the states of the automaton one
by one, except the initial and final states. Each time a state is removed, the
remaining transitions are modified in order to obtain an equivalent automaton.
The transitions are now labelled by regular expressions. More precisely, consider
the removal of some state q2. Then, for all states q1 and q3 of A we have to
replace the transitions q1

e1−→ q2
e2−→ q2

e3−→ q3 and q1
e4−→ q3 by a unique

transition q1
e−→ q3. In order to obtain an equivalent automaton, one defines

e = e1e3 + e1e
+
2 e3 + e4. At the end of the algorithm, one ends up with a single

transition between the initial and the final state. The regular expression e labelling
this transition describes exactly the whole behaviour of the automaton.

In order to adapt this algorithm to unambiguous FEFA, one needs to define
the operations of sum, concatenation and Kleene plus (i.e. Kleene star with a
positive number of iterations) on labels. It is worth observing that unambiguity of
the FEFA ensures that sum (resp. concatenation, Kleene plus) involves labels with
disjoint domains (resp. unambiguously concatenable domains, unambiguously
iterable domains). As we will see in the subsequent sections, while sum and
concatenation are easy to deal with, Kleene plus is more involved. We first
present in Subsection 4.3 how to compute the Kleene plus for a restricted class of
labels, called simple labels, and as a corollary we obtain a particular instance of
BMC algorithm valid for FEFA for which BMC always eliminates self-loops with
simple labels. Last, we show in Subsection 4.4 how the Kleene plus of arbitrary
labels can be obtained using this particular instance of BMC algorithm for FEFA.

Putting everything together, we obtain:

Theorem 11. Given an unambiguous 2NFT, our Brzozowski and McCluskey-
like algorithm returns an equivalent Reg-expression.

4.2 Sum, concatenation and Kleene plus of labels

Sum. Let L1,L2 be two labels of L having the same size and such that dom(L1)
and dom(L2) are disjoint. It is possible to define a new label, called the sum of
L1 and L2 and denoted by L1 ⊕ L2, whose domain is dom(L1)] dom(L2), and
such that for all u ∈ dom(L1)] dom(L2), L1 ⊕ L2(u) = L1(u) if u ∈ dom(L1),

From Two-Way Transducers to Regular Function Expressions 9

and L1 ⊕ L2 = L2(u) if u ∈ dom(L2). This label is simply obtained by taking
the union of FEFs of L1 and L2.
Concatenation. Let L1,L2 be two labels of size (n,m) and (m, k), and such that
dom(L1) and dom(L2) are unambiguously concatenable. It is possible to define a
new label, called the concatenation of L1 and L2 and denoted by L1 • L2, whose
domain is dom(L1)dom(L2), and such that for all u = u1u2, with ui ∈ dom(Li)
for i ∈ {1, 2}, (L1 • L2)(u) = L1(u1) ◦ L2(u2).

We first explain how to define the concatenation of two FEFs E1 and E2,
denoted by E1 • E2. Its underlying flow is F = flow(E1) ◦ flow(E2). As the sizes
of flows are bounded, it is not difficult to observe that the function expressions
labelling the edges of F can be obtained from the ones of E1 and E2 using the
Hadamard and Cauchy product operators.

The concatenation of labels is then obtained by cartesian product as:

L1 • L2 = {E1 • E2 | E1 ∈ L1, E2 ∈ L2}.

Kleene plus. Given a label L of size (m,m) such that dom(L) is unambiguously
iterable, we will explain how to define the Kleene plus of L, denoted by L+,
whose domain is dom(L)+, and which is such that

∀u = u1u2 . . . un with ∀i, ui ∈ dom(L), L+(u) = L(u1) ◦ L(u2) ◦ . . . ◦ L(un).

Constructing the label L+ is difficult and is addressed in the next two subsections.

4.3 Kleene plus over simple labels

Definition 12. An FEF E ∈ E is simple if its flow contains no return edge.
A label L ∈ L is simple if for all E,E′ ∈ L, flow(E • E′) = flow(E).

