
Visibly Pushdown Transducers with Well-nested Outputs

Pierre-Alain Reynier ? and Jean-Marc Talbot ?

Aix Marseille Université, CNRS, LIF UMR 7279, 13288, Marseille, France

Abstract. Visibly pushdown transducers (VPTs) are visibly pushdown automata
extended with outputs. They have been introduced to model transformations of
nested words, i.e. words with a call/return structure. When outputs are also struc-
tured and well nested words, VPTs are a natural formalism to express tree trans-
formations evaluated in streaming. We prove the class of VPTs with well-nested
outputs to be decidable in PTIME. Moreover, we show that this class is closed un-
der composition and that its type-checking against visibly pushdown languages
is decidable.

1 Introduction

Visibly pushdown automata (VPA) [1] (first introduced as input-driven pushdown au-
tomata [3]) are pushdown machines whose stack behavior is synchronized with the
structure of the input word. More precisely, the input alphabet is partitioned into call
and return symbols; when reading a call symbol the machine must push a symbol onto
the stack, when reading a return symbol it must pop a symbol from the stack and when
reading an internal symbol the stack remains unchanged. Such words over a structure
alphabet are called nested words.

Visibly pushdown transducers (VPTs) [7,9,6,10] extend visibly pushdown automata
with outputs. Each transition is equipped with an output word; a VPT thus transforms
an input word into an output word obtained as the concatenation of all the output words
produced along a successful run (i.e. a sequence of transitions) on this input. VPTs are a
strict subclass of pushdown transducers (PTs) and strictly extend finite state transduc-
ers. Several problems that are undecidable for PTs are decidable for VPTs similarly
to finite state transducers: functionality (in PTIME), k-valuedness (in co-NPTIME) and
functional equivalence (EXPTIME-complete) [6]. However, some decidability results
or valuable properties of finite-state transducers do not hold for VPTs [7]: VPTs are
not closed under composition and type-checking against VPA is undecidable (deciding
whether the range of a transducer is included into the language of a given VPA).

Unranked trees and more generally hedges can be linearized into nested words over
a structured alphabet (such as XML documents). These words for which the matching
between call and return symbols is perfect are called well-nested words. So, VPTs
are a suitable formalism to express hedge transformations. Moreover, as they process
the linearization from left to right, they are also an adequate formalism to model and
analyze transformations in streaming, as shown in [5]. VPTs output strings; operating
on well-nested inputs, they define hedge-to-string transformations. If the output strings
are well-nested too, they define hedge-to-hedge transformations [4].
? Partly supported by the PEPS project ”Synthesis of Stream Processors” funded by CNRS.



In [6], by means of a syntactical restriction on transition rules, a class of VPTs
whose range contains only well-nested words is presented. This class enjoys good prop-
erties: it is closed under composition and type-checking against visibly pushdown lan-
guages is decidable. One may then wonder whether these properties come from this
particular subclass or from the fact that the range of these VPTs contains only well-
nested words.

In this paper, we consider two classes of transductions (that is, of relations) over
nested words definable by VPTs. First, the class of globally well-nested transductions,
denoted Gwn, is the class of VPT transductions whose range contains only well-nested
words. The second class, named almost well-nested and denoted Awn, slightly gener-
alizes the first one as follows: there must exist k 2 N such that every output word
contains at most k unmatched returns and at most k unmatched calls. These two classes
of transductions naturally define two classes of transducers gwnVPT and awnVPT: a
VPT is in gwnVPT (resp. in awnVPT) if the transduction it represents is in Gwn (resp.
in Awn). While defined in a semantical way, we provide criteria on successful computa-
tions of VPTs characterizing precisely the classes gwnVPT and awnVPT. Then, based
on these criteria, we prove the class awnVPT to be decidable in PSPACE. Regarding
the class gwnVPT, using a recent result of [2], we prove it is decidable in PTIME. Fi-
nally, we prove that the two classes gwnVPT and awnVPT enjoy good properties: they
are closed under composition and type-checking is decidable against visibly pushdown
languages.

The paper is organized as follows: definitions and recalls of some basic proper-
ties on VPTs are presented in Section 2. We introduce in Section 3 the two classes of
transductions we define in this paper as well as the corresponding classes of transduc-
ers. Considering additionally the (restricted) class introduced in [6], we prove also that
they form a strict hierarchy. Then, we give in Section 4 a precise characterization of
the classes gwnVPT and awnVPT by means of some criteria on VPTs. Section 5 de-
scribes decision procedure of the considered classes of transducers. Finally, the closure
of the considered classes under composition and the decidability of type-checking are
addressed in Section 6. Omitted details can be found in a technical report [8].

