Timed Unfoldings for Networks of Timed Automata

Patricia Bouyet, Serge Hadd&gl Pierre-Alain Reynier

1 LSV, CNRS & ENS Cachan, France
2 LAMSADE, CNRS & Université Paris-Dauphine, France
{bouyer, reyni er }@ sv. ens- cachan. fr,haddad@ ansade. dauphi ne. fr

Abstract. Whereas partial order methods have proved their efficiencythe
analysis of discrete-event systems, their applicationned systems remains a
challenging research topic. Here, we design a verificatigorithm for networks
of timed automata with invariants. Based on the unfoldirdpiéque, our method
produces a branching process as an acyclic Petri net extenitle read arcs
These arcs verify conditions on tokens without consumiegnththus expressing
concurrency between conditions checks. They are usefavioiding the explo-
sion of the size of the unfolding due to clocks which are comgavith constants
but not reset. Furthermore, we attantnesto events, in addition to markings.
We then compute a complete finite prefix of the unfolding. Thesence of in-
variants goes against the concurrency since it entailstatgynchronization on
time. The use of read arcs and the analysis of the clock @nttrappearing in
invariants helps increasing the concurrency relation betwevents. Finally, the
finite prefix can be used to decide reachability propertied teansition enabling.

1 Introduction

Partial-order methods for discrete-event systeighe last decades, major advances
in the analysis of distributed systems were based on twalgare: theindependence
and thelocality of actions. Whereapartial-order methods mainly take advantage of
the independence (see e.g. [20]), th#oldingmethods rely on both concepts [13, 17].
Furthermore from a semantical point of view, system unfaidiare a theoretical well-
defined alternative to the usual interleaving semantiasaulét be emphasized that this
semantics is more discriminant than the classical one andbwaapplied for other
purposes than verification like observation and diagnssis €.9. [9]).

Timed systemsSeveral timed models have been proposed for representidime
systems, e.g. various extensions of Petri nets, but the shodied and well-established
model is the one of timed automatB(for short). It has been defined in [1] and since
then much investigated, with the development of severds tomsed on this model.

Partial-order methods for timed systenifghis approach led to efficient tools and algo-
rithms in the untimed case, no counterpart has so far beaaevachfortimed systems
The main reason is that time synchronization of actions énstiandard timed models
is essentiallyglobal and thus yields numerous conceptual and technical diffésutor
adapting or extending the previous methods. We discussatioBeb existing works.
Our contribution.In this paper, we design an efficient verification algorithon riet-
works of timed automata with invarianfsiTA). Our algorithm is based on the unfold-
ing technique, and produces an acyclic Petri net watid arcs Conditions {.e. places

of the net) are labeled either by locations or by clocks, amas (.e. transitions of the
net) represent the transitions of tNEA. Read arcs are convenient for modeling clock
testing with no clock reset (see for instance [7]), and, ¢iothey add some complex-
ity to the building of the unfoldings [21, 22], they increabe independence relation
between events.

More precisely, we define a timed unfolding ofldMA close to the untimed case, by
attachingzonegqa classical symbolic representation in the frameworkroétl systems)
to events, in addition to markings. Roughly the zone attd¢hen event will capture
all relevant timing informations of possible configuraoreached after having fired
all events belonging to the minimal causal past.oft must be emphasized that the
dimension of the zones that we attach to events is small (@nstant while theNTA is
unfolded): it is equal to three times the number of clocks lice the number ofA.

The main problem encountered by previous works is that ungesquirements (for
instance due to invariants) entail global synchronizaktietweera priori independent
transitions. When a clock appears in an invariant, we use aees to express depen-
dencies of the transitions w.r.t. this invariant. This g&ses the concurrency relation
between events, even in the presence of invariants andesnathbcal decision of the
firability of an event i e. only by looking at its cut).

Finally, we prove that we can build a complete finite prefix ethtan be used,
as in the untimed case, for deciding in linear time (w.r.& #ize of the finite prefix)
reachability (as well as transition firing) propertieNmA.

Due to lack of space, proofs are omitted, but can be found]in [8

2 Networks of Timed Automata

Let X be a finite set of variables, calletbcks We writeC(X) for the set otonstraints
over X, which consist of conjunctions of atomic formulae of thenfior > ¢ and
x—yxcforz,y € X,c € Zandxe {<,<,=,>,>}. We write Clockg~) for
the set of clocks involved iy. We define the proper subsgis(X) of diagonal-free
constraints oveX where constraints — y i h (calleddiagonal constrainfsare not
allowed. Similarly, we define the proper sub8gt(X) of upper-boundedonstraints
over X where only constraints < h with < € {<, <} are allowed.

Let s be a mapping fronX to elementary expressions over someXefi.e.xz, x—y
or x — ¢). Then the substitution of in a diagonal-free constraint, denotedy[{z —
s(x)}zex] is defined as the expression obtained by replacingawery occurrence af
by the terms(z), for any clockz. Note that the resulting expression belongé€ (&’).

We will use as timed domain the gt of nonnegative real numbers.valuation
over the setX of clocks is an element dk<,. For R C X, the valuatiorw[R « 0]
is the valuation’” such that’(z) = 0 whenz € R andv’(x) = v(z) otherwise. For
d € Rxy, the valuatiorv + d is defined by(v + d)(z) = v(x) + d for everyz € X.
Constraints o€ (X) are interpreted in a natural way over valuations: we write:
when the constrainy is satisfied by.

We use the classical notion of zones to represent symbiglicdinite sets of val-
uations [12]. Azoneover a set of variable¥’ is defined as a constraint 6{Y"). We

assume the reader to be familiar with the following operation zones (see [6]): con-
junction, extension of the set of variables, eliminatioraddet of variables (we write
3V.Z), and emptiness checking. Tk&trapolationof zoneZ w.r.t. constant\/ is the
smallest zone containing defined with constants if—M, ...,0,..., M}.

