
Chapter 1
An Introduction to Automatic Synthesis of
Discrete and Timed Controllers

Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

1.1 Introduction

In this chapter, we introduce models and algorithms for the automatic synthesis of
controllers for discrete and timed (infinite state) systems. The techniques that we ex-
pose here are based on the game metaphor [5, 4]: when designing an embedded con-
troller, you can see the controller as interacting with its environment. As the actions
taken by the environment are uncontrollable, those actionsshould be considered as
adversarial. Indeed, a controller should be correct no matter how the environment
in which it operates behaves. The models, algorithms and tools presented here are
applied to an industrial case study in the next chapter. Thiscase study was provided
to us by HYDAC ELECTRONIC GMBH within the Quasimodo project.

The objective of the chapter is to allow the reader to understand timed game
automata [3] as a model for solving timed control problems. With this objective in
mind, we define the notions of game graphs, controllable and uncontrollable actions,
strategies, and winning objectives. We also give a gentle introduction to the main
algorithmic ideas that are used to solve games played on graphs. Those techniques
are used in the tool UPPAAL -TIGA [1]. A good understanding of the techniques
used in UPPAAL -TIGA should help the users when modeling control problems and
formulating queries about their models.

The chapter is organized as follows. In section 1.2, we introduce an example of
a timed control problem called the‘Chinese juggler controlproblem”. This example
allows us to illustrate the game metaphor for formalizing the timed control problem.
In Section 1.3, we introduce the basic definitions underlying the game approach to
controller synthesis. In Section 1.4, we outline two algorithms that are used to solve
(untimed) reachability and safety games respectively. In Section 1.5, we show how
the concepts developed in Sections 1.3 and 1.4 can be extended to timed systems.
In Section 1.6, we summarize the main ideas underlying the algorithms for solving
timed games. In Section 1.7, we give an introduction to the tool UPPAAL -TIGA and

1

2 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

show how to model and automatically solve the Chinese juggler control problem
with timed game automata.

1.2 The Chinese juggler control problem

In this section, we introduce a running example that we use later in this chapter
to illustrate how timed controllers can be automatically synthesized using the tool
UPPAAL -TIGA. The example also allows us to illustrate the game metaphor for
controller synthesis that underlies the development of thetheory in Sections 1.3
and 1.4.

A Chinese juggler has to spin plates that are on sticks to prevent them from
falling, see Fig. 1.1 for an illustration. Assume, for our example, that the juggler
wants to handle two plates, calledPlate 1 andPlate 2 . Plates crash after a
while if they are not spun. Initially, each plate is spinningon its stick and the spin
is fast enough so that they will stay stable for at least 5 seconds. The juggler has to
maintain them stable for as long as possible (forever if possible). For that, the juggler
can spin each plate but he can spin only one of the plates at a time. When he decides
to spinPlate i ∈ {1,2}, he should do it for at least 1 time unit. If he decides to do
it for t time units thenPlate i stays stable for 3 time units if 1≤ t ≤ 2, and for 5
time units ift > 2.

Now, assume that there is also a mosquito in the room. When the mosquito
touches one of the two plates, it reduces the spinning of the plate, and as a result its
remaining stability time is decreased by 1 time unit. When themosquito touches the
plate, it gets afraid and this guarantees that it will not touch any plate again before
D time units have elapsed (after that amount of time the mosquito has forgotten and
he is not afraid any more).

We want to answer the following question(CP):

Given a value forD, does the Chinese juggler have a way to spin the plates so that none of
the two plates ever falls down no matter what the behavior of the mosquito is ?

Let us first try to understand how this timed control problem can be seen as a
two player game. In the system underlying our example, we have several compo-
nents: the Chinese juggler, the plates, and the mosquito. Clearly, only the behavior
of the Chinese juggler is under control. The plates and the mosquito are part of the
environment: when a plate has not been spun enough, it can fall at any time, and the
behavior of the mosquito is out of control of the juggler, i.e. the mosquito decides
when it touches plates. As a consequence, we can see the control problem asoppos-
ing two players: on one hand the Chinese juggler (Player 1), and on the other hand
the plates and the mosquito (Player 2).

