
Weighted Automata and Expressions over1

Pre-Rational Monoids2

Nicolas Baudru @ ORCID3

Aix Marseille Univ, CNRS, LIS, Marseille, France4

Louis-Marie Dando @ ORCID5

Aix Marseille Univ, CNRS, LIS, Marseille, France6

Nathan Lhote @ ORCID7

Aix Marseille Univ, CNRS, LIS, Marseille, France8

Benjamin Monmege @ ORCID9

Aix Marseille Univ, CNRS, LIS, Marseille, France10

Pierre-Alain Reynier @11

Aix Marseille Univ, CNRS, LIS, Marseille, France12

Jean-Marc Talbot @13

Aix Marseille Univ, CNRS, LIS, Marseille, France14

Abstract15

The Kleene theorem establishes a fundamental link between automata and expressions over the free16

monoid. Numerous generalisations of this result exist in the literature; on one hand, lifting this result17

to a weighted setting has been widely studied. On the other hand, beyond the free monoid, different18

monoids can be considered: for instance, two-way automata, and even tree-walking automata, can19

be described by expressions using the free inverse monoid. In the present work, we aim at combining20

both research directions and consider weighted extensions of automata and expressions over a class21

of monoids that we call pre-rational, generalising both the free inverse monoid and graded monoids.22

The presence of idempotent elements in these pre-rational monoids leads in the weighted setting to23

consider infinite sums. To handle such sums, we will have to restrict ourselves to rationally additive24

semirings. Our main result is thus a generalisation of the Kleene theorem for pre-rational monoids25

and rationally additive semirings. As a corollary, we obtain a class of expressions equivalent to26

weighted two-way automata, as well as one for tree-walking automata.27

2012 ACM Subject Classification Theory of computation→ Formal languages and automata theory28

Keywords and phrases Weighted Automata and Expressions, Inverse Monoids, Two-Way Automata29

Digital Object Identifier 10.4230/LIPIcs.CSL.2022.2230

Related Version A full version of the paper with additional examples and omitted proofs is available31

at [2], https://arxiv.org/abs/2110.12395.32

Funding Supported by the DeLTA ANR project (ANR-16-CE40-0007)33

1 Introduction34

Automata are a convenient tool for algorithmically processing regular languages. However,35

when a short and human-readable description is required, regular expressions offer a much36

more proper formalism. When it comes to weighted automata (and transducers as a special37

case), the Kleene-Schützenberger theorem [20] relates weighted languages defined by means38

of such automata on one side, and rational series on the other side. Unfortunately, such39

expressions seem to fit mainly for one-way machines. Indeed, when it comes to two-way40

machines, finding adequate formalisms for expressions is not easy [13, 14].41

© Nicolas Baudru, Louis-Marie Dando, Nathan Lhote, Benjamin Monmege, Pierre-Alain Reynier, and
Jean-Marc Talbot ;
licensed under Creative Commons License CC-BY 4.0

30th EACSL Annual Conference on Computer Science Logic (CSL 2022).
Editors: Florin Manea and Alex Simpson; Article No. 22; pp. 22:1–22:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicolas.baudru@univ-amu.fr
https://orcid.org/0000-0002-1333-3432
mailto:louis-marie.dando@univ-amu.fr
https://orcid.org/0000-0002-0199-8883
mailto:nathan.lhote@univ-amu.fr
https://orcid.org/0000-0003-3303-5368
mailto:benjamin.monmege@univ-amu.fr
https://orcid.org/0000-0002-4717-9955
mailto:pierre-alain.reynier@univ-amu.fr
mailto:jean-marc.talbot@univ-amu.fr
https://doi.org/10.4230/LIPIcs.CSL.2022.22
https://arxiv.org/abs/2110.12395
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Weighted Automata and Expressions over Pre-Rational Monoids

Two-way automata have been studied in the setting of the Boolean semiring in [9]. In this42

work, Janin and Dicky consider a fragment of the free inverse monoid called overlapping tiles.43

They show that runs of a two-way automaton can be described as a recognizable language of44

overlapping tiles, which are words enriched with a starting and an ending position. Hence,45

thanks to the Kleene theorem, such two-way runs can be described as regular expressions46

(over tiles).47

A particular class of weighted automata is that of transducers, where weights are words48

on an output alphabet. For this setting, Alur et al proposed in [1] a formalism to describe49

word transformations given as a deterministic streaming string transducer, a model equivalent50

with deterministic (or unambiguous) two-way transducers [12]. This formalism is based51

on some operators defining basic transformations that are composed to define the target52

transformation. An alternative construction of these expressions starting directly from53

two-way unambiguous transducers has been proposed in [3]. These expressions have also54

been extended to run on infinite words [8]. The general case of non-deterministic two-way55

transducers is much more challenging [13], as these machines may admit infinitely many56

accepting runs on an input word. While this general case is still open (meaning that no57

equivalent models of expressions are known), a solution has been proposed for the particular58

case where both input and output alphabets are unary [6].59

For a further weighted generalisation, the ability to sum values computed by different60

runs on the same input structure (no matter if it is a word, a tree or even a graph) is also61

crucial in terms of expressiveness. However, not all weighted two-way automata (or weighted62

one-way automata with ε-transitions) are valid: indeed, as these machines may have infinitely63

many runs over a single input, it may be the case that the automaton does not provide any64

semantics for such inputs, infinite sums being not guaranteed to converge. To overcome this65

issue, additional properties are required over the considered semiring: for instance, rationally66

additive semirings [11] allow one to define valid non-deterministic two-way automata [15].67

Our initial motivation was to elaborate on the approach proposed by Janin and Dicky in68

the setting of weighted languages. As already said, the main ingredient of their approach69

is to consider the free inverse monoid as an input structure. However, going one step70

further, we consider a generalisation, namely pre-rational monoids. These are monoids M71

such that for all finite alphabets A and for all morphisms from the free monoid A∗ to M ,72

the pre-image of m ∈ M is a rational language of A∗. This class of monoids contains, in73

particular, the free inverse monoid. After introducing the monoids and semirings of interest74

in Section 2, we present our main contributions, which hold for pre-rational monoids and75

rationally additive semirings:76

1. We prove in Section 3 that all weighted automata are valid.77

2. We introduce in Section 4 a syntax for weighted expressions and show that the semantics78

of these expressions is always well-defined.79

3. We prove in Section 5 a Kleene-like theorem stating that weighted automata and weighted80

expressions define the same series.81

4. We deal with the particular case of unambiguous automata and expressions in Section 6.82

More precisely, our conversions are shown to preserve the ambiguity, meaning that an83

element of the monoid “accepted” k times by a weighted automaton can be “decomposed”84

in k different ways by the weighted expression we obtain, and vice versa.85

5. In Section 7, we apply our results on two-way word automata and tree-walking automata86

which can be viewed as part of the free inverse monoids (which are pre-rational) and87

show how expressions are quite natural to write via a variety of examples. As a corollary,88

we obtain a formalism of expressions equivalent to non-deterministic two-way transducers89

