
Trimming Visibly Pushdown Automata

Mathieu Caralp, Pierre-Alain Reynier, and Jean-Marc Talbot

Laboratoire d’Informatique Fondamentale de Marseille
UMR 7279, Aix-Marseille Universit́e & CNRS, France

Abstract. We study the problem of trimming visibly pushdown automata (VPA).
We first describe a polynomial time procedure which, given a visibly pushdown
automaton that accepts only well-nested words, returns an equivalent visibly
pushdown automaton that is trimmed. We then show how this procedure canbe
lifted to the setting of arbitraryVPA. Furthermore, we present a way of building,
given aVPA, an equivalentVPA which is both deterministic and trimmed.

1 Introduction

Visibly pushdown automata (VPA) are a particular class of pushdown automata defined
over an alphabet split into call, internal and return symbols [2,3] 1. In VPA, the stack
behavior is driven by the input word: when reading a call symbol, a symbol is pushed
onto the stack, for a return symbol, the top symbol of the stack is popped, and for an
internal symbol, the stack remains unchanged.VPA have been applied in research ar-
eas such as software verification (VPA allow one to model function calls and returns,
thus avoiding the study of data flows along invalid paths) andXML documents process-
ing (VPA can be used to model properties over words satisfying a matching property
between opening and closing tags).

Languages defined by visibly pushdown automata enjoy many properties of regular
languages such as (effective) closure by Boolean operations and these languages can al-
ways be defined by a deterministic visibly pushdown automaton. However,VPA do not
have a unique minimal form [1]. Instead of minimization, onemay consider trimming as
a way to deal with smaller automata. Trimming a finite state automaton amounts to re-
moving useless states,i.e.states that do not occur in some accepting computation of the
automaton: every state of the automaton should be both reachable from an initial state,
and co-reachable from a final state. This property is important from both a practical and
a theoretical point of view. Indeed, most of the algorithmicoperations performed on
an automaton will only be relevant on the trimmed part of thatautomaton. Removing
useless states may thus avoid the study of irrelevant paths in the automaton, and speed
up the analysis. From a theoretical aspect, there are several results holding for automata
provided they are trimmed. For instance, the boundedness offinite-state automata with
multiplicities can be characterized by means of simple patterns for trimmed automata
(see [13,9]). Similarly, Choffrut introduced in [8] the twinning property to character-
ize sequentiality of (trimmed) finite-state transducers. This result was later extended to
weighted finite-state automata in [5]. Both of these resultshave been extended to visibly

1 These automata were first introduced in [4] as ”input-driven automata”.

pushdown automata and transducers in [6] and [11] respectively, requiring these objects
to be trimmed.

While trimming finite state automata can be done easily in linear time by solving
two reachability problems in the graph representing the automaton, the problem is much
more involved forVPA (and for pushdown automata in general). Indeed, in this setting,
the current state of a computation (called a configuration) is given by both a ”control”
state and a stack content. A procedure has been presented in [12] for pushdown au-
tomata. It consists in computing, for each state, the regular language of stack contents
that are both reachable and co-reachable, and use this information to constrain the be-
haviors of the pushdown automaton in order to trim it. This approach has however an
exponential time complexity.

Contributions In this work, we present a procedure for trimming visibly pushdown
automata. The running time of this procedure is bounded by a polynomial in the size
of the inputVPA. We first tackle the case ofVPA that do only recognize so-called
well-nestedwords, i.e. words which have no unmatched call or return symbols. This
class ofVPA is called well-nestedVPA, and denoted bywnVPA. We actually present
a construction for reducingwnVPA, i.e ensuring that every run starting from an initial
configuration can be completed into an accepting run. As we consider well-nestedVPA,
one can consider the ”dual” of the automaton (reads the word from right to left), and
apply the reduction procedure on it, yielding a trimming procedure. In a second step, we
address the general case. To do so, we present a constructionwhich modifies aVPA in
order to obtain awnVPA. This construction has to be reversible, in order to recoverthe
original language, and to be compatible with the trimming procedure. In addition, we
also design this construction in such a way that it allows to prove the following result:
given aVPA, we can effectively build an equivalentVPA which is both deterministic
and trimmed.

Organization of the paperIn Section 2 we introduce useful definitions. We address the
case of well-nestedVPA in Section 3 and the general case in Section 4. We consider the
issue of determinization in Section 5. Due to lack of space, some proofs are omitted but
can be found in [7].

