Trimming Visibly Pushdown Automata

Mathieu Caralp, Pierre-Alain Reynier, and Jean-Marc Talbo

Laboratoire d’'Informatique Fondamentale de Marseille
UMR 7279, Aix-Marseille Universé& & CNRS, France

Abstract. We study the problem of trimming visibly pushdown automatBA).
We first describe a polynomial time procedure which, given a visibljhgaa/n
automaton that accepts only well-nested words, returns an equivasgioly v
pushdown automaton that is trimmed. We then show how this procedufgecan
lifted to the setting of arbitrary/ PA. Furthermore, we present a way of building,
given aVPA, an equivalenVPA which is both deterministic and trimmed.

1 Introduction

Visibly pushdown automatad/QA) are a particular class of pushdown automata defined
over an alphabet split into call, internal and return syral§a|3] . In VPA, the stack
behavior is driven by the input word: when reading a call sgimh symbol is pushed
onto the stack, for a return symbol, the top symbol of theksimpopped, and for an
internal symbol, the stack remains unchangééA have been applied in research ar-
eas such as software verificatioiRA allow one to model function calls and returns,
thus avoiding the study of data flows along invalid paths)dktl. documents process-
ing (VPA can be used to model properties over words satisfying a nmatgiroperty
between opening and closing tags).

Languages defined by visibly pushdown automata enjoy maopepties of regular
languages such as (effective) closure by Boolean opesadind these languages can al-
ways be defined by a deterministic visibly pushdown automatimweverVPA do not
have a unique minimal form [1]. Instead of minimization, anay consider trimming as
a way to deal with smaller automata. Trimming a finite statemmaton amounts to re-
moving useless states. states that do not occur in some accepting computation of the
automaton: every state of the automaton should be bothabsecfrom an initial state,
and co-reachable from a final state. This property is impbftam both a practical and
a theoretical point of view. Indeed, most of the algorithmperations performed on
an automaton will only be relevant on the trimmed part of #natbmaton. Removing
useless states may thus avoid the study of irrelevant patiheiautomaton, and speed
up the analysis. From a theoretical aspect, there are $eesuits holding for automata
provided they are trimmed. For instance, the boundednéefiisitef state automata with
multiplicities can be characterized by means of simplegpa#t for trimmed automata
(see [13,9]). Similarly, Choffrut introduced in [8] the fwiing property to character-
ize sequentiality of (trimmed) finite-state transducelssTesult was later extended to
weighted finite-state automata in [5]. Both of these reshadise been extended to visibly

! These automata were first introduced in [4] as "input-driven automata”

pushdown automata and transducers in [6] and [11] respégtiequiring these objects
to be trimmed.

While trimming finite state automata can be done easily inalirtane by solving
two reachability problems in the graph representing theraaton, the problem is much
more involved fo’VPA (and for pushdown automata in general). Indeed, in thigggtt
the current state of a computation (called a configuratismjiven by both a "control”
state and a stack content. A procedure has been present#d]ifof pushdown au-
tomata. It consists in computing, for each state, the redatgguage of stack contents
that are both reachable and co-reachable, and use thisnation to constrain the be-
haviors of the pushdown automaton in order to trim it. Thiprapch has however an
exponential time complexity.

Contributions In this work, we present a procedure for trimming visibly pdewn
automata. The running time of this procedure is bounded bglynpmial in the size
of the inputVPA. We first tackle the case ofPA that do only recognize so-called
well-nestedwords, i.e. words which have no unmatched call or return symbols. This
class ofVPA is called well-nested/PA, and denoted bwnVPA. We actually present
a construction for reducingnVPA, i.e ensuring that every run starting from an initial
configuration can be completed into an accepting run. As wieider well-nestel PA,
one can consider the "dual” of the automaton (reads the waoi fight to left), and
apply the reduction procedure on it, yielding a trimminggadure. In a second step, we
address the general case. To do so, we present a constrwtiicin modifies a/PA in
order to obtain anVPA. This construction has to be reversible, in order to rectver
original language, and to be compatible with the trimminggedure. In addition, we
also design this construction in such a way that it allowsrtve the following result:
given aVPA, we can effectively build an equivaleMPA which is both deterministic
and trimmed.