N. Baudru, L.-M. Dando, N. Lhote, B. Monmege, P.-A. Reynier, J.-M. Talbot 22:3

(relying on the unambiguity result presented in the previous section).90

Our results can be understood as a trade-off between the generality of the monoid and that91

of the semiring. Indeed, instead of rationally additive semirings, one could have considered92

continuous semirings in which all infinite sums are well-defined. On such semirings, weighted93

automata are valid on all input monoids [19]. However, our framework allows one to consider94

semirings that are not continuous, and as a consequence we have to restrict in this case95

the input monoid. On the other end of the spectrum, restricting oneself to graded monoids96

(as also done in [19]) allows one to consider any semiring, since only finite sums are then97

involved. However, the free inverse monoid is a typical example of non-graded monoid.98

2 Monoids and semirings99

We recall that a monoid (M, ·, εM) is given by a set M and an associative product · with εM100

as neutral element. For our purpose, we consider special classes of monoids:101

I Definition 1. A monoid (M, ·, εM) is pre-rational if for every finite alphabet A, for every102

morphism µ : A∗ →M , and for every m ∈M , the language µ−1(m) ⊆ A∗ is rational.103

Many natural examples of monoids are pre-rational: the free monoid (A∗, ·, ε) over a104

finite alphabet A, the natural monoid (N,+, 0), and even the one completed with an infinite105

element (N ∪ {+∞},+, 0). Other examples, of particular interest in this article, are free106

inverse monoids that we study in Section 7. Another non-trivial example of pre-rational107

monoid is ({L ⊆ A∗ | ε ∈ L}, ·, {ε}), with A a finite alphabet. In contrast, a typical example108

of monoid that is not pre-rational is the free group generated by one element, or (Z,+, 0)109

equivalently. For instance, given the morphism µ : {a, ā}∗ → Z mapping a to 1 and ā to −1,110

then µ−1(0) =
{
w ∈ {a, ā}∗ | |w|a = |w|ā

}
which is not rational.111

Showing pre-rationality might sometimes be challenging, since considering arbitrary112

alphabets and arbitrary morphisms is not really convenient. An easier definition is however113

possible for monoids M that are generated by a finite family G = {g1, . . . , gn} of generators.114

In this case, consider the canonical morphism ϕ from the free monoid G∗ (considering115

generators as letters) to M , that consists in evaluating the sequence of generators in M .116

Then, M is pre-rational if and only if for all m ∈M , the language ϕ−1(m) ⊆ G∗ is rational.117

Pre-rationality is then easier to check, and this, without much of a restriction: the automata118

and expressions we will consider thereafter only use a finite set of elements of the monoid119

as atoms, and we can thus restrict ourselves to the finitely generated submonoid. An even120

simpler sufficient condition for pre-rationality is:121

I Lemma 2. If every element m of a monoid M has a finite number of prefixes, i.e. ele-122

ments p ∈M such that there exists p′ ∈M with m = p · p′, then M is pre-rational.123

Proof. For a finite alphabet A and a morphism µ : A∗ →M , and an element m ∈M , with124

{m1, . . . ,mn} as finite set of prefixes, we can build a finite automaton reading letters of A125

and, after having read a word w ∈ A∗, storing the current element µ(w) when it is a prefix126

of m (going to a non-accepting sink state otherwise). This automaton can then be used to127

recognise µ−1(m), by starting in the prefix εM and accepting in the prefix m. J128

This allows us to easily show that all finitely generated graded monoids [19] (i.e. monoidsM129

equipped with a gradation ϕ : M → N such that ϕ(m) = 0 only if m = εM , and ϕ(mn) =130

ϕ(m) + ϕ(n) for all m,n ∈ M) are pre-rational. Indeed, the gradation ensures that each131

element m ∈ M can have only a finite number of prefixes [19, Chap. III, Cor. 1.2,p.384],132

CSL 2022

22:4 Weighted Automata and Expressions over Pre-Rational Monoids

allowing us to apply the previous lemma. However, notice that the condition in Lemma 2 is133

not a necessary one: (N ∪ {+∞},+, 0) does not fulfil the condition, since +∞ has infinitely134

many factors, while it is indeed pre-rational.135

A semiring (K,+,×, 0, 1) is an algebraic structure such that (K,×, 1) is a monoid, (K,+, 0)136

is a commutative monoid, the product × distributes over the sum + , and 0 is absorbing137

for ×. Once again, we consider special classes of semirings, introduced in [11]:138

I Definition 3. A semiring (K,+,×, 0, 1) is rationally additive if it is equipped with a partial139

operator defining sums of countable families, associating with some infinite families (αi)i∈I ,140

with I at most countable, an element
∑
i∈I αi of K such that for all families (αi)i∈I :141

Ax.1 If I is finite, the value
∑
i∈I αi exists and coincides with the usual sum in the semiring.142

Ax.2 For each α ∈ K,
∑∞
n=0 α

n exists.143

Ax.3 If
∑
i∈I αi exists and β ∈ K, then

∑
i∈I βαi and

∑
i∈I αiβ exist, and are respectively144

equal to β(
∑
i∈I αi) and (

∑
i∈I αi)β.145

Ax.4 Let I be the disjoint union of (Ij)j∈J with J at most countable. If for all j ∈ J ,146

rj =
∑
i∈Ij αi exists, and if r =

∑
j∈J rj exists, then

∑
i∈I αi exists and is equal to r.147

Ax.5 Let I be the disjoint union of (Ij)j∈J with J at most countable. If s =
∑
i∈I αi exists,148

and for all j ∈ J , rj =
∑
i∈Ij αi exists, then

∑
j∈J rj exists and is equal to s.149

Examples of rationally additive semirings are the Boolean semiring, natural semirings150

over positive rationals or reals (Q+ ∪ {∞},+,×, 0, 1)1, the tropical (or arctic) semiring151

(Q∪{−∞,+∞} , sup,+,−∞, 0), the language semiring over a finite alphabet (2A∗ ,∪, ·, ∅, {ε}),152

the sub-semiring of rational languages, or distributive lattices. Throughout this article, K153

will denote a rationally additive semiring.154

Let us state a few useful properties of rationally additive semirings. The support of a155

family (αi)i∈I is the set {i ∈ I | αi 6= 0} of indices of non-zero elements.156

I Lemma 4 ([11]). Let (αi)i∈I be a countable family in K, of support J . Then,
∑
i∈I αi157

exists if and only if
∑
i∈J αi exists, and when these sums exist, they are equal.158

I Lemma 5. Let (αi)i∈I and (βi)i∈I be two countable families of K of disjoint supports,159

i.e. for all i ∈ I, αi = 0 or βi = 0 (or both). If
∑
i∈I αi and

∑
i∈I βi exist, then

∑
i∈I(αi+βi)160

exists and is equal to (
∑
i∈I αi) + (

∑
i∈I βi).161

Proof. Let Jα and Jβ be the support of the families (αi)i∈I and (βi)i∈I , and J0 = J\(Jα∪Jβ).162

If
∑
i∈I αi and

∑
i∈I βi exist,

∑
i∈I αi+

∑
i∈I βi exists, and by Lemma 4, is equal to

∑
i∈Jα αi+163 ∑

i∈Jb βi. Since the supports are disjoint, this is equal to
∑
i∈Jα(αi + βi) +

∑
i∈Jb(αi + βi).164

By definition of J0,
∑
i∈J0

(αi + βi) exists and is equal to 0. Therefore,
∑
i∈I αi +

∑
i∈I βi is165

equal to
∑
i∈Jα(αi +βi) +

∑
i∈Jb(αi +βi) +

∑
i∈J0

(αi +βi). Ax.4 allows us to conclude. J166

I Lemma 6. Let (αi,j)(i,j)∈I×J be a countable family of elements of K, such that αi,J =167 ∑
j∈J αi,j exists for all i ∈ I, and αI,j =

∑
i∈I αi,j exists for all j ∈ J . Then,

∑
i∈I αi,J168

exists if and only if
∑
j∈J αI,j exists, and when these sums exists, they are equal.169

Proof. Immediate by Ax.4 and Ax.5. J170

1 All infinite sums of elements in Q+ do not converge towards a rational number or +∞, but all geometric
sums do. In particular, this semiring is not continuous (see [19, Chap. III, Sec. 5]).

