Chapter 1

An Introduction to Automatic Synthesis of
Discrete and Timed Controllers

Franck Cassez, Kim Larsen, Jean-Francois Raskin, ancePAdaiin Reynier

1.1 Introduction

In this chapter, we introduce models and algorithms for tteraatic synthesis of
controllers for discrete and timed (infinite state) systefine techniques that we ex-
pose here are based on the game metaphor [5, 4]: when desggnembedded con-
troller, you can see the controller as interacting with igi@nment. As the actions
taken by the environment are uncontrollable, those acsbosld be considered as
adversarial Indeed, a controller should be correct no matter how thér@mwment
in which it operates behaves. The models, algorithms and fwesented here are
applied to an industrial case study in the next chapter. ddsge study was provided
to us by HrbACc ELECTRONIC GMBH within the Quasimodo project.

The objective of the chapter is to allow the reader to undastimed game
automata [3] as a model for solving timed control problemghWhis objective in
mind, we define the notions of game graphs, controllable andnirollable actions,
strategies, and winning objectives. We also give a gentteduaction to the main
algorithmic ideas that are used to solve games played omgrdjmose techniques
are used in the tool RPAAL-TIGA [1]. A good understanding of the techniques
used in WPPAAL-TIGA should help the users when modeling control problems and
formulating queries about their models.

The chapter is organized as follows. In section 1.2, we ¢htce an example of
a timed control problem called the‘Chinese juggler conprablem”. This example
allows us to illustrate the game metaphor for formalizingtimed control problem.
In Section 1.3, we introduce the basic definitions undegyhre game approach to
controller synthesis. In Section 1.4, we outline two altoris that are used to solve
(untimed) reachability and safety games respectivelydctin 1.5, we show how
the concepts developed in Sections 1.3 and 1.4 can be egtémdiened systems.
In Section 1.6, we summarize the main ideas underlying tiperghms for solving
timed games. In Section 1.7, we give an introduction to tbetiPPAAL-TIGA and

2 Franck Cassez, Kim Larsen, Jean-Frangois Raskin, and PikzirerReynier

show how to model and automatically solve the Chinese juggdatrol problem
with timed game automata.

1.2 The Chinesejuggler control problem

In this section, we introduce a running example that we us ia this chapter
to illustrate how timed controllers can be automaticallptigsized using the tool
UPRAAL-TIGA. The example also allows us to illustrate the game metapdror f
controller synthesis that underlies the development oftlle®ry in Sections 1.3
and 1.4.

A Chinese juggler has to spin plates that are on sticks toeptethnem from
falling, see Fig. 1.1 for an illustration. Assume, for oulagyle, that the juggler
wants to handle two plates, call®@late 1 andPlate 2 . Plates crash after a
while if they are not spun. Initially, each plate is spinnimg its stick and the spin
is fast enough so that they will stay stable for at least 5s#€0The juggler has to
maintain them stable for as long as possible (forever ifiptess For that, the juggler
can spin each plate but he can spin only one of the platesratafihen he decides
to spinPlate i € {1,2}, he should do it for at least 1 time unit. If he decides to do
it for t time units therPlate i stays stable for 3 time units if4£t < 2, and for 5
time units ift > 2.

Now, assume that there is also a mosquito in the room. When tregjuito
touches one of the two plates, it reduces the spinning ofltite,and as a result its
remaining stability time is decreased by 1 time unit. Whemtlosquito touches the
plate, it gets afraid and this guarantees that it will noctoany plate again before
D time units have elapsed (after that amount of time the méstpais forgotten and
he is not afraid any more).

We want to answer the following questi¢BP):

Given a value foD, does the Chinese juggler have a way to spin the plates so thatofion
the two plates ever falls down no matter what the behavioreftbsquito is ?

Let us first try to understand how this timed control problesn be seen as a
two player game. In the system underlying our example, we lsaveral compo-
nents: the Chinese juggler, the plates, and the mosquigarig] only the behavior
of the Chinese juggler is under control. The plates and theguito are part of the
environment: when a plate has not been spun enough, it daat &aly time, and the
behavior of the mosquito is out of control of the juggler, tlee mosquito decides
when it touches plates. As a consequence, we can see thelgootilem aoppos-
ing two players: on one hand the Chinese juggler (Player 1), artti@other hand
the plates and the mosquito (Player 2).

During this game, at any point in time, the Chinese juggley mhecide to spin
one of the two plates. If he decides to do so, he will do it fofeaist one time
unit. Then either he decides to continue to spin the plattg stop and remain idle
for a while, or to start spinning the other plate. The altévea that are offered to

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 3

Fig. 1.1 A Chinese juggler (cartoon courtesy of Jean Cardinal.)

the juggler along time can be understoodnagvesin the underlying game. The
mosquito, if it has not touched a plate in the precedingme units, may decide to
touch one of the two plates whenever it wishes to do so. Aghose alternatives
can be seen as moves in the underlying game. Similarly, wipdste does not spin
fast enough then it may crash at any moment. To summarizeyrifyemoves that
we control are the moves of the Chinese juggler, they are the moves géPla

all the other moves anencontrollable they are the moves of Player 2. We must be
prepared to face all the moves available to the mosquito@titetplates.