Organization of the papein Section 2 we introduce useful definitions. We address the
case of well-neste’dPA in Section 3 and the general case in Section 4. We consider the
issue of determinization in Section 5. Due to lack of spasmesproofs are omitted but
can be found in [7].

Related modeld/PA are tightly connected to several models:

Context-free grammars: it is well-known that pushdown méta are equivalent to
context-free grammars. This observation yields the fathgwprocedure for trimming
pushdown automata One can first translate the automaton into an equivaleriegbn
free grammar, then eliminate from this grammar variablesegsting the empty lan-
guage or not reachable from the start symbol, and third ebtive resulting grammar
into the pushdown automaton performing its top-down amglyihis construction has a
polynomial time complexity but, in this form, it does not &ppo VPA. Indeed, the re-
sulting pushdown automaton may not satisfy the conditiovisibility as the third step
may not always produce rules respecting the constraintsush pnd pop operations
associated with call and return symbols.

2 We thank Graud ®nizergues for pointing us this construction.

Tree automata: by the standard interpretation of XML doauisias unranked trees,
VPA can be understood as acceptors of unranked tree langutigeshdwn in [2] that
they actually do recognize precisely the set of regulaik@dintree languages, using the
encoding of so-calledtack-treeswhich is similar to the first-child next-sibling encod-
ing (fcns for short). Trimming ranked tree automata is staddand can be performed
in linear time), and one can wonder whether this approachigaeid a polynomial time
trimming procedure fo PA. Actually, going through tree automata would not ease the
construction of a trimme®PA. Indeed, trimming the fcns encoding ofxaVPA, and
then translating back the result intonmVPA yields an automaton which is reduced
but not trimmed (this is intuitively due to the fact that tlee$ encoding realizes a left-
to-right traversal of the tree). Moreover, this constroigtdoes not ensure a bijection
between accepting runs, a property that is useful when rgdeinveightedvPA.

Nested word automata [3]: this model is equivalent to that. One could thus
rephrase our constructions in this context, and obtainaheegesults.

2 Definitions

Words and well-nested word8 structured alphabet is a finite set partitioned into
three disjoint sets., X, and X,, denoting respectively theall, return andinternal
alphabets. We denote y* the set of words oveE and bye the empty word.
The set ofwell-nestedvords X, is the smallest subset &f* such that € X,
Y, Ccxr andforallc e X allr € X, allu,v € X%, cur € X% anduv € X7 .
Given a family of elements;, e, . . ., e,,, we denote byI]" ,e; the concatenation

eies ... e,. The length of a word: is denoted byu|.

Visibly pushdown automata/PA) Visibly pushdown automata are a restriction of
pushdown automata in which the stack behavior is imposedéynput word. On a
call symbol, theVPA pushes a symbol onto the stack, on a return symbol, it must pop
the top symbol of the stack, and on an internal symbol, thekstamains unchanged.
The only exception is that some return symbols may operateeampty stack.

Definition 1 (Visibly pushdown automata).A visibly pushdown automatdiyPA) on
finite words oveX is atupled = (Q, I, F, I, §) whereQ is afinite set of states,C @
is the set of initial states” C @ the set of final stated, is a finite stack alphabet,
§ = 6. W, W&t wé, the (finite) transition relation, witlh, € Q x Y. x I' x Q,
5, CQXx Y. xI'xQ,6-CQx Y. x{L}xQ,ands, CQ x X, x Q.

For a transitiont = (q,a,z,q') from 6., 6, or 6;- ort = (q,a,¢’) in 6,, we denote by
source(t) andtarget(t) the stateg andq’ respectively, and bietter(¢) the symbok.

A stackis a word from/™ and we denote by the empty word orl". A configura-
tion of aVPA is a pair(q,0) € Q x I'*.