N. Baudru, L.-M. Dando, N. Lhote, B. Monmege, P.-A. Reynier, J.-M. Talbot 22:5

3 Series and Weighted Automata171

A K-series over M is a mapping s : M → K associating a weight s(m) with each element m172

of the monoid. The set of all such series is denoted by K〈〈M〉〉. Notice that the pointwise173

sum of two series s1 and s2, defined for all m ∈ M by (s1 + s2)(m) = s1(m) + s2(m),174

is a series. However, the Cauchy product s1 · s2 mapping m to the possibly infinite sum175 ∑
m1m2=m s1(m1) × s2(m2) might not exist2. We define two canonical injections: M →176

K〈〈M〉〉 which maps m to the characteristic function of m (mapping m to 1 and the other177

elements from M to 0), and K→ K〈〈M〉〉 which maps k to the function mapping the neutral178

element εM of M to k and all other values to 0. For this reason, we often abuse notations179

and consider K and M as subsets of K〈〈M〉〉.180

We now introduce the notion of weighted automata we consider in this article: weights181

are taken from a rationally additive semiring K and labels from a pre-rational monoid M .182

I Definition 7. A K-automaton over M , or simply a weighted automaton, is a tuple A =183

(Q, I,∆, F), with Q a finite set of states, I ⊆ Q the set of initial states, ∆ ⊆ Q×M ×K×Q184

the finite set of transitions each equipped with a label in M and a weight in K, and F ⊆ Q185

the set of final states.186

We introduce two mappings λA and πA that extract the label and the weight of a187

transition, that we can extend to morphisms from ∆∗ to M and the multiplicative monoid of188

K, respectively. A run of A is then a sequence w of transitions (pi,mi, ki, qi)1≤i≤n such that189

for all i, qi = pi+1. The label of a run is given by λA(w); its weight is πA(w). The run is190

said to be accepting if p1 ∈ I and qn ∈ F . We let RA ⊆ ∆∗ denote the rational language of191

all accepting runs. The semantics of A is the series JAK such that for all m ∈M , the weight192

JAK(m) is the sum of the weights of accepting runs that are labelled by m, if the (potentially193

infinite) sum exists: JAK(m) =
∑
w∈RA∩λ−1

A (m) πA(w).194

The automaton A is called valid if the sum in JAK(m) exists for all m ∈ M . Instead195

of enforcing properties on the automata for them to be valid, we ensure their validity by196

combining the rational additivity of K and the pre-rationality of M . The crucial technical197

property considers the special case of the monoid of strings A∗ over a finite alphabet A. We198

then lift the result using pre-rationality. For a language L ⊆ A∗ and a semiring K, we denote199

by χL ∈ K〈〈A∗〉〉 its characteristic series in K, defined for all w ∈ A∗ as χL(w) = 1 if w ∈ L,200

and 0 otherwise. By Lemma 4, we have that for all series s over A∗,201 ∑
w∈L

s(w) is defined iff
∑
w∈A∗

s(w)χL(w) is defined, and then these sums are equal. (1)202

I Lemma 8. For every finite alphabet A, morphism π : A∗ → K, and rational language203

L ⊆ A∗, the sum
∑
w∈L π(w) exists.204

Proof. The proof is by induction on rational languages, denoted by unambiguous regular205

expressions [5]. Indeed, all rational languages can be obtained by closing the set of finite206

languages by the operations of disjoint unions, unambiguous concatenations (the concatena-207

tion L1 · L2 is unambiguous when each word w of L1 · L2 can be uniquely decomposed as208

w = w1 · w2 with w1 ∈ L1 and w2 ∈ L2), and unambiguous Kleene stars (the Kleene star L∗209

is unambiguous when each word w ∈ L∗ can be uniquely decomposed as w = w1 · · ·wn with210

2 Here and in the following,
∑

m1m2=m
is the sum over all pairs (m1, m2) ∈M2 such that m1m2 = m.

CSL 2022

22:6 Weighted Automata and Expressions over Pre-Rational Monoids

n ∈ N and wi ∈ L for all i). Please note that for convenience, the sentences “A = B” should211

be read as “B exists and is equal to A”.212

First, for finite languages L, the sum
∑
w∈L π(w) exists, by Ax.1. In the case where L is213

the disjoint union of two languages L1 and L2, such that
∑
w∈L1

π(w) and
∑
w∈L2

π(w) exist,214 ∑
w∈L1

π(w) +
∑
w∈L2

π(w) =
∑
w∈A∗

π(w)χL1(w) +
∑
w∈A∗

π(w)χL2(w) (by 1)215

=
∑
w∈A∗

(π(w)χL1(w) + π(w)χL2(w)) (by Lemma 5)216

=
∑
w∈A∗

π(w)χL1∪L2(w) (disjoint union)217

=
∑

w∈L1∪L2=L
π(w).218

219

If L is the unambiguous concatenation of two languages L1 and L2 such that
∑
u∈L1

π(u)220

and
∑
v∈L2

π(v) exist, then221 (∑
u∈L1

π(u)
)
×
(∑
v∈L2

π(v)
)

=
∑
u∈L1

(
π(u)×

∑
v∈L2

π(v)
)

(by Ax.3)222

=
∑
u∈L1

∑
v∈L2

π(u)π(v) (by Ax.3)223

=
∑

(u,v)∈L1×L2

π(u)π(v) (by Ax.4)224

=
∑

(u,v)∈L1×L2

π(uv) (π is a morphism).225

226

Moreover, by unambiguity, there exists a bijection from the pairs of L1 × L2 to the words of227

the concatenation L1 ·L2 sending (u, v) to uv. Bijections on the support of families conserve228

the summability property by [11, Proposition 3], therefore
∑
w∈L π(w) exists (and is equal229

to
∑

(u,v)∈L1×L2
π(uv)).230

Finally, suppose that L is the unambiguous Kleene star L∗1, and
∑
w∈L1

π(w) exists. In231

particular, for all n ∈ N, the iterated concatenation Ln1 is unambiguous, and thus, with a232

straightforward induction using the previous case,
∑
w∈Ln1

π(w) exist and we have233 (∑
w∈L1

π(w)
)n

=
∑
w∈Ln1

π(w).234

By Ax.2,
∑∞
n=0

(∑
w∈L1

π(w)
)n

exists, and by (1), we have:235

∞∑
n=0

(∑
w∈L1

π(w)
)n

=
∞∑
n=0

∑
w∈Ln1

π(w) =
∞∑
n=0

∑
w∈A∗

π(w)χLn1 (w).236

237

By unambiguity, for all w ∈ A∗, the infinite sum
∑∞
n=0 π(w)χLn1 (w) has finite support (at238

most 1 non-zero element) and therefore exists (by Lemma 4). By Lemma 6, we deduce that239