Second, we need to understand whatdbgectivesof the two players are. The
objective of the Chinese juggler is to avoid the plates tsltr&or the objective of
the plates and the mosquito (Player 2), it may not be as cléar.mosquito flies
randomly in the room and touches one of the plates on occaBianclearly, we
want to devise a strategy for the Chinese juggler suchwistever the behavior of
the mosquito igwithin the hypothesis that it does not touch twice the @atéhin
less tharD time units), the plates never crash. So, even if we do not leagtly the
intention (or the exact specification) of the mosquito, #a$e to be prepared for the
worst case scenario. So the kind of game that we consideeavesum games set
of behaviors (of the system) is identified as good for Play@mntl the complement
of this set (all other behaviors) are considered as goodlé&yeP 2.

1.3 Control asatwo-player games

Now that we agree that control problems can be seen as twepimmes, we in-
troduce the precise definitions underlying the theory of-phayer games played
on graphs. Later we extend those notions with dense timer gfiesenting timed
games, we show how to model the Chinese juggler problem wwitad game au-

4 Franck Cassez, Kim Larsen, Jean-Francois Raskin, and PikirerReynier

tomata and how we can answer questiGP) moreover if the answer is yes we
also show how to synthesize automatically a winning stsafegthe Chinese jug-
gler using the tool BRAAL-TIGA.

1.3.1 Game structures

A game structuras a tupleG = (L, #;,;t, Act1,Actz, E) whereL is a finite (non-
empty) set of locationd;,;: € L is theinitial location of the gameAct; andAct;
are the two disjoinsets of actiongor Player 1 (the controller) and Player 2 (the
environment) respectively, arlel C L x Act; UAct x L is aset of edgebetween
the locations of the game labelled by actions that belorfieeito Player 1 or to
Player 2. Intuitively, edges labeled with elements frAnt; belong to Player 1 and
are controllable (represented by plain arrows) while edesled by elements from
Acty belong to Player 2 and are uncontrollable (represented &lyetharrows). We
let Enabled;(¢) be the set of actions of Playere {1,2} available at locatior
i.e.Enabled;(¢) = {a € Actj | 3(¢,a,¢') € E}.

We require that for all € L, Enabled;(¢) # @, so that Player 1 is always able
to propose an action to play in any location of the game.

Example 1Fig. 1.2 depicts a game structure. The set of locations4gL0,L1,L2,
L3}. InlocationLO, Player 1 can choose between actar actionb, while Player 2
can choose between actioh and actioru2. LO (inner circle) is the initial location of
the game. The eddg&0,a,L1) belongs to Player 1 and the edd®,ul,L1) belongs
to Player 2. O

Fig. 1.2 An example of a game structure

The way players are playing on a game structdre (L, finit, Acty, Acto, E) is
defined as follows. Initially, a pebble lies d@p;:, the initial location of game. Then
the game is played in rounds. Let us assume that, for therduand, the pebble
lies on locatiory € L. Then, first, Player 1 chooses some actior Enabled (¢).

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 5

Then Player 2 decides where to move the pebble onto the swrdesations of
while respecting the following rule: for moving the pebbleaises either an edge
labeled with an action oAct, or an edgé labeled with the actiom chosen by
Player 1. By interacting in such a way for an infinite numberainds, Player 1
and Player 2 are constructingplay. Formally a playp = 4o¢1...4,... of the game
structureG is an infinite sequence of locations. We fgt] = ¢;,i > 0 and denote
Play(G) for the set of plays of.

Example 2Let us illustrate the notion of play using the example of Ri@. ASLO

is the initial location of the game structu@ the pebble initially lies or.0. Then
Player 1 is asked to make a choice among the actions that ailatde for her in
locationLO. This seti{a, b}. Assume that she choosadn this case, there are two
possibilities. Either, Player 2 chooses to let Player 1 plag the pebble is moved
using an edge labeled with the leteerin our example, there is only one such edge,
and so the pebble is moved on locatich By this interaction, a finite prefikOL1

of play is built. Or, Player 2 chooses to overtake Player ltamdayu2; in that case,
the finite prefixL.0 L2 of a play is built. Assume that the second situation applies
Then a new round starts itr?. In that location, there is no uncontrollable transition,
so if Player 1 chooses then the pebble is moved 8 and if she choosds it is
moved toLO, etc. O

1.3.2 Winning objectives and strategies

We have seen that the interaction between Player 1 (theatiemjrand Player 2
(the environment) on a game struct@e-= (L, £;nit, Act1, Acto, E) generates a play
which is an infinite sequena®/; ...¢,... of locations in the game graph, i.e. the
sequence of locations traversed by the pebble during theseatfthe game. Such a
sequence models one behavior of the system under contcilhebehavior could
be considered asgoodbehavior or as Aadbehavior depending on what we expect
from our systerf. In the game terminology, such a classification of good antl ba
behaviors leads to the notion of winning objectivewining objectivefor a game
structureG is a set of infinite sequences of locations, the intentiondpéhat such
sequences represent the good behaviors of the system.