Related modelsVPA are tightly connected to several models:
Context-free grammars: it is well-known that pushdown automata are equivalent to

context-free grammars. This observation yields the following procedure for trimming
pushdown automata2. One can first translate the automaton into an equivalent context-
free grammar, then eliminate from this grammar variables generating the empty lan-
guage or not reachable from the start symbol, and third convert the resulting grammar
into the pushdown automaton performing its top-down analysis. This construction has a
polynomial time complexity but, in this form, it does not apply to VPA. Indeed, the re-
sulting pushdown automaton may not satisfy the condition ofvisibility as the third step
may not always produce rules respecting the constraints on push and pop operations
associated with call and return symbols.

2 We thank Ǵeraud Śenizergues for pointing us this construction.

2

Tree automata: by the standard interpretation of XML documents as unranked trees,
VPA can be understood as acceptors of unranked tree languages. It is shown in [2] that
they actually do recognize precisely the set of regular (ranked) tree languages, using the
encoding of so-calledstack-trees, which is similar to the first-child next-sibling encod-
ing (fcns for short). Trimming ranked tree automata is standard (and can be performed
in linear time), and one can wonder whether this approach could yield a polynomial time
trimming procedure forVPA. Actually, going through tree automata would not ease the
construction of a trimmedVPA. Indeed, trimming the fcns encoding of awnVPA, and
then translating back the result into awnVPA yields an automaton which is reduced
but not trimmed (this is intuitively due to the fact that the fcns encoding realizes a left-
to-right traversal of the tree). Moreover, this construction does not ensure a bijection
between accepting runs, a property that is useful when moving to weightedVPA.

Nested word automata [3]: this model is equivalent to that ofVPA. One could thus
rephrase our constructions in this context, and obtain the same results.

2 Definitions

Words and well-nested wordsA structured alphabetΣ is a finite set partitioned into
three disjoint setsΣc, Σr andΣι, denoting respectively thecall, return and internal
alphabets. We denote byΣ∗ the set of words overΣ and byǫ the empty word.

The set ofwell-nestedwordsΣ∗
wn

is the smallest subset ofΣ∗ such thatε ∈ Σ∗
wn

,
Σι ⊆ Σ∗

wn
and for allc ∈ Σc, all r ∈ Σr, all u, v ∈ Σ∗

wn
, cur ∈ Σ∗

wn
anduv ∈ Σ∗

wn
.

Given a family of elementse1, e2, . . . , en, we denote byΠn
i=1ei the concatenation

e1e2 . . . en. The length of a wordu is denoted by|u|.

Visibly pushdown automata (VPA) Visibly pushdown automata are a restriction of
pushdown automata in which the stack behavior is imposed by the input word. On a
call symbol, theVPA pushes a symbol onto the stack, on a return symbol, it must pop
the top symbol of the stack, and on an internal symbol, the stack remains unchanged.
The only exception is that some return symbols may operate onthe empty stack.

Definition 1 (Visibly pushdown automata).A visibly pushdown automaton(VPA) on
finite words overΣ is a tupleA = (Q, I, F, Γ, δ) whereQ is a finite set of states,I ⊆ Q

is the set of initial states,F ⊆ Q the set of final states,Γ is a finite stack alphabet,
δ = δc ⊎ δr ⊎ δ⊥r ⊎ δι the (finite) transition relation, withδc ⊆ Q × Σc × Γ × Q,
δr ⊆ Q×Σr × Γ ×Q, δ⊥r ⊆ Q×Σr × {⊥} ×Q, andδι ⊆ Q×Σι ×Q.

For a transitiont = (q, a, x, q′) from δc, δr or δ⊥r or t = (q, a, q′) in δι, we denote by
source(t) andtarget(t) the statesq andq′ respectively, and byletter(t) the symbola.

A stackis a word fromΓ ∗ and we denote by⊥ the empty word onΓ . A configura-
tion of aVPA is a pair(q, σ) ∈ Q× Γ ∗.

Definition 2. A run ofA on a wordw = a1 . . . al ∈ Σ∗ over a sequence of transitions
(tk)1≤k≤l from a configuration(q, σ) to a configuration(q′, σ′) is a finite sequence of
symbols and configurationsρ = (q0, σ0)Π

l

k=1(ak(qk, σk)) such that(q, σ) = (q0, σ0),
(q′, σ′) = (ql, σl), and, for each1 ≤ k ≤ l, there existsγk ∈ Γ such that either:

3

– tk = (qk−1, ak, γk, qk) ∈ δc andσk = σk−1γk, or
– tk = (qk−1, ak, γk, qk) ∈ δr andσk−1 = σkγk, or
– tk = (qk−1, ak,⊥, qk) ∈ δ⊥r , σk−1 = σk = ⊥, or
– tk = (qk−1, ak, qk) ∈ δι andσk = σk−1.

