
A Hierarchical Approach for the Synthesis of Stabilizing
Controllers for Hybrid Systems?

Janusz Malinowski, Peter Niebert, and Pierre-Alain Reynier

LIF, Université de Provence & CNRS, UMR 6166, France

Abstract. We consider a discretization based approach to controller synthesis
of hybrid systems that allows to handle non-linear dynamics. In such an ap-
proach, states are grouped together in a finite index partition at the price of a
non-deterministic over approximation of the transition relation. The main contri-
bution of this work is a technique to reduce the state explosion generated by the
discretization: exploiting structural properties of ODE systems, we propose a hi-
erarchical approach to the synthesis problem by solving it first for sub problems
and using the results for state space reduction in the full problem. A secondary
contribution concerns combined safety and liveness control objectives that ap-
proximate stabilization.

1 Introduction

The model of hybrid systems constitutes a very rich modeling framework as it allows
the combination of continuous and discrete-event dynamics. It is used in numerous ap-
plications such as the control of physical or chemical processes by computer programs,
avionics, etc. For such systems, except under strong restrictions on the continuous dy-
namics, the set of reachable configurations cannot be computed exactly. As a conse-
quence, numerous approximation techniques have been devised, with the objective of
building an abstract system for which analysis is possible. The basic setting of this work
is the discretization in both time and (continuous) variables of the system. In particular,
we allow arbitrary dynamics, and especially nonlinear ones. To simplify the presenta-
tion, we thus focus on the continuous dynamics, and do not consider general hybrid
systems, but simply systems of ODEs.

Most works related to hybrid systems are concerned with verification, and especially
focus on the approximate computation of the reachability set. We tackle here the (more
difficult) problem of controller synthesis. The purpose of this work is to progress in the
direction of realistic controller synthesis for nonlinear ODE systems. Given a plant (an
open dynamical system), controller synthesis aims at designing a system which interacts
with the plant in order to satisfy a given objective. A natural setting, which subsumes
standard safety and reachability objectives, consists of the design of a feedback con-
troller which allows to stabilize the system around a target configuration. There are two
main contributions of this work. One concerns the formalisation and algorithmic han-
dling of a pragmatic choice of control objectives that approximate the ideal of systems
stabilized under control. The other, the main objective, concerns a state space reduction

? Partially supported by the ANR project ECSPER(ANR JC09_472677 ECSPER).

2

approach that helps render the synthesis problem feasible despite combinatory explo-
sion in multi-variate nonlinear dynamics: a dedicated slicing technique is introduced
for controller synthesis to rapidly eliminate « hopeless » states from the search space.

The most widespread notions of games found in control applications are safety
games (such as Ramadge-Wonham games) where the controller is supposed to avoid
something bad from happening (by forbidding some controllable transitions), and reach-
ability games, where the controller is supposed to drive the system into a good state
within a finite amount of time. Consider the objective of stabilizing an inverted pen-
dulum in its vertical top position. With a game based approach, we would not know
how to express convergence as a goal, but for a given distance ε, we can state that we
want the pendulum to reach a neighbourhood of radius ε around the desired point and
to stay forever within that region. We formalize these combined until and safety objec-
tives, and provide an efficient, on-the-fly, linear algorithm for solving such stabilization
games. This algorithm is derived from model-checking algorithms for the alternation-
free fragment of the propositional µ-calculus [7, 12].

State-space explosion in the number of variables is inherent in discretization tech-
niques. To combat this problem, we propose an original hierarchical approach for the
controller synthesis problem. It amounts to identifying subsets of variables of the ODE
system whose dynamics is independent from all other variables. We formulize the in-
duced relation as a bisimulation, and prove that it ensures the preservation of control-
lability in the subproblems w.r.t. stabilization objectives we consider. More precisely,
winning states in the global problem are projected on winning states in the subproblems,
which allows a strong reduction of the state space explored for the global problem. For
simplicity, we only discuss ODE systems in the paper, but our work naturally applies
to periodic controller synthesis for hybrid systems. A prototype implementation is pre-
sented, and experiments conducted on the inverted pendulum case study prove the vast
improvement provided by this hierarchical approach.

Related work on hybrid systems in general and for the discretized approach in par-
ticular is vast. There is an obvious tradeoff between state explosion and non-determinism
when discretizing hybrid systems for state space analysis. When the synthesis fails, it
may not be clear whether this is due to the actual hybrid system or due to an overly
coarse discretization. Discrete-state abstractions of nonlinear systems have been con-
sidered in [2, 15], and the possibility of building as rough as possible abstractions by
successive abstractions has been explored [6, 1, 13]. The problem of controller synthesis
for nonlinear hybrid systems is also considered in [16], but only for safety objectives.
Finally note that the notion of hierarchy we consider in ODE systems in our approach
is not the same as hierarchical decomposition of controllers such as in [14].

Formalization of our notion of stabilization games is presented in Section 2. We
present the discretization of a nonlinear ODE system in Section 3. Section 4 contains
the presentation of our hierarchical approach, and Section 5 reports experiments.