Definition 1 (Timed Automaton (TA) [1]). A timed automatornd over X' is a tuple
(L, 4y, X, X, E,Inv) whereL is a finite set oflocations ¢y € L is theinitial location,
X is afinite set otlocks X is a finite alphabet of action®; C LxCyr(X)x X x2Xx L
is a finite set oedgesand InvC C,;(X)" associates to each location avariantgiven

as an upper bound constraint. An eddeg, a, R,¢') € E (or { —— 9.0, £') represents
a transition from locatior¥ to location?’ labeled bya, with the guardg defined by a
constraint and reseR € 2.

Definition 2 (Network of TA (NTA)). A partial functionf : (X U{L})™ — Xis
called ann-ary synchronization functiom\ network of timed automata a finite family
(A;)1<i<n of n TA, whose sets of locations are pairwise disjoint, togethénann-ary
synchronization functiorf.

Note that we do not assume that clocks are local to dcbf an NTA. Before
giving the semantics of aNTA, we first give some notation and definitions which will
be useful in the rest of the paper. We fix ldiiA .4, and we assume that is given by
(Ai)1<i<n, andf a synchronization function. We writé; = (L;, ¢; 0, X;, X, E;, InV;)
for everyl < i < n. We then denote byX (resp.L) the setlJ,,.,, X; (resp.
Uy <i<n, Li)- We extend naturally the functidnv over the sef.. o

‘Finally, we consider a synchronization functin (YU{_L})" — X. In the sequel,
we denoteX| (resp.E) the set(X U {L})" (resp. the sef[;(E; U {L})). We use a
similar notation for their elements: we denat¢resp.e) ann-uple(ai, ..., an,) € N
(resp.(e1,...,e,) € E). We define the functiohab from E to X| wh|ch maps an

element to the element defined for everyl < i < nbya; = bif ¢; = £; 225, e,
and bya; = L otherwise. We define the subsgync= Lab™'(f~1(X)) of E, WhICh
is the set of possible synchronizations of edgesthe set of transitions of thRTA.
Givenz € Sync assuming:; = £; 2% g1 for all i such tha; # L, we define

I(e)theset{l < i < n|e # L}, g(€) the constrainy\7el(e) g; and R(e) the set
Uier(e) Ri- Finally, given am- tuple/, we notelnv(¢) = Ni<icn INV(E;).

Definition 3 (Semantics of arNTA). Let A = ((A;)1<i<n, f) be anNTA. The seman-
tics of A is the transition systerfi4 = (Q, qo, —) whereQ = (1T <;<nL;) x (Rx0)™ 2
qo = (80, 0) and— is defined by:
(, v) (E v+d) if d € Rsg andv + d |= Inv(¢) (delay movel
(t,v) & (E ') if3e e Lab t(f~1({a})) s.t.v = g(€),v" = v[R(e) — 0] and
l} is given bye; if i € I(e) and by¢; otherwise {iscrete moves
Finally, an element = (é;,d;)i>0 € (Syncx R>()* is atimed sequence ofl if
di—d;—1 f(Lab(é&;)) f(Lab(er,))

d -
the sequence of moves — . .. iISinS.4.

3 We denote ann-tuple of ITy <<, L;, andlo = (£i,0)1<i<n.

W.l.o.g. we assume that the constraints and resets assbeidh edges syntactically
ensure that the invariants associated with the outputitmtsbf every edge are satisfied
when a discrete move following that edge is performed.

Important and unusual definitions. We define several other notions, which will be
fundamental for defining our unfolding. Let be anNTA. Let X be its set of clocks,
thenX;,., is the subset of clocks occurring in the invariant of somefion of L. Given

an edge = ¢ EILILN ¢', and a clocke € X, we say that: is redefinedby ¢ if « is not
reset bye, and if the constraintswv(¢) andinv(¢’) are not equivalent w.r.:. We denote
by Redefine(k) the set of clocks redefined l&y Given a clocks € X, we say thatr

is modifiedby ¢ if x € R(e) U Redefine(k). This means that has either been reset
by one of the edges, or an invariant constraint avbeas been redefined. Moreover, we
say thatz is testedby e if z € Clockgg(€)) U X;,,. This means that the clock is
either tested in one of the constraints, or used in someianaof theNTA. It is worth
noticing that we include here the whole s€t,,,,. This latter point will be discussed
later. Finally, we note:

Pre(e) = {¢; | i € I(e)} U {x € X | « is modified bye}
Read(e) = {z € X | = is tested but not modified b5}
Post(e) = {¢; | i € I(e)} U{z € X | z is modified bye}

3 Unfoldings of NTA

3.1 Untimed Nets

We first define the untimed structures we use. These are addstructures defined

e.g. in [17,13], extended with read arcs [21,22]. Even ifiraecs do not add expres-
siveness to (untimed) Petri nets (w.r.t. reachability@ythimprove quite a lot unfolding

techniques, since they increase the concurrency relagitmaen events. However, their
unfolding is more involved.

Definition 4 (Read Arc Petri Net). A read arc Petri nés a tupleN' = (P, T, Pre,
Post, Read, Mj) whereP is a (finite) set ofplacesT is a (finite) set oftransitionswith
PNT = (), Pre, Post andRead are three mappings froffi to 27 called respbackward
forwardandreadincidence mapping. Finally)/, € 27 is theinitial marking.