As a first step, given a simple FEF E and a language L that is unambiguously
iterable and such that L2 ⊆ dom(E), we define the chained star of E w.r.t. L,
denoted by 〈E,L〉~, as follows. It is a FEF whose domain is L>2 and such that
for any word u = u1u2 . . . un ∈ L>2, we have 〈E,L〉~ (u) = E(u1u2) ◦ E(u2u3) ◦
. . . ◦ E(un−1un). This FEF is obtained from E by applying the chained star
operator (or its left version) on each (crossing) edge of E.

We turn to the construction of the label L+ when L is a simple label. The
definition of simple labels implies that for all n > 0 and E,E1, . . . , En ∈ L,
flow(E) = flow(E • E1 • E2 • · · · • En). In consequence, the flows that appear in
L≥2 are the flows of L. Let L = dom(L). Given some E ∈ L, we claim we can
build a FEF Ẽ with domain dom(E)L≥1, size (m,m) and flow(Ẽ) = flow(E),
that ”simulates” all sequences of FEFs of L beginning by E. More precisely, its
semantics is as follows: for all E1, . . . En ∈ L, if u = u0u1 . . . un with u0 ∈ dom(E)
and ui ∈ dom(Ei) for all i, then

Ẽ(u) = E(u0) ◦ E1(u1) ◦ · · · ◦ En(un). (1)

We can then define the label L+ as L ⊕ {Ẽ | E ∈ L}.
We detail now the construction of Ẽ for a FEF E ∈ L, depicted in Figure 4.

We start with a property of simple labels, obtained using Lemma 3:

10 N. Baudru and P.-A. Reynier

Lemma 13. All FEFs of a simple label have the same number of crossing edges.

We first decompose E into two FEFs Ē and Ê such that for every word u ∈
dom(E), we have E(u) = Ê(u) ◦ Ē(u). Formally, given a FEF E, Ē is the
FEF obtained by deleting all return edges on the left (and the corresponding
nodes), and Ê is the FEF obtained by deleting all return edges on the right (and
the corresponding nodes) and moreover by replacing all function expressions of
crossing edges of E with dom(E)/ε (dashed edges in Figure 4). By Lemma 13,
there exists c such that each E ∈ L has c crossing edges. Let F be the flow
consisting of no return edges and c crossing edges, then for all E1, E2 ∈ L,
we have flow(Ē1 • Ê2) = F . As a consequence, we can define 1 the FEF E♣ =⊕

E1,E2∈L Ē1•Ê2. Observe that E♣ is a simple FEF. We can thus use the chained

star E~ = 〈E♣, L〉~ of domain L≥2 to rewrite Eq. (1) as:

Ẽ(u)=Ê(u0)◦ (Ē•Ê1)(u0u1)◦(Ē1•Ê2)(u1u2)◦ . . . ◦(Ēn−1•Ên)(un−1un)︸ ︷︷ ︸
E~(u0...un)

◦Ēn(un)

E1

u1 u2u0 u0 u0 u1u1 u2u2

E2E E1 E2E E1E E2

=

Fig. 4. Illustration of the decomposition used for simple labels.

Remark 14. We have thus proven that we are able to compute the Kleene plus
for simple labels. This implies that we can apply our BMC algorithm for a given
FEFA if each time a state is removed, its self-loop is labelled with a simple label.
We call this the simple-BMC algorithm.

4.4 Kleene plus over arbitrary labels

We present now how to construct the label L+ when L is an arbitrary label. For
simplicity, we construct a label L≥2, and then define L+ = L⊕L≥2. The intuitive
idea is to use the previously described simple-BMC algorithm. Therefore, we

consider an automaton A that consists only of three transitions ι
L−→ α

L−→
α
L−→ β with initial state ι and final state β. We will exhibit a finite unfolding

AUnf = (QUnf, ι, β,−→Unf) of A, equivalent to A, which has a property ensuring
that the simple-BMC algorithm can be applied.