2 Controller synthesis for stabilization games

A standard way of modeling the control of synchronous systems is a two player game
with alternating moves : for the duration of an interval, the controller can (determinis-

3

tically) set the control parameters and the system replies at the end of the interval with
a perturbed target, a non-deterministic response. The set of states thus decomposes into
a bipartite graph of controllable and uncontrollable states. We fix finite sets of environ-
ment actions ΣE , controller actions ΣC , and atomic propositions Γ .

Definition 1 (Control Game Structure (CGS)). A CGS over (ΣE , ΣC , Γ) is a tuple
C = 〈SE , SC , T, S0, λ〉 where SC is the set of controller states, SE the set of environ-
ment states, S := SE]SC , a transition relation T ⊆ (SE×ΣE×SC)∪(SC×ΣC×SE),
an initial state set S0 ⊆ S, and λ : S → 2Γ labels states by atomic propositions.

We require the environment to be deadlock free, i.e. for every s ∈ SE there exists at
least one (s, a, s′) ∈ T and we require controller actions to be deterministic, i.e. for
every s ∈ SC and a ∈ ΣC there exists a unique s′ ∈ SE such that (s, a, s′) ∈ T . For a
state s ∈ S, we let #Succ(s) = |{s′ ∈ S | (s, a, s′) ∈ T for some a ∈ ΣE ∪ΣC}|.

The game is turn-based and played as follows: starting from a controller state s ∈
SC , the controller chooses an action σ ∈ ΣC , which leads the system in a (single)
environment state s′ (as the controller actions are deterministic). Then, a turn of the
environment in state s′ ∈ SE consists of determining a state y such that (s′, σ′, y) ∈
T for some σ′ ∈ ΣE . Such an interaction builds a path which is a finite or infinite
sequence ρ = (s0, a1, s1, a2, . . .) such that (sk, ak+1, sk+1) ∈ T for every k ≥ 0 (we
do not require a path to begin with an initial state). To determine whether the controller
or the environment wins, a control objective is given as a set W of (winning) paths,
which defines which paths are winning for the controller.

Our work falls in the (well-studied) setting of parity games, which are memoryless
determined (see for instance [9] for details). As a consequence, and to simplify the
presentation, we directly focus on memoryless strategies (a.k.a controllers).

A (memoryless) controller is a mapping c : SC → 2ΣC associating to a controller
state s ∈ SC a non-empty set of controller actions c(s). A path s0, a1, s1, a2, . . . is
controlled by c iff for every si ∈ SC we have ai+1 ∈ c(si). Given a state s, we say
that a controller c guarantees a control objective W from s iff every path ρ beginning
at s and controlled by c belongs to W . A state s is winning for control objective W iff
there exists a controller c that guarantees W from s. Finally, a control game structure is
winning for control objective W iff every initial state is winning for W .

We recall the widely used operator CPre : 2S −→ 2S (controllable predecessors).
Intuitively, it aims at computing, given a set of target states X , the set of states from
which the controller can guarantee to end up in X in one step. More formally, we define:

CPre(X) = {s ∈ SC | ∃(s, a, s′) ∈ T.s′ ∈ X} ∪ {s ∈ SE | ∀(s, a, s′) ∈ T.s′ ∈ X}

Note that if s ∈ SC , there must exist a controllable action leading to X while if
s ∈ SE , we require that all possible successors for the environment must be in X .

2.1 Stabilization games

Basic control objectives We now consider more specific control objectives for hybrid
systems with initial conditions. We define two basic control objectives:

4

STAY: Given a set of states A ⊆ S, stay forever in the set A. Formally, we define:

WStay(A) = {ρ = (s0, a1, s1, a2, . . .) | ∀i ≥ 0, si ∈ A}

UNTIL: Given two sets of states AB ⊆ S, reach a state of B in a finite number of steps
without leaving the set of allowed states A, where we require1 that B ⊆ A. Formally:

WUntil(A,B) = {ρ = (s0, a1, s1, a2, . . .) | ∃k ≥ 0.sk ∈ B ∧ ∀0 ≤ i < k, si ∈ A}

Stay(C, A) denotes the set of winning states of C w.r.t. the control objective WStay(A)

and Until(C, A, B) denotes the set of winning states w.r.t. WUntil(A,B). Intuitively, these
objectives correspond to the linear time temporal logic properties GA and A U B.

Fixpoint characterization These winning sets can be defined in terms of fixpoints of
operators over sets of states. Therefore, we define the two following operators:

OStay(A)(X) = A ∩ CPre(X) (1)
OUntil(A,B)(X) = B ∪ (A ∩ CPre(X)) (2)

Intuitively, to stay forever in A, the controller should own an action which leads him
to a winning state. This explains equation (1). To characterize Until(C, A, B) (equation
(2)), one starts from sets in B and computes the least fixpoint of states from which the
controller can reach such states, using again the CPre operator. Then, we obtain the
following fixpoint characterizations:

Stay(C, A) =
⋂
n≥0

On
Stay(A)(S) and Until(C, A, B) =

⋃
n≥0

On
Until(A,B)(∅)

Here, we use the notation for the n-fold application of operators : O0(X) = X and
On+1(X) = O(On(X)). Note, that for the (finite) set lattice over S the approximation⋃

n On(∅) is equal to the least fixpoint of O, i.e. the least set S′ such that O(S′) = S′

and similarly
⋂

n On(S) is equal to the greatest fixpoint.