Definition 2. A run of A on awordw = a; ...a; € X* over a sequence of transitions
(tkx)1<x<i from a configuration(g, o) to a configuration(¢’, ¢’) is a finite sequence of
symbols and configurations= (qo, 00)I1}_, (ax(qx, o%)) such that(q, o) = (qo, 00),
(¢',0") = (qi,01), and, for eachl < k <, there existsy, € I" such that either:

— tx = (qk—1, Ok, Vx> qi) € 6c @Ndoy, = op 1k, OF
— tx = (qr—1, Gk, Yk Q&) € 6, ANdog_1 = Oy, OF
— k= (qh—1, 08, L, qr) € 6;, 01 = 0% = L, Or
— tr = (qk—1,0k,qr) € 0, andoy, = op_1.

We denote byRun,, (A) the set of runs ofl over the wordw. Note that a run for the
empty word is simply any configuration. We writg, o) — (¢’, o’) when there exists
a run overw from (¢, o) to (¢, o’). We may omit the superscript when irrelevant.

Given two runsp; = (g¢, of) T4, (ai(qk,oh)) for i € {1,2}, we can consider
the concatenatiop, p, of these runs, provided thé; ,o;) = (¢5,05), defined as
p1p2 = (ab, o0) L, (af (af, o) ITE (a3 (a7, 07)),

Initial (resp. final) configurations are configurations o form (g, L), withq € I
(resp.(¢, o) with ¢ € F). Arun isinitialized if it starts in an initial configuration and it
isacceptingf it is initialized and ends in a final configuration. We dembyARun,, (A)
the set of accepting runs of over the wordw. The set of all accepting runs of is
denotedARun(A4). A word is accepted by iff there exists an accepting run dfon it.
The language ofl, denoted by.(A), is the set of words accepted by

Definition 3. AVPA A= (Q,I,F,T,0)is

— deterministidf I is a singleton and for al§ in @, for all cin X, for all 7 in X, for
all rin X,
o there exists at most one rule of the fofmc,~, ¢') in d., of the form(q, i, ¢")
in 6, and of the form(q,, L, q’) in §;-,
e forall v in I, there exists at most one rule of the fofqr, v, ¢’) in o,
— co-deterministidf I’ is a singleton and for alf’ in Q, for all cin X, for all 7 in
X, forall rin X,,
e forall v in I', there exists at most one rule of the fofmc, v, ¢’) in é..
e there exists at most one rule of the fofmr, v, ¢’) in é,., of the form(q, 4, ¢")
in 6, and of the forn(q, ¢, L, ¢’) in §:-.

(Co)-reduced and trimmed VPA configuration(g, o) is reachable from a configura-
tion (¢, o’) if there exists a word, in * such thatq’, o) % (¢,).

We say that a configuratiofy, o) is reachable(resp.co-reachablg if there exists
an initial (resp. a final) configuration such that(q, o) is reachable from (resp.x is
reachable froniq, 0)).

Definition 4. Let A be aVPA. Let us consider the three following conditions :

(i) every reachable configuration is co-reachable.
(i) for every configurationp, o) and every reachable and final configuratiehof A
such thatx’ is reachable fron{p, o), then(p, o) is reachable.
(iii) for every statey, there exists an accepting run going through a configuratigm).

We say that the automatof is reduced(resp.co-reducellif it fulfills conditions (7)
and (iii) (resp.(i¢) and(ii)),trimmedif it is both reduced and co-reduced, aneakly
reducedf it fulfills condition (7).

Observe that conditiofii) looks more complicated than the property stating that
every co-reachable configuration is reachable. Indeedkeuini finite state-automata,
the presence of a stack requires one to focus on reachallledimfggurations, and not
to consider arbitrary final configuration. However, we waksthat forVPA accepting
only well-nested words, this condition is equivalent to sirapler one.

Observe that conditiofiii) simply corresponds to the removal of states that are
useless, which can easily be done in polynomial tifne.

2.1 Well-nested VPA wnVPA)

A VPA A is said to bewell-nestedf L(A) C X7 . The class of well-nestedPA is
denoted bywnVPA. Well-nestedVPA enjoy some good properties; we describe some
of them here.

Remark 1.If A is well-nested then its final configuratioq, o) (with f a final state)
are reachable only if = L.

The property of being co-reduced can be rephrased whendasimgwnVPA

Proposition 1. Let A be awnVPA satisfying condition(ii7), then A is co-reducedff
every configuration that can reach some configuratipnl) with f € F' is reachable.