During this game, at any point in time, the Chinese juggler may decide to spin
one of the two plates. If he decides to do so, he will do it for atleast one time
unit. Then either he decides to continue to spin the plate, orto stop and remain idle
for a while, or to start spinning the other plate. The alternatives that are offered to

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 3

Fig. 1.1 A Chinese juggler (cartoon courtesy of Jean Cardinal.)

the juggler along time can be understood asmovesin the underlying game. The
mosquito, if it has not touched a plate in the precedingD time units, may decide to
touch one of the two plates whenever it wishes to do so. Again,those alternatives
can be seen as moves in the underlying game. Similarly, when aplate does not spin
fast enough then it may crash at any moment. To summarize, theonly moves that
we control are the moves of the Chinese juggler, they are the moves of Player 1,
all the other moves areuncontrollable, they are the moves of Player 2. We must be
prepared to face all the moves available to the mosquito and to the plates.

Second, we need to understand what theobjectivesof the two players are. The
objective of the Chinese juggler is to avoid the plates to crash. For the objective of
the plates and the mosquito (Player 2), it may not be as clear.The mosquito flies
randomly in the room and touches one of the plates on occasion. But clearly, we
want to devise a strategy for the Chinese juggler such that,whatever the behavior of
the mosquito is(within the hypothesis that it does not touch twice the plates within
less thanD time units), the plates never crash. So, even if we do not knowexactly the
intention (or the exact specification) of the mosquito, it issafe to be prepared for the
worst case scenario. So the kind of game that we consider arezero sum games: a set
of behaviors (of the system) is identified as good for Player 1, and the complement
of this set (all other behaviors) are considered as good for Player 2.

1.3 Control as a two-player games

Now that we agree that control problems can be seen as two-player games, we in-
troduce the precise definitions underlying the theory of two-player games played
on graphs. Later we extend those notions with dense time. After presenting timed
games, we show how to model the Chinese juggler problem with timed game au-

4 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

tomata and how we can answer question (CP); moreover if the answer is yes we
also show how to synthesize automatically a winning strategy for the Chinese jug-
gler using the tool UPPAAL -TIGA.

1.3.1 Game structures

A game structureis a tupleG = (L, ℓinit,Act1,Act2,E) whereL is a finite (non-
empty) set of locations,ℓinit ∈ L is the initial location of the game,Act1 andAct2
are the two disjointsets of actionsfor Player 1 (the controller) and Player 2 (the
environment) respectively, andE ⊆ L×Act1∪Act2×L is a set of edgesbetween
the locations of the game labelled by actions that belong either to Player 1 or to
Player 2. Intuitively, edges labeled with elements fromAct1 belong to Player 1 and
are controllable (represented by plain arrows) while edgeslabeled by elements from
Act2 belong to Player 2 and are uncontrollable (represented by dashed arrows). We
let Enabledi(ℓ) be the set of actions of Playeri ∈ {1,2} available at locationℓ
i.e.Enabledi(ℓ) = {α ∈ Acti | ∃(ℓ,α, ℓ′) ∈ E}.

We require that for allℓ ∈ L, Enabled1(ℓ) 6= ∅, so that Player 1 is always able
to propose an action to play in any location of the game.

Example 1.Fig. 1.2 depicts a game structure. The set of locations isL= {L0,L1,L2,
L3}. In locationL0, Player 1 can choose between actiona or actionb, while Player 2
can choose between actionu1 and actionu2.L0 (inner circle) is the initial location of
the game. The edge(L0,a,L1) belongs to Player 1 and the edge(L0,u1,L1) belongs
to Player 2. �

a

u1

b

u2

b

a L1

L0

L2

L3
u3

a

a,bb

u1,u2,u3

Fig. 1.2 An example of a game structure

The way players are playing on a game structureG = (L, ℓinit,Act1,Act2,E) is
defined as follows. Initially, a pebble lies onℓinit, the initial location of game. Then
the game is played in rounds. Let us assume that, for the current round, the pebble
lies on locationℓ ∈ L. Then, first, Player 1 chooses some actionα ∈ Enabled1(ℓ).