Controllers’ computation For a state s ∈ Until(C, A, B), we moreover define the dis-
tance between s and B as the least n such that s ∈ On+1

Until(A,B)(∅). Notably, if s ∈ B

its distance from B is 0. We denote by d(s,B) this value. In order to obtain controllers
from these winning sets, one can proceed as follows. Let A,B ⊆ S. We distinguish the
two objectives:

Stay(C, A): for a state s ∈ Stay(C, A) ∩ SC , the controller has to choose any action
a ∈ ΣC such that s′ ∈ Stay(C, A) for the unique triple (s, a, s′).

Until(C, A, B): for a state s ∈ Until(C, A, B) ∩ SC , if s ∈ B, then we do not need
a strategy for this objective. Otherwise, if s 6∈ B, we must ensure progress towards
the set B. This can be guaranteed if the controller chooses an action a such that the
target state s′ (i.e. such that (s, a, s′) ∈ T) verifies d(s′, B) < d(s,B). By the fixpoint
characterization of the set Until(C, A, B), this is possible.

1 The practically relevant objective is Until(A, A∩B), which is equal to Until(A, B) under this
assumption.

5

Stabilization objective Recall that in our setting, our objective is to synthesize a con-
troller for a dynamical system, which, starting from an intial configuration, leads the
system towards a desirable configuration. To express our stabilization objective, we
start from the two following properties: Goal is a set of goal states which describes
a neigbourhood around the desirable configuration, Allow is a set of allowed states,
which describes the legal configurations of the system. In the sequel, we assume that
the inclusion Goal ⊆ Allow holds.

Intuitively, we are interested in synthesizing a con-

G
A

b
b

b

b

b

b

b

b

S

troller which is able to guide the system from an ini-
tial state, while staying in the set Allow, towards a state
from which it can stay in the set Goal forever. We will
express formally this objective using the operators Stay
and Until. In order to obtain efficient algorithms, we will
use computations starting from initial configurations.
We thus introduce some additional definitions. We formalize a subset of « reachable
» states from the initial condition while respecting the description of « allowed » states.
Formally, this set is defined as follows:

Acc(C, Allow) = {s ∈ S | ∃ρ = (s0, a1, . . . , an−1, sn) such that s0 ∈ S0,
sn = s and ∀i ≤ n, si ∈ Allow}

We are now equipped to formalize the sets of states we are interested in:

Stabilize(C, Allow, Goal) = Until(C, Acc(C, Allow), Stay(C, Goal∩Acc(C, Allow)))

Intuitively, it reads as Acc(C, Allow) U Stay(C, Goal ∩ Acc(C, Allow)). Note that the
strategy for Stabilize is memoryless: it is a simple combination of the strategies for
Stay (for states in Stay) and Until (for the other states) indicated above.

For the reader familiar with the µ-calculus, we note that Acc, Stay and Until can be
characterized by the following formulae:

Post(X) = {s′ ∈ S | ∃s ∈ X s.t. s→ s′ ∈ T} (3)
Acc(C, A) : µX.S0 ∨ (A ∧ Post(X)) (4)

Stay(C, A) : νX.A ∧ CPre(X) (5)
Until(C, A, B) : µX.B ∨ (A ∧ CPre(X)) (6)

Note the identity CPre(X) = 〈ΣC〉X ∨ [ΣE]X . In particular, this allows to deduce a
µ-calculus formula characterizing the states in Stabilize(C, Allow, Goal).

2.2 Algorithm for stabilization games

In the sequel, we present the (efficient) algorithm we used to solve the controller syn-
thesis problem. This algorithm is used for each “level” in the hierarchical approach in
Section 4.

This algorithm is derived from model checking algorithms for the alternation free
µ-calculus, notably integrating concepts first published in [7, 12]. In [5], the authors

6

observe that these local algorithms can be used to decide reachability properties in
(un)timed games. We extend this observation to the more complex specifications we
consider here. This statement holds because the specification Stabilize can be expressed
as a propsitional µ-calculus formula without alternation. This is a local algorithm, in the
sense that the exploration of the transition system is started from initial states, and that
the exploration of losing states is stopped.

The algorithm we consider is presented as Algorithm 1. Given a CGS C, and two
sets of states Goal, Allow such that Goal ⊆ Allow, this algorithm returns a pair of sets
of states, whose first component is Stabilize(C, Allow, Goal), and second component
is Stay(C, Goal ∩ Acc(C, Allow)).

The algorithm consists of three phases:

1. the first while loop consists in a forward exploration of the reachability graph,
restricted to states in Allow. At the end of this phase, the list Passed exactly
contains the set Acc(C, Allow). In addition, the list NIG (standing for “Not In
Goal”) contains all the states outside Goal that can be reached from states in
Passed. Finally, the dependance lists (elements depend[s]) contain, for each state
s ∈ Passed ∪NIG, the set of predecessor states in Passed.