Example 3Assume that in our running example, Player 1 has the obgetiiveach
the set of location§L.3,L4}. In this case the winning objective will contain all the
playslpl1l;...4,. .. such that; = L3V ¢ = L4 for some > 0. O

In the example above, the winning objective is a so-catkeathability objective
as it specifies a set of locations that we want to visit. In thigpter, we concentrate
on two classes of objectiveseachabilityandsafety Given a set ofargetlocations

1 There might be more than one-successor of. In this case, Player 2 resolves the non-
deterministic choice of the-successor.

2 As stated earlier, we play zero-sum games and in this case a @ilés good or bad.

6 Franck Cassez, Kim Larsen, Jean-Frangois Raskin, and PikzirerReynier

T C L, we define the set of winning plays of theachability objective defined by
T as the set of playReachg(T) = {p € Play(G) s.t.3i > 0-p|i] € T}. Given a set
of safelocationsS C L, we define the set of winning plays of tisafety objective
defined by @s the sefafeg(S) = {p € Play(G) s.t.Vi > 0- p[i] € S}. In the sequel,
we often usébj to represent a set of winning plays.

The winning objective specifies what the good plays for Ridyeare. Those
good behaviors can be enforced by the controller (Playef 4dhé has a strategy
to force the play to be within the winning objective no mattdrat the strategy
played by Player 2 is (so without the help of Player 2). Forl#ter definition to
be completely clear, we need to define more precisely whsitagegyis. In our
games, a strategy for Player 1 determines what actions Aomto pick during
the course of the game. In general, a strategy may dependeohigtory of the
game for deciding what the good action to play is. Nevers®léor reachability
and safety objectives, the situation is simpler and it cashmevn that strategies that
only depend on the current position of the pebble are sufficthose strategies are
called “memoryless” strategies. So, in this chapter we entrate on such simple
strategies. We now define them formally.(semoryless) strategipr Player 1 is
a functionA1 : L — Acty, i.e. it is a function that given the current locatiére L
chooses an actioky (¢) € Enabled (¢) for Player 1.

Let us now define the possible behaviors in the game stru@urél, £;,;;, Act,
Acty, E) when Player 1 plays according to the stratdgyRemember that Player 1,
in the game above, chooses an action at each round. Then Plelyeoses between
the edges labeled by this action or labeled with one of her agtions. The set of
behaviors in this case is thus the set of paths that stégtimnd use only edges that
are either labeled with actions of Player 2 or labeled witioas that are prescribed
by the strategy;. We can also see a strategy for Player 1 as cutting out edges of
Player 1 that are not chosen by the strategy. Let us definéaitmaally. We call the
outcome of the strategys in the gameG = (L, 4nit, Act1, Acto, E) the set of plays

Outcome(G, A1) = {p | Vi > 0,3a € A1(pli]) UActz - (pli],a,pli+1]) € E}.
A strategyA; is winningfor the objectiveObj in G if Outcome(G,A;) C Obj.

Example 4Let us consider again the example of Fig. 1.2. Assume thawiimeing
objective for Player 1 is to reach locatia8, i.e.Obj = Reachg({L3}). Let us con-
sider the strategy; defined as followsLO +— b, L1+ b, L2 — a, andL3 > a. It
should be clear that no matter how Player 2 plays when the qilays inLO, the
result of the interaction with this stratedy is a play that reaches3. For exam-
ple, let us consider the following scenario:1i@, instead of playind as chosen by
Player 1, Player 2 moves the pebble to locati@nFrom there, instead of playiry
as asked by Player 1 (this would lead directlyL.8), Player 2 moves the pebble to
L2. FromL2, Player 1 choosesand Player 2 has no other choices than to move the
pebble taL3. So, under any adversarial behavior of Player 2, PlayenXarae the
pebble to reach locatiarB. As a consequencg; is a winning strategy for Player 1
to win the reachability game defined by the objectdg = Reachg({L3}). O

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 7

1.4 Solving two-player games

In the previous section, we have defined two-player gametsires, reachability
and safety winning objectives, strategies for Player 1,vaadhave explained when
a strategy for Player 1 is winning. In this section, we introel the basic ideas that
are underlying algorithms for solving games with safety srathability objectives.

To understand the basic ideas behind the algorithms foimgpteachability and
safety games, we must first concentrate on what happens iroand, i.e. we need
to consider one-step objectives.ofie step objectivis defined by a set of locations
T CL.Inalocatiort € L of the games = (L, finit, Acty, Acto, E), Player 1 wins the
one step objectiv& if there exists an actioo € Act; such that all edges labeled by
o and all edges labeled withct, actions lead to a location if, i.e./ is such that

Ja € Acty-VB € ActoU{a}-V((,B,0)eE: L €T.