Proof. Let f € F'. By condition(iii), there existg € I'* such that configuratiofy, o)
appears on some accepting ryrand by Remark 1g = 1. Thus the set of reachable
final configurations ofd is equal tof (f, L) | f € F'}. O

Let X = (X, X, X,). The dual alphabet of’ (denoteddual(X)) is the alphabet
(X, X, X,). Roughly speaking call and return symbols are switched.

Letw be a word inX?, . We definedual(w) as the mirror image ab. We naturally
extend this notion to languagéssuch thatl, C X .

Definition 5. Let A = (Q, 1, F,I,0) be awnVPA over some alphabeX. Its dual
VPA denoteddual(A) = (Q',I’,F',I",0") over the alphabetiual(X') is given by
Q =Q1I'=F F =11I"=1T,andd, = {(¢.7,7,q) | (¢'.r,7,q9) € 5},
& ={(a.c;v.d) 1 (¢ e,7v,9) €8¢}, = {(a.3.4') | (¢+i.q) € 8.}, andé- = 0.

It is easy to prove that :
Proposition 2. Let A be awnVPA. Then

— Forallw € X7, there exists a bijection betweBan,, (A) andRungy,(.) (dual(4))
which induces a bijection betweéRun,, (A) and ARungai(.) (dual(A)).
— Alis reduced ifidual(A) is co-reduced.

— Ais deterministic ifidual(A) is co-deterministic.

3 For any statey, one can build in polynomial time from a word automaton over the alphabet
I" whose language is empty iff no configuration of the fqigmo) is reachable.

3 Trimming well-nested VPA

Let A be awnVPA on a structured alphabét. We present the construction of th@A
trimyn (A4), which recognizes the same language, and in addition isrteich First we
define the reducedPA reduce(A) which is equivalent tod.

3.1 Construction ofwreduce(A) and reduce(A)

Consider awnVPA A = (Q,I,F,I,0). We describe the construction of thé&PA
wreduce(A), which is weakly reduced. ThePA reduce(A) is then obtained by re-
moving useless states wfeduce(A), as explained in the previous section.

We first consider the s&¥/N = {(p,q) € @ x Q@ | 3(p, L) — (¢, L) € Run(A)}.
This set can be computed in quadratic time as the least oiséysa)

{(p,p) | p € Q} CWN,

if (p,p’) € WN and(p’,p”) € WN, then(p, p”’) € WN

if (p,q) € WN, and3(q,,q¢’) € §,, then(p,¢’) € WN

if (p,q) € WNand3(p',c,v,p) € b, (q,7,7.¢) € 6, then(p/,¢') € WN

Definition 6. For anywnVPA A = (Q,1, F, I ¢), we define thevnVPA wreduce(A)
as(Q,I',F',I",§)whereQ =WN,I' =WNN (I x F),FF={(f,f)| f € F},
I'" = I' x Q, andd’ is defined by its restrictions on call, retufrand internal symbols
respectively (namely., §.. and¢’):

_ 5 = @) (v:0), (0, 4) | (:9): (v, 4) € @, (p,¢,7, ") € O,

c HTEET,HSEQ,(/,T’}/, s) € d.and(s,q) € Q'}

= 0, = 1((d",¢"):7 (v.9), () | (¢.4), (p,q) € @', (¢, 7,7,) € 0,

— 8 = {((p.0),, (P, 0)) | (), (W,) € Q' (p,a p')€d}

Intuitively, the states (and the

stack) ofwreduce(A) extend those (p/ o) — s (¢',0.7)

of A with an additional state of 0/4 \f

A. This extra component is used (p, o) (s,0) w2 (g,0)
by wreduce(A4), when simulating ’

a run of theVPA A, to store the Fig. 1. Construction of call transitions.

state that the run should reach to pop the symbol on top ot#o&.sTo obtain a weakly
reducedvPA, we require for the call transitions the existence of a matgheturn tran-
sition that allows one to reach the target stat€his condition is depicted on Figure 1,
and we give an example of the construction in Figure 2.