2. the second while loop aims at computing the set Stay(C, Goal ∩ Acc(C, Allow)),
via variable STAY . Therefore, it proceeds in a backward propagation of states
of NIG, by exploring the reachability graph (restricted to states in Allow) in a
backward manner, using the dependency lists. States are added to the Waiting
list iff they are declared as losing. For environment states, this happens as soon
as a successor is losing, while for controller states, it occurs when no successor is
winning (a counter is used to check this).

3. the third while loop computes the set Stabilize(C, Allow, Goal), via variable
UNTIL. As in the previous case, it proceeds in a backward propagation. However,
the computation is dual: while for the computation of Stay (greatest fixpoint), the
propagation concerns losing states, for the computation of Until (least fixpoint), it
concerns winning states.

Note that the two first while loops can be merged, and thus performed simultane-
ously. In our implementation (see Section 5), we have given a higher priority to the
backward propagation, thus avoiding the exploration of some losing states. The third
loop must be performed once the second one has finished, as each edge will be ex-
plored only once, the status of the target state must be known when it is explored.

3 Nonlinear systems and discretizations

3.1 Nonlinear systems with inputs

We consider (possibly nonlinear) systems of ordinary differential equations:

Definition 2 (ODE system). A system of ordinary differential equations (ODE system
for short) is given by a triple O = (f,S, U) where U is a finite set of input parameter

7

Algorithm 1: Local Algorithm Local-Stabilize for a Stabilization Objective

Data: C = 〈SE , SC , T, S0, λ〉,Allow,Goal
Result: UNTIL = Stabilize(C, Allow, Goal); STAY = Stay(C, Goal ∩ Acc(C, Allow))

Waiting ← S0; NIG← ∅; Passed← ∅;
while Waiting 6= ∅ do

s← pop(Waiting); Passed← Passed ∪ {s};
foreach (s, a, s′) ∈ T do

if s′ 6∈ Goal then NIG← NIG ∪ {s′} ;
depend[s′]← depend[s′] ∪ {s};
if s′ ∈ Allow ∧ s′ 6∈ Passed then Waiting ←Waiting ∪ {s′};

end
end
∀s ∈ Passed ∩ SC ; counterC(s)← #Succ(s);
Waiting ← NIG; STAY ← Passed;

while Waiting 6= ∅ do
s← pop(Waiting);
STAY ← STAY \ {s};
if s ∈ SC then

foreach s′ ∈ depend[s] do
if s′ ∈ STAY then Waiting ←Waiting ∪ {s′};

end
else

foreach s′ ∈ depend[s] do
counterC(s′)← counterC(s′)− 1;
if counterC(s′) = 0 then Waiting ←Waiting ∪ {s′};

end
end

end
∀s ∈ Passed ∩ SE , counterE(s)← #Succ(s) ;
Waiting ← STAY ; UNTIL← ∅ ;
while Waiting 6= ∅ do

s← pop(Waiting);
UNTIL← UNTIL ∪ {s};
if s ∈ SC then

foreach s′ ∈ depend[s] do
counterE(s′)← counterE(s′)− 1;
if counterE(s′) = 0 then Waiting ←Waiting ∪ {s′};

end
else

foreach s′ ∈ depend[s] do
if s′ 6∈ UNTIL then Waiting ←Waiting ∪ {s′};

end
end

end

8

values, S ⊆ Rn denotes the state space of the system, and f : S × U → Rn defines a
parameterized system of differential equations 2:

ẋ = f(x, u), with x : R→ S, u ∈ U (7)

A configuration of O is a pair c = (x, u) ∈ S × U . An initial value problem (IVP for
short) is a pair E = (O, c0) composed of an ODE systemO and a (initial) configuration
c0 = (x0, u0) of O.

In the sequel, to ensure the existence of a unique solution to the IVP, we assume
that for any u ∈ U , the function f(·, u) is locally Lipschitz.

Definition 3 (Trajectory). Let O = (f,S, U) be an ODE system. Given an initial
configuration c0 = (x0, u0) of O, a trajectory of an ODE system starting from c0 is a
triple (I, σ,X) where:

– I = {Ik | 0 ≤ k ≤ N} is a sequence of intervals such that:
• if N = +∞, then for all k ∈ N, Ik = [tk, t′k] with t′k = tk+1,
• if N < +∞, then IN = [tN , t′N] or IN = [tN ,+∞) and for all 0 ≤ k ≤

N − 1, Ik = [tk, t′k] with t′k = tk+1,
• in both cases, the initial time is t0 = 0,

– σ = {σk | 0 ≤ k ≤ N} is a sequence of elements of U such that σ0 = u0, and
– X = {xk | 0 ≤ k ≤ N} is a sequence of continuous, piecewise differentiable

functions. For all 0 ≤ k ≤ N,xk : Ik → Rn is the solution of the IVP (O, ck),
where, for k ≥ 1, ck = (xk−1(tk), σk).

We say that a trajectory is finite (resp. infinite) if N < +∞ (resp. N = +∞).
Intuitively, the controller acts on the value of the input parameter u. It has to decide

when to change this value (this defines the intervals I) and which value has the input
(this defines the sequence σ). Controller synthesis can thus be understood as the syn-
thesis of a mapping which, given the history of the system (a finite trajectory), gives the
timestamp of the next input change and the new value of the parameter.