∞∑
n=0

∑
w∈A∗

π(w)χLn1 (w) =
∑
w∈A∗

∞∑
n=0

π(w)χLn1 (w) =
∑
w∈A∗

π(w)
∞∑
n=0

χLn1 (w) (by Ax.3)240

=
∑
w∈A∗

π(w)χL∗1 (w) (by unambiguity)241

=
∑
w∈L

π(w). J242

243

N. Baudru, L.-M. Dando, N. Lhote, B. Monmege, P.-A. Reynier, J.-M. Talbot 22:7

From this result, to have a sufficient condition for validity we only need to have sums244

over rational languages, hence our requirement that M is pre-rational.245

I Theorem 9. If M is a pre-rational monoid, then every K-automaton A over M is valid,246

i.e. JAK(m) exists for all m ∈M .247

Proof. Since M is pre-rational, the morphism λA is such that for all m ∈M , λ−1
A (m) is a248

rational language. Therefore, so is the language RA ∩ λ−1
A (m) of accepting runs that are249

labelled by the element m. Lemma 8 gives that JAK(m) =
∑
w∈RA∩λ−1

A (m) πA(w) exists. J250

Together with reasonable assumptions on computability for K and M , this also gives a251

procedure to evaluate the weight JAK(m). Notice that this is a priori non-trivial, since it252

involves an infinite sum. We say thatM is effectively pre-rational if for all morphisms µ : A∗ →253

M and elements m ∈M , one can compute a representation of the rational language µ−1(m).254

We say that K is computable if internal operations (finite sums and products) of K are255

computable, as well as Kleene star (geometric sum). Observe that we do not require256

computability of arbitrary infinite sums, but only geometric ones.257

I Proposition 10. If M is effectively pre-rational and K is computable, then for all K-258

automata A over M and all elements m ∈M , one can compute JAK(m). This computation is259

achieved using a number of internal operations of K (i.e. sum, product and Kleene iteration)260

that is polynomial in the size of A and in the size of a deterministic automaton recognising261

λ−1
A (m).262

Proof. By assumption of pre-rationality, the language λ−1
A (m) is rational. Moreover, by263

effectiveness, we can let Dm be a deterministic automaton that recognises λ−1
A (m). We denote264

by nm its number of states. The K-automaton Am obtained by considering the product of A265

and Dm (with respect to the alphabet ∆ of transitions of A) thus restricts the runs of A to266

the ones labelled by m. In addition, as Dm is deterministic, the accepting runs of A over m267

are in bijection with those of Am. If we denote by n the number of states of A, then Am has268

n× nm states. By removing all labels (replacing them by εM), we obtain a K-automaton269

that associates with the element εM the weight JAmK(εM) = JAK(m). Applying classical270

translations from automata to regular expressions such as state-elimination algorithms yields271

an expression equivalent to JAK(m). This expression involves sum and product in K, as well272

as Kleene star, which can be computed in K. As this expression only involves element εM ,273

it can be evaluated during its computation, allowing to obtain the value of JAK(m) using a274

number of internal operations of K that is polynomial in n and nm. J275

4 Weighted Expressions276

We now introduce the formalism of weighted expressions to generate K-series over a monoidM .277

I Definition 11. The set of K-expressions over M , or simply weighted expressions, is278

generated by the grammar (with k ∈ K and m ∈M):279

W ::= k | m |W +W |W ·W |W ∗.280

Expressions k and m are said to be atomic. We call subexpressions of W all the weighted281

expressions appearing inside W : for instance, the subexpressions of W = (2 · a+ b)∗ are 2,282

a, b, 2 · a, 2 · a+ b, and W . To define the semantics of weighted expressions, we will use a283

sum operator over infinite families. As the semiring K is supposed to be rationally additive,284

CSL 2022

22:8 Weighted Automata and Expressions over Pre-Rational Monoids

some of these infinite sums exist, some others do not3. Then, the semantics of a weighted285

expression W is the series JW K ∈ K〈〈M〉〉 defined inductively as follows:286

JkK is the series mapping εM to k and other elements to 0;287

JmK is the characteristic series of m;288

JU + V K = JUK + JV K;289

for all m ∈M , JU · V K(m) =
∑
m1m2=mJUK(m1)× JV K(m2) if the sum exists;290

for all m ∈ M , JW ∗K(m) =
∑∞
n=0JW

nK(m) if the sum exists (with Wn the expression291

inductively defined by 1 if n = 0 and W ·Wn−1 otherwise).292

The last two cases, defining the semantics of the concatenation (or Cauchy product) of293

two weighted expressions, and the Kleene star of a weighted expression, are subject to the294

existence of the infinite sums: we say that a weighted expression is valid when its semantics295

exists for all m ∈M (as well as the semantics of all its subexpressions, in particular).296

More usual regular expressions are recovered by considering the Boolean semiring and297

the monoid A∗ over a finite alphabet A: in the following, such expressions are called Kleene298

expressions, and denoted by letters E,F,G, while weighted expressions are denoted by299

letters U, V,W . Notice that Kleene expressions are valid, as expected, since the infinite sum300

(i.e. disjunction in the Boolean semiring) is always defined in this case. Their semantics JEK301

is the characteristic series of the language L(E) classically associated with such a regular302

expression: alternatively, we can see L(E) as the support of JEK (all words w ∈ A∗ such303

that JEK(w) is true). For any other semiring K, we let χE be the characteristic function of304

the language of E to the semiring K, i.e. a shortcut notation for the series χL(E) ∈ K〈〈A∗〉〉305

defined in Section 3.306

We shall see that thanks to our hypothesis of K being rationally additive, and restricting307

ourselves to pre-rational monoids, all weighted expressions are valid:308

I Theorem 12. Let K be a rationally additive semiring, and M be a pre-rational monoid.309

Every K-expression W over M is valid, i.e. the semantics JW K(m) exists for all m ∈M .310

Notice that this theorem relies on both its assumptions on M and K:311

If M is not pre-rational, then the expressions may not be valid. For instance, consider312

M to be the free group generated by a single element a (with a−1 its inverse in the free313

group), and K be the semiring of rational languages over the alphabet {A,B}. Then, the314

expression (a · {A}+ a−1 · {B})∗ would associate with the element εM of M the language315

of words over {A,B} having as many A’s than B’s, which is not rational, and thus not a316

member of K.317

If K is not rationally additive, then the expressions may not be valid. For instance,318

considering the semiring (Q,+,×, 0, 1), and the (pre-rational) trivial monoid {εM}, the319

expressionW = (−1)∗ gives as a semantics JW K(εM) =
∑
n∈N(−1)n that is the archetypal320

diverging series in Q.321

The rest of this section is devoted to the proof of this theorem. This proof is split into322

two parts. We first show that the validity of a weighted expression obtained by the rewriting323

of “letters” in an unambiguous Kleene expression is equivalent to the existence of sums324

resembling the ones of Lemma 8. We then explain how to generate such an unambiguous325

Kleene expression from a weighted expression W , and apply the previous result to show the326

validity of W .327

3 In the rationally additive semiring (Q+ ∪ {∞}, +,×, 0, 1), the infinite sum
∑

i∈N 1/i! does not exist,
since it converges to the non-rational real number e.