Let 2N + 1 be the greatest number of crossing edges among the FEFs of L.
Let Si be the sets of underlying flows with 2i+ 1 crossing edges finitely generated

1 Given two FEFs E,E′ with same underlying flow F , E ⊕ E′ is the FEF with flow F
and set of edges {(x, f ⊕ f ′, y) | (x, f, y) ∈ E, (x, f ′, y) ∈ E′}.

From Two-Way Transducers to Regular Function Expressions 11

by L with concatenation of FEFs. By Lemma 3 there are at most N such sets Si.
Then, we set QUnf = {ι, β} ∪

∏
i∈0,...,N (Si ∪ {>}). The alphabet of AUnf consists

of subsets of L. Intuitively, the state (si)0≤i≤N reached in AUnf after reading a
sequence of labels L1, . . . ,Ln is a decomposition of flow(L1 • . . . • Ln). Formally
the transition function −→Unf is defined as follows: (> is neutral for composition)

– for each F ∈ {flow(E) | E ∈ L}, ι {E∈L|flow(E)=F}−−−−−−−−−−−−→Unf (si)0≤i≤N with
si = F ∈ Si and for all j 6= i, sj = >;

– (s0, . . . , sN)
L−→Unf β for all (s0, . . . , sN) ∈ QUnf;

– let q = (s0, . . . , sN) ∈ QUnf, 0 ≤ j ≤ N and F ∈ F. We define Lq,j,F as
the set of FEFs E ∈ L such that F = sj ◦ sj+1 ◦ · · · ◦ sN ◦ flow(E) ∈ Sj
and for all i > j, si ◦ si+1 ◦ · · · ◦ sN ◦ flow(E) /∈ Si. If Lq,j,F 6= ∅, then

q
Lq,j,F−→ Unf (s′i)0≤i≤N , with s′j = F , s′i = si if i < j, and s′i = > if i > j.

For j ≤ N , we define Qj as the set of states (s0, . . . , sj ,>, . . . ,>) with sj 6= >.

We write q0
Lσ >j qn if there is an execution (qi

Li−→Unf qi+1)0≤i<n of AUnf with
Lσ = L0 • · · · • Ln−1, and such that for every i ∈ {1, . . . , n− 1}, qi ∈

⋃
k>j Qk.

Lemma 15. If q
Lσ >j q

′ with q = (si)0≤i≤N and q′ = (s′i)0≤i≤N in Qj, then:
(1) for all E ∈ Lσ, sj ◦ flow(E) = s′j and, (2) flow(E) has 2j + 1 crossing edges.

A careful analysis of the different types of edges in flows of Lσ allows to deduce
from Lemma 15 that Lσ is simple whenever q′ = q. More generally, using similar
techniques, we can show:

Lemma 16. Let j ≥ 0 and q ∈ Qj. If {L1, . . . ,Lk} is a set of labels such that

q
Li >j q for all i, then ⊕i∈{1,...,k}Li is a simple label.

We now consider the application of BMC algorithm that successively eliminates
states in Qj , for j = N,N − 1, . . . , 0. We can prove by induction on the number
of steps performed by the algorithm that for every remaining state q, the label
Lq of the self-loop around q is simple. Indeed, as we observed in Subsection 4.3,
the flows associated with the Kleene plus of a simple label are exactly those of
that label. This allows to show that the flows appearing in Lq are obtained by
finitely many paths around q in AUnf that only go through states in

⋃
k>j Qk,

where j is such that q ∈ Qj . Hence Lq is simple by Lemma 16.

4.5 The case of sweeping transducers

We consider now the case of sweeping transducers. We introduce the two following
grammars for function expressions: (L is a regular language over A, v ∈ B∗)

←
Rat 3 f, g ::= L/v | f ⊕ g | f ←• g | f

←∗

SW 3 s, s′ ::= s⊕ s′ | f | f ⊗ g where f, g ∈ Rat ∪
←
Rat

Theorem 17. Sweeping functions are equivalent to SW -expressions.