Example 1 (An inverted pendulum). A cart of mass M carries an inverted pendulum of
length l with a mass m at the end. The cart can be accelerated somehow by a horizontal
force F . This classical control problem can be characterized by a system of four ODEs
including as variables θ, the angle of the pendulum relative to the vertical axis, and x,
its horizontal position relative to some origin :

θ

x

FM

m

l

ẋ1 = x2

ẋ2 = F+(l.x2
4−g. cos x3).m. sin x3

M+m. sin2 x3

ẋ3 = x4

ẋ4 = g. sin x3.M−cos x3.F+(g−l.x2
4. cos x3).m. sin x3

l.M+l.m. sin2 x3

where x1 = x and x3 = θ

2 As usual, ẋ denotes the first derivative of x.

9

3.2 Discretizations

As nonlinear differential equations cannot be solved in general, we will approximate
the system by a finite state system, which can be analyzed. Therefore, we first restrict
the behaviour of the controller by considering a discrete-time controller, obtained by
a sampling rate η ∈ Q>0. This means that discrete changes on the value of the input
parameter u can only occur at timestamps in η.N.

Then, it remains to approximate the infinite-state dynamics of the ODE system by
a finite-state one. In the sequel, we fix an ODE system O, together with an initial con-
figuration c0 = (x0, u0) of O and let E = (O, c0) be the resulting IVP. We assume
that the state-space S of the system is given by a hyper-rectangle I1 × · · · × In of
Rn. This assumption is not restrictive for standard ODE systems. Then, we consider
a mesh of the state-space obtained by the product of partitionings of each interval Ij ,
with 1 ≤ j ≤ n. More precisely, we consider, for each 1 ≤ j ≤ n, a partitioning Pj of
Ij . This yields a finite state abstraction of the infinite state space of the system. Follow-
ing definitions introduced in Section 2, we aim at obtaining a control game structure
C(E) = 〈SE , SC , T, S0, λ〉 over some alphabets (ΣE , ΣC , Γ).

In this definition, the controller chooses the value of the input parameter, by choos-
ing a letter in ΣC . On the other side, the environment resolves the non-determinism
associated with the ODE system. In particular, we do not need to label the transitions
of the enviroment. This yields the following definitions:

SC = Πn
j=1Pj ΣC = U

SE = SC × U ΣE = {e}, for some letter e
S0 = {(r0, u0)} where r0 is such that x0 ∈ r0

Transitions of the controller are the following ones:

T ∩ SC ×ΣC × SE = {s u−→ (s, u) | u ∈ U, s ∈ SC}

Regarding transitions of the environment, we want to approximate, given a cell of the
mesh (i.e. a partition of S), and a value of the input, the reachable cells after a delay of
η time units. Note that the assumption that for each value of u, the function f(·, u) is lo-
cally Lipschitz ensures the existence and the unicity of a solution to the IVP associated
with the ODE system. However, as we consider here as possible initial values any value
of a given cell (and a single value of u), there are infinitely many such problems. As a
consequence, different cells can be reached from a single one. The problem of the com-
putation of these successors has already been studied by several authors: interval nu-
merical methods [10], standard mathematical techniques based on the evaluation of the
Lipschitz constant [3], simulation of the system based on sensitivity analysis [8]. . . We
do not detail here how such approximations can be obtained, as this is orthogonal to
the purpose of this paper. However, to obtain a sound method, the transitions of the
finite-state system should over-approximate the transitions of the ODE system:

Definition 4 (Sound over-approximation). Let E = (O, c0) be an IVP. The CGS
C = 〈SE , SC , T, S0, λ〉 is a sound over-approximation of E if it satisfies the following
property:
∀(s, u) ∈ SE ,∀x0 ∈ s, let x(t) be the unique solution to the IVP (f, x0, u). Then for
any s′ ∈ SC such that x(η) ∈ s′, we have (s, u) e−→ s′ ∈ T .

10

Finally, we define the labelling function λ. Given a set of atomic propositions Γ ,
interpreted as subsets of S by a given mapping χ, we define λ as follows:

∀γ ∈ Γ,∀s ∈ SC , γ ∈ λ(s) ⇐⇒ s ∩ χ(γ) 6= ∅

We extend this mapping over SE by letting λ(s, u) = λ(s) for any u ∈ U . This is
coherent as propositions in Γ are intended to express properties over states but not over
parameter values. The above definitions ensure that the discretized CGS built from the
partitionning of the state space simulates the behaviour of the ODE system:

Proposition 1 (Simulation). Let O = (f,S, U) be an ODE system, c0 be a configura-
tion ofO, and C be a CGS that is a sound over-approximation of E = (O, c0). Then, for
any trajectory (I, σ,X) of O such that any interval I ∈ I is of the form [kη, (k + 1)η]
for some k ∈ N, there exists a path ρ = (s0, a1, s1, a2, . . .) in C such that σ = (ai)i,
and for each i, we have xi(ti) ∈ si.

Assume that the partitionings Pj are compatible with the properties labelings χ,
in the sense that for any s ∈ SC and any γ ∈ Γ , we have s ∩ χ(γ) 6= ∅ if, and
only if, s ⊆ χ(γ). Then the property of simulation entails that if we can synthesize a
controller for the CGS C w.r.t. some control objective, then this controller can be used
as a discrete-time controller for the ODE systemO w.r.t. the same control objective. The
only difference is that the atomic properties are ensured only at sampled timestamps.