We denote byRunw(A) the set of runs ofA over the wordw. Note that a run for the
empty word is simply any configuration. We write(q, σ)

w
−→ (q′, σ′) when there exists

a run overw from (q, σ) to (q′, σ′). We may omit the superscriptw when irrelevant.
Given two runsρi = (qi0, σ

i
0)Π

ℓi

k=1(a
i

k
(qi

k
, σi

k
)) for i ∈ {1, 2}, we can consider

the concatenationρ1ρ2 of these runs, provided that(q1
ℓ1
, σ1

ℓ1
) = (q20 , σ

2
0), defined as

ρ1ρ2 = (q10 , σ
1
0)Π

ℓ1

k=1(a
1
k
(q1

k
, σ1

k
))Πℓ2

k=1(a
2
k
(q2

k
, σ2

k
)),

Initial (resp. final) configurations are configurations of the form(q,⊥), with q ∈ I

(resp.(q, σ) with q ∈ F). A run is initialized if it starts in an initial configuration and it
is acceptingif it is initialized and ends in a final configuration. We denote byARunw(A)
the set of accepting runs ofA over the wordw. The set of all accepting runs ofA is
denotedARun(A). A word is accepted byA iff there exists an accepting run ofA on it.
The language ofA, denoted byL(A), is the set of words accepted byA.

Definition 3. AVPA A = (Q, I, F, Γ, δ) is

– deterministicif I is a singleton and for allq in Q, for all c in Σc, for all i in Σι, for
all r in Σr,
• there exists at most one rule of the form(q, c, γ, q′) in δc, of the form(q, i, q′)

in δι and of the form(q, r,⊥, q′) in δ⊥r ,
• for all γ in Γ , there exists at most one rule of the form(q, r, γ, q′) in δr

– co-deterministicif F is a singleton and for allq′ in Q, for all c in Σc, for all i in
Σι, for all r in Σr,
• for all γ in Γ , there exists at most one rule of the form(q, c, γ, q′) in δc.
• there exists at most one rule of the form(q, r, γ, q′) in δr, of the form(q, i, q′)

in δι and of the form(q, c,⊥, q′) in δ⊥ι .

(Co)-reduced and trimmed VPAA configuration(q, σ) is reachable from a configura-
tion (q′, σ′) if there exists a wordu in Σ∗ such that(q′, σ′)

u
−→ (q, σ).

We say that a configuration(q, σ) is reachable(resp.co-reachable) if there exists
an initial (resp. a final) configurationκ such that(q, σ) is reachable fromκ (resp.κ is
reachable from(q, σ)).

Definition 4. LetA be aVPA. Let us consider the three following conditions :

(i) every reachable configuration is co-reachable.
(ii) for every configuration(p, σ) and every reachable and final configurationκ′ of A

such thatκ′ is reachable from(p, σ), then(p, σ) is reachable.
(iii) for every stateq, there exists an accepting run going through a configuration(q, σ).

We say that the automatonA is reduced(resp.co-reduced) if it fulfills conditions(i)
and(iii) (resp.(ii) and(iii)),trimmedif it is both reduced and co-reduced, andweakly
reducedif it fulfills condition (i).

4

Observe that condition(ii) looks more complicated than the property stating that
every co-reachable configuration is reachable. Indeed, unlike in finite state-automata,
the presence of a stack requires one to focus on reachable final configurations, and not
to consider arbitrary final configuration. However, we will see that forVPA accepting
only well-nested words, this condition is equivalent to thesimpler one.

Observe that condition(iii) simply corresponds to the removal of states that are
useless, which can easily be done in polynomial time.3

2.1 Well-nested VPA (wnVPA)

A VPA A is said to bewell-nestedif L(A) ⊆ Σ∗
wn

. The class of well-nestedVPA is
denoted bywnVPA. Well-nestedVPA enjoy some good properties; we describe some
of them here.

Remark 1.If A is well-nested then its final configurations(f, σ) (with f a final state)
are reachable only ifσ = ⊥.

The property of being co-reduced can be rephrased when consideringwnVPA

Proposition 1. LetA be awnVPA satisfying condition(iii), thenA is co-reducediff
every configuration that can reach some configuration(f,⊥) with f ∈ F is reachable.

Proof. Letf ∈ F . By condition(iii), there existsσ ∈ Γ ∗ such that configuration(f, σ)
appears on some accepting runρ, and by Remark 1,σ = ⊥. Thus the set of reachable
final configurations ofA is equal to{(f,⊥) | f ∈ F}. ⊓⊔

Let Σ = (Σc, Σr, Σι). The dual alphabet ofΣ (denoteddual(Σ)) is the alphabet
(Σr, Σc, Σι). Roughly speaking call and return symbols are switched.