3.2 Properties ofwreduce(A) and reduce(A)

We consider the projection from configurations ofd,.q = wreduce(A) to configu-
rations of A obtained by considering the first component of states, alsasahe first
component of stack symbols. By definition 4f,,.q, €ach transition ofl,,,.q iS aSs0Ci-
ated with a unique transition of, we also denote by this mapping. One can easily
prove (see [7]), that maps runs ofd,,.q ONto runs ofA.

The constructionsireduce andreduce have the following properties:

4 As the language is well-nested, we do not consider return transitions emipky stack.

c1/v2,2

r/m /2

c2/7v3

Fig. 2.0nthe left aVPA A, on the righteduce(A). There exists an initialized run gf overcey cq
which cannot be completed into an accepting run. This run is no longsemtréreduce(A).

Theorem 1. Let A be awnVPA, and letA,,.qs = wreduce(A) and A,eq = reduce(A).
Aured @nd A4 can be built in polynomial time, and satisfy:

(1) there exist bijections betweekRun(Aured) and ARun(A4), and ARun(Aq4) and
ARun(A) and thus in particularL.(A) = L(Awred) = L(Ared)s

(2) Awred is weakly reduced, and,q is reduced,

(3) if Ais co-reduced, therl,q is co-reduced,

(4) if A is co-deterministic, therd,,.q and A,.q are co-deterministic.

Proof (Sketch)As explained above, the mappiaginduces a mapping from runs of
Aured 10 runs ofA. It is easy to verify that this mapping preserves the propafrbeing
accepting. In addition, one can prove by induction on thecstire of the underlying
word that it is both injective and surjective when restiicte the setARun(Awred)-
This yields a bijection betweeARun(Aurd) @and ARun(A). The bijection between
ARun(Ayred) @andARun(A,eq) is trivial as by definitionA,.q only differs from A, eq by
states that do not appear in accepting runs.

The proof thatA,,q is weakly reduced proceeds by induction on the size of the
stack of the reachable configuratigm o) under consideration. It is then an immediate
consequence that,.q4 is reduced.

By Proposition 1, to prove Propert$), we only have to prove that every configura-
tion of A4 CO-reachable from a final configuration with an empty stackachable.
This is done by induction on the size of the stack of this caméion. Last, the proof
of Property(4) is done by an inspection of the transitionsAf;eq. a

3.3 From reduced to trimmed

A construction for the co-reductiorGiven awnVPA, we can perform the following
composition of constructiongoreduce = dual o reduce o dual. As a consequence of
Proposition 2 and Theorem 1, the constructtoreduce yields an equivalenvnVPA
which is co-reduced.

Trimming We define the constructiamim,,, astrim,,, = coreduce o reduce. Property
(3) of Theorem 1 entails that the constructiameduce preserves the reduction, and we
thus obtain the following result:

Theorem 2. Let A be awnVPA, and Ayim = trimy, (A). Ayim is trimmed and can be
built in polynomial time. Furthermore there exists a bijeatbetweemMRun(4) and
ARun(Atim), and thus in particulatL (A) = L(Atrim)-

Remark 2.The construction of co-reduction could also be presentpliaitely. It would
consistin adding an extra component into states and stackag, as done for the con-
structionreduce, but representing the state reached when the top symbokaddttitk
was pushed. The same approach allows to present explidielyonstructionrim,,,.

4 General case

In order to trim aVPA A over some alphabéf, we will first build awnVPA extend(A)
over a new alphabet. In a second step, we trimRA extend(A) using the procedure
described in the previous section f@nVPA. Last, we construct from the resulting
wnVPA a VPA, which recognizes the languadg A), and which is still timmed. It
is far from being trivial to propose procedures for transfimg a VPA into wnVPA,
and back, which are compatible with the notion of being trimimin addition, we will
address the property of determinism in the next section,camatonstructions should
also be compatible with that issue.

4.1 Constructing well-nested words from arbitrary words

LetY =Y. @ X, ¥ X, be a structured alphabet. We introduce the structured bdgha
ret = yety Loty Yot defined byt = X, £t = X, w {r}, and 2 =
X, W {i, | r € X.}, wherer and{i, | r € X} are fresh symbols.