4 Hierarchical approach to controller synthesis

In this section, we present an original approach for the analysis of the discretizations of
ODE systems. In principle, the discretization explodes with the number of variables.
Our technique exploits dependencies between variables of the system to first solve
smaller subsystems and then use the analysis results to dramatically reduce the size
of the state space to explore with the full set of variables.

4.1 Abstractions preserving controllability

We present a particular abstraction used in the sequel, which is a bisimulation w.r.t. pos-
sible transitions, but only a simulation w.r.t. properties satisfaction. Within this setting,
C2 can be seen as an abstraction of the system C1.

Definition 5. Consider two CGS Ci = 〈Si
E , Si

C , T i, Si
0, λ

i〉, and let Si = Si
E]Si

C for
i = 1, 2. We consider a surjective mapping α : S1 → S2, and the associated relation
R ⊆ S1 × S2 defined by s1 R s2 iff α(s1) = s2.

We say that α yields a property asymmetric bisimulation relation R if, and only if,
for any pair s1 R s2:

1. either s1 ∈ S1
C and s2 ∈ S2

C , or s1 ∈ S1
E and s2 ∈ S2

E ,
2. if s1 ∈ S1

0 , then also s2 ∈ S2
0 ,

3. for any γ ∈ Γ , if γ ∈ λ1(s1), then also γ ∈ λ2(s2),
4. for (s1, a, s′1) ∈ T 1 there exists s′2 such that (s2, a, s′2) ∈ T 2 and s′1 R s′2, and
5. for (s2, a, s′2) ∈ T 2 there exists s′1 such that (s1, a, s′1) ∈ T 1 and s′1 R s′2.

11

The following proposition states that winning states of the abstract system cover the
winning states of the concrete one. This property can be seen as a particular instance of
the properties of zig-zags bisimulations, see e.g. [4].

Proposition 2. Let Ci, i = 1, 2 be two CGS, and α : S1 → S2 be a mapping yielding
a property asymmetric bisimulation relation. Let3 γ, γ′ ∈ Γ . Then we have:

Stay(C1, γ) ⊆ α−1(Stay(C2, γ)) and Reach(C1, γ, γ′) ⊆ α−1(Reach(C2, γ, γ′))

Proof (Sketch). We first prove the following property:

∀X1 ⊆ S1, X2 ⊆ S2, α(X1) ⊆ X2 ⇒
{

α(Post1(X1)) ⊆ Post2(X2)
α(CPre1(X1)) ⊆ CPre2(X2)

where Posti (resp. CPrei) denotes the operator Post (resp. CPre) in the CGS Ci. These
properties easily follow from points 1., 4. and 5. of Definition 5. As a consequence,
this entails α(Acc(C1, γ)) ⊆ Acc(C2, γ). Indeed, the property holds for initial states
(point 2. of Definition 5). Second, consider the characterization of sets Stay(Ci, γ) and
Reach(Ci, γ, γ′) by fixpoints presented in Section 2. We will prove the result by induc-
tion on the number of iterations of the fixpoint computation. Initially, the property holds
for atomic properties by point 3. of Definition 5, and for the set of reachable states by
the above result. The induction follows from the above property of CPrei. ut

4.2 Hierarchical abstractions in ODE systems

Formally, we consider an ODE system O = (f,S, U) over real variables x1, . . . , xn,
to be as follows:

ẋ1 = f1(x1, . . . , xn, u)
...

ẋn = fn(x1, . . . , xn, u)

where for each 1 ≤ i ≤ n, fi : S × U → R is supposed to be locally Lispchitz
(notations are taken from Section 3).

Definition 6 (Dependency). Let i, j ∈ {1, . . . , n}. We say that mapping fi does not
depend on variable xj iff for any y, y′ ∈ Rn such that yk = y′k for all k 6= j, we have
fi(y) = fi(y′). Otherwise, we say that fi depends on xj .

In particular, for standard ODE systems in which mappings fi’s are given by explicit
expressions involving polynomials, sine, cosine, . . . , the mapping does not depend on
a variable as soon as it does not appear in this expression. For instance, regarding the
inverted pendulum example, one can note that mappings f3 and f4 only depend on
variables x3 and x4.

Definition 7 (Independent subset of variables). Let J ⊂ {1, . . . , n}. We say that
the subset of variables J is independent if the subsystem obtained by the restriction to
variables {xj | j ∈ J} constitutes an independent subsystem, i.e. iff for any j ∈ J ,
mapping fj only depends on variables in the set {xj | j ∈ J}.

3 For readability, we shortcut λiγ by simply γ in the expression Stay(Ci, λi(γ)) and similarly
for Reach.

12

For the example of the inverted pendulum, there are four independent subsets of
variables : ∅, {x3, x4}, {x2, x3, x4} and {x1, x2, x3, x4}.

Proposition 3. The independent subsets of variables of an ODE system is a complete
lattice.