2 Preliminaries

(Well) nested words The set of all finite words (resp. of all words of length at most n)
over a finite alphabet ⌃ is denoted by ⌃⇤ (resp. ⌃n); the empty word is denoted by ✏.
A structured alphabet is a triple ⌃ = (⌃c,⌃i,⌃r) of disjoint alphabets, of call, internal
and return symbols respectively. Given a structured alphabet ⌃, we always denote by
⌃c, ⌃i and ⌃r its implicit structure, and identify ⌃ with ⌃c [⌃i [⌃r. A nested word

is a finite word over a structured alphabet.
The set of well-nested words over a structured alphabet ⌃ is the least set, denoted

by ⌃⇤
wn, that satisfies (i) ✏ 2 ⌃⇤

wn, (ii) for all i 2 ⌃i, w 2 ⌃⇤
wn, iw 2 ⌃⇤

wn, and (iii)
for all w,w0 2 ⌃⇤

wn, c 2 ⌃c, r 2 ⌃r, cwrw0 2 ⌃⇤
wn. E.g. on ⌃ = ({c

1

, c
2

}, ;, {r}),
the nested word c

1

rc
2

r is well-nested while rc
1

is not.
For a word w from ⌃⇤, we define its balance B as the difference between the number

of symbols from ⌃c and of symbols from ⌃r occurring in w. Note that if w 2 ⌃⇤
wn,

then B(w) = 0; but the converse is false as exemplified by rc
1

.

2



Lemma 1. Let u, v 2 ⌃⇤
. We have B(uv) = B(u) + B(v) = B(vu).

For any word w from ⌃⇤, we denote by Oc(w) (resp. Or(w)) the number of open
calls (resp. open returns) in w. Formally,

Or(w) = �min{B(w0
) | w0w00

= w} Oc(w) = B(w) + Or(w)

We define, for any word w, O(w) as the pair (Or(w),Oc(w)) 2 N2. Given (n
1

, n
2

) 2
N2, we define ||(n

1

, n
2

)|| = max(n
1

, n
2

). Note that, for a word w, we obtain ||O(w)|| =
max{Or(w),Oc(w)} and w 2 ⌃⇤

wn iff ||O(w)|| = 0, that is O(w) = (0, 0).
Given a word w 2 ⌃⇤, we let height(w) = max{||O(w

1

)|| | w = w
1

w
2

} be the
height of w. We denote by |w| the length of w, defined as usual.

Definition 1. For any two pairs (n
1

, n
2

) and (n0
1

, n0
2

) of naturals from N2

, we define

(n
1

, n
2

)� (n0
1

, n0
2

) as the pair

⇢
(n

1

, n
2

� n0
1

+ n0
2

) if n
2

� n0
1

(n
1

+ n0
1

� n
2

, n0
2

) if n0
1

> n
2

Proposition 1. (N2,�, (0, 0)) is a monoid, and the mapping O is a morphism from

(⌃⇤, ., ✏) to (N2,�, (0, 0)); in particular, for any two words u
1

, u
2

from ⌃⇤
, O(u

1

u
2

) =

O(u
1

)�O(u
2

).

Transductions - Transducers Let ⌃ be a structured (input) alphabet, and � be a struc-
tured (output) alphabet. A relation over ⌃⇤ ⇥ �⇤ is a transduction. We denote by
T (⌃,�) the set of these transductions. For a transduction T , the set of words u (resp.
v) such that (u, v) 2 T is called the domain (resp. the range) of T .

A visibly pushdown transducer from ⌃ to � (the class is denoted VPT(⌃,�)) is a
tuple A = (Q, I, F,�, �) where Q is a finite set of states, I ✓ Q the set of initial states,
F ✓ Q the set of final states, � a (finite) stack alphabet, and � = �c ] �r ] �i is the
transition relation where:

– �c ✓ Q⇥⌃c ⇥ � ⇥�⇤ ⇥Q are the call transitions,
– �r ✓ Q⇥⌃r ⇥ � ⇥�⇤ ⇥Q are the return transitions.
– �i ✓ Q⇥⌃i ⇥�⇤ ⇥Q are the internal transitions.

A stack (content) is a word over � . Hence, � ⇤ is a monoid for the concatenation
with ? (the empty stack) as neutral element. A configuration of A is a pair (q,�) where
q 2 Q and � 2 � ⇤ is a stack content. Let u = a

1

. . . al be a (nested) word on ⌃, and
(q,�), (q0,�0

) be two configurations of A. A run of the VPT A over u from (q,�) to
(q0,�0

) is a (possibly empty) sequence of transitions ⇢ = t
1

t
2

. . . tl 2 �⇤ such that there
exist q

0

, q
1

, . . . ql 2 Q and �
0

, . . .�l 2 � ⇤ with (q
0

,�
0

) = (q,�), (ql,�l) = (q0,�0
),

and for each 0 < k  l, we have either (i) tk = (qk�1

, ak, �, wk, qk) 2 �c and
�k = �k�1

�, or (ii) tk = (qk�1

, ak, �, wk, qk) 2 �r, and �k�1

= �k�, or (iii)
tk = (qk�1

, ak, wk, qk) 2 �i, and �k�1

= �k. When the sequence of transitions is
empty, (q,�) = (q0,�0

).
The length (resp. height) of a run ⇢ over some word u 2 ⌃⇤, denoted |⇢| (resp.

height(⇢)) is defined as the length of u (resp. as the height of u).