We define inductively the mappirgt which transforms a word oveY into a well-
nested word oveE** as follows, giveru € X, r € X, andc € X,

ext(aw) = a - ext(w), ext(rw) = i, - ext(w),
{cwlr -ext(ws) if Jwy € X%, such thatw = cwyrws,
ext(cw) =)
¢ - ext(w) otherwise.

For exampleext(rccar) = i,.ccart with c € X, r € X, anda € X,. The mapping
ext replaces every returnon empty stack by the internal symhbipl and adds a suffix
of the form#* in order to match every unmatched call. As a consequencéy) is a
well-nested word over the alphabBt. We extend the functioext to languages in the
obvious way.

4.2 Reduction townVPA

From VPA to wnVPA ... We present the constructi@stend which turns avPA over
X7 into awnVPA over X<, Intuitively, when firing a call transition, the automatoom
deterministically guesses whether this call will be mattbe not. Then, if a call is
considered as not matching, the automaton completes itihg agransition ovefr at
the end of the run. This is done by adding a suffix to\##& which reads words from
7. Moreover the construction replaces the returns on emptkdty internals, this is
done by memorizing in the state the fact that the currenkssaempty or not.

We letT denote the set of symbolsL, T,o}. Intuitively, L means that the stack
is empty,o means that the stack contains only useless symbelsymbols associated
with calls that will be unmatched), and means that the stack contains some useless
symbols (possibly none) plus symbols which will be poppadtitermore we consider
a fresh final state denoted iy This state is used to pop all the useless symbols.

Definition 7. LetA = (Q, I, F, I',§) be aVPA over an alphabet’, we define th&/PA
extend(A) = (Q',I', F', I, §') over the alphabeE®t, whereQ' = (Q x T)U ({f} x
{Lo), I'=1x{L}, F'=(FU{f}) x {L}, " =T x T,andd’ is given by:
ol={((p,t),¢c,(7,t),(q,2)) | (p,¢c,7,q) € d.and either=T or (r=o0 At£T)}
5 ={((p, T),r, (v, 1), (@, 1)) | (p,7,7,q) € 6} U

{((p,0),7, (7, 1), (f, 1) [pe FUL{f}ye it # T}
5,={((p,1),a,(q,1)) | (p,a,q) € 6.} U{((p, L), ir,(q, L)) | (7 L, q) € 6}

Theorem 3. Let A be aVPA. Then for all wordsw € X*, there exists a bijection
betweemRun,, (A) and ARune,q(.,) (extend(A)).

...and back.We present now the construction allowing to go fromra/PA on X** to
the "original” VPA on X It is not always possible to find such/&A, we thus introduce
the property of being retractable.

Definition 8. Let X be an alphabet andl = (Q, I, F, I, §) be aVPA over the alpha-
bet X, We define two subsets@fas follows:

trap(4) ={¢€Q|3p.(p.7,7,9) €}

border(A) = {p ¢ trap(A4) | 3t € § such thakource(t) = p andtarget(t) € trap(A)}
Elements oborder(A) are calledborder statesf A.

Definition 9. LetX be an alphabetand = (Q, I, F, I', §) be aVPA over the alphabet
Xt ThenA is said to beretractablef :

(i) There exists & PA B over X such thatl.(A) = ext(L(B)),
(i7) We haverrap(A) N1 =10
(#43) For all transitionst in ¢ such thatsource(t) ¢ trap(A), if letter(t) = 7, then
target(t) € trap(A), otherwisetarget(t) & trap(A).
(7v) For all transitionst in ¢ such thatsource(t) € trap(A), thenletter(t) = 7, and
target(t) € trap(A).
(v) For each initialized run ofA which ends in a border state there exists a unique
run p’ over#+t such thatpp’ is an accepting run.

Intuitively, aVPA which is retractable has two components: the first (beforeregmy
trap(A)) can read words ovéo®*\ {7})* whereas the second reads words of the form
7+. Note that the only way to go from a state notiap(A) to a state irtrap(4) is to
use a transition which leaves a border state.Bye give an example of these properties
in Figure 3. We naturally have:

Lemma 1. Let A be aVPA, thenextend(A) is retractable.