Definition 8. Let O be an ODE system. We denote by L(O) the complete lattice of its
independent subsets of variables. In addition, given J, J ′ ∈ L(O), we write J ′ ≺ J iff
J ′ (J , and there does not exist a set J ′′ ∈ L(O) such that J ′ (J ′′ and J ′′ (J .

Definition 9. Consider an IVP E = (O, c0), and a set of partitionings Pj , for 1 ≤ j ≤
n. For any set J ∈ L(O), we denote by CJ(E) the discretization of the subsystem of O
restricted to J , w.r.t. partitionings Pj , with j ∈ J .
Let J, J ′ ∈ L(O) such that J ′ ⊆ J . We denote by πJ,J′ the projection from states of
CJ(E) to states of CJ′(E) obtained by erasing components of J not in J ′. We simply
write πJ to denote the projection π{1,...,n},J .

The following Lemma states that independent subsets of variables can be used for
hierarchical computations:

Lemma 1. Let J, J ′ ∈ L(O) such that J ′ ⊆ J . The mapping πJ,J′ yields an asymmet-
ric property bisimulation relation between CJ(E) and CJ′(E).

Proof (Sketch). Let R denote the relation associated with πJ,J′ . We have to prove that
R satisfies point 1. to 5. of Definition 5. Points 1. to 4. easily follow by definition of a
projection mapping, and would be true for any sets J, J ′ such that J ′ ⊆ J . Point 4 holds
because J and J ′ are independent subset of variables. This implies that any trajectory
(I ′, σ′,X ′) in the ODE system O restricted to J ′ can be extended into a trajectory
(I, σ,X) in O restricted to J whose projection on J ′ coincides with (I ′, σ′,X ′). ut

Algorithm 2: Hierarchical Algorithm for the Synthesis w.r.t. Stabilization Objectives

Data: E = (O, c0), Allow, Goal
Result: Stabilize(C(E), Allow, Goal)

Compute the lattice L(O) ;
foreach J ∈ L(O), ordered by increasing size do

A← πJ(Allow) ∩
⋂

J′≺J π−1
J,J′(U(J ′));

G← πJ(Goal) ∩
⋂

J′≺J π−1
J,J′(S(J ′));

(U(J), S(J))← Local-Stabilize(CJ(E), A, G) ;
end
Return U({1, . . . , n});

This allows us to derive Algorithm 2, which first solves the control problem for
smaller sets of variables, and uses the results to limit the domain explored by further
resolutions of the control problem: compute incrementally for all independent subsets
bottom up the set of winning states for Stay and Until objectives, and exploit the asym-
metric bisimulation and property inheritance (Proposition 2) to eliminate states from
these two sets if they are not in Stay or Until in the projection.

13

This approach allows, based on the analysis on subsets of variables, to reduce the
exploration space by observing what happens in the projection. To understand this intu-
itively, let us consider the independent subsets of the inverted pendulum. If the control
objective is to go to a certain position and keep the pendulum close to the vertical po-
sition, three different problems have to be solved : first we solve the problem only for
angular speed and position which means to solve the problem of balancing the pendu-
lum independently of the vehicle movement. If, afterwards, the problem is extended to
include vehicle speed and then vehicle position, states for which it is not possible to bal-
ance the pendulum are immediately removed from the sets of candidates with additional
objectives for the position.

STAY

UNTIL

Position of initial
state at lowest

potential

Fig. 1. A strategy simulation for a swing up and a representation of winning states

5 Experiments

We have realized a prototype implementation of the algorithms described in this paper
and demonstrate its capacities using the example of the inverted pendulum.

As an illustration of what can be achieved with specifica-
tions, we consider the “swing up” problem: we suppose that the
pendulum is initially hanging at its lowest potential energy (see
image on the right) and we ask for a controller which lifts it
to the vertical upright position. Figure 1 at left shows a sim-
ulated trajectory obtained from a synthetized controller which
illustrates how the angle θ of the pendulum is raised from the
lowest position (radiant angle π) with several swings before stabilizing with tiny oscil-
lations at the vertical position (radiant 0). The image on the right shows the winning
sets Stay (black) and Until (gray and black) for the stated swingup problem, a small
box indicates the initial configuration.

Concerning the reduction potential of the hierarchical algorithm, we give sample
figures for the synthesis of a controller limiting all four variables of the pendulum.
We count in particular the number of states explored with and without the hierarchical

14

approach. The third line (exploration ratio, explored
|SC | ∗ 100) gives an impression of the

advantage of the combined local and hierarchical approach over a global approach:
for the biggest example, only 11% of the states are visited. The difference of the local
approach with and without hierarchy is explored in the fourth and fifth line: using results
from {x3, x4} in the computation for {x2, x3, x4} allows a state space reduction of
48%. Data for {x1, x2, x3, x4} without the hierarchical approach is not available since
it was beyond our current implementation and available hardware.

{x3, x4} {x2, x3, x4} {x1, x2, x3, x4}
|SE ∩ Allow| 1.049.600 136.448.000 6.822.400.000
|SC ∩ Allow| 25.600 3.328.000 166.400.000

explored part of SC ∩ Allow 17.616 815.643 18.261.684
exploration ratio 68% 24% 11%

explored without hierarchy 17.616 1.571.127 n/a
savings by hierachical approach 0% 48% n/a

|SC ∩ Stay| 1.683 50.787 1.305.059
|SC ∩ Until| 10.121 432.547 9.678.467

Optimizations in the prototype. We discuss some of the optimizations we introduced
in the prototype to make it work with case studies of the size of the pendulum.