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 5

Then Player 2 decides where to move the pebble onto the successor locations ofℓ
while respecting the following rule: for moving the pebble she uses either an edge
labeled with an action ofAct2 or an edge1 labeled with the actionα chosen by
Player 1. By interacting in such a way for an infinite number ofrounds, Player 1
and Player 2 are constructing aplay. Formally a playρ = ℓ0ℓ1 . . . ℓn . . . of the game
structureG is an infinite sequence of locations. We letρ [i] = ℓi , i ≥ 0 and denote
Play(G) for the set of plays ofG.

Example 2.Let us illustrate the notion of play using the example of Fig.1.2. AsL0
is the initial location of the game structureG, the pebble initially lies onL0. Then
Player 1 is asked to make a choice among the actions that are available for her in
locationL0. This set is{a,b}. Assume that she choosesa. In this case, there are two
possibilities. Either, Player 2 chooses to let Player 1 playand the pebble is moved
using an edge labeled with the lettera. In our example, there is only one such edge,
and so the pebble is moved on locationL1. By this interaction, a finite prefixL0L1
of play is built. Or, Player 2 chooses to overtake Player 1 andto playu2; in that case,
the finite prefixL0 L2 of a play is built. Assume that the second situation applies.
Then a new round starts inL2. In that location, there is no uncontrollable transition,
so if Player 1 choosesa then the pebble is moved toL3 and if she choosesb, it is
moved toL0, etc. �

1.3.2 Winning objectives and strategies

We have seen that the interaction between Player 1 (the controller) and Player 2
(the environment) on a game structureG= (L, ℓinit,Act1,Act2,E) generates a play
which is an infinite sequenceℓ0ℓ1 . . . ℓn . . . of locations in the game graph, i.e. the
sequence of locations traversed by the pebble during the course of the game. Such a
sequence models one behavior of the system under control, and this behavior could
be considered as agoodbehavior or as abadbehavior depending on what we expect
from our system2. In the game terminology, such a classification of good and bad
behaviors leads to the notion of winning objective. Awinning objectivefor a game
structureG is a set of infinite sequences of locations, the intention being that such
sequences represent the good behaviors of the system.

Example 3.Assume that in our running example, Player 1 has the objective to reach
the set of locations{L3,L4}. In this case the winning objective will contain all the
playsℓ0ℓ1ℓ2 . . . ℓn . . . such thatℓi = L3∨ ℓi = L4 for somei ≥ 0. �

In the example above, the winning objective is a so-calledreachability objective
as it specifies a set of locations that we want to visit. In thischapter, we concentrate
on two classes of objectives:reachabilityandsafety. Given a set oftarget locations

1 There might be more than oneα-successor ofℓ. In this case, Player 2 resolves the non-
deterministic choice of theα-successor.
2 As stated earlier, we play zero-sum games and in this case a play iseither good or bad.

6 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

T ⊆ L, we define the set of winning plays of thereachability objective defined by
T as the set of playsReachG(T) = {ρ ∈ Play(G) s.t.∃i ≥ 0 ·ρ [i] ∈ T}. Given a set
of safelocationsS⊆ L, we define the set of winning plays of thesafety objective
defined by Sas the setSafeG(S) = {ρ ∈ Play(G) s.t.∀i ≥ 0·ρ [i] ∈ S}. In the sequel,
we often useObj to represent a set of winning plays.