Letw be a word inΣ∗
wn

. We definedual(w) as the mirror image ofw. We naturally
extend this notion to languagesL such thatL ⊆ Σ∗

wn
.

Definition 5. Let A = (Q, I, F, Γ, δ) be awnVPA over some alphabetΣ. Its dual
VPA denoteddual(A) = (Q′, I ′, F ′, Γ ′, δ′) over the alphabetdual(Σ) is given by
Q′ = Q, I ′ = F , F ′ = I, Γ ′ = Γ , and δ′c = {(q, r, γ, q′) | (q′, r, γ, q) ∈ δr},
δ′r = {(q, c, γ, q′) | (q′, c, γ, q) ∈ δc}, δ′ι = {(q, i, q′) | (q′, i, q) ∈ δι}, andδ′⊥r = ∅.

It is easy to prove that :

Proposition 2. LetA be awnVPA. Then

– For all w ∈ Σ∗
wn

, there exists a bijection betweenRunw(A) andRundual(w)(dual(A))
which induces a bijection betweenARunw(A) andARundual(w)(dual(A)).

– A is reduced iffdual(A) is co-reduced.
– A is deterministic iffdual(A) is co-deterministic.

3 For any stateq, one can build in polynomial time fromA a word automaton over the alphabet
Γ whose language is empty iff no configuration of the form(q, σ) is reachable.

5

3 Trimming well-nestedVPA

LetA be awnVPA on a structured alphabetΣ. We present the construction of theVPA
trimwn(A), which recognizes the same language, and in addition is trimmed. First we
define the reducedVPA reduce(A) which is equivalent toA.

3.1 Construction ofwreduce(A) and reduce(A)

Consider awnVPA A = (Q, I, F, Γ, δ). We describe the construction of theVPA
wreduce(A), which is weakly reduced. TheVPA reduce(A) is then obtained by re-
moving useless states ofwreduce(A), as explained in the previous section.

We first consider the setWN = {(p, q) ∈ Q × Q | ∃(p,⊥) → (q,⊥) ∈ Run(A)}.
This set can be computed in quadratic time as the least one satisfying

– {(p, p) | p ∈ Q} ⊆ WN,
– if (p, p′) ∈ WN and(p′, p′′) ∈ WN, then(p, p′′) ∈ WN

– if (p, q) ∈ WN, and∃(q, i, q′) ∈ δι, then(p, q′) ∈ WN

– if (p, q) ∈ WN and∃(p′, c, γ, p) ∈ δc, (q, r, γ, q
′) ∈ δr, then(p′, q′) ∈ WN

Definition 6. For anywnVPA A = (Q, I, F, Γ, δ), we define thewnVPA wreduce(A)
as(Q′, I ′, F ′, Γ ′, δ′) whereQ′ = WN, I ′ = WN ∩ (I × F), F ′ = {(f, f) | f ∈ F},
Γ ′ = Γ ×Q, andδ′ is defined by its restrictions on call, return4 and internal symbols
respectively (namelyδ′c, δ

′
r andδ′ι):

– δ′c =
{((p, q), c, (γ, q), (p′, q′)) | (p, q), (p′, q′) ∈ Q′, (p, c, γ, p′) ∈ δc,

∃r ∈ Σr, ∃s ∈ Q, (q′, r, γ, s) ∈ δr and(s, q) ∈ Q′}
– δ′r = {((q′, q′), r, (γ, q), (p, q)) | (q′, q′), (p, q) ∈ Q′, (q′, r, γ, p) ∈ δr}
– δ′ι = {((p, q), a, (p′, q)) | (p, q), (p′, q) ∈ Q′, (p, a, p′) ∈ δι}

Intuitively, the states (and the

(p, σ)

(p′, σ.γ) (q′, σ.γ)

(s, σ) (q, σ)

c

w1

r

w2

Fig. 1. Construction of call transitions.

stack) ofwreduce(A) extend those
of A with an additional state of
A. This extra component is used
by wreduce(A), when simulating
a run of theVPA A, to store the
state that the run should reach to pop the symbol on top of the stack. To obtain a weakly
reducedVPA, we require for the call transitions the existence of a matching return tran-
sition that allows one to reach the target stateq. This condition is depicted on Figure 1,
and we give an example of the construction in Figure 2.

3.2 Properties ofwreduce(A) and reduce(A)

We consider the projectionπ from configurations ofAwred = wreduce(A) to configu-
rations ofA obtained by considering the first component of states, as well as the first
component of stack symbols. By definition ofAwred, each transition ofAwred is associ-
ated with a unique transition ofA, we also denote byπ this mapping. One can easily
prove (see [7]), thatπ maps runs ofAwred onto runs ofA.