N. Baudru, L.-M. Dando, N. Lhote, B. Monmege, P.-A. Reynier, J.-M. Talbot 22:9

More formally, a Kleene expression E (over a monoid A∗) is called unambiguous if for all328

its subexpressions E′:329

if E′ = F +G, then L(F) ∩ L(G) = ∅;330

if E′ = F ·G, then for all w ∈ A∗, there exists at most one pair (w1, w2) ∈ L(F)× L(G)331

such that w1w2 = w;332

if E′ = F ∗, then for all w ∈ A∗, there exists at most one natural number n, and one333

sequence (w1, w2, . . . , wn) ∈ (L(F))n such that w1w2 · · ·wn = w.334

As a direct corollary, for every semiring K,335

if E + F is unambiguous, then χE+F = χE + χF ;336

if E · F is unambiguous, then χE·F (w) =
∑
uv=w χE(u)χF (v);337

if E∗ is unambiguous, then χE∗ =
∑∞
n=0 χEn , this infinite sum having indeed a finite338

support and being thus meaningful in any semiring (and formally existing in a rationally339

additive semiring).340

Given two morphisms λ : A∗ →M and π : A∗ → K, we let Eλ,π be the weighted expression341

obtained from a Kleene expression E by substituting every letter a appearing in E by the342

expression λ(a) ·π(a), and by replacing Booleans true and false by elements 1 ∈ K and 0 ∈ K.343

The next lemma aims at linking the validity of Eλ,π with the existence of specific infinite344

sums. The same result is also fundamental in our later proofs of translations between345

automata and expressions in the next section.346

I Lemma 13. Let E be an unambiguous Kleene expression over a free monoid A∗, M be347

a monoid (not necessarily pre-rational), K be a rationally additive semiring, λ : A∗ → M348

and π : A∗ → K be two morphisms. Then, Eλ,π is valid if and only if for all m ∈ M349

and all subexpressions F of E, the sum
∑
λ(w)=m π(w)χF (w) exists (where the sum is350

over all words w ∈ A∗ such that λ(w) = m). In this case, for all m ∈ M , JEλ,πK(m) =351 ∑
λ(w)=m π(w)χE(w).352

Starting from a weighted expression W , and in order to use Lemma 13 which only applies353

to unambiguous Kleene expressions, we will modify W to interpret it as an unambiguous354

Kleene expression. We define its indexed expression I(W) as the Kleene expression over355

an alphabet being a finite subset of (K ∪M)× N, obtained by replacing each of its atomic356

subexpression ` ∈ K ∪M by a letter (`, i) ∈ (K ∪M)×N where i is a unique index (starting357

from 0 for the leftmost one) associated with each atomic subexpression. For instance, with358

the weighted expressionW = (2 ·a+3 ·b)∗ ·(a+5 ·b+3), one associates the indexed expression359

I(W) = ((2, 0)·(a, 1)+(3, 2)·(b, 3))∗ ·((a, 4)+(5, 5)·(b, 6)+(3, 7)). From the indexed expression,360

one can recover the initial expression, by forgetting about the index. Formally, we let λ be the361

morphism from ((K∪M)×N)∗ toM such that λ(x, n) = x if x ∈M and εM otherwise, and π362

be the morphism from ((K∪M)×N)∗ to K such that π(x, n) = x if x ∈ K and 1 otherwise. For363

the above example, I(W)λ,π = ((εM ·2)·(a·1)+(εM ·3)·(b·1))∗ ·((a·1)+(εM ·5)·(b·1)+(εM ·3)),364

which is equivalent to W . More generally, we obtain:365

I Lemma 14. For all weighted expressions W over M , I(W)λ,π is valid if and only if W is366

valid. When valid, they have the same semantics.367

We would like to conclude by combining this result with Lemma 13 and by using the368

pre-rationality of the monoidM , as in Theorem 9. However, I(W) might not be unambiguous369

as expected, as shown by the example W = (m∗)∗, with m ∈ M , that gives rise to the370

(ambiguous) Kleene expression I(W) = (((m, 0))∗)∗: indeed, the word (m, 0)(m, 0) has371

several possible decompositions in the semantics of I(W). To patch this last issue, we simply372

CSL 2022

22:10 Weighted Automata and Expressions over Pre-Rational Monoids

incorporate a dummy marker after each Kleene star as follows: from a weighted expressionW ,373

φ(W) is inductively defined by:374

if W is an atomic expression, φ(W) = W ;375

if W = U + V then φ(W) = φ(U) + φ(V);376

if W = U · V then φ(W) = φ(U) · φ(V);377

if W = U∗ then φ(W) = (φ(U))∗ · 1, with 1 being the neutral element of the semiring K.378

We directly obtain:379

I Lemma 15. LetW be a weighted expression. The Kleene expression I(φ(W)) is unambiguous.380

We are now ready to conclude the proof of Theorem 12, moreover showing that for381

all weighted expressions W and m ∈ M , JW K(m) =
∑
λ(w)=m π(w)χI(φ(W))(w). Indeed,382

operation φ(·) does not change the semantics of an expression, and therefore, φ(W) is valid383

if and only if W is valid, in which case they share the same semantics. Using the result of384

Lemma 15, we can apply Lemma 14: W is valid if and only if I(φ(W))λ,π is valid, in which385

case they are equivalent. Let L = L(I(φ(W))) ∩ λ−1(m). Since M is pre-rational, L is a386

rational language, and
∑
w∈L π(w) exists. Moreover,387 ∑

w∈L
π(w) =

∑
λ(w)=m

π(w)χI(φ(W))(w)388

= JI(φ(W))λ,πK(m) (by Lemma 13)389

= Jφ(W)K(m) (by Lemma 14)390

= JW K(m) (W and φ(W) are equivalent).391
392

5 A Kleene-Like Theorem393

Our main result is the following Kleene-like theorem, stating the constructive equivalence394

between expressions and automata over a pre-rational monoid and weighted over a rationally395

additive semiring.396

I Theorem 16. Let K be a rationally additive semiring, and M be a pre-rational monoid.397