The untimed structure associated with the unfolding &fTa is a particular kind
of read arc Petri net. Before giving the structure, we firdtngeprecedence, strong
precedence and conflict relations between nodes of a netr$gifie some notation.
Lett be a transition angd be a place of a neV" = (P, T, Pre, Post, Read, M):

— *t denotes the sétre(t), t* denotes the seétost(t), °t denotes the sétead(t),
— *pdenotesthe s’ € T | p € t'*}, p® denotes the sdt’ € T' | p € *t'}.

We extend the notation to set of nodes as usual. We now defat®res between nodes:
— Let < (the precedence relatigrbe the minimal transitive relation ovét U T' sat-
isfying for everyt, ¢’ € T, for everyp € P,

if p€ *tthenp < t,if t € *pthent < p,if p € °t andp € ¢'* thent’ < ¢.
We denote< the reflexive closure of.

— Let < (thestong precedence relatipbe the minimal transitive relation ovétru T’
satisfying for every, ¢’ € T, for everyp € P, and for every nodes andy,
if z < ythenz < y,if p € °tandp € *t' thent < t'.
We denotex< the reflexive closure ok.

— Let # (the conflict relatior) be defined byr # y iff 3p € P, 3t,t' € p® s.t.
t£tAt<z At <y.

These definitions are those given in [22] which are a slighibwa of those in [21].

Definition 5 (Occurrence Net).Anoccurrence neés anet\' = (P, T, Pre, Post, Read,
M) fulfilling the following conditions|*p| < 1 for everyp € P. The precedence re-
lation < of A is a finitary partial order (.e. every item ofP? U T has a finite number
of predecessors). For every iteme P U T, the strong precedence relation restricted
to the set of predecessorsmofv.r.t. < is a partial order. No element is in conflict with
itself. My = Min(P), where Min{P) denotes the sdtp | *p = 01}.

In an occurrence net, elements@fare callecconditionsand elements df’ events
We define the branching process associated witN' Bl as a labeled occurrence net:

Definition 6 (Branching Process of anNTA). Let .4 be theNTA given as a family
(Ai)1<i<n Of n TA and ann-ary functionf. A branching process od is defined as a
pair of an occurrence net/ = (P, T, Pre, Post, Read, M;) and a labeling functiom
ranging overP U T such that:

— AMP) € Uj<j<n(Ls UX;) (conditions correspond to locations or clocks4Y,

— MT') C Sync(events correspond to possible transitiond pf

— A is a one-to-one mapping from/, to | J, ., £i,0 U X (initially, the marking
consists in initial locations plus the clocks),

— for every element € T with A\(t) = € € Sync,)\ is a one-to-one mapping frofi
(resp.°t, t*) to Pre(e) (resp. toRead(é), Post(é)).

=V, t' e T,\t) = At') At =t AN°t = °t' =t =t (no redundancy)

We use read-arcs in our unfoldings for increasing the caroagy relation between
events: indeed, when firing a transition, there is no needdate a new place for a
clock which is not modified, that's thus relevant to test idue using a read-arc, and
not a pre-arc.

In [21,22], a prefix relation is defined between branchingcpsses of alNTA
and it is shown that these processes form a complete lattice this relation which
implies that there is a maximal branching process. The hiaggrocesses differ on
“how much they unfold”. Theintimed unfolding of alNTA is defined as its maximal
branching process.

Example 1.An example of branching process is depicted on Figure 1. {fiond are
represented by circles, and events by boxes, as usual fome&t. Labels are written
close to the nodes. A read arc is represented by an arc withrow for instance there
is a read arc from the top-most condition labeletd the top-most event labeleq: for
being fired, event, will check that there is a token in conditian sincez is involved

in an invariant). The dashed part of the branching procge®gsents an event that will
be considered by our algorithm but whose timing constrairésunconsistent, and thus
which will not be built (see Subsection 3.2).

N yi=0 A y=0
4’@ a1 as O

(a1, L, 1) — a1
Iy (L,a2, 1) — a2
T (L, Las)
)

a4q,a2, L) — aso
» a2, X

— as

(@) ANTA A (b) A branching process od

Fig. 1. An example of branching process of HifA.

We introduce more or less classical notions concerningdbriag processes. Note that
these definitions take into account read arcs.

Definition 7 (Non-branching Process, Configuration, Cut, Casal Past).Let 3 =
(N, \) be a branching process of aiTA A. We writeT" (resp.P) for the set of events
(resp. of conditions) alV. We consider the occurrence rd@t’, 7’) C (P, T) obtained
as a restriction\'" of A/, and the labeling function’ defined as the restriction df to
N'. Thengd = (N’,X) is called anon-branching processf 3 if it satisfies the five
following conditions:

- VteT, VpetuctUt®, t € T = p € P’ (events are consistent wit}),
- Vpe P, Vte®p, pe P =teT (conditions are consistent with),

— Relation< restricted toP’ U T" is a partial order,

- Va,y e PPUT', =(z # y) (N is conflict-free),

— Min(P’) = Min(P).

We fix a non-branching procegs. TheconfigurationC' of 3’ is the set of events ¢f.
A set of conditions is &o-setif it is an antichain w.r.t.< in 8’ (i.e. where items are
pairwise incomparable). Autis a maximal co-set. I’ is the configuration off’, we
associate withC' the cut CufC) defined by C{C) = (Min(P) U C*) \ *C. We also
define the cut of a non-branching process as the cut of itsguanafiion.

Given a non-branching procegs of 3, and an event belonging tos’, we denote
[t]g thecausal pastf ¢ relative to 3’ defined as the set of eveHid € T" | t/ < t}.
The minimal causal pastof ¢, denotedt], is (s [t]s where’ ranges over the set of
non-branching processes gfcontainingt. [¢] is a configuration and we denote Py
its associated non branching process.