Proof. One observes that for sweeping transducers, the Kleene plus only concerns
simple FEFs, for which the Kleene star operator of expressions is sufficient. ut

12 N. Baudru and P.-A. Reynier

5 Conclusion

In this paper, we have extended the standard state elimination algorithm due
to Brzozowski and McCluskey to unambiguous two-way finite-state transducers.
This yields a simple, direct and effective translation from these transducers to
regular function expressions. We have also identified a subclass of expressions
characterizing sweeping functions.

This work opens the way to numerous applications and extensions: deciding
one-wayness [13, 4], studying infinite words [2] and identifying star-free expressions
for first-order definable transformations [16, 14, 8] for instance.

References

1. Alur, R., Černý, P.: Expressiveness of streaming string transducers. In: FSTTCS,
LIPIcs., vol. 8, pp. 1–12. Schloss Dagstuhl. Leibniz-Zent. Inform. (2010)

2. Alur, R., Filiot, E., Trivedi, A.: Regular transformations of infinite strings. In: LICS.
pp. 65–74 (2012)

3. Alur, R., Freilich, A., Raghothaman, M.: Regular combinators for string transfor-
mations. In: CSL-LICS ’14. pp. 9:1–9:10. ACM (2014)

4. Baschenis, F., Gauwin, O., Muscholl, A., Puppis, G.: Untwisting two-way transducers
in elementary time. In: LICS’17. pp. 1–12. IEEE Computer Society (2017)

5. Berstel, J.: Transductions and context-free languages, Teubner Studienbücher :
Informatik, vol. 38. Teubner (1979)

6. Bojanczyk, M.: Transducers with origin information. In: ICALP 2014. LNCS, vol.
8573, pp. 26–37. Springer (2014)

7. Brzozowski, J.A., McCluskey, E.J.: Signal flow graph techniques for sequential
circuit state diagrams. IEEE Trans. Electronic Computers 12(2), 67–76 (1963)

8. Carton, O., Dartois, L.: Aperiodic two-way transducers and FO-transductions. In:
CSL. LIPIcs, vol. 41, pp. 160–174. Schloss Dagstuhl. Leibniz-Zent. Inform. (2015)

9. Choffrut, C., Guillon, B.: An algebraic characterization of unary two-way transducers.
In: MFCS. LNCS, vol. 8634, pp. 196–207. Springer (2014)

10. Courcelle, B.: Monadic second-order definable graph transductions: a survey. Theo-
ret. Comput. Sci. 126(1), 53–75 (1994)

11. Dave, V., Gastin, P., S, K.: Regular transducer expressions for regular transforma-
tions over infinite words. In: LICS’18. IEEE Computer Society (2018), to appear

12. Engelfriet, J., Hoogeboom, H.J.: MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Log. 2(2), 216–254 (2001)

13. Filiot, E., Gauwin, O., Reynier, P.A., Servais, F.: From two-way to one-way finite
state transducers. In: LICS. pp. 468–477. IEEE Computer Society (2013)

14. Filiot, E., Krishna, S.N., Trivedi, A.: First-order definable string transformations.
In: FSTTCS. LIPIcs, vol. 29, pp. 147–159. Schloss Dagstuhl. Leibniz-Zent. Inf.
(2014)

15. Lombardy, S.: Two-way representations and weighted automata. RAIRO - Theor.
Inf. and Applic. 50(4), 331–350 (2016)

16. McNaughton, R., Papert, S.: Counter-free automata. The M.I.T. Press, Cambridge,
Mass.-London (1971)

17. Schützenberger, M.P.: On the definition of a family of automata. Information and
Control 4(2-3), 245–270 (1961)

18. Shepherdson, J.C.: The reduction of two-way automata to one-way automata. IBM
Journal of Research and Development 3(2), 198–200 (1959)