The winning objective specifies what the good plays for Player 1 are. Those
good behaviors can be enforced by the controller (Player 1) if she has a strategy
to force the play to be within the winning objective no matterwhat the strategy
played by Player 2 is (so without the help of Player 2). For thelater definition to
be completely clear, we need to define more precisely what astrategyis. In our
games, a strategy for Player 1 determines what actions fromAct1 to pick during
the course of the game. In general, a strategy may depend on the history of the
game for deciding what the good action to play is. Nevertheless, for reachability
and safety objectives, the situation is simpler and it can beshown that strategies that
only depend on the current position of the pebble are sufficient: those strategies are
called “memoryless” strategies. So, in this chapter we concentrate on such simple
strategies. We now define them formally. A(memoryless) strategyfor Player 1 is
a functionλ1 : L → Act1, i.e. it is a function that given the current locationℓ ∈ L
chooses an actionλ1(ℓ) ∈ Enabled1(ℓ) for Player 1.

Let us now define the possible behaviors in the game structureG= (L, ℓinit,Act1,
Act2,E) when Player 1 plays according to the strategyλ1. Remember that Player 1,
in the game above, chooses an action at each round. Then Player 2 chooses between
the edges labeled by this action or labeled with one of her ownactions. The set of
behaviors in this case is thus the set of paths that start inℓinit and use only edges that
are either labeled with actions of Player 2 or labeled with actions that are prescribed
by the strategyλ1. We can also see a strategy for Player 1 as cutting out edges of
Player 1 that are not chosen by the strategy. Let us define thatformally. We call the
outcome of the strategyλ1 in the gameG= (L, ℓinit,Act1,Act2,E) the set of plays

Outcome(G,λ1) = {ρ | ∀i ≥ 0,∃a∈ λ1(ρ [i])∪Act2 · (ρ [i],a,ρ [i +1]) ∈ E}.

A strategyλ1 is winningfor the objectiveObj in G if Outcome(G,λ1)⊆ Obj.

Example 4.Let us consider again the example of Fig. 1.2. Assume that thewinning
objective for Player 1 is to reach locationL3, i.e.Obj= ReachG({L3}). Let us con-
sider the strategyλ1 defined as follows:L0 7→ b, L1 7→ b, L2 7→ a, andL3 7→ a. It
should be clear that no matter how Player 2 plays when the playstarts inL0, the
result of the interaction with this strategyλ1 is a play that reachesL3. For exam-
ple, let us consider the following scenario: inL0, instead of playingb as chosen by
Player 1, Player 2 moves the pebble to locationL1. From there, instead of playingb
as asked by Player 1 (this would lead directly toL3), Player 2 moves the pebble to
L2. FromL2, Player 1 choosesa and Player 2 has no other choices than to move the
pebble toL3. So, under any adversarial behavior of Player 2, Player 1 can force the
pebble to reach locationL3. As a consequence,λ1 is a winning strategy for Player 1
to win the reachability game defined by the objectiveObj= ReachG({L3}). �

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 7

1.4 Solving two-player games

In the previous section, we have defined two-player game structures, reachability
and safety winning objectives, strategies for Player 1, andwe have explained when
a strategy for Player 1 is winning. In this section, we introduce the basic ideas that
are underlying algorithms for solving games with safety andreachability objectives.

To understand the basic ideas behind the algorithms for solving reachability and
safety games, we must first concentrate on what happens in oneround, i.e. we need
to consider one-step objectives. Aone step objectiveis defined by a set of locations
T ⊆ L. In a locationℓ∈ L of the gameG= (L, ℓinit,Act1,Act2,E), Player 1 wins the
one step objectiveT if there exists an actionα ∈ Act1 such that all edges labeled by
α and all edges labeled withAct2 actions lead to a location inT, i.e.ℓ is such that

∃α ∈ Act1 · ∀β ∈ Act2∪{α} ·∀(ℓ,β , ℓ′) ∈ E : ℓ′ ∈ T.

In that case, we say thatℓ is a controllable predecessorof T, and we denote by
CPre(T) the set of locations that are controllable predecessors ofT.