In that case, we say thdtis a controllable predecessaof T, and we denote by
CPre(T) the set of locations that are controllable predecessofs of

Example 5To illustrate the definition ofontrollable predecessarsie use Fig. 1.3.
First, let us consider the set of locatiofis= {L1,L3}. The locationLO is a con-
trollable predecessor ah. Indeed, inLO if Player 1 chooses, no matter what is
the choice of Player 2 (to move the pebble using an edge kéta a or to play
an edge labeled with her own actions) the pebble will be eithel or L3 after the
round, so it will lie inT;. Second, let us consider the set of locatidns- {L1,L2}.
The locationLO is not a controllable predecessorTef Indeed, neithea nor b en-
sures that the pebble will lie if, as Player 2 can choose to gat®usinga or u2 in
the first case, and Player 2 can decide to gbltasingul in the second case. [J

L1

LO

\ - =
u2 ~--

Fig. 1.3 Controllable and uncontrollable predecessors

Now that we understand what it means for a locatida be a controllable pre-
decessor of a set of locatioifs we provide algorithms to solve reachability and
safety games. Let us start with reachability games.@.et (L, ;n;t, Acty, Acty, E)

8 Franck Cassez, Kim Larsen, Jean-Frangois Raskin, and PikzirerReynier

be a two-player game structure a@j = Reachg(T) be the reachability objective
for Player 1.

The algorithm that computes the set of winning locationglierreachability ob-
jectiveReachg(T) works by induction on the number of rounds needed for Player 1
to win. Clearly, all the locations i are winning in 0 rounds, let us denote this
set of locations by\p. Now, it should be clear that the set of controllable predece
sors of T are locations that are winning in 1 step. By taking the unibthis set
with Wp, we obtain the set of locations from which Player 1 can foregséto T
in 0 or 1 rounds, i.e\W; =Wy U CPre(Wp). Generalizing this reasoning, we get that
W =W_; UCPre(W_1),i > 1is the set of locations from which Player 1 can force a
visit to the sefl in less than rounds. Clearly, we have thap CW; C--- CW C L.

As L is a finite set, the monotonic sequencé\freaches a fixed poiW for some

k <|L| andW =W, =W_;. The seW is the set of locations from which Player 1
has a strategy to force a visitToin a finite number of steps. ,;; € W then Player
1 has a winning strategy from the initial location of the gaffrem the computation
of this sequence, we can extract a winning strategy for edltions inW as follows.
Let £ € W be such that € W,i > 1 and? ¢ W_;. DefineA1(¢) to be any action
a sucha € Act; and all the edges labeled withthat leave the locatiof go to a
location that belongs to the 3&t 1; because of the definition ¥ andCPre, such
an actiona is guaranteed to exist.

Example 6Let us consider again the example of Fig. 1.2 with the redtityabb-
jective Obj = Reachg({L3}). LetWp = {L3}, and let us compute the set of control-
lable predecessors W. The locationd.2 andL3 are controllable predecessors of
Wo. SoW; = {L2,L.3} is the set of locations from which Player 1 can ensure a visit
in {L3} in 0 or 1 rounds. It should be clear from the computation ofcetrollable
predecessors M that Player 1 has to choose the actéowhen the pebble lies on
L2. This gives a winning strategy for Player 1Iin. Now, let us consider the loca-
tions that are controllable predecessor®Vef This set is{L1,12,13}. Indeed inL1
Player 1 can choodeand in this case, either Player 2 moves the pebhbi&tosing
edge(L1,b,L3) or she moves the pebble 1@ using the edge labeled 3. In the
two cases, the pebble lies §b2,1.3} when starting the next round of the game. If
we continue like that we obtain that all the locationgSodire winning for the objec-
tive Obj and in the process we can construct a winning strategy fgePh O

Let us now turn to safety games. Remember that in a safety gefireed by a
setSC L of locations, Player 1 has the objective to stay within Sé&trever, i.e.
Obj = Safeg(S). Let us define, as for reachability, a sequence of sets ofitosa
that approximate the set of winning locations for Player lga@ly, Wy = Sis the set
of locations from which Player 1 can ensure to stay withiior at least O rounds.
Now, W) =Wp N CPre(Wp) is the set of locations from which Player 1 can ensure to
stay withinSfor at least 1 round, and more generalty=W_; N CPre(W_1),i > 1
is the set of locations from which Player 1 can ensure to sitlymS for ta least
rounds. Clearly, we have thatDWo DWy D --- DW D --- D @. As L is a finite
set, we must reach a fixed poWit for somek < |L| andW =W = W,_1, and so
the sequence eventually stabilizes on the set of locatimms fvhich Player 1 can

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 9

force to stay withinSforever, i.e. on the set of locations from which Player 1 has a
strategy to win the safety game defined®y

Example 7Let us consider again example of Fig. 1.2 but now with the cihje
Obj = Safeg({Lo,L2}). So the objective for Player 1 is now to avoid locatidagnd
L3. Let us compute the sequence of sets of locations that ajppeite the winning
set for Player 1. By definition of this sequen¥é, = {Lo,L,}. Let us compute the
controllable predecessors of this set of locatidtBte(Wp) = {L2}. Indeed,LO is
not a controllable predecessor{df0,L2} as, fromLO, Player 2 can force to move
the pebble onto the locatidril by choosing to play the edge labeled; While
Ly is a controllable predecessor of the ¥étas inL, Player 1 can move the pebble
onto the locatiorig € {Lo,L1} by playing the actiom, soWw, = {L2}. And clearly,
CPre(Wy) = @. So, there is no location i@ from which Player 1 can ensure to stay
within {L0O,L2} forever and Player 1 cannot win the game.