3



The output of ⇢ (denoted output(⇢)) is the word v 2 �⇤ defined as the concate-
nation w = w

1

. . . wl when the sequence of transitions is not empty and ✏ otherwise.

We write (q,�)
u|w��! (q0,�0

) when there exists a run on u from (q,�) to (q0,�0
) pro-

ducing w as output. Initial (resp. final) configurations are pairs (q,?) with q 2 I (resp.
with q 2 F ). A configuration (q,�) is reachable (resp. co-reachable) if there exists
some initial configuration (i,?) (resp. some final configuration (f,?)) and a run from
(i,?) to (q,�) (resp. from (q,�) to (f,?)). A run is accepting if it starts in an initial
configuration and ends in a final configuration.

A transducer A defines relation/transduction from nested words to nested words,
denoted by JAK, and defined as the set of pairs (u, v) 2 ⌃⇤ ⇥ �⇤ such that there
exists an accepting run on u producing v as output. Note that since both initial and
final configurations have empty stack, A accepts only well-nested words, i.e. JAK ✓
⌃⇤

wn ⇥�⇤.
We denote VP(⌃,�) the class of transductions defined by VPTs over the struc-

tured alphabets ⌃ (as input alphabet) and � (as output alphabet).
Given a VPT A = (Q, I, F,�, �), we let OA

max

be the maximal number of open
calls and of open returns in a word produced as output of a call or of a return transition
in A. Formally, we have:

OA
max

= max{||O(w)|| | (p,↵, w, �, q) 2 �c [ �r}

Visibly pushdown automata We define visibly pushdown automata (VPA) simply as a
particular case of VPT; we may think of them as transducers with no output. Hence,
only the domain of the transduction matters and is called the language defined by the
visibly pushdown automaton. For an automaton A, this language will be denoted L(A).

Properties of computations in VPA/VPT We recall two standard results on runs of
visibly pushdown machines.

Lemma 2. Let A be a VPA with set of states Q and ⇢ : (p,?)

u�! (q,?) be a run of A
over some word u 2 ⌃⇤

wn. Let h 2 N>0

. We have:

(i) if height(u) < h and |u| � |Q|h, then ⇢ can be decomposed as follows:

⇢ : (p,?)

u
1�! (p

1

,�)
u
2�! (p

1

,�)
u
3�! (q,?)

with u
1

u
3

and u
2

well-nested words and u
2

6= ✏.
(ii) if height(u) � |Q|2, then ⇢ can be decomposed as follows:

⇢ : (p,?)

u
1�! (p

1

,�)
u
2�! (p

1

,��0
)

u
3�! (p

2

,��0
)

u
4�! (p

2

,�)
u
5�! (q,?)

with u
1

u
5

, u
2

u
4

and u
3

well-nested words, and �0 6= ?.

3 Classes of VPT producing (almost) well-nested outputs

In this section, after recalling the definition of (locally) well-nested VPT, we introduce
the new classes of globally and almost well-nested VPT. Then, we prove relationships
between these classes.

4



3.1 Definitions

Locally Well-nested VPTs (lwnVPT) In [6], the class of (locally) well-nested VPT has
been introduced. For this class, the enforcement of the well-nestedness of the output is
done locally and syntactically at the level of transition rules.

Definition 2 (Locally Well-nested). Let A = (Q, I, F,�, �) be a VPT. A is a locally
well-nested VPT (lwnVPT) if:

– for any pair of transitions (q, a, v, �, q0) 2 �c, (p, b, w, �, p0) 2 �r, the word vw is

well nested, and

– for any transition (q, a, v, q0) 2 �i, the word v is well-nested.

A VPT transduction T is locally well-nested if there exists a lwnVPT A that realizes T
(JAK = T ). The class of locally well-nested VPT transductions is denoted Lwn.

It is straightforward to prove that

Proposition 2. Let A be a locally well-nested VPT and (p,�), (q,�) two configura-

tions of A. For all well-nested word u, if (p,�)
u/v��! (q,�) then v 2 ⌃⇤

wn.

Therefore, any locally well-nested VPT transduction T is included into ⌃⇤
wn⇥�⇤

wn.

Globally well-nested VPT transduction - Almost well-nested VPT transduction In this
section, we introduce the class of globally well-nested transductions and its weaker
variant of ”almost” well-nested transductions. Unlike the definition of Lwn which is
done at the level of transducers, these definitions are done at the level of transductions
and thus, as a semantical property.