Finally, we say that a non-branching proce8$ extends a non-branching process
3, denoted by C 37 if the events of are events 0BT and if given any everitof 3
and any event™ of 3+ \ 3, we do not have™ < tin g7.

“ Note that[t] may be inductively defined by] = {t} U Ut’e.(.t u°t) [t']. Due to the lattice
structure of branching processes of a read arc Petrjmeipes not depend of.

Example 1 continued.et g be the branching process of Figure 1. Then the subgraph
underlied by node$p; }.—1..0 U {t1,t2} is a non branching process (s&}); its asso-
ciated configuration i§t1,t2} = [ta]g # [t2] = {t2}. Let 51 (resp.B2) be the non
branching process corresponding{tq, t2, t3} (resp.{t1,t2,%s}). Theng’ C g, for
1=1,2andg’ C (s buts’ Z 51 due to the arc between andts (implying t3 < t2).
Important remark. It is worth noticing that ifC' is a configuration of alNTA, the set
Cut(C) N A~1(X) is in bijection (by)) with the setX of clocks of theNTA and that\
maps the seCut(C) N A~!(L) to a set consisting of one location pek of the NTA.
Indeed, each time a clock place is consumed, it is producekldrad each time a place
whose label is a location of BA is consumed another place whose label is a location of
the samélA is produced.

We use the notation of [21] to present the (semi-)algoritiigdrithm 1) for the
construction of the untimed unfolding of &ilA. In the algorithm, a condition of the
unfolding is encoded as a pdjp, t) wherep is the label of this condition, andis the
unique input event of this condition équals td) if the condition has an empty preset).
An event is represented with three fieldsY;,,, Y,.) wheree is the label of this event (a
synchronized edge};,, andY,. are two lists of pointers to conditions (respectively the
input and read conditions).

Definition 8 (Possible Extensions (PE))Let 3 = (A, \) be a branching process of
anNTA A. Thepossible extensionsf 3 are the triplest = (e, Y;,,,Y,.) whereeé is an
element of Sync such that there exists a non branching pgtesith Y;,, U Y, being
a co-set of¥’, such that\ is a one-to-one mapping fro,, (resp.Y;) to Pre(e) (resp.
Read(e)), and such thate, Y;,,, Y;.) does not already belong t0.

In this case, we define the extensiop dly ¢, obtained by the operation Extefiti ¢)
as the branching process obtained from3 by adding an event labeled byconnected
to conditions inY;,, with pre-arcs and to conditions . with read arcs, and with new
conditions, according t@ost(e).

Algorithm 1 Building the (eventually infinite) untimed unfolding (sesdgorithm)

Require: An NTA A.
Ensure: The unfoldingUnf of A.
s unfi={(£1,0,0),...,(n0,0)} U{(z,0) |z € X}; (Initialization)
: pe := PE(Unf); (Possible Extensions)
: while pe # 0 do
Choose an evemt= (g, Yin, Y;) in pe. (e is the label oft)
ExtendUnf, ¢);
pe := PE(Unf);
end while

NoaARwWwNE

3.2 Adding Timing Constraints to the Untimed Unfolding

Our objective is to add timing information in the untimedusture described before
for getting a new symbolic representation of the set of tirmequences of aNTA.

This will also reduce the size of the untimed structure, bmaeing extensions with
unfeasible timed part (see the dashed part of Example 1).

Timed executionsdn order to define and compute the timed unfolding ofNaFA, we
first add time to a non-branching process. We associate aiuadglate, writtend,
with every event corresponding to its occurrence and twchoee dates with every
condition. The first one corresponds to its production (athj writtend;,. The second
date corresponds to the consumption (or end) of the condjiticnay be+oc), written
d.. A third date is associated with a condition corresponding tlock, and represents
the date at which the clock has been reset the last time €wdit).

Definition 9 (Timed Valuation of a Non-branching Process)Let 3 be a branching
process, angd’ a non-branching process ¢f A timed valuatiorof 5’ is a mappingd
from7” to R>(, a mappingly, from P’ to R>¢, a mappingle from P/ toR>o U {+o0}
and a mappingl, from P’ N A~1(X) to R>o.

We want to characterize the timed valuations of a non-briagcprocess corre-
sponding to a real timed execution of tN&A. In order to obtain such a characterization,
we introduce some additional notation. l:dte an eventC* (¢) (resp.C~ (t)) is the cut
corresponding to configuratidtj (resp.[t]\{¢}). We denote by.(t) = C~ (t)NA~(L).
Given a clockr, there is a unique plage’ (resp.p;) in cutC™*(t) (resp.C~(t)) whose
label isx. Given a timed valuation of a non-branching process indgdj we note
v(t)e = d(t) — de(py) andv’(t), = d(t) — de(p).

Definition 10 (Feasibility of a Timed Valuation).Let 8 be a branching process of an
NTA, and 8’ a non-branching process ¢f. Atimed valuation(d, dy, de, d;) of 5’ is
feasibleiff it satisfies the following (in)equations: for eveng 77,

Causal (in)equations: Timed (in)equations:

-Vp € 1%, dp(p) = d(?) -g(A){z — v(t)e }rex]

-Vp € *t, de(p) = d(?) - Neerw IVIOKz — v(t)s zex]
-Vp € °t, dp(p) < d(t) < de(p) - Nacrry V()2 =0

-Vp € P',dp(p) < de(p) - Aaeredefiner (1)) V' ()x = v(t)z

- Vp € Min(F'), dp(p) = dr(p) =0

Definition 11. Let. A be anNTA ande atimed sequence of. Itstimed non-branching
procesg(,d, dp, de, d;) is inductively defined as follows:

— If o is the empty sequence théris Min(P), Vp € Min(P), dp(p) = 0, de(p) =
o0, and for every € Min(P) N A~1(X), d,(p) = 0.