Let us now change the objective and considef= Safeg({Lo,L1,L2}). We start
the computation witMg = {Lo,L1,Lz2}, and comput&Vy =Wo N CPre(Wp). All the
edges leavingo reach a location ik soLg € CPre(W), inL; all edges of Player 2
and all edges of Player 1 labeled wilreach a location iy soL; € CPre(Wp),
and inL; all edges of Player 2 and all edges of Player 1 labeled witbach a
location inWp soLy € CPre(Wp). The sequence of sets stabilizes/s=Wp, and
so Player 1 has a strategy to win the safety obje@bpe= Safeg({Lo,L1,L2}) from
all locations in{Lo,L1,Ly}. O

Remark 1.The main drawback of the algorithms that we have outlinedalmthat
they compute winning information about locations that arerecessarily reachable
by an interaction between Player 1 and Player 2 from thealdd@cation. In practice,
that can deteriorate the performances of the algorithmatelare solutions to avoid
that problem, see for example the on-the-fly algorithm of {2t the description of
those solutions goes beyond the objectives of this intriboloic

1.5 Adding time to game structures

To add time to game structures, we adapt the syntax of timiaheta as defined in
Chapter XXX and partition discrete transitions as conata and uncontrollable.
A timed game automatoB = (L, finit, X, Inv, Acts, Actyp, E) is a structure, where:

e L is a finite set of discrete locations ahg;; is the initial location of the timed
game;

e X is a finite set of clocks, and we denote Ggnstr(X) the set ofclock con-
straints i.e. conjunctions of atomic constraints of the forms c or x—y ~ ¢,
wherec € N andx,y € X;

e Inv:L — Constr(X) is a function that labels each locatiér L with an invariant
Inv(¢) that restricts the possible values that clockX ican take when the control
of the automaton is in locatiof)

10 Franck Cassez, Kim Larsen, Jean-Frangois Raskin, and Ri@ireReynier

e Act; are the actions of Player Act, are the actions of Player 2 such that; N
Acty = @, andE C L x (Act; UActp) x Constr(X) x 2% x L is the set of discrete
transitions of the timed game. A tuplé o, ¢,R,¢’) € E is a transition that goes
from location/ to location?’, that is labeled with actiom (if a € Act; then
the transition is controllable, otherwise it is uncontble), with guardp (the
transition can be taken only if the values of clocks satibfy guard), and reset
setR (the clocks in the seR are reset when the transition is taken).

L5 (Goal)

Fig. 1.4 An example of a timed game automaton

Example 8 An example of a timed game automaton is given in Fig. 1.4. Tilg o
syntactical difference with plain timed automata is indlibg the partition of the
alphabet of labels for the transitions: the transitionglet with an element dfct;
belong to Player 1, and the transitions labeled with an el¢roBAct, belong to
Player 2. As for untimed games, the edges controlled by Plhyee depicted by
plain edges, and the edges controlled by Player 2 are ddstdashed edges.

A state of a timed automaton is a pdi#,v), where/ is a location ands is a
valuation for the clocks, i.e. a functiont X — R that assigns to each clogle X
a positive real number(x). In a timed automaton, when the automaton is in a state
(¢,v), time can elapse as long as it does not violaté/) (the invariant that labels
£). For example in the timed game automaton of Fig. 1.4, fraaegL0,v) with
v(x) = 1, time can elapse fdrtime units if 1+t < 2, in that case stat@.0,V) is
reached with/(x) = v(x) +t.

Atransition(¢1,a, @, R, ¢2) can be taken in staté, v) whenever = /1, the guard
@ is satisfied by, which is denoted by = ¢, and the clock valuatior[R := O],

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 11

which maps a clock € X\ R to v(x), and a clockx € Rto 0, is such that it satis-
fiesInv(f2), i.e.vV[R:= 0] = Inv({2). For instance, in the timed game automaton of
Fig. 1.4, in state {, %), Player 2 can take the uncontrollable transitioi@s the
guard onx is satisfied % < 1.) The state that is reached after this transition is the
pair (¢2,0) as the clock is reset by this transition.

For a more systematic presentation of the semantics of tauemnata, the reader
is referred to Chapter XXX. In this section, we focus on itituis and do not always
give all the formal definitions.

1.5.1 Roundsin timed games

Remember thatintimedtwo-player games are played for an infinite number of
rounds. Each round is played as follows: Player 1 choosesaotien a € Act;
among the actions that label the controllable transitieasihg the location where
the pebble lieson , and then Player 2 moves the pebble by adiagsition that is
labeled either byr or by an action fromAct, (an uncontrollable transition.)

In timed games, we additionally need to know at what time &dywants to
play. So in addition to an action to play, Player 1 chooseslayde Then given a
pair (t,a), Player 2 either decides to wait fotime units and to take a transition
that is labeled with the letter € Act1, and for which the guard on the transition is
satisfied, or Player 2 decides to wait for a delay &f t and use a transition labeled
by an action fromAct,, and for which the guard evaluates to true.