The constructionswreduce andreduce have the following properties:
4 As the language is well-nested, we do not consider return transitions on theempty stack.

6

1 2 3

c/γ1

r/γ1

c1/γ2

c2/γ3

r/γ3

r/γ2

1, 1 2, 2

3, 3

2, 3
c/γ1, 1

r/γ1, 1
r/γ3, 3

r/γ2, 2

c1/γ2, 2

c2/γ3, 3

Fig. 2.On the left aVPAA, on the rightreduce(A). There exists an initialized run ofA overcc1c1
which cannot be completed into an accepting run. This run is no longer present inreduce(A).

Theorem 1. LetA be awnVPA, and letAwred = wreduce(A) andAred = reduce(A).
Awred andAred can be built in polynomial time, and satisfy:

(1) there exist bijections betweenARun(Awred) andARun(A), andARun(Ared) and
ARun(A) and thus in particularL(A) = L(Awred) = L(Ared),

(2) Awred is weakly reduced, andAred is reduced,
(3) if A is co-reduced, thenAred is co-reduced,
(4) if A is co-deterministic, thenAwred andAred are co-deterministic.

Proof (Sketch).As explained above, the mappingπ induces a mapping from runs of
Awred to runs ofA. It is easy to verify that this mapping preserves the property of being
accepting. In addition, one can prove by induction on the structure of the underlying
word that it is both injective and surjective when restricted to the setARun(Awred).
This yields a bijection betweenARun(Awred) andARun(A). The bijection between
ARun(Awred) andARun(Ared) is trivial as by definitionAred only differs fromAwred by
states that do not appear in accepting runs.

The proof thatAwred is weakly reduced proceeds by induction on the size of the
stack of the reachable configuration(p, σ) under consideration. It is then an immediate
consequence thatAred is reduced.

By Proposition 1, to prove Property(3), we only have to prove that every configura-
tion of Awred co-reachable from a final configuration with an empty stack isreachable.
This is done by induction on the size of the stack of this configuration. Last, the proof
of Property(4) is done by an inspection of the transitions ofAwred. ⊓⊔

3.3 From reduced to trimmed

A construction for the co-reductionGiven awnVPA, we can perform the following
composition of constructions:coreduce = dual ◦ reduce ◦ dual. As a consequence of
Proposition 2 and Theorem 1, the constructioncoreduce yields an equivalentwnVPA
which is co-reduced.

Trimming We define the constructiontrimwn astrimwn = coreduce ◦ reduce. Property
(3) of Theorem 1 entails that the constructioncoreduce preserves the reduction, and we
thus obtain the following result:

Theorem 2. LetA be awnVPA, andAtrim = trimwn(A). Atrim is trimmed and can be
built in polynomial time. Furthermore there exists a bijection betweenARun(A) and
ARun(Atrim), and thus in particularL(A) = L(Atrim).

7

Remark 2.The construction of co-reduction could also be presented explicitely. It would
consist in adding an extra component into states and stack symbols, as done for the con-
structionreduce, but representing the state reached when the top symbol of the stack
was pushed. The same approach allows to present explicitelythe constructiontrimwn.

4 General case

In order to trim aVPAA over some alphabetΣ, we will first build awnVPA extend(A)
over a new alphabet. In a second step, we trim theVPA extend(A) using the procedure
described in the previous section forwnVPA. Last, we construct from the resulting
wnVPA a VPA, which recognizes the languageL(A), and which is still trimmed. It
is far from being trivial to propose procedures for transforming aVPA into wnVPA,
and back, which are compatible with the notion of being trimmed. In addition, we will
address the property of determinism in the next section, andour constructions should
also be compatible with that issue.

4.1 Constructing well-nested words from arbitrary words

Let Σ = Σc ⊎ Σr ⊎ Σι be a structured alphabet. We introduce the structured alphabet
Σext = Σext

c ⊎ Σext
r ⊎ Σext

ι defined byΣext
c = Σc, Σext

r = Σr ⊎ {r̄}, andΣext
ι =

Σι ⊎ {ir | r ∈ Σr}, wherer̄ and{ir | r ∈ Σr} are fresh symbols.
We define inductively the mappingext which transforms a word overΣ into a well-

nested word overΣext as follows, givena ∈ Σι, r ∈ Σr andc ∈ Σc:
ext(aw) = a · ext(w), ext(rw) = ir · ext(w),

ext(cw) =

{

cw1r · ext(w2) if ∃w1 ∈ Σ∗
wn

such thatw = cw1rw2,
c · ext(w) otherwise.