Let s ∈ K〈〈M〉〉 be a series. Then s is the semantics of some K-automaton over M if and398

only if it is the semantics of some K-expression over M .399

The rest of this section is devoted to the proof of this theorem, that consists in constructive400

translations of automata into equivalent expressions, and vice versa.401

From Automata to Expressions. The idea is to build a K-expression from an unam-402

biguous expression generating the accepting runs of the automaton. Let A = (Q,∆, I, F)403

be a K-automaton over M . By applying the result of [5], we build an unambiguous Kleene404

expression E over ∆∗ recognising the language RA of the accepting runs of A. By Lemma 13,405

that we can apply on E since EλA,πA is valid (by Theorem 12), we have406

JEλA,πAK(m) =
∑

λA(w)=m

πA(w)χE(w) =
∑

w∈RA|λA(w)=m

πA(w) = JAK(m).407

408

the second equality coming from (1), since L(E) = RA.409

From Expressions to Automata. We have shown in the previous section how, from a410

K-expression E over M , we can construct an unambiguous Kleene expression I(φ(E)) and411

N. Baudru, L.-M. Dando, N. Lhote, B. Monmege, P.-A. Reynier, J.-M. Talbot 22:11

two morphisms λ and π from4 (K∪M)×N to respectively M and K, such that I(φ(E))λ,π is412

equivalent to E, and by Theorem 12, JEK(m) =
∑
λ(w)=m π(w)χI(φ(E))(w). We let {0, . . . , n}413

be the set of indices used in I(φ(E)).414

By [5], we can build (for instance, by considering the position automaton) from I(φ(E)) an415

equivalent unambiguous Boolean automaton A = (Q,∆, I, F) with ∆ ⊆ Q×
(
(K∪M)×N

)
×Q416

its set of transitions labelled by indexed atomic elements appearing in E. Here, unambiguous417

means as usual that every accepted word in A is associated with a unique accepting run.418

From A, we build a K-automaton B = (Q×{0, . . . , n},∆′, I×{0}, F ×{0, . . . , n}) overM419

with transitions defined as follows: for all transitions (p, (m, i), q) ∈ ∆, with m ∈M , we add420

the transition ((p, j),m, 1, (q, i)) ∈ ∆′, and for all transitions (p, (k, i), q) ∈ ∆, with k ∈ K,421

we add the transition ((p, j), εM , k, (q, i)) ∈ ∆′. The transfer of indices from letters to states422

enables us to obtain a bijection f from accepted words of A to accepting runs of B. Moreover,423

this bijection preserves the labels and weights, meaning that for all u = (x0, i0) · · · (xm, im)424

accepted by A, we have λ(u) = λB(f(u)), and π(u) = πB(f(u)). Therefore, by applying the425

change of variable w = f(u), we obtain426

JBK(m) =
∑

w∈RB∩λ−1
B (m)

πB(w) =
∑

u∈L(I(φ(E)))∩λ−1(m)

π(u) =
∑

λ(u)=m

π(u)χI(φ(E))(u) = JEK(m).427

6 Dealing with Ambiguity428

We have already encountered ambiguity in the context of the Boolean semiring and free429

monoids. We now study this notion for weighted expressions and automata. To do so, we430

use the rationally additive semiring (N∞ = N ∪ {∞} ,+,×, 0, 1) where all infinite sums exist:431

in particular, the sum over a family containing an infinite number of non-zero values is ∞,432

and otherwise the sum is equal to the finite sum over the support of the family. We call this433

semiring the counting semiring.434

I Definition 17. Given a K-expression W over the monoid M , the ambiguity amb(W,m)435

of W at m is a value in N∞ defined inductively over W as follows:436

for W = n ∈M , amb(n,m) = 1 if n = m, and 0 otherwise;437

for W = k ∈ K, amb(k,m) = 1 if m = εM , and 0 otherwise;438

for W = U + V , amb(U + V,m) = amb(U,m) + amb(V,m);439

for W = U · V , amb(U · V,m) =
∑
m1m2=m amb(U,m1)× amb(V,m2);440

for W = U∗, amb(U∗,m) =
∑
n∈N amb(Un,m).441

An expression is called unambiguous if its ambiguity at every point is at most 1.442

For instance, the expression W = 2 · a+ 3 · a · a over the free monoid {a}∗ is unambiguous,443

while W ∗ has ambiguity 2 at the word aaa = a · aa = aa · a.444

The attentive reader may have noticed that the ambiguity of W is exactly the semantics445

of W where every atomic weight of K is replaced with the unit 1 of N∞. Given two rationally446

additive semirings K1 and K2, K1×K2 is also a rationally additive semiring with the natural447

component-wise operations. In particular, given a K-expression W , we can define a K×N∞-448

expression W ′ by replacing every weight k ∈ K appearing in W by (k, 1) ∈ K× N∞. Then,449

the ambiguity of W at m is the second component of the weight JW ′K(m).450

4 As before, in fact, we work with a finite subset of this set.

CSL 2022

22:12 Weighted Automata and Expressions over Pre-Rational Monoids

I Definition 18. Given a K-automaton A over the monoid M , the ambiguity of A at m is451

a value in N∞ defined as the number (potentially ∞) of runs with label m. An automaton is452

called unambiguous if its ambiguity at every point is at most 1.453

Just as for expressions, the ambiguity of an automaton may be viewed as the semantics of454

the automaton where the weights of transitions are replaced by the unit of N∞. Given A455

over K, we can define A′ by replacing all weights k ∈ K of transitions by (k, 1) ∈ K× N∞.456

Then the ambiguity of A at m is exactly the second component of JA′K(m). Now we claim:457

I Theorem 19. Let K be a rationally additive semiring, M be a pre-rational monoid,458

s ∈ K〈〈M〉〉, and k ∈ N. Then, s is the semantics of a K-automaton over M of ambiguity k459

if and only if it is the semantics of a K-expression over M of ambiguity k.460

Proof. The procedures of section 5 to go from expressions to automata and back, over a461

pre-rational monoid M , preserve ambiguity. Indeed, the two constructions used to prove462

Theorem 16 do not introduce new weights. Thus, starting from a K-expression W , one463

considers the K× N∞-expression W ′ defined above. Transforming W ′ into an automaton464

preserves the semantics, and all the transitions have a second component equal to 1. Thus,465

the second component of the semantics, which is preserved, is exactly the ambiguity of the466

automaton. Forgetting about the second component, we get the result. Note that converting467

W to W ′ is not actually a necessary step to build the automaton, it is simply a mental crutch468

to make the argument simpler. Symmetrically when going from automata to expressions,469

the transformation does not introduce new weights and thus preserves ambiguity. J470

7 Free Inverse Monoids and Applications to Walking Automata471

We conclude this article by demonstrating why our model is able to encompass and reason472

about the usual models of two-way automata and tree-walking automata. To do so, we473

consider the free inverse monoid, as it was observed by Pécuchet [18] to be linked with this474

model. Dicky and Janin even gave in [9, Theorem 3.21] the equivalence in the boolean case475

between two-way automata and regular expressions, using this monoid.476

Let A be a finite alphabet, and A = {a | a ∈ A} be a copy of A. We define the477

function † : (A ∪A)∗ → (A ∪A)∗ inductively as: ε† = ε, (ua)† = au†, and (ua)† = au†.478

I Definition 20. The free inverse monoid I(A) generated by a finite alphabet A is the479

quotient of (A ∪A)∗ by the following equivalence relations:480

“x† and x are pseudo-inverses”: for all x ∈ (A ∪A)∗, xx†x = x, and x†xx† = x†;481