Example 9L et us consider the timed game automaton of Fig. 1.4. As gidkam-
ple, there are at most one controllable and one uncontteltednsition out of each
location, we did not give names to the transitions. This edans a timed game
automaton with a reachability objective for Player 1: hgeotive is to reach the lo-
cation labeled witlgoal. Initially the pebble lies 0.0 and the value of the clock

is equal to 0. Let us assume that Player 1 proposes to waitlgXfacl time unit
and to take the transition that leadsltb. In this case, the two following scenarios
are possible. Either Player 2 lets time elapse for at ledstd wnit, the value of the
clock x is then equal to 1, and the pebble can be moved on locafias proposed
by Player 1 (indeed, the guard< 1 is satisfied.) Or, Player 2 decides to wait for
t < 1 time units, and to move the pebble to locati®wsing the uncontrollable edge
from LO toL2. Again, this is possible because after waitingtfer 1 time units, the
value ofx is less than 1 time unit, and so the guard 1 on the transition from.0

to L2 is satisfied.

Assume for now that Player 2 follows the second scenario. peidble is now
lying onL2 and the value of clockis equal to O (as it has been reset when moving
the pebble using the transition framd toL2.) From that position, let us assume that
Player 1 chooses to wait f@ time units and proposes to move to locatich As
there is no alternative for Player 2, time elapses%fmime units, and the pebble is
moved fromL2 toL3.

12 Franck Cassez, Kim Larsen, Jean-Frangois Raskin, and Ri@ireReynier

From there, Player 1 chooses to wait @time units and proposes to move the
pebble toL1. Again, as there is no alternative for Player 2, time elarﬁee% time
units and the pebble is moved fran3 to L1. When the pebble arrives ari, the
value of the clockx is equal to% +% = 1. Then Player 1 chooses to wait say for
14—11 time units and to move the pebble to locatgoal. This is a valid move as the
value ofx is then equal to %+ 1;11 = 2;11 and so the guard > 2 is satisfied, again
as Player 2 has no other alternatives, the pebble is moveatatidngoal, and the

play is winning for Player 1. O
When moving the pebble according to the rules defined abotimeal playof
the form (£o, Vo) (fo.%0) (f1,v1) (tey), (nteny) (0n,Vn) tn&) s generated

by the interaction between the two players. In this timeg,mach(t;, e) specifies
the time that has elapsed and the transition that has beem tlking the round

As for untimed games, objectives are defined by a set of destyeationsT C L
of the automaton that Player 1 wants to reach for reachalgifimes, or by a set
of discrete location$s C L in which Player 1 wants to stay in for safety games.
For reachability and safety objectives, it can be shownRBtager 1 has a winning
strategy if and only if she has a winning memoryless straf@pyror timed games,
a memoryless strategg a functionA; : L x Rzo‘x‘ — R>g x Act; that specifies,
given the current state of the garfiev), the timet € R>(to wait and the action
o € Act; to play.

1.6 Solving two-player timed games

We have seen that, in the case of untimed games, reachahilitysafety objec-
tives can be solved using a notionamintrollable predecessar3his notion can be
extended to timed games. Again, we do not formalize all thaildehere but we
give enough intuition so that the reader can understand #ig ideas behind the
algorithms for solving timed games.

Intuitively, a state(¢,v) is a controllable predecessor of a set of staes
{(%o,v0), (¢1,V1),...,(In,Vn),... }, if there exista € Act; and a delay € R>g such
that the following four conditions hold:

1. for all delayst’, 0 <t’' <t,v+t' = Inv(¢), i.e. time can elapse frorf?,v) for t
time unit without violating the invariant labeling

2. there exists a transitian= (¢,a,®,R ¢') such thav+t = g andv+t[R:=0] =
Inv(¢'), i.e. there is a transition labelled with that can be taken aftértime
units;

3. for all transitionee = (¢, a, ¢, R, ¢') such thaw +t satisfiesp, (¢,v+t[R:=0])
belongs toT, i.e. any choice of a transition labelled withtaken aftert time
units leads td';

4. for all transitionse = (¢,u, @,R,¢') and delayg’ such that 0<t’ <t, u € Acb,
andv-+t’ satisfiesp, then(¢',v+t'[R:= 0]) belongs tdT, i.e. any uncontrollable
transition that can be taken withiriime units leads t@ .

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 13

The sets of states that we have to handle are infinite, so tm@yot be repre-
sented in extension. We need a symbolic data structure abigptesent infinite
sets. Those sets can be represented symbolically usinglfasrim an adequate con-
straint language. All sets manipulated during the compartaif the timed control-
lable predecessors are representable by union of clockragnts. To illustrate the
use of clock constraints and how the computation of the otlabile predecessor in
the timed setting is done, we consider our running exampkegfl.4.

L3, \ \ \ R T \ , , —

0o 1 2 3 x 0o 1 2 3 x 0o 1 2 3 x o 1 2 3 x
L2 N [——— .