We now define the converse of the functiottend, namedretract:

Definition 10. Let A = (Q, 1, F, I) be a retractablevVPA over the alphabef*,
we define th&/PA retract(A) = (Q',I', F', I',0") over the alphabef’ by Q' = @ \
trap(A), I' = I, F' = (F \ trap(A)) U border(A), and the set of transition rules
§ = 0 Wl Wt wol is defined byd, = 6., 0. = {t € &, | letter(t) # 7},
8t ={(p,m, L,q) | (p,ir,q) €4,},ands! = {t €6, | letter(t) € X,}.

Fig. 3. At left, the VPA A with L(A) = (crr)*c”, at right theVPA Ae. = extend(A) with
L(Aext) = {(criz)*c"7* | k € N}. border(Aeq) = {(1,0)}, trap(Aex) = {(f,0), (f, L)}.

This construction is very simple, it replaces all the ingrmansitions ovei,. by
return transitions on empty stack over symbpland removes the return transitions
over7. Note that the final states eétract(A) are the final states of which are not in
trap(A4) and the border states df. We list below important properties edtract:

Theorem 4. Let A be a retractable/PA on X, we have:

(7) for any wordw € X*, there exists a bijection betweé®Run,, (retract(A4)) and
ARuNg()(A), and thus in particular.(A) = ext(L(retract(4))),
(79) if Aistrimmed, then so istract(A).

In addition, the retractibility is preserved by the trimmiprocedure described in
the previous section for well-nest&PA:

Theorem 5. Let A be aVPA, then theVPA trim,,, (extend(A)) is retractable.

4.3 Trimming VPA

We consider the constructianm defined bytrim(A) = retract o trimy,, o extend(A),
and state its main properties:

Theorem 6. Let A be aVPA on the alphabet”, and let Ay, = trim(A). TheVPA
Aiim €an be built in polynomial time, and satisfies:

(7) thereis a bijection betweehRun(A) andARun(Ayim), and SoL(A) = L(Awim),
(i) Agrim IS trimmed.

Proof. First, by Theorem 5, th&PA trim,,,cextend(A) is retractable, and thusim(A)

is well-defined. Then, the first property follows from thetftttat such bijections exist
for the constructionsxtend, trim,,, andretract. The second property is a consequence
of Theorems 2 and 4a). O

5 Deterministic trimmed VPA

We have proven in the previous section that it is always ptessgiven aVPA, to
build an equivalenVPA (i.e. that recognizes the same language) which is trimmed. In

10

addition, in the original paper of Alur and Madhusudan, isvpaoven that it is always
possible to build an equivaleMPA that is deterministic. In this section, we prove that
it is possible to build an equivaleMPA that is both trimmed and deterministic. This is
not a trivial corollary of the two previous results, as thifetent constructions can not
be directly combined.

Due to lack of space, we do not show the determinization phaeefor VPA, it
can however be found in [2]. Note that its complexitﬂ$2”2), wheren denotes the
number of states of the inpMPA. We denote byleterminize the procedure obtained by
applying the construction of [2], followed by the removalusfeless states (according
to property(iii) of Definition 4), which can be performed in polynomial time.

5.1 Determinization preserves reduction and retractabiliy

We start by proving that the constructidaterminize preserves the properties of being
weakly reduced and of being retractable. In the sequel, tvd lse aVPA and we let
Ager = determinize(A). The following results are proved in [2]:

Theorem 7. Ay is a deterministid/PA, and L(A) = L(Aget)-

Lemma 2. Letw € X*. If there exists an initialized rup’ of A4; Onw (Not necessarily
accepting), then there exists an initialized rpiof A onw.

As a corollary we prove in [7]:

Proposition 3. If A is weakly reduced (resp. retractable), thdg.. is weakly reduced
(resp. retractable).

5.2 Construction of a deterministic trimmed VPA
We consider the following composition of the different coustions presented before:
det-trim = retract o coreduce o determinize o reduce o extend

We claim that this composition allows one to build an equnaV/PA that is both
deterministic and trimmed, as stated in the following tleeor

Theorem 8. Let A be aVPA. TheVPA det-trim(A4) is deterministic, trimmed, and
satisfiesL (A) = L(det-trim(A)).