— If o = o/(e, d) (d represents the date of the occurrence)dnd(3’,d’,dy’, do’, d;')
is the timed non-branching processdfthen, denoting’ the cut associated with
3, there is a unique possible extensionsofrom C by an event labeled bye. 3 is
this extension.

¢ The timed valuation on places and transitiong36fs preserved except for the
placesp € *t, for which we setle(p) = d.

e We setl(t) = d, andfor every placeg € t*, we sedd, (p) = d andde(p) = oo.

o If pet®isstA\(p) = € X, if zis reset by, we seld,(p) = d; otherwise
let p’ be the unique place @fwhose label is;, thend, (p) = d.(p').

The next proposition shows the close relation between teegdences and feasible
timed non-branching processeés, admitting a feasible timed valuation.

Proposition 1 (Feasibility is Equivalent to Execution).Let A be anNTA. Then:

1. If o is a timed sequence of then its timed non-branching process is feasible.

2. If g is a non-branching process of and (d, dp, de, d,) @ feasible time valuation
of 8, then there is a timed sequeng®f .4 whose timed non-branching process is
(6,d,dp, de, d;).

We obtain as a corollary that the set of configurations obthafter firing a shuffle
of concurrent transitions is a zone, a result also proved]iby other means.

The proof of this proposition (see [8]) heavily relies on W&y invariants are han-
dled: since transitions are connected by read arcs or pset@ua single condition per
clock involved in some invariant, two concurrent transismust share these conditions
and be connected to them by a read.arbus, given an evertof the non-branching
process? of o, the satisfaction of the invariant constraintbipn o is equivalent to the
satisfaction of the invariant equation ftj. If an eventt is not firable in[¢] (its non-
branching process is not feasible) then it is firable in no extension®fWe illustrate
this point in Example 1. Every event is connected to one plaoeled byz by a read
arc. Since the firing aof, redefines the invariant on cloak there are two places labeled
by z. This leads to two different occurrencessgfandas, depending on their ordering
with a2, which are necessary since they yield different behavikirgig as beforeas
is unfeasible (see the dashed event), whetgds firable afteras with the constraint
x =y Az > 3. Foray, we get similarly different timing constraints over clocksnd
Y.

Remark. It is worth noticing that we could increase slightly the llitiyaof events by
restricting connections to invariants clocks. Indeedegia global edge, we could
perform an offline untimed analysis of the system to restiietpossible set of undeter-
mined locations, thus restricting the set of invariantsdnsider. That way to proceed
would be similar to the method aictiveclocks [11].

Symbolic representation of timed executidfwe interpret the dates of a non-branching
processs as variables and the (in)equations of Definition 10 as a systeinear in-
equations, we obtain a zone, denoly3). As stated by Proposition 1, this zone char-
acterizes the set of timed sequencegi@nd 5 admits a timed sequence Hq((3) is
satisfiable. The set of variables Bf(3) is {d(¢) | t € T} U {db(p),de(p) | p €
PYu{d.(p) | p € PN A1 (X)}, whose size is larger than that 6f Since the com-
plexity of operations on zones heavily depends on the nurobeariables, we will
reduce the number of variables as much as possible. We tlepkdy variables which
are necessary to decide whether one can extend the norhbrgpecocess. To this aim,
we state the following proposition, which is a key ingrediencompute incrementally
timed feasibility of non-branching processes, and whosefgiollows by examining
the inequations of Definition 10.

Proposition 2. Let 3, 31 be non-branching processes of SONIEA such thats C 3+,
let C be the cut associated with. We partition the variables of Eg™) into three
sets: V¢ the variables associated with places®fl’ ~ the variables of E(3) different

from V. and V* the remaining variables. Then Eg") can be decomposed as the
conjunction E43) A E((3" \), where the set of variables of Bg") (resp. Eq/3)
and Eq(sT \ 3)) is the disjoint unio/~ UV, U VT (resp.V~ U Ve and Ve U V).

Given a non-branching proce$swe now define the zongs as the zon@V —.Eq(5),
with the notation of Proposition 2. tfis an eventZ; denotesZg,. By previous propo-
sition, the set of variables df; is equal tolVz. We havel: = {dp(p),de(p) | p €
Cu{d.(p) | p € CNA~L(X)}, whereC denotes the cuEut([t]) (note that variable
d(t) has been eliminated). It is worth noticing that the 3i@€l; is equal t@n + 3| X|.

Timed unfoldingWe can now propose a (semi-)algorithm, namely Algorithm Riclv
builds the (possibly infinite) timed unfolding of &TA such that an event occurs in the
unfolding iff there is at least one timed sequence whosedbtiag process includes this
event. This algorithm is an extension of Algorithm 1, in whiwe associate with each
eventt of the unfolding the zon¢; defined above. By previous study, we thus add the
eventt if and only if Z; admits a solution (lin®). If Z is a zone, we writéZ) for the

set of valuations satisfying. We also need to record the possible extensions already
considered but leading to empty zones (lHeThe remaining point is the computation

of the zoneZ; (line 5).

Algorithm 2 Building the (eventually infinite) timed unfolding (semigarithm)

Require: An NTA A.
Ensure: The timed unfoldingl-Unf(A) of A.

1: T-Unf:= {(¢1,0,0),..., (ln,o, D)} U{(z,0) | z € X};

2: pe := PE(T-Unf);

3: while pe # (0 do

4: Choose an event= (e, X,Y) in pe.