0 1 2 3 x 6 1 2 3 x 06 1 2 3 x o 1 2 3 x
0 1 2 3 x o 1 2 3 x 0 1 2 3 x o 1 2 3 x
Loy } } } = = } =

0) (6] 2 (€)

Fig. 1.5 Computation of the timed controllable states.

Example 10The computation of the set of winning states is depicted @ Ei5.

The first part of the picture, markéd), depicts the set of states of the fofixl, v)

with v> 1. All those states are winning in 1 step because wher, the uncontrol-
lable transition fronL.1 toL2 cannot be taken by Player 2 (as it is guarded kyl),

and by waiting until clock reaches a value equal to or greater than 2, Player 1 can
move the pebble frorhl to locationgoal. The part marked?) of the picture depicts

the set of states that are winning in at most 2 discrete stéygsstates that have been
added are controllable predecessors of the states thaframmgin 1 step. First, let

us conside(L0,v) with v(x) = 1. This state is winning as, on the one hand, none of
the uncontrollable transitions is enabled in this statd,@nthe other hand, the con-
trollable transition fronL.0 to L1 is enabled, and when it is taken the game reaches
a winning state (in 1 step.) Second, consider the set ofsstaBev) with v(x) < 1.
From all those states, Player 1 can wait uxt# 1 and then she can take the control-
lable transition td.2, reaching a set of winning states in 1 step. The statesteepic

in part(3) and(4) are computed in a similar manner. O

1.7 The Chinesejuggler control problem in UPPAAL-TIGA

UPPAAL-TIGA is a tool developed at Aalborg University. It handles timeong
automata as presented in the previous section. The tool eaownloaded from
http://www.cs.aau.dk/ ~ adavid/tiga/download.html . We refer the
reader to the user manual for details about the featureshendsage of BRAAL -

TIGA in practice. In this section, we show how to model the Chineggler control
problem with timed game automata. We use screenshots frenott to illustrate

14 Franck Cassez, Kim Larsen, Jean-Frangois Raskin, and Ri@ireReynier

its user interface. The interested reader can download HBA AL -TIGA model of
Kim, can we add this our running example frorhttp://...
on the tiga web site Note that for the sequel, we assume that the reader is famvilia notation of the
??7? UPPAAL tool as described in Chapter YY. The models that are useddrergame
extensions of the BPAAL models, we make it clear what are those extensions in
the sequel.

1.7.1 Modeling of the components

A timed game in WRAAL-TIGA is modeled compositionally by defining timed
game automata that specify the behavior of the componettie sfystem. This mod-
eling approach is similar to the one used for regular modael$riPAAL (see Chap-
ter YY for additional material on compositional modelingys in UPPAAL models,
components in BRAAL-TIGA synchronize using shared events (implemented by
channels). For the rest of this section, we assume that &aerés familiar with this
modeling paradigm.

Fig. 1.6 shows the timed automaton modelPtate i< {1,2}. The timed game
automaton has the set of locatiof8table,Spinning, Longspinning, Crashed}.
The locationStable intends to model the situation when the plate is stable ghe |
cationCrashed models the situation when the plate has crasBptning mod-
els the situation when the juggler does spin the plate spia finet < STABSHORT
seconds (wher8TABSHORTS a constant equal to 2), ahdngspinning when
the juggler does spin the plate for more tH8IRABSHOREeconds.

mosquito? StabTime = StabTime-1

! 1

StabTime>0 | :
! i
' P Crashed

Stable ~X>=StabTime
startspin? stopspin? Slopsp
pin: StabTime =3, StabTime=5,
x=0 x=0 x=0

. x==STABSHORT —
Spinning Longspinning

x<=STABSHORT

Fig. 1.6 A model for the plate.

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 15

The automaton uses one clackThe use ok is twofold. First, when the control
is in locationStable , the variablex records the time elapsed since the plate was
last spun by the juggler. When the control isSpinning or Longspinning , X
records the time elapsed since the plate has last been spen tine impulsion of
the juggler. Let us now have a look at the transitions betveeatrol locations.

First, we consider the uncontrollable transitions. Theretewo uncontrollable
transitions that leavestable . The self loop is taken whenever the mosquito
touches the plate (this is ensured by the synchronizatidgheavenmosquito?).
The effect is to substract value 1 from the integer varigibTime that models
the length of the time interval during which the plate is gudeed to stay stable
without being spun by the juggler. This can be done only ifghardStabTime > 0
is true (making sure that the value 8fabTime cannot become negative.)

The uncontrollable transition going froBtable to Crashed can be taken (by
Player 2) whenever the value of the clackxceeds the time for which the plate is
guaranteed to be stable (since the last time it has been sptlne fuggler.) As this
transition is uncontrollable, Player 2 can decide to takéany time when the guard
is true. Player 2 may not take the transition immediately mtiee guard becomes
true but we cannot rely on this: that is why it is an uncongiolié transition in our
model.