Definition 3 (Globally Well-nested). A VPT transduction T is globally well-nested if

T (⌃⇤
wn) ✓ �⇤

wn. The class of globally well-nested VPT transductions is denoted Gwn.

A VPT A is globally well-nested if its transduction JAK is. The class of globally

well-nested VPT is denoted gwnVPT.

Definition 4 (Almost Well-nested). A VPT transduction T is almost well-nested if

there exists k in N such that for every pair of words (u, v) 2 T , it holds that ||O(v)|| 
k. The class of almost well-nested VPT transductions is denoted Awn.

A VPT A is almost well-nested if its transduction JAK is. The class of almost well-

nested VPT is denoted awnVPT.

3.2 Comparison of the different classes

Classes of transductions Gwn and Awn are defined by semantical conditions on the de-
fined relations. This yields a clear correspondence between the classes Gwn and gwnVPT
on one side and Awn and awnVPT on the other side. This is not the case for Lwn: two
examples of VPTs are given in Figure 1. It is easy to verify that A

1

, A
2

2 gwnVPT.
Moreover, none of these transducers belongs to lwnVPT. However, one can easily build
a transducer A0

2

such that JA
2

K = JA0
2

K and A0
2

2 lwnVPT. Indeed one can perform
the following modifications:

5



i p1 p2 f
c|ccc, γ i|rr r|r, γ

c|cr, γ′ r|cr, γ′

(a) The VPT A1.

i p1 p2 f
c|cc, γ i|c r|rrr, γ

c|cr, γ′ r|rc, γ′

(b) The VPT A2.

Fig. 1. Two VPTs in VP(⌃,⌃) with ⌃c = {c}, ⌃r = {r} and ⌃i = {i}.

– the transition (p
1

, i, c, p
2

) becomes (p
1

, i, ✏, p
2

)

– the transition (p
2

, r, rc, �0, p
2

) becomes (p
2

, r, cr, �0, p
2

)

– the transition (p
2

, r, rrr, �, f) becomes (p
2

, r, crrr, �, f)

On the contrary, as we prove below, the transduction JA
1

K does not belong to Lwn: there
exists no transducer A0

1

2 lwnVPT such that JA0
1

K = JA
1

K.
To summarize, we prove the following proposition.

Proposition 3. The following inclusion results hold:

– For transducers: lwnVPT ( gwnVPT ( awnVPT
– For transductions: Lwn ( Gwn ( Awn

Proof (Sketch). The non-strict inclusions are straightforward. The two strict inclusions
gwnVPT ( awnVPT and Gwn ( Awn follow from the constraint on the range. The
strict inclusion lwnVPT ( gwnVPT is witnessed by A

2

from Figure 1, as explained
above.

We sketch now the proof of the strict inclusion Lwn ( Gwn, and therefore consider
the transducer A

1

on Figure 1. Observe that JA
1

K 2 Gwn, we show that JA
1

K 62 Lwn.
First note that JA

1

K = {(cckirkr, ccc(cr)krr(cr)kr) | k 2 N} and that

– (Fact 1) The transduction defined by A
1

is injective
– (Fact 2) Any word of the output can be decomposed as w

1

rrw
2

where w
1

=

ccc(cr)k and w
2

= (cr)kr for some natural k and for each w
1

with fixed k there
exists a unique w

2

such that w
1

rrw
2

is in the range of A
1

(and conversely).

By contradiction, suppose that there exists A0
1

2 lwnVPT such that JA0
1

K = JA
1

K. Now,
for k sufficiently large and depending only on the fixed size of A0

1

, A0
1

has an accepting
run for the input cckirkr of the form given in the point (ii) of Lemma 2. Let us denote
by ui (resp. vi), i 2 {1, . . . , 5} the corresponding decomposition of the input (resp.
output) word. Due to Proposition 2, words v

1

v
5

, v
2

v
4

and v
3

are well-nested.
Now, assume that v

2

= ✏ and v
4

= ✏. Then, using a simple pumping argument
over the pair (u

2

, u
4

), one would obtain a different input producing the same output,
contradicting the injectivity of A0

1

(due to (Fact 1)). So, v
2

6= ✏ or v
4

6= ✏.
Using a case analysis on the presence of the previously mentioned pattern rr in the

outputs of A0
1

, using the fact that v
2

v
4

6= ✏, (Fact 2) and a pumping argument over the
pair of words (u

2

, u
4

), one obtains a contradiction. ut

6



4 Characterizations

In this section we give criteria on VPTs that aim to characterize the classes gwnVPT
and awnVPT.

Definition 5. Let A be a VPT. Let us consider the following criteria:

(C1) For all states p, i, f such that i is initial and f is final, for any stack �, then any

accepting run

(i,?)

u
1

/v
1����! (p,�)

u
2

/v
2����! (p,�)

u
3

/v
3����! (f,?)

with u
1

u
3

, u
2

2 ⌃⇤
wn satisfies B(v

2

) = 0.