For example,ext(rccar) = irccarr̄ with c ∈ Σc, r ∈ Σr anda ∈ Σι. The mapping
ext replaces every returnr on empty stack by the internal symbolir, and adds a suffix
of the formr̄∗ in order to match every unmatched call. As a consequence,ext(w) is a
well-nested word over the alphabetΣext. We extend the functionext to languages in the
obvious way.

4.2 Reduction townVPA

FromVPA to wnVPA . . . We present the constructionextend which turns aVPA over
Σ into awnVPA overΣext. Intuitively, when firing a call transition, the automaton non-
deterministically guesses whether this call will be matched or not. Then, if a call is
considered as not matching, the automaton completes it by using a transition over̄r at
the end of the run. This is done by adding a suffix to theVPA which reads words from
r̄+. Moreover the construction replaces the returns on empty stack by internals, this is
done by memorizing in the state the fact that the current stack is empty or not.

We letT denote the set of symbols{⊥,⊤, ◦}. Intuitively, ⊥ means that the stack
is empty,◦ means that the stack contains only useless symbols (i.e. symbols associated
with calls that will be unmatched), and⊤ means that the stack contains some useless
symbols (possibly none) plus symbols which will be popped. Furthermore we consider
a fresh final state denoted bȳf . This state is used to pop all the useless symbols.

8

Definition 7. LetA = (Q, I, F, Γ, δ) be aVPA over an alphabetΣ, we define theVPA
extend(A) = (Q′, I ′, F ′, Γ ′, δ′) over the alphabetΣext, whereQ′ = (Q×T)∪ ({f̄}×
{⊥, ◦}), I ′ = I × {⊥}, F ′ = (F ∪ {f̄})× {⊥}, Γ ′ = Γ × T , andδ′ is given by:

δ′c={((p, t), c, (γ, t), (q, x)) | (p, c, γ, q) ∈ δc and eitherx=⊤ or (x= ◦ ∧ t 6=⊤)}
δ′r={((p,⊤), r, (γ, t), (q, t)) | (p, r, γ, q) ∈ δr} ∪

{((p, ◦), r̄, (γ, t), (f̄ , t)) | p ∈ F ∪ {f̄}, γ ∈ Γ, t 6= ⊤}
δ′ι={((p, t), a, (q, t)) | (p, a, q) ∈ δι} ∪ {((p,⊥), ir, (q,⊥)) | (p, r,⊥, q) ∈ δr}

Theorem 3. Let A be aVPA. Then for all wordsw ∈ Σ∗, there exists a bijection
betweenARunw(A) andARunext(w)(extend(A)).

. . . and back.We present now the construction allowing to go from awnVPA onΣext to
the ”original”VPA onΣ. It is not always possible to find such aVPA, we thus introduce
the property of being retractable.

Definition 8. LetΣ be an alphabet andA = (Q, I, F, Γ, δ) be aVPA over the alpha-
betΣext. We define two subsets ofQ as follows:
trap(A) = {q ∈ Q | ∃p, (p, r̄, γ, q) ∈ δr}
border(A) = {p 6∈ trap(A) | ∃t ∈ δ such thatsource(t) = p andtarget(t) ∈ trap(A)}
Elements ofborder(A) are calledborder statesof A.

Definition 9. LetΣ be an alphabet andA = (Q, I, F, Γ, δ) be aVPA over the alphabet
Σext. ThenA is said to beretractableif :

(i) There exists aVPA B overΣ such thatL(A) = ext(L(B)),
(ii) We havetrap(A) ∩ I = ∅
(iii) For all transitions t in δ such thatsource(t) 6∈ trap(A), if letter(t) = r̄, then

target(t) ∈ trap(A), otherwisetarget(t) 6∈ trap(A).
(iv) For all transitionst in δ such thatsource(t) ∈ trap(A), thenletter(t) = r̄, and

target(t) ∈ trap(A).
(v) For each initialized run ofA which ends in a border state there exists a unique

run ρ′ over r̄+ such thatρρ′ is an accepting run.

Intuitively, aVPA which is retractable has two components: the first (before entering
trap(A)) can read words over(Σext\{r̄})∗ whereas the second reads words of the form
r̄+. Note that the only way to go from a state not intrap(A) to a state intrap(A) is to
use a transition which leaves a border state byr̄. We give an example of these properties
in Figure 3. We naturally have:

Lemma 1. LetA be aVPA, thenextend(A) is retractable.