Second, we consider the controllable transitions. Thesitian between loca-
tionsSpinning andLongspinning is taken exactly when the valueis equal
to STABSHORTIt accounts for the fact that the juggler is spinning thdeofar an
interval of more tharSTABSHORBeconds. In fact, the behavior of this transition
is deterministic and so it could have been defined as undtatite, that would not
make any difference. The other three controllable tremsitiare related to actions
controlled by the juggler. When the plateStable , the juggler can decide to give
it more spinning by emitting the evestartspin! . This has the effect to trigger
this transition (reception of the evestartspin!) and to move the control to
locationSpinning . The control leaves the locati@pinning

e either because the juggler has decided to stop spinningt{stepspin?)
before STABSHORBeconds, in that case, the control moves back to location
Stable , the clockx is reset, and the interval for which the plate is guaranteed
to be stable is 3 seconds (upd&t@bTime=3),

e or because the juggler has spun the plateS6ABSHORTBeconds, and the
control moves td_ongspinning . This later location is left when the event
stopspin? occurs, in that case the control moves baclStable and the
plate is guaranteed to be stable for 5 seconds (ugtateTime=5).

This template timed game automaton is instantiated twice,tone forPlate
1 and one time foPlate 2

We can now have a look at the other components of our model 1R glepicts
a model of the mosquito. The mosquito can at any time touclobtiee two plates
provided that he has not touched a plate within the@astes units (this is forced
by the guardy > D). This last constraint is enforced using the clgakhich is reset
each time a plate is touched. The self-loop is labeled wighetventmosquito!

16 Franck Cassez, Kim Larsen, Jean-Frangois Raskin, and Ri@ireReynier

Turn

mosquito!
T T T TN
| |
startspin! z>=1
y>=D : : y:0 z=0 stopspin!
| |
0~
Wait
Fig. 1.7 A model for the mosquito Fig. 1.8 A model for the juggler

which is either received by Plate 1 or Plate 2. The transisamcontrollable as it
belongs to the mosquito and not to the controller that we wasynthesize.

Finally, the juggler is modeled by the timed automaton giirefrig. 1.8. The
juggler can be in two different states that are modeled bylbwations:Wait mod-
els the situation when the juggler does not spin any of thepiates, Turn models
the situation when the juggler spins one of the plates. Tleategtartspin!
andstopspin! are synchronized with either Plate 1 or Plate 2. Clbikused to
express that the juggler should spin a plate for at least & tinit.

1.7.2 Analysis of the model

We can now analyze the model of the Chinese Juggler presabte@ with the tool
UPRAAL-TIGA. We want to determine if the Juggler has a strategy to winithed
game for the safety objective ‘none of the two plates evestea™. This control
objective is expressed by the following expression in tireARAL-TIGA syntax:

control: A[] not (Platel.Crashed or Plate2.Crashed)

This formula asks to find a control strategy (keywaahtrol) for the juggler
such that on all resulting plays (modali#y, it is always the case (modalify) that
(Platel.Crashed or Plate2.Crashed) is false.

If we impose to the mosquito to stay away from the two platesfdeastD = 2
seconds after touching one of the plates, then the Juggienlsirategy to win.
UPRAAL-TIGA is able to determine that property, and furthermore, thé atsm

... Kim, can you pro- synthesizes a winning strategy. The strategy that the tothssizes is as follows:

vide a picture of the

Now, if we setD = 1, then the Juggler does not have a strategy to win as the

winning strategy for mosquito can act very fast.
the parameters as de-

scribed above ?

1.8 Conclusion

In this chapter, we have introduced the basic concepts ayudiimic ideas that
underly the automatic synthesis of discrete and timed oblets for systems mod-
eled by game automata and timed game automata. We have shaininé game

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 17

metaphor is natural to model control problems. Even if thdeas are relatively
recent, they have been implemented into the topPALL-TIGA and they can be
applied to interesting case studies.

In the next chapter, we show how to us@® AL-TIGA to automatically syn-
thesize a controller to regulate a pressure accumulatot@ogtimize its energy
consumption.

References

1. Gerd Behrmann, Agrs Cougnard, Alexandre David, Emmanuel Fleury, Kim Guldstrand
Larsen, and Didier Lime. Uppaal-tiga: Time for playing gamesChV - International Con-
ference on Computer Aided Verificatiorolume 4590 olecture Notes in Computer Science
pages 121-125. Springer, 2007.

2. Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Gulddttarsen, and Didier Lime.
Efficient on-the-fly algorithms for the analysis of timed games.CDNCUR - International
Conference Concurrency Thepmolume 3653 ofLecture Notes in Computer Sciengages
66-80. Springer, 2005.

3. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesigsofade controllers for
timed systems. In E.W. Mayr and C. Puech, edit&BACS - Theoretical Aspects of Computer
Sciencevolume 900 ofLecture Notes in Computer Scienpages 229-242. Springer-Verlag,
1995.

4. Amir Pnueli and Roni Rosner. On the synthesis of a reactive reodlt POPL - Annual
Symposium on Principles of Programming Languagegies 179-190. ACM Press, 1989.

5. Peter J. Ramadge and W. Murray Wonham. Supervisory controttzfsa of discrete-event
processesSIAM Journal of Control and Optimizatio25(1):206—-230, 1987.