Proof. We first let A; = reduce o extend(A). By Theorems 1 and 34, is weakly
reduced, and recognizes the languagg L(A)). In addition, we prove in [7] that
A; is retractable. Consider nows = determinize(A;). We haveL(As) = L(A;)
and, by Proposition 3 and as the constructiaerminize includes the removal of
useless states, théPA A, is deterministic, reduced and retractable. Consider now
As = coreduce(As). By Theorem 1, properties3) and(4) and by Proposition 2, the
constructioncoreduce preserves the properties of being reduced, and of being-dete
ministic. In addition, we prove in [7] that this constructialso preserves the property
of being retractable. We thus conclude thht is retractable, trimmed, deterministic,
and satisfied (As) = L(A;) = ext(L(A)). To conclude, it remains to observe that the
constructiornretract preserves the determinism, and to use Theorem 4. O

11

6 Conclusion

We introduced a series of constructions to tritdRA. For each of these constructions,
there exist projections of transitions of the obtaivgh onto those of the original one,
which yield bijections between the accepting runs of theWWkd's. As a corollary, our
constructions can be lifted to weight®PA (VPA equipped with a labelling function
of transitions, such as visibly pushdown transducers).

Our trimming procedure doesn't preserve the determinigttare of the input/PA.
We have however presented an alternative method to sineaitesty trim and deter-
minize aVPA, the complexity of this method being exponential. One camdeo
whether a deterministi? PA can be trimmed with a polynomial time complexity, pre-
serving its determinsitic nature. The answer to this qoast negative, and can be ob-
tained using the family of languagésy = {(c1 +c2)¥ci(c1 +c2)VrV R+ | k€ N},
with N € N, as a counter-example.

As future work, we plan to study the complexity of determ@imhether avPA is
trimmed. Another perspective is to implement our constonstin libraries for nested
words such as [10].

References

1. R.Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congeas for Visibly Pushdown
Languages. IMCALP, volume 3580 of. NCS pages 1102-1114. Springer, 2005.

2. R. Alur and P. Madhusudan. Visibly Pushdown LanguageSTi0C pages 202-211, 2004.

3. R. Alur and P. Madhusudan. Adding Nesting Structure to Wald€M, 56(3):1-43, 2009.

4. B.v.Braunniihl and R. Verbeek. Input-driven Languages are Recognized in &gace. In
FCT, volume 158 o.LNCS pages 40-51. Springer, 1983.

5. A. L. Buchsbaum, R. Giancarlo, and J. Westbrook. On the Deteratioiz of Weighted
Finite Automata.SIAM J. Comput.30(5):1502-1531, 2000.

6. M. Caralp, P.-A. Reynier, and J.-M. Talbot. Visibly Pushdown Auwtarwith Multiplicities:
Finiteness and K-Boundedness. Db T, volume 7410 oLLNCS pages 226-238. Springer,
2012.

7. M. Caralp, P.-A. Reynier, and J.-M. Talbot. A Polynomial Procedar Trimming Visibly
Pushdown Automata. Technical Report hal-00606778, HAL, CNR&hde, 2013.

8. C. Choffrut. Une Caraétisation des Fonctionsé§uentielles et des Fonctions Sous-
Séquentielles en tant que Relations Rationnellégeor. Comput. Sgi5(3):325-337, 1977.

9. R. De SouzaFtude Structurelle des Transducteurs de Norme BeriPhD thesis, ENST,
France, 2008.

10. E. Driscaoll, A. V. Thakur, and T. W. Reps. OpenNWA: A NestedriVAutomaton Library.
In CAV, volume 7358 oL NCS pages 665-671. Springer, 2012.

11. E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. Streamabilityesftdd Word Transduc-
tions. INFSTTCSvolume 13 olLIPIcs, pages 312—-324. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2011.

12. D. Girault-Beauquier. Some Results About Finite and Infinite Behawiofia Pushdown
Automaton. InAutomata, Languages and Progolume 172 ofLNCS pages 187-195.
Springer, 1984.

13. A. Mandel and I. Simon. On Finite Semigroups of MatricBseor. Comput. Sgi5(2):101—
111, 1977.

12