We now define the converse of the functionextend, namedretract:

Definition 10. Let A = (Q, I, F, Γ, δ) be a retractableVPA over the alphabetΣext,
we define theVPA retract(A) = (Q′, I ′, F ′, Γ, δ′) over the alphabetΣ byQ′ = Q \
trap(A), I ′ = I, F ′ = (F \ trap(A)) ∪ border(A), and the set of transition rules
δ′ = δ′c ⊎ δ′r ⊎ δ′⊥r ⊎ δ′ι is defined by:δ′c = δc, δ′r = {t ∈ δr | letter(t) 6= r̄},
δ′⊥r = {(p, r,⊥, q) | (p, ir, q) ∈ δι}, andδ′ι = {t ∈ δι | letter(t) ∈ Σι}.

9

1

2

r/γ r/⊥

c/γ 1,⊥ 1,⊤ 1, ◦ f̄ , ◦

f̄ ,⊥2,⊥ 2,⊤ 2, ◦

c/γ,⊥
c/γ,⊥

c/γ, ◦

r/γ,⊥
r/γ,⊤ r/γ, ◦

r̄/γ, ◦

r̄/γ,⊥
ir r̄/γ,⊥

c/γ,⊤
c/γ, ◦

r̄/γ, ◦

Fig. 3. At left, the VPA A with L(A) = (crr)∗c∗, at right theVPA Aext = extend(A) with
L(Aext) = {(crir)

∗ck r̄k | k ∈ N}. border(Aext) = {(1, ◦)}, trap(Aext) = {(f̄ , ◦), (f̄ ,⊥)}.

This construction is very simple, it replaces all the internal transitions overir by
return transitions on empty stack over symbolr, and removes the return transitions
over r̄. Note that the final states ofretract(A) are the final states ofA which are not in
trap(A) and the border states ofA. We list below important properties ofretract:

Theorem 4. LetA be a retractableVPA onΣext, we have:

(i) for any wordw ∈ Σ∗, there exists a bijection betweenARunw(retract(A)) and
ARunext(w)(A), and thus in particularL(A) = ext(L(retract(A))),

(ii) if A is trimmed, then so isretract(A).

In addition, the retractibility is preserved by the trimming procedure described in
the previous section for well-nestedVPA:

Theorem 5. LetA be aVPA, then theVPA trimwn(extend(A)) is retractable.

4.3 Trimming VPA

We consider the constructiontrim defined bytrim(A) = retract ◦ trimwn ◦ extend(A),
and state its main properties:

Theorem 6. Let A be aVPA on the alphabetΣ, and letAtrim = trim(A). TheVPA
Atrim can be built in polynomial time, and satisfies:

(i) there is a bijection betweenARun(A) andARun(Atrim), and soL(A) = L(Atrim),
(ii) Atrim is trimmed.

Proof. First, by Theorem 5, theVPA trimwn◦extend(A) is retractable, and thustrim(A)
is well-defined. Then, the first property follows from the fact that such bijections exist
for the constructionsextend, trimwn andretract. The second property is a consequence
of Theorems 2 and 4.(ii). ⊓⊔

5 Deterministic trimmed VPA

We have proven in the previous section that it is always possible, given aVPA, to
build an equivalentVPA (i.e. that recognizes the same language) which is trimmed. In

10

addition, in the original paper of Alur and Madhusudan, it was proven that it is always
possible to build an equivalentVPA that is deterministic. In this section, we prove that
it is possible to build an equivalentVPA that is both trimmed and deterministic. This is
not a trivial corollary of the two previous results, as the different constructions can not
be directly combined.

Due to lack of space, we do not show the determinization procedure forVPA, it
can however be found in [2]. Note that its complexity isO(2n

2

), wheren denotes the
number of states of the inputVPA. We denote bydeterminize the procedure obtained by
applying the construction of [2], followed by the removal ofuseless states (according
to property(iii) of Definition 4), which can be performed in polynomial time.

5.1 Determinization preserves reduction and retractability

We start by proving that the constructiondeterminize preserves the properties of being
weakly reduced and of being retractable. In the sequel, we let A be aVPA and we let
Adet = determinize(A). The following results are proved in [2]:

Theorem 7. Adet is a deterministicVPA, andL(A) = L(Adet).

Lemma 2. Letw ∈ Σ∗. If there exists an initialized runρ′ ofAdet onw (not necessarily
accepting), then there exists an initialized runρ of A onw.

As a corollary we prove in [7]:

Proposition 3. If A is weakly reduced (resp. retractable), thenAdet is weakly reduced
(resp. retractable).