5: Compute the zong; associated with the firing af

6: if (Z;) # 0then Extend(T-Unf t); pe:= PE(T-Unf);

7 elseMark t as useless evergnd if (In order to not consider again)
8: end while

Since we do not keep the entire equation system of the narebirag process yield-
ing an event but only a projection of it, the computation of a new zdnéds a difficult
task. To solve this problem, we compute additional zonescat®d with intermedi-
ate non branching processes. A first remark is that givendhe Zz corresponding to
some non-branching procegsand an extensioft of 3 consisting of a set of con-
current events, it is easy to compute the zdhe, simply by applying Definition 10
(see [8]).

Let T' be the set of maximal events of configuration= [¢] \ {t} and 8 be the
non branching process associated withUsing previous remark, it is easy, given the
zone Zr corresponding t@r, to compute the zong;. Our goal is thus to compute
Zr. Letty € C. Atopological sort ofC \ [to] W.r.t. < gives sets of concurrent events,
which we call “slices”. If we can apply the previous remartfrj,, to these successive

5 We obtain the bound claimed in the introduction.

10

slices, then we can compute iteratively, for each of thésesslthe zone resulting from
the firing of a slice, and thus get the desired zone. To ap@ydimark, the different
intermediate non-branching processes have to extend ¢laeh Because of read arcs,
given a non-branching proceSsand an event’ € 3, this may be the case thédtdoes
not extends,. This happens exactly whéti] \ [t'] # 0. In this case, a transitioff of
this difference set reads a place belonging'tq Cut(3’). Using this characterization,
we can compute correctly the initial evegt The previous discussion is formalized
in [8], providing an algorithm for the computation of the zof;.

As a direct consequence of the previous developments, wanotite following
theorem, which states properties of our (infinite) timedolotihg.

Theorem 1. Algorithm 2 is correct: if.A is an NTA, an eventt occurs in the timed
unfolding T-Un{A) iff there is at least one timed sequence whose non-branghiarg
cess is3:;, and Z; is the set of possible values for the variables associatéu@uf([¢])
obtained by timed sequences whose non-branching procgss is

4 Algorithm for the Construction of a Finite Prefix

The construction of a complete finite prefix for read arcsiPets is much more in-
volved that in classical Petri nets. It has been first stugigd1] where the problem is
solved for a subclass of read arcs Petri nets, and a solutidhd general class has then
been proposed in [22]. All the algorithms rely on the detattf cut-off eventsthe cut
obtained from every non-branching process including aoffuévent can be obtained
by a non-branching process built from another already caetpevent.

In the timed framework, we must take into account the zonesaated with the cut-
off event and the previously computed event for checkingttdrethe current cut-off
event is redundant also w.r.t. timing constraints. In thetest of TA, it is well-known
that there are infinitely many incomparable zones. Thugxaimpolationoperator has
been designed, which bounds the number of zones which camiyguted. This extrap-
olation is an over-approximation, but is correct for chegkieachability properties [6].

However, to compare the configurations reached by two nandbing processes
[t] and[t'], we cannot use directly the zon&s and Z,, computed in the previous sec-
tion: indeed, the (unbounded) dates of occurrendeasfdt’ are irrelevant w.r.t. to the
corresponding configurations reached in MiBA. Thus, we compute from zong; a
new zone corresponding to the possible valuations of theksloeached in th&lTA
after firing all possible timed sequences correspondingaabn-branching process of
[t]. To enforce termination, we then apply the classical exti@pn operator on this
last zone and get the so-calleldck zone Tegt Unfortunately, two events whose clock
zones and cuts are identical can lead to different processled, it must be noticed
that a configuratiorit] may be extended by an evetitwhose timed occurrence pre-
cedes the one af This may occur if the new event addé€ds concurrent witht. Then,
the date of’ may be smaller than that of which implies that classical extrapolation
may induce mistakes, and thus that we can no more “forgetsi8 py comparing only
clock zones and cuts. We will thus use a subclassyathronized eventahich have
the desired property of “forgettable past”. Indeed, wheeantt synchronizes all the

11

TA of anNTA A, the timing occurrences of all events extending configargt] will
follow the one oft. This is the key ingredient which enables us to obtain a fpriédix,
see Lemma 2. Note that this observation is quite similarecotie of [16] (operata}).
Note also that our algorithm avoids using the sophisticatgdrithm of [22]. We now
define arunavoidablesubset of edges of adTA.

Definition 12. Let A = ((A;)1<i<n, f) be anNTA and E’ be a subset of global edges
of A (i.e. a subset of Sync), thdif is unavoidabléff for everyi, every circuit of the
underlying graph of4; intersectsk’: there is some; belonging to the circuit such that
if e; occurs ine € Sync there € E'.

Obviously, anyNTA has at least onanavoidablesubset of edges. However the
efficiency of the method will depend on two characteristitthe selected subset: its
size and theynchronization factoof its edgesi(e. |1(€)|). Now we transform th&lTA
in such a way that when one fires an edgé6fone synchronizes the whdiTA.

Definition 13. Let. A = ((A;)1<i<n, f) and E’ be an unavoidable set of edges, then

— if e € F’, its synchronized version is Syag = {e’ | Vi € I(), €. = e; andVi ¢
true,s,0

I(é), ¢, € L; S.t.e; = zdle(&)} with zdle(&) ={; ——¥;.
— A(E') is theNTA whereE’ has been replaced ly, . . Syn¢e).

Note thatA(E’) is not definedsia a synchronization function but directly with its
set of edges. However all previous results equally applyumh 8ITA. Note also that
A and A(E’) have the same set of (finite or infinite) timed sequences \iighsme
intermediate configurations and so any property expressilierms of these extended
timed sequences is equivalent fdrand A(E"). This is in particular the case for reach-
ability, and event occurrence which are the usual propediecked by the unfolding
method. Note that if for alé € £/, I(e) = {1,...,n} then A(E') = A.