(C2) For all states p, q, i, f such that i is initial and f is final, for any stack �,�0
, then

any accepting run

(i,?)

u
1

/v
1����! (p,�)

u
2

/v
2����! (p,��0

)

u
3

/v
3����! (q,��0

)

u
4

/v
4����! (q,�)

u
5

/v
5����! (f,?)

with u
2

u
4

, u
3

2 ⌃⇤
wn and �0 6= ? satisfies B(v

2

) + B(v
4

) = 0 and B(v
2

) � 0.

The following result follows from Propositions 4 and 5 that we prove below.

Theorem 1. A VPT A is almost well-nested iff it verifies criteria (C
1

) and (C
2

).

Lemma 3. Let X ✓ ⌃⇤
such that the set B(X) = {B(u) | u 2 X} is infinite. Then

the set {O(u) | u 2 X} is infinite as well.

Lemma 4. Let u 2 ⌃⇤
and k be a strictly positive integer. Then O(uk

) is equal to

(Or(u), (Oc(u) � Or(u)) ⇤ (k � 1) + Oc(u)) if Oc(u) � Or(u) and to (Or(u) +
(Or(u)� Oc(u)) ⇤ (k � 1),Oc(u)) otherwise.

Proof. By definition of � and by induction on k. ut

Proposition 4. Let A be a VPT. If A does not satisfy (C1) or (C2), then A 62 awnVPT.

Proof. Let us assume that A does not satisfy (C1). Hence there exists an accepting
run as described in criterion (C1) such that B(v

2

) 6= 0. We then build by iterating the
loop on word u

2

accepting runs for words of the form u
1

(u
2

)

ku
3

for any natural k,
producing output words v

1

(v
2

)

kv
3

. Let us denote this set by X . As B(v
2

) 6= 0 and by
Lemma 1, the set B(X) is infinite. Lemma 3 entails that A is not almost well-nested.

Assume now that A does not satisfy (C2). Hence, there exists an accepting run as
described in the statement of the proposition such that either (i) B(v

2

)+B(v
4

) = b 6= 0

or (ii) B(v
2

) < 0. In the case of (i), from this run, one can build by pumping accepting
runs for words of the form u

1

(u
2

)

ku
3

(u
4

)

ku
5

for any natural k, producing output words
v
1

(v
2

)

kv
3

(u
4

)

kv
5

. As before, Lemmas 1 and 3 imply that A is not almost well-nested.
Now, for (ii) assuming that B(v

2

)+B(v
4

) = 0. As B(v
2

) < 0, it holds that B(v
4

) >
0 and thus, Or(v

2

) > Oc(v
2

), Or(v
4

) < Oc(v
4

). From the run of the statement, one can
build by pumping accepting runs for words of the form u

1

(u
2

)

ku
3

(u
4

)

ku
5

for any natu-
ral k, producing output words v

1

(v
2

)

kv
3

(v
4

)

kv
5

. Now, we consider O(v
1

(v
2

)

kv
3

(v
4

)

kv
5

)

7



which, by associativity of �, is equal to O(v
1

)�O((v
2

)

k
)�O(v

3

)�O((u
4

)

k
)�O(v

5

)).
Now, by Lemma 4, it is equal to

O(v
1

)� (Or(v
2

) + (Or(v
2

)� Oc(v
2

)) ⇤ (k � 1),Oc(v
2

))� O(v
3

)�
(Or(v

4

), (Oc(v
4

)� Or(v
4

)) ⇤ (k � 1) + Oc(v
4

))� O(v
5

)

It is easy to see that for k varying, the described pairs are unbounded. ut

Given a VPT A = (Q, I, F,�, �), we define the integer NA = 2|Q|2|Q|2 .

Lemma 5. Let A be a VPT. If A satisfies the criteria (C1) and (C2), then for any

accepting run ⇢ such that |⇢| � NA, there exists an accepting run ⇢0 such that |⇢0| < |⇢|
and ||O(output(⇢0))|| � ||O(output(⇢))||.

Proof (Sketch). Let A = (Q, I, F,�, �) and ⇢ be an accepting run such that |⇢| � NA.
We distinguish two cases, depending on height(⇢):

– when height(⇢) < 2|Q|2 : by definition of NA, we can apply Lemma 2.(i) twice
and prove that ⇢ is of the following form:

(i,?)

u
1

/v
1����! (p,�)

u
2

/v
2����! (p,�)

u
3

/v
3����! (q,�0

)

u
4

/v
4����! (q,�0

)

u
5

/v
5����! (f,?)

with u
2

, u
4

2 ⌃⇤
wn \ {✏}. Then, by criterion (C1), we have B(v

2

) = B(v
4

) = 0.
One can prove that at least one of u

2

and u
4

can be removed from u while preserv-
ing the value Or(u). Let us denote by v0 the resulting output word. Observe also
that removing this part of the run does not modify the balance B(.) of the run, as
B(v

2

) = B(v
4

) = 0. As Oc(v) = B(v)+Or(v), we obtain O(v) = O(v0), yielding
the result.