5.2 Construction of a deterministic trimmedVPA

We consider the following composition of the different constructions presented before:

det-trim = retract ◦ coreduce ◦ determinize ◦ reduce ◦ extend

We claim that this composition allows one to build an equivalentVPA that is both
deterministic and trimmed, as stated in the following theorem:

Theorem 8. Let A be aVPA. TheVPA det-trim(A) is deterministic, trimmed, and
satisfiesL(A) = L(det-trim(A)).

Proof. We first letA1 = reduce ◦ extend(A). By Theorems 1 and 3,A1 is weakly
reduced, and recognizes the languageext(L(A)). In addition, we prove in [7] that
A1 is retractable. Consider nowA2 = determinize(A1). We haveL(A2) = L(A1)
and, by Proposition 3 and as the constructiondeterminize includes the removal of
useless states, theVPA A2 is deterministic, reduced and retractable. Consider now
A3 = coreduce(A2). By Theorem 1, properties(3) and(4) and by Proposition 2, the
constructioncoreduce preserves the properties of being reduced, and of being deter-
ministic. In addition, we prove in [7] that this construction also preserves the property
of being retractable. We thus conclude thatA3 is retractable, trimmed, deterministic,
and satisfiesL(A3) = L(A1) = ext(L(A)). To conclude, it remains to observe that the
constructionretract preserves the determinism, and to use Theorem 4. ⊓⊔

11

6 Conclusion

We introduced a series of constructions to trim aVPA. For each of these constructions,
there exist projections of transitions of the obtainedVPA onto those of the original one,
which yield bijections between the accepting runs of the twoVPA’s. As a corollary, our
constructions can be lifted to weightedVPA (VPA equipped with a labelling function
of transitions, such as visibly pushdown transducers).

Our trimming procedure doesn’t preserve the deterministicnature of the inputVPA.
We have however presented an alternative method to simultaneously trim and deter-
minize aVPA, the complexity of this method being exponential. One can wonder
whether a deterministicVPA can be trimmed with a polynomial time complexity, pre-
serving its determinsitic nature. The answer to this question is negative, and can be ob-
tained using the family of languagesLN = {(c1+ c2)

kc1(c1+ c2)
NrN+k+1 | k ∈ N},

with N ∈ N, as a counter-example.
As future work, we plan to study the complexity of determining whether aVPA is

trimmed. Another perspective is to implement our constructions in libraries for nested
words such as [10].

References

1. R. Alur, V. Kumar, P. Madhusudan, and M. Viswanathan. Congruences for Visibly Pushdown
Languages. InICALP, volume 3580 ofLNCS, pages 1102–1114. Springer, 2005.

2. R. Alur and P. Madhusudan. Visibly Pushdown Languages. InSTOC, pages 202–211, 2004.
3. R. Alur and P. Madhusudan. Adding Nesting Structure to Words.JACM, 56(3):1–43, 2009.
4. B. v. Braunm̈uhl and R. Verbeek. Input-driven Languages are Recognized in logn Space. In

FCT, volume 158 ofLNCS, pages 40–51. Springer, 1983.
5. A. L. Buchsbaum, R. Giancarlo, and J. Westbrook. On the Determinization of Weighted

Finite Automata.SIAM J. Comput., 30(5):1502–1531, 2000.
6. M. Caralp, P.-A. Reynier, and J.-M. Talbot. Visibly Pushdown Automata with Multiplicities:

Finiteness and K-Boundedness. InDLT, volume 7410 ofLNCS, pages 226–238. Springer,
2012.

7. M. Caralp, P.-A. Reynier, and J.-M. Talbot. A Polynomial Procedure for Trimming Visibly
Pushdown Automata. Technical Report hal-00606778, HAL, CNRS, France, 2013.

8. C. Choffrut. Une Caractérisation des Fonctions Séquentielles et des Fonctions Sous-
Séquentielles en tant que Relations Rationnelles.Theor. Comput. Sci., 5(3):325–337, 1977.

9. R. De Souza.Étude Structurelle des Transducteurs de Norme Bornée. PhD thesis, ENST,
France, 2008.

10. E. Driscoll, A. V. Thakur, and T. W. Reps. OpenNWA: A Nested-Word Automaton Library.
In CAV, volume 7358 ofLNCS, pages 665–671. Springer, 2012.

11. E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. Streamability of Nested Word Transduc-
tions. InFSTTCS, volume 13 ofLIPIcs, pages 312–324. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2011.

12. D. Girault-Beauquier. Some Results About Finite and Infinite Behaviours of a Pushdown
Automaton. InAutomata, Languages and Prog., volume 172 ofLNCS, pages 187–195.
Springer, 1984.

13. A. Mandel and I. Simon. On Finite Semigroups of Matrices.Theor. Comput. Sci., 5(2):101–
111, 1977.

12