Let us now explain how we build the finite prefix of the timed aldfng of A(E")
(Algorithm 3, page 13). When we fire a synchronized evemte build the clock zone
Test as follows. We project the last zone (correspondingt@f the previous section
before elimination of variabld(t)) over the variabled(¢) and{d.(p) | p € Cut(]¢t]) N
A~1(X)}. Then we relativise the result w.r.t. variahlét), i.e. we replace variables
d.(p) by d(¢) — dr(p), and we eliminate variablé(t). We notelV; this new zone.

Lemma 1. The zondV, corresponds to the set of valuationsuch that there exists
a timed sequence whose non-branching proggsand such that ind(E’), the clock
valuation after having fired the above timed sequenee is

We close zonéV; by time elapsing and intersect it with the invariant spedifig
Cut([t]), i.e.the conjunction of invariants of locations appearin@in([¢]). At last we
extrapolate the result, yielding the zoiiest. We then check whether there exists a
synchronized event < ¢ ® with A\(Cut([t'])) = A(Cut([t])) and(Test) C (Test/). If
this is the case, we matkas useless and we do not produce its output places.

5 4 denotes aradequate orderas required by [13, 17] for proving completeness of thedinit
prefix construction. A possible such ordedard([t']) < Card([t]).

12

It is worth noticing that diagonal constraints appearingamesZ; do not induce
wrong extrapolation results as in timed automata usingafiabconstraints [6]. Indeed,
the zoneJest are related to thBITA A(E’), which does not have diagonal constraints,
the extrapolation operator can thus safely be used.

Algorithm 3 Building a finite and complete prefix of the timed unfolding
Require: An NTA A.

Ensure: A finite and complete prefikin of T-Unf(A).

1: Fin:={(£1,0,0),..., (ln,0,0)}U{(z,0) | z € X}; pe:= PE(Fin);

2: while pe # () do

3: Choose an eveitt= (¢, Yin, Y;) in pe.
4: if tis not a synchronized evetiten
5: Compute the zong; associated with the firing df
6: if (Z;) # 0 then ExtendFin,t); pe:= PE(Fin);
7 elseMark ¢ as useless evergnd if (In order to not consider again)
8. else (t is a synchronized event)
9: Compute the extrapolated zomest of clock values.
10: if 3 a synchronized event <t | A(Cut([t'])) = A(Cut([t])) A (Test) C (Test/) then
11: Markt as useless event. (In order to not considagain)
12: elseif (Z;) # 0 then ExtendFin, t); pe:= PE(Fin);
13: elseMark ¢ as useless everegnd if (In order to not considetr again)
14: endif
15: end while

Synchronized events enjoy the following nice propertyypibin [8].

Lemma 2 (Forgettable Past of Synchronized Events).ett be a synchronized event
of a branching process of aNTA. It is equivalent to exteng; and to build a non-
branching process from C{jt]) with constraints on variableéd,(p) | p € Cut([t]) N
A~1(X)} given by Test

Finally the following theorem states the termination andreiness of Algorithm 3.

Theorem 2. Algorithm 3 terminates and the computed finite prefix Fin ishsthat:
(1) a transitiont can become firable iA(E’) iff an event labeled by occurs in Fin;
(2) a configuration is reachable inl(E") iff an equivalent configuration (w.r.t. strong
time bisimulation) is reachable by a timed sequence whosebmanching process is
included in Fin.

We have thus constructed for aNYA A a finite prefix which is complete for check-
ing reachability properties, and transition enabling.

5 Related Work

Partial order method for TA with ample sets.During the state exploration, partial-
order methods select a subset of transitions rather thaglajging all the state suc-
cessors. This subset, called ampleset, fulfills some properties relying on an inde-
pendence relation between transitions (see [19] for maelde Thus the efficiency of

13

these methods is closely related to the size of the indepeedelation. So introduc-
ing time (and its implicit synchronizations) will necessarestrict the corresponding
relation for the associated untimed model. In [4, 18], thihaxs define an alternative
semantics foONTA based on local time elapsing. Despite the fact that this sdoseal-

lows more behaviours than the standard semantics, theakidithrelation associated
with the usual semantics can be checked on the system condisig to the new one.
Moreover, the independence relation is enlarged when derisg local time elaps-
ing. Clearly, the efficiency of this method depends on twoasite factors: local time
semantics generate more states but the independencemetkztricts the exploration.

Partial order method for TA with Mazurkiewicz trace. In [16], the independence
between transitions of A are exploited in a different way: the occurrences of two
independent transitions do no need to be ordered (and cosstignor the occurrences
of the clock resets). Thus a symbolic state in this framevieidefined by a location
and constraints between variables related to both the alests and the transition
occurrences. When two sequenegésandba are developped from a state withand

b independent, they will lead to the same symbolic state vesevéth the ordinary
construction they would generally yield two different stHowever this method does
not exploit the independence relation for limiting the exption.

Partial order method for time Petri nets with ample (or stubborn) sets.In Petri
nets, ample sets are denoted as stubborn sets [20]. Stubétsrare similar to ample
sets but their definition takes advantage of the “localitf’ttee firing rule. In [23],
the authors generalise this concept to time Petri nets (TdaNihg it a ready setand
applying it to the class graph construction of [5] where &glg similar to a symbolic
state of aTA. Given a symbolic state, a ready set is a stubborn set wittrdditi@nal
constraint relative to the timing occurrences of enabladditions. Thus the efficiency
of the method depends on the weakness of the timing coupditwieen transitions.