– when height(⇢) � 2|Q|2 : in this case, we can apply Lemma 2.(ii) twice and prove
that ⇢ is of the following form:

(i,?)

u
1

/v
1����! (p

1

,�)
u
2

/v
2����! (p

1

,��
1

)

u
3

/v
3����! (q

1

,��
1

�
2

)

u
4

/v
4����! (q

1

,��
1

�
2

�
3

)

u
5

/v
5����! (q

2

,��
1

�
2

�
3

)

u
6

/v
6����! (q

2

,��
1

�
2

)

u
7

/v
8����! (p

2

,��
1

)

u
8

/v
8����! (p

2

,�)
u
9

/v
9����!

(f,?), with u
1

u
9

, u
2

u
8

, u
3

u
7

, u
4

u
6

, u
5

2 ⌃⇤
wn and �

1

,�
3

6= ?.
Then the two following runs can be built: the one obtained by removing the parts
of ⇢ on u

2

and u
8

, and the one obtained by removing the parts of ⇢ on u
4

and u
6

,
yielding runs whose length is strictly smaller than |⇢|. Let us denote these two runs
by ⇢0 and ⇢00 respectively, and their outputs by v0 and v00. As A verifies the criterion
(C2), we have that B(v) = B(v0) = B(v00), as B(v

2

)+B(v
8

) = B(v
4

)+B(v
6

) = 0

and B is commutative. In order to obtain the result, we study Or(v). Considering
different cases, we manage to prove that either Or(v0) � Or(v) or Or(v00) � Or(v).
The result follows as for any word w we have Oc(w) = B(w) + Or(w). ut

Proposition 5. Let A be a VPT. If A satisfies (C1) and (C2), then every accepting run

⇢ : (i,?)

u|v��! (f,?) of A verifies ||O(v)||  NA.O
A
max

.

Proof. If |⇢|  NA the result is trivial; otherwise, assuming the existence of a minimal
counter-example of this statement, a contradiction follows from Lemma 5. ut

8



Now we can show a precise characterization of transducers from gwnVPT amongst
those in awnVPT.

Definition 6. Let A be a VPT. We consider the following criterion:

(D) For all (u, v) 2 JT K , if |u|  NA then v 2 ⌃⇤
wn.

Theorem 2. A VPTA is globally well-nested iff it verifies criteria (C
1

), (C
2

) and (D).

Proof. The direct implication is trivial, the other one follows from Lemma 5. ut

5 Deciding the classes of almost and globally well-nested VPT

In this section, we prove that given a VPTA, it is decidable to know whether JAK 2 Awn

and whether JAK 2 Gwn. It is known that

Proposition 6. Given a VPTA = (Q, I, F,�, �) and states p, q of A, deciding whether

there exists some stack � such that (p,�) is reachable and (q,�) is co-reachable can

be done in PTIME.

Theorem 3. Let A be a VPT. Whether JAK 2 Awn can be decided in PSPACE.

Proof (Sketch). By Theorem 1, deciding the class awnVPT amounts to decide criteria
(C1) and (C2). Therefore we propose a non-deterministic algorithm running in poly-
nomial space, yielding the result thanks to Savitch theorem.

We claim that A verifies (C1) and (C2) if and only if it verifies these criteria on
”small instances”, defined as follows:

– Criterion (C1): consider only words u
2

such that height(u
2

)  |Q|2 and |u
2

| 
2.|Q||Q|2 .

– Criterion (C2): consider only stacks �0 such that |�0|  |Q|2 and words u
2

, u
4

of
height at most 2.|Q|2 and length at most |Q|2.|Q||Q|2 .

The non-deterministic algorithm follows from the claim: in order to exhibit a witness
of the fact that A 62 awnVPT, the algorithm guesses whether (C1) or (C2) is violated;
then, the claim implies the existence of a witness of at most exponential size. This
witness can be guessed on-the-fly in polynomial space. Proposition 6 is then used to
check that the witness can be completed into an accepted run.

To prove this claim, we show, by induction on u 2 ⌃⇤
wn, that for every run (p,?)

u|v��!
(q,?) that can be completed into an accepting run, and for every decomposition of this
run according to criterion (C

1

) or (C2), the property stated by the corresponding crite-
rion is fulfilled. ut

The previous algorithm could be extended to handle in addition criterion (D), yield-
ing a PSPACE algorithm to decide whether a VPT A is globally well-nested. However,
we can use a recent result to prove that this problem can be solved in PTIME.