“idempotent elements commute”: for all x, y ∈ (A ∪A)∗: xx†yy† = yy†xx†.482

Notice that xx† are indeed idempotent elements of the free inverse monoid, since483

(xx†)(xx†) = (xx†x)x† = xx†.484

The elements of this monoid are convenientely represented via tree-like structures, the485

Munn bi-rooted trees [17]. They are directed graphs, whose underlying undirected graph is a486

tree, and two special nodes are marked, the initial and the final one. Examples of elements487

of the monoid with their Munn tree representation are given in Figure 1. Note that if you488

see a ∈ A as the traversal of an edge labelled by a, and a its traversal in reverse, an element489

of (A ∪A)∗ describes a complete walk over the graph of the corresponding element of I(A).490

With this tree representation in mind, we see that every element of I(A) has finitely491

many prefixes, since such a prefix is a subtree of x, with the same initial node. Thanks to492

Lemma 2, we obtain493

N. Baudru, L.-M. Dando, N. Lhote, B. Monmege, P.-A. Reynier, J.-M. Talbot 22:13

` r ` r ` r ` r

` r

`

Figure 1 Munn bi-rooted trees of the elements of I({`, r}): `, r̄, ¯̀r ¯̀r, and (`¯̀r)2`.

I Proposition 21. The free inverse monoid is pre-rational.494

We can thus apply our results on this pre-rational monoid, for instance by considering495

expressions. In the Boolean semiring, for example, the expression (` · ¯̀· r)∗ · ` describes the496

language of Munn bi-rooted trees that are “right-combs” (see the rightmost tree of Figure 1),497

when considering ` to be left children, and r right ones. The initial node is at the top while498

the final one is the farthest away from it. We can add weights to this expression: in the499

tropical semiring (Z∪{−∞,+∞} , sup,+,−∞, 0), the unambiguous expression (` · ¯̀· r ·1)∗ · `500

associates with a comb the length of its rightmost branch. More generally, the expression501

W =
[∑

a∈A
(
a · 1 + ā · (−1)

)]∗ computes the (signed) length of the path linking the initial502

and final nodes in any Munn bi-rooted tree over alphabet A: each tree is associated with the503

difference between the number of positive letters of A and the number of negative letters504

of Ā of the unique acyclic path linking the initial node to the final node. On the trees of505

Figure 1, these lengths are respectively 1, −1, 0, 3. They represent the difference of “levels”506

in-between the initial and final nodes. Each tree is associated with many decompositions in507

the semantics of the expression W , but all of them have the same weight (and the chosen508

semiring has an idempotent sum operation).509

Two-way Automata. Over an alphabet A, we can consider the free inverse monoid510

I(A] {`,a}), with two fresh symbols ` and a that will help us distinguish the leftmost and511

rightmost letters of the word. To model two-wayness, only certain elements of I(A] {`,a})512

are of interest, namely elements of `A∗a, that have linear Munn bi-rooted trees with the513

initial node at the leftmost position, and the final node at the rightmost one. The Munn514

bi-rooted tree representation of such an element is given in Figure 2.515

We thus consider weighted automata and expressions over I(A) with weights in K,516

a rationally additive semiring, and restrict our attention to words of `A∗a. From an517

automata perspective, this is a way to define the usual model of two-way automata, a forward518

movement of a two-way automaton being simulated by reading of a letter in A while a519

backward movement is simulated by reading a letter in Ā. Indeed, our model of weighted520

automata over I(A) can also be simulated by the usual two-way weighted automata, since521

non-atomic elements of the monoid can be split into atomic elements. Therefore, in this522

specific context, Theorem 16 gives a new way to express the semantics of two-way weighted523

automata (over a rationally additive semiring) by using expressions.524

Consider for example the function that maps a word `wa with w = w0 · · ·wn−1 ∈ {a, b}∗525

` a b a c a

Figure 2 Munn bi-rooted tree of the “word” `abaca.

CSL 2022

22:14 Weighted Automata and Expressions over Pre-Rational Monoids

a

b c

d d

(>, a)
(0, b)

⊥

(1, c)
(0, d)

⊥

(1, d)

⊥

Figure 3 A binary tree, and its encoding in I(A′).

to the set of words {(wn−1 · · ·w0)k | k ∈ N}. Considering the semiring of regular languages,526

a weighted expression describing this function is527 (
` · (a+ b)∗ · a · a · (a · {a}+ b · {b})∗ · `

)∗ · ` · (a+ b)∗ · a.528

Notice the last pass over the word that allows one to finish the reading on the rightmost529

position, i.e. the final node.530

Consider the alphabet A = {0,1}. For a word w ∈ A∗, let w|2 denote the rational number531

between 0 and 1 that is written as 0.w in binary. Then, consider the following weighted532

expression with weights in (Q+ ∪ {+∞},+,×, 0, 1):533

W = ` ·
(

0 · 1
2 + 1 · 1

2

)∗
· 1 · 1

2 · (0 + 1)∗ · a.534

It associates with a word `wa the value w|2, since it non-deterministically chooses a position i535

labelled by 1 in w and computes the value 1/2i. By considering the expression536

(W · a · (0 + 1)∗ · `)∗ ·W.537

that consists in repeating the computation of W any number of times (at least once),538

with a reset of the word in-between, we associate with a word `wa the value
∑∞
n=1 w

n
|2 =539

w|2/(1− w|2).540

Tree-Walking Automata. Another model captured by our approach is the one of tree-541

walking automata. These are automata whose head moves on the nodes of a rooted tree542

of a bounded arity m. As for words before, we can encode such trees labelled with a finite543

alphabet A by elements of I(A′) with an extended alphabet A′ = ({0, . . . ,m− 1} ∪ {>})×544

A ∪ {⊥}. In elements of I(A′), nodes contain no information, only edges do. The idea is545

thus to simulate the root of a tree labelled with a by a single node labelled with (>, a); the546

i-th child of a node, labelled with a ∈ A, will be simulated with a node of label (i, a); finally,547

under each leaf of the tree, we add a node labelled with ⊥. The root of the tree will be548

both the initial and the final node of the encoding, simulating a tradition of tree-walking549

automata to start and end in the root of the tree (without loss of generality).550

As an example, consider the binary tree on the left of Figure 3. It is modelled by the551

following element of I(A′), obtained from the Munn bi-rooted tree represented on the right552

by a depth-first search: (>, a)(0, b)⊥⊥ (0, b) (1, c)(0, d)⊥⊥ (0, d) (1, d)⊥⊥ (1, d) (1, c) (>, a).553

When restricting the semantics of weighted automata and expressions to elements of I(A′)554

that are encoding of trees, Theorem 16 gives an interesting model of weighted expressions555

equivalent to weighted tree-walking automata over rationally additive semirings.556

The depth-first search of a tree is describable by an unambiguous weighted expression557

(and thus also an unambiguous weighted automaton): letting (i, A) denote
∑
a∈A(i, a), and558

N. Baudru, L.-M. Dando, N. Lhote, B. Monmege, P.-A. Reynier, J.-M. Talbot 22:15

restricting ourselves to trees with nodes of arity 0 or 2 to simplify the writing, we let559