Partial order method for TPNs with unfoldings. Depending on the Petri net to be
analysed, the unfolding and stubborn set methods behayéliffarently. For instance,
the former one outperforms the latter one when the net pteseonfusion”, {.e.when
the firing of a transition may influence the conflict set of &otunrelated transition of
the net). The generalisation of the unfoldings for TPNs heenldeveloped by differ-
ent searchers. First, in [2] the authors have studied tHesabdity of a non-branching
process in a TPN showing that the temporal mechanism of thetserequires a global
analysis of the process in order to check the firing of a ttenmsin such a process. Start-
ing from this analysis, [10] has recently designed a finitmplete prefix for TPNs. In
another direction, [15] proposes a method controlling taexgraph construction with
an unfolding of the untimed net. However this unfolding mayihfinite whereas the
TPN is bounded. In [14] the authors propose a discrete-tenwstics for TPNs equiv-
alent to the dense-time one w.r.t. reachability. The ndtitteza special transition of the
net modelling time elapsing but the occurrence of this itemmsin the unfolding re-
quires a complete cut drastically decreasing the locafithe unfolding. Furthermore,
this method suffers the combinatorial explosion relatetthéodiscrete time approach.

14

References

N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.

R. Alur and D. Dill. A theory of timed automatd@heor. Comp. Scil26(2):183-235, 1994.

. T. Aura and J. Lilius. A causal semantics for time Petrsnétheor. Comp. Sci243(1-
2):409-447, 2000.

. R.Ben Salah, M. Bozga, and O. Maler. On interleaving iretirautomata. 147th Int. Conf.
Concur. Theory (CONCUR'06LNCS 4137. Springer, 2006. To appear.

. J. Bengtsson, B. Jonsson, J. Lilius, and W. Yi. Partiatprdductions for timed systems. In
9th Int. Conf. Concur. Theory (CONCUR’9&NCS 1466, 485-500. Springer, 1998.

. B. Berthomieu and M. Diaz. Modeling and verification of éirdependent systems using
time Petri netsIEEE Trans. Softw. Engineering7(3):259-273, 1991.

. P. Bouyer. Forward analysis of updatable timed autonfatamal Methods in Syst. Design
24(3):281-320, 2004.

. P. Bouyer, S. Haddad, and P.-A. Reynier. Timed Petri netstened automata: On the
discriminating power of Zeno sequences.3Brd Int. Coll. Automata, Languages and Pro-
gramming (ICALP’06)LNCS 4052, 420—-431. Springer, 2006.

. P.Bouyer, S. Haddad, and P.-A. Reynier. Timed unfoldfogsetworks of timed automata.
Research Rep. LSV-06-09, Lab. Spécification et VérifiegtENS de Cachan, France, 2006.

. Th. Chatain and C. Jard. Time supervision of concurrestesys using symbolic unfoldings

of time Petri nets. IrBrd Int. Conf. Formal Modeling and Analysis of Timed SysOR-

MATS'05) LNCS 3829, 196-210. Springer, 2005.

Th. Chatain and C. Jard. Complete finite prefixes of syinbofoldings of time Petrinets. In

27th Int. Conf. Appl. and Theory of Petri Nets (ICATPN'A8)ICS 4024, 125-145. Springer,

2006.

C. Daws and S. Tripakis. Model-checking of real-timechedoility properties using abstrac-

tions. In4th Int. Conf. Tools and Algo. for the Construction and Asayf Syst. (TACAS'98)

LNCS 1384, 313—-329. Springer, 1998.

D. Dill. Timing assumptions and verification of finiteatd concurrent systems. &f the

Work. Automatic Verification Methods for Finite State Syst¢1989) LNCS 407, 197-212.

Springer, 1990.

J. Esparza, S. Romer, and W. Vogler. An improvement diMan’s unfolding algorithm.

Formal Methods in Syst. DesigR0(3):285-310, 2002.

H. Fleischhack and C. Stehno. Computing a finite prefix tiin@ Petri net. 1n23rd Int.

Conf. Appl. and Theory of Petri Nets (ICATPN'ORNCS 2369, 163—-181. Springer, 2002.

J. Lilius. Efficient state space search for time Pets nENTCS 18, 1998.

D. Lugiez, P. Niebert, and S. Zennou. A partial order sgioaapproach to the clock explo-

sion problem of timed automata. 1®th Int. Conf. Tools and Algo. for the Construction and

Analysis of Syst. (TACAS'Q4)NCS 2988, 296—311. Springer, 2004.

K. McMillan. A technique of state space search based dolding. Formal Methods in

Syst. Design6(1):45-65, 1995.

M. Minea. Partial order reduction for model checkingiofdd automata. 1410th Int. Conf.

Concur. Theory (CONCUR’'99)LNCS 1664, 431-446. Springer, 1999.

D. Peled. All from one, one for all: on model checking gsiepresentatives. [8th Int.

Conf. Computer Aided Verif. (CAV'9Q3)NCS 697, 409-423. Springer, 1993.

A. Valmari. Stubborn sets for reduced state space gémerdn 10th Int. Conf. Appl. and

Theory of Petri Nets (ICATPN’89)LNCS 483, 491-515. Springer, 1989.

W. Vogler, A. L. Semenov, and A. Yakovlev. Unfolding anuité prefix for nets with read

arcs. In9th Int. Conf. Concur. Theory (CONCUR’'9&NCS 1466, 501-516. Springer, 1998.

J. Winkowski. Reachability in contextual neBindam. Inform.51(1-2):235-250, 2002.

T. Yoneda and B.-H. Schlingloff. Efficient verificatiohgarallel real-time system$ormal

Methods in Syst. Desig1(2):187-215, 1997.

15