The first two while loops of 1 can actually be merged and combined with a com-
putation of Stay(C, Allow ∩ Acc(C, Allow)). This combination has the advantage of
avoiding the exploration of certain states and making the algorithm a bit more local.

It turned out that an explicit representation of depend[s] by lists creates a major
bottleneck in terms of memory usage: looking at the figures for SE in the table, one can
understand why, there are billions of transitions involved over which backward propa-
gation may take place. The experiments shown here therefore add a symbolic overap-
proximation technique that allows to safely track supersets of the actual predecessors.
Using these supersets in backward propagation is like adding non-determinism to the
environment, thus, if a controller with this overapproximation exists, so does one for
the case without.

In the future, we want to look into the possibility of optimizing memory usage of
the algorithms by exploiting more knowledge about the structure of the state space.

6 Conclusions and future work

We have developped an approach for the synthesis of stabilizing controllers of hybrid
systems that exploits the structure of differential equations for state reduction.

The combinatory explosion due to the non-deterministic overapproximation intro-
duced by discretization is the big challenge and many techniques must be combined
to make such approaches realistic. In our experiments, we found that the slicing ap-
proach helps in finding good abstractions for the independent variable subsets before
going to more complex levels. This is orthogonal and complementary to compositional
approaches such as [14] which are needed if one wants to synthesize controllers for
complex systems: in hybrid systems there are limits to decomposition and this is where

15

our slicing type approach can help. Another promising direction is the use of counter-
example guided refinements for controller synthesis [11].

The reduction approach uses a notion of bisimulation for its correctness and the
algorithms are fundamentally based on a certain fragment of the µ-calculus [4] : for-
mulae without negation on the properties. The hierarchical reduction framework is thus
open for extension to a much larger class of properties which can be expressed in the
alternation free fragment of the µ-calculus, and it is not difficult to extend the proofs in
Section 4 to a more general case.

In the future, we want to extend our work to the case of control objectives changing
with time while preserving stabilization in the sense we use it here.

References

1. R. Alur, T. Dang, and F. Ivancic. Counterexample-guided predicate abstraction of hybrid
systems. Theor. Comput. Sci., 354(2):250–271, 2006.

2. R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstractions of hybrid
systems. Proceedings of the IEEE, (88):971–984, 2000.

3. E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis of nonlinear
systems. Acta Inf., 43(7):451–476, 2007.

4. J. Brandfield and C. Stirling. The Handbook of Modal Logic, chapter Modal mu-calculi,
pages 721–756. Elsevier, 2006.

5. F. Cassez, A. David, E. Fleury, K. Larsen, and D. Lime. Efficient on-the-fly algorithms for
the analysis of timed games. In Proc. CONCUR’2005, volume 3653 of LNCS, pages 66–80.
Springer, 2005.

6. E. M. Clarke, A. Fehnker, Z. Han, B. H. Krogh, J. Ouaknine, O. Stursberg, and M. Theobald.
Abstraction and counterexample-guided refinement in model checking of hybrid systems.
Int. J. Found. Comput. Sci., 14(4):583–604, 2003.

7. R. Cleaveland and B. Steffen. A linear-time model-checking algorithm for the alternation-
free modal mu-calculus. In FMSD, pages 48–58. Springer-Verlag, 1993.

8. A. Donzé and O. Maler. Systematic simulation using sensitivity analysis. In Proc. HSCC’07,
volume 4416 of LNCS, pages 174–189. Springer, 2007.

9. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A Guide
to Current Research, volume 2500 of LNCS. Springer, 2002.

10. T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi. Beyond hytech: Hybrid
systems analysis using interval numerical methods. In Proc. HSCC’00, volume 1790 of
LNCS, pages 130–144. Springer, 2000.

11. T. A. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In Proc.
ICALP’03, volume 2719 of LNCS, pages 886–902. Springer, 2003.

12. X. Liu and S. A. Smolka. Simple linear-time algorithms for minimal fixed points. In Proc.
ICALP’98, volume 1443 of LNCS, pages 53–66. Springer, 1998.

13. T. Moor, J. M. Davoren, and J. Raisch. Learning by doing — systematic abstraction refine-
ment for hybrid control synthesis. In IEE Proc. Control Theory & Applications, Special issue
on hybrid systems, volume 153, 2006.

14. S. Perk, T. Moor, and K. Schmidt. Controller synthesis for an i/o-based hierarchical system
architecture. In International Workshop on Discrete Event Systems (WODES), IEEE, pages
474–479, 2008.

15. A. Tiwari and G. Khanna. Series of abstractions for hybrid automata. In Proc. HSCC’02,
volume 2289 of LNCS, pages 465–478. Springer, 2002.

16. C. Tomlin, J. Lygeros, and S. Sastry. Computing controllers for nonlinear hybrid systems. In
Proc. HSCC’99, volume 1569 of LNCS, pages 238–255. Springer, 1999.