W0 = (0, A)∗ · ⊥ , W1 = ⊥ · (1, A)
∗
, and Wsucc = W1 · (0, A) · (1, A) ·W0.560

The weighted expressionW0 finds the leftmost leaf; W1 returns to the root from the rightmost561

leaf; andWsucc goes from a leaf to the next one in the depth-first search. Then, the depth-first562

search is implemented by the weighted expression (>, A) ·W0 ·W ∗succ ·W1 · (>, A).563

By Theorem 19, there exists an equivalent non ambiguous automaton, that thus visits the564

whole tree. Since it is possible to reset the tree, going back to the root, in a non ambiguous565

fashion, we can remove the requirement for the automata and the expressions to visit the566

whole tree while starting and ending at the root. This allows for more freedom in the models.567

Taking advantage of this relaxation, it is possible to count the maximal number of568

occurrences of a letter a in branches of the tree, starting at the root of the tree, non-569

deterministically going down the chosen branch, and ending at the bottom: using the570

rationally additive semiring (N ∪ {−∞,+∞}, sup,+,−∞, 0),571 (
(>, a) · 1 + (>, A \ {a})

)
·
(
(0, a) · 1 + (0, A \ {a}) + (1, a) · 1 + (1, A \ {a})

)∗ · ⊥.572

8 Conclusion573

We have given an application of our result to tree-walking automata. A natural extension574

consists in investigating other kinds of structure like Mazurkiewicz traces or grids.575

Our approach is able to capture tree-walking automata, however it is intrinsically more576

of a tree-generating automaton model. Over trees it does not make a huge difference but577

it does if we try to extend this approach to more general graph-walking automata models.578

A natural way to define weighted automata over graphs is to take the sum of the weights579

of all paths over a given graph (in a sense already explored in [16], but limiting itself to580

non-looping runs). This means that a given path in the automaton can be a run in different581

graphs, which is not compatible with our approach of generating monoid elements.582

One possible research direction would be to consider so-called SD-expressions introduced by583

Schützenberger (see [10]). These expressions were shown to coincide with star-free expressions584

with the advantage of not using the complement (instead restricting the languages over585

which the Kleene star can be applied, namely to prefix codes with bounded synchronisation586

delay) which means it can be applied to the quantitative setting. Indeed, in [7], the authors587

extended the result to transducers and showed that these expressions correspond to aperiodic588

transducers. These expressions are naturally adapted to the unambiguous setting (maybe589

this restriction can be overcome) but it would be interesting to study their expressive power590

in the context of pre-rational monoids.591

A final direction would be to use logics instead of expressions, to describe in a less592

operational way the behaviour of weighted automata over monoids. Promising results have593

already been obtained in specific contexts, like non-looping automata walking (with pebbles)594

on words, trees or graphs [4], but a cohesive point of view via monoids is still lacking.595

References596

1 Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string597

transformations. In CSL-LICS ’14, pages 9:1–9:10. ACM, 2014.598

2 Nicolas Baudru, Louis-Marie Dando, Nathan Lhote, Benjamin Monmege, Pierre-Alain Reynier,599

and Jean-Marc Talbot. Weighted automata and expressions over pre-rational monoids, October600

2021. arXiv:2110.12395.601

CSL 2022

http://arxiv.org/abs/2110.12395

22:16 Weighted Automata and Expressions over Pre-Rational Monoids

3 Nicolas Baudru and Pierre-Alain Reynier. From two-way transducers to regular function602

expressions. International Journal of Foundations of Computer Science, 31(6):843–873, 2020.603

4 Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. Logical characterization604

of weighted pebble walking automata. In Thomas A. Henzinger and Dale Miller, editors,605

Proceedings of the joint meeting of the 23rd EACSL Annual Conference on Computer Science606

Logic (CSL) and the 29th Annual ACM/IEEE Symposium on Logic in Computer Science607

(LICS), Vienna, Austria, July 2014. ACM. doi:10.1145/2603088.2603118.608

5 R. Book, S. Even, Sheila A. Greibach, and G. Ott. Ambiguity in graphs and expressions.609

IEEE Transactions on Computers, 20(2):149–153, 1971.610

6 Christian Choffrut and Bruno Guillon. An algebraic characterization of unary two-way611

transducers. In MFCS 2014, volume 8634 of LNCS, pages 196–207. Springer, 2014.612

7 Luc Dartois, Paul Gastin, and Shankara Narayanan Krishna. SD-regular transducer expressions613

for aperiodic transformations. CoRR, arXiv:2101.07130, 2021. arXiv:2101.07130.614

8 Vrunda Dave, Paul Gastin, and Shankara Narayanan Krishna. Regular transducer expressions615

for regular transformations. In LICS 2018, pages 315–324. ACM, 2018.616

9 Anne Dicky and David Janin. Two-way automata and regular languages of overlapping tiles.617

Fundamenta Informaticae, 142:1–33, 2015.618

10 Volker Diekert and Tobias Walter. Characterizing classes of regular languages using prefix codes619

of bounded synchronization delay. In ICALP 2016, volume 55 of LIPIcs, pages 129:1–129:14.620

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.621

11 Zoltán Ésik and Werner Kuich. Rationally additive semirings. Journal of Universal Computer622

Science, 8(2):173–183, 2002.623

12 Emmanuel Filiot and Pierre-Alain Reynier. Transducers, logic and algebra for functions of624

finite words. SIGLOG News, 3(3):4–19, 2016.625

13 Bruno Guillon. Two-wayness: Automata and Transducers. PhD thesis, Université Paris-Diderot626

and Universita di Milano, 2016.627

14 Sylvain Lombardy. Two-way representations and weighted automata. RAIRO - Theor.628

Inf. and Appl., 50(4):331–350, 2016. URL: http://dx.doi.org/10.1051/ita/2016026, doi:629

10.1051/ita/2016026.630

15 Sylvain Lombardy and Jacques Sakarovitch. The validity of weighted automata. Internat. J.631

Algebra Comput., 23:863–913, 2013.632

16 Benjamin Monmege. Specification and Verification of Quantitative Properties: Expressions,633

Logics, and Automata. Phd, ENS Cachan, France, 2013.634

17 Walter D Munn. Free inverse semigroups. Proceedings of the London Mathematical Society,635

3(3):385–404, 1974.636

18 Jean-Pierre Pécuchet. Automates boustrophedon, semi-groupe de birget et monoide inversif637

libre. RAIRO Theor. Inf. and Appl., 19(1):71–100, 1985.638

19 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.639

20 Marcel-Paul Schützenberger. On the definition of a family of automata. Information and640

Control, 4:245–270, 1961.641

http://dx.doi.org/10.1145/2603088.2603118
http://arxiv.org/abs/2101.07130
http://dx.doi.org/10.1051/ita/2016026
http://dx.doi.org/10.1051/ita/2016026
http://dx.doi.org/10.1051/ita/2016026
http://dx.doi.org/10.1051/ita/2016026

	1 Introduction
	2 Monoids and semirings
	3 Series and Weighted Automata
	4 Weighted Expressions
	5 A Kleene-Like Theorem
	6 Dealing with Ambiguity
	7 Free Inverse Monoids and Applications to Walking Automata
	8 Conclusion