Theorem 4. Let A be a VPT. Whether JAK 2 Gwn can be decided in PTIME.

9



Proof. This proof relies on results from [2] showing that deciding whether a context-
free language is included into a Dyck language can be solved in PTIME.

We first erase the precise symbols of the produced outputs keeping track only of
the type of the symbols: we build from A a VPT A0 defined on the structured output
alphabet ⌃0 with ⌃0

c = {(}, ⌃0
r = {)} and ⌃0

i = ;. A transition of A0 is obtained
from a transition of A by replacing in output words of the transition of A call symbols
by ( and return symbols by ) and removing internal symbols. It is then easy to see
that A is in gwnVPT iff A0 is in gwnVPT (actually, for each run in A producing v, its
corresponding run in A0 produces some v0 such that O(v) = O(v0)). Then, as shown in
[9], one can build in polynomial time a context-free grammar GA0 generating the range
of A0. Finally, we appeal to [2] to conclude. ut

6 Closure under composition and Type-checking

6.1 Definitions and existing results

We consider two natural problems for transducers : the first one is related to composition
of transductions. The second problem is the type-checking problem that aims to verify
that any output of a transformation belongs to some given type/language. For VPT, the
obvious class of ”types” to consider is the class of languages defined by VPA.

Definition 7 (Closure under composition). A class T of transductions included in

⌃⇤ ⇥ ⌃⇤
is closed under composition if for all T, T 0

in T , the transduction T � T 0
is

also in T . It is effectively closed under composition if for any transducers A, A0
such

that JAK, JA0K 2 T , A �A0
is computable and JA �A0K is in T .

A class of transducers T is effectively closed under composition if for any two trans-

ducers A,A0
in T, A �A0

is computable and A �A0
is in T.

Definition 8 (Type-checking (against VPA)). Given a VPT A and two VPA B,C,

decide whether JAK(L(B)) ✓ L(C).

The following results give the status of these properties for arbitrary VPTs and for
lwnVPT:

Theorem 5 ([7,6]). Regarding closure under composition, we have:

– The class VP(⌃,⌃) is not closed under composition.

– The class lwnVPT is effectively closed under composition.

In addition, the problem of type checking against VPA is undecidable for (arbitrary)

VPT and decidable for lwnVPT.

6.2 New results

Actually, regarding the closure under composition of the class lwnVPT, though not
explicitly stated, the result proved in [6] is slightly stronger. It is indeed shown that for
any VPT A,B such that A 2 lwnVPT, there exists an (effectively computable) VPT C
satisfying JCK = JAK � JBK. In addition, if B 2 lwnVPT, then C 2 lwnVPT.

10



We extend this positive result to any almost well-nested transducer.
One of the main ingredients of the proof of this result is the set UPSA defined for

any VPT transducer A = (QA, IA, FA,�A, �
A
) as

(
(p, p0, n

1

, n
2

)

9� 2 � ⇤, (p,�) is reachable and (p0,�) is co-reachable and

9u 2 ⌃⇤
wn, (p,?)

u|v��! (p0,?) and O(v) = (n
1

, n
2

)

)

Proposition 7. Let A in awnVPT. Then the set UPSA is finite and computable in ex-

ponential time in the size of A.

Theorem 6. Let A,B be two VPTs. If A is almost-well nested, then one can compute

in exponential time in the size of A and B a VPT C such that JCK = JAK � JBK.

Moreover, if B is also almost well-nested, then so is C, and if A and B are globally

well-nested, then so is C.

Proof (Sketch). We present the construction of C. By Proposition 7, UPSA is finite and
we let K be the computable integer value max{||(n

1

, n
2

)|| | (p, p0, n
1

, n
2

) 2 UPSA}.
Given B = (QB , IB , FB ,�B , �

B
), we define C = (QC , IC , FC ,�C , �

C
) as

QC = QA ⇥QB ⇥ �K
B IC = IA ⇥ IB ⇥ {?}

�C = �A ⇥ �
OA

max

+K
B FC = FA ⇥ FB ⇥ {?}

Now for the transition rules �C :

– ((p, q,�), i, w, (p0, q0,�0
)) 2 �Ci if there exist a word v 2 �⇤ and a stack �

0

2 � ⇤
B

such that � = �
0

�
1

, �0
= �

0

�0
1

, O(v) = (|�
1

|, |�0
1

|), and (p, i, v, p0) 2 �Ai and

there exists a run (q,�
1

)

v|w��! (q0,�0
1

) in B,
– ((p, q,�), c, w, (�,�

3

), (p0, q0,�
4

)) 2 �Cc if there exist a word v 2 �⇤, two stacks
�
0

,�
2

2 � ⇤
B and a stack symbol � 2 �A such that � = �

0

�
1

, O(v) = (|�
1

|, |�
2

|),
�
0

�
2

= �
3

�
4

, (p, c, v, �, p0) 2 �Ac and there exists a run (q,�
1

)

v|w��! (q0,�
2

) in B
such a transition exists provided the bounds on the sizes of the different stacks are
fulfilled, i.e. |�|  K, |�

4

|  K, and |�
3

|  OA
max

+K,
– ((p, q,�), r, w, (�,�

3

), (p0, q0,�0
)) 2 �Cr if there exist a word v 2 �⇤, a stack �

0

2
� ⇤
B such that �

0

�
1

= �
3

�, �
0

�
2

= �0, O(v) = (|�
1

|, |�
2

|), (p, r, v, �, p0) 2 �Ar

and there exists a run (q,�
1

)

v|w��! (q0,�
2

) in B such a transition exists provided
the bounds on the sizes of the different stacks are fulfilled, i.e. |�|  K, |�0|  K,
and |�

3

|  OA
max

+K.

In a state of C, we store the current states of A and B. In addition, a part of the top of
the stack of B is also stored in the state of C to allow the simulation of B. The (finite)
amount that needs to be stored in the state is identified using the set UPSA. ut

Corollary 1. The classes Gwn and Awn are (effectively) closed under composition.

Theorem 7 (Type-checking against VPA). Given an almost well-nested VPT A and

two visibly pushdown automata B,C, whether JAK(L(B)) ✓ L(C) is decidable in

2� EXPTIME.

11



Proof. Restricting the domain of A to L(B) is easy: it suffices to compute the product
VPA of A and B. Then, VPA being closed under complementation, we compute C, the
complement of C. Note that the size of C is at most exponential in the size of C. We
then turn C into a transducer C 0 defining the identity relation over L(C) (this is obvious
by simply transforming rules of C into rules of transducers outputting their input). Now,
by Theorem 6, one can build a transducer defining the composition of JAK � JC 0K. This
can be done in doubly exponential time in the size of A and C. Now, it is sufficient to
test whether the VPA underlying this transducer is empty or not. ut

7 Conclusion

In this paper, we have considered and precisely characterized the class of VPT with
well-nested outputs. We have shown that this class is closed under composition and that
its type-checking against VPA is decidable. We have restricted ourselves in this paper to
transducers with well-nested domains. We conjecture that this restriction can be easily
relaxed and thus, one could consider transducers based on nested word automata [1].
We left open the problem of deciding the class Lwn. As we have described on some
examples, this problem is far from being trivial. In [4], a clear relationship between
the class lwnVPT and hedge-to-hedge transducers is described; investigating such a
relationship for gwnVPT is also an interesting problem.

References
1. R. Alur and P. Madhusudan. Adding Nesting Structure to Words. Journal of the ACM,

56(3):1–43, 2009.
2. A. Bertoni, C. Choffrut, and R. Radicioni. The inclusion problem of context-free languages:

Some tractable cases. International Journal of Foundations of Computer Science, 22(2):289–
299, 2011.

3. B. v. Braunmühl and R. Verbeek. Input-driven Languages are Recognized in log n Space. In
Fundamentals of Computation Theory, 4th International Conference, volume 158 of LNCS,
pages 40–51, 1983.

4. M. Caralp, E. Filiot, P.-A. Reynier, F. Servais, and J.-M. Talbot. Expressiveness of visibly
pushdown transducers. In Second International Workshop on Trends in Tree Automata and

Tree Transducers, volume 134 of EPTCS, pages 17–26, 2013.
5. E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. Streamability of Nested Word Transduc-

tions. In IARCS Annual Conference on Foundations of Software Technology and Theoretical

Computer Science, volume 13 of LIPIcs, pages 312–324, 2011.
6. E. Filiot, J.-F. Raskin, P.-A. Reynier, F. Servais, and J.-M. Talbot. Properties of Visibly

Pushdown Transducers. In Mathematical Foundations of Computer Science 2010, 35th In-

ternational Symposium, volume 6281 of LNCS, pages 355–367, 2010.
7. J.-F. Raskin and F. Servais. Visibly pushdown transducers. In Automata, Languages and

Programming, 35th International Colloquium, volume 5126 of LNCS, pages 386–397, 2008.
8. P.-A. Reynier and J.-M. Talbot. Visibly Pushdown Transducers with Well-nested Outputs.

Technical report, http://hal.archives-ouvertes.fr/hal-00988129/PDF/wnVPT.pdf, 2014.
9. F. Servais. Visibly Pushdown Transducers. PhD thesis, Université Libre de Bruxelles, 2011.

10. S. Staworko, G. Laurence, A. Lemay, and J. Niehren. Equivalence of deterministic nested
word to word transducers. In Fundamentals of Computation Theory, 17th International Sym-

posium, volume 5699 of LNCS, pages 310–322, 2009.

12