Example 5.To illustrate the definition ofcontrollable predecessors, we use Fig. 1.3.
First, let us consider the set of locationsT1 = {L1,L3}. The locationL0 is a con-
trollable predecessor ofT1. Indeed, inL0 if Player 1 choosesa, no matter what is
the choice of Player 2 (to move the pebble using an edge labeled with a or to play
an edge labeled with her own actions) the pebble will be either in L1 orL3 after the
round, so it will lie inT1. Second, let us consider the set of locationsT2 = {L1,L2}.
The locationL0 is not a controllable predecessor ofT2. Indeed, neithera nor b en-
sures that the pebble will lie inT2 as Player 2 can choose to go toL3 usinga or u2 in
the first case, and Player 2 can decide to go toL1 usingu1 in the second case. �

a

b

a

L2

L1

L3

u1

L0

u2

Fig. 1.3 Controllable and uncontrollable predecessors

Now that we understand what it means for a locationℓ to be a controllable pre-
decessor of a set of locationsT, we provide algorithms to solve reachability and
safety games. Let us start with reachability games. LetG= (L, ℓinit,Act1,Act2,E)

8 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

be a two-player game structure andObj= ReachG(T) be the reachability objective
for Player 1.

The algorithm that computes the set of winning locations forthe reachability ob-
jectiveReachG(T) works by induction on the number of rounds needed for Player 1
to win. Clearly, all the locations inT are winning in 0 rounds, let us denote this
set of locations byW0. Now, it should be clear that the set of controllable predeces-
sors ofT are locations that are winning in 1 step. By taking the union of this set
with W0, we obtain the set of locations from which Player 1 can force avisit to T
in 0 or 1 rounds, i.e.W1 =W0∪CPre(W0). Generalizing this reasoning, we get that
Wi =Wi−1∪CPre(Wi−1), i ≥ 1 is the set of locations from which Player 1 can force a
visit to the setT in less thani rounds. Clearly, we have thatW0 ⊆W1 ⊆ ·· · ⊆Wi ⊆ L.
As L is a finite set, the monotonic sequence ofWi reaches a fixed pointW for some
k≤ |L| andW =Wk =Wk−1. The setW is the set of locations from which Player 1
has a strategy to force a visit toT in a finite number of steps. Ifℓinit ∈W then Player
1 has a winning strategy from the initial location of the game. From the computation
of this sequence, we can extract a winning strategy for all locations inW as follows.
Let ℓ ∈ W be such thatℓ ∈ Wi , i ≥ 1 andℓ 6∈ Wi−1. Defineλ1(ℓ) to be any action
a sucha ∈ Act1 and all the edges labeled witha that leave the locationℓ go to a
location that belongs to the setWi−1; because of the definition ofWi andCPre, such
an actiona is guaranteed to exist.

Example 6.Let us consider again the example of Fig. 1.2 with the reachability ob-
jectiveObj= ReachG({L3}). LetW0 = {L3}, and let us compute the set of control-
lable predecessors ofW0. The locationsL2 andL3 are controllable predecessors of
W0. SoW1 = {L2,L3} is the set of locations from which Player 1 can ensure a visit
in {L3} in 0 or 1 rounds. It should be clear from the computation of thecontrollable
predecessors ofW0 that Player 1 has to choose the actiona when the pebble lies on
L2. This gives a winning strategy for Player 1 inL2. Now, let us consider the loca-
tions that are controllable predecessors ofW1. This set is{L1,L2,L3}. Indeed inL1
Player 1 can chooseb and in this case, either Player 2 moves the pebble toL3 using
edge(L1,b,L3) or she moves the pebble toL2 using the edge labeled byu3. In the
two cases, the pebble lies on{L2,L3} when starting the next round of the game. If
we continue like that we obtain that all the locations ofG are winning for the objec-
tive Obj and in the process we can construct a winning strategy for Player 1. �

Let us now turn to safety games. Remember that in a safety gamedefined by a
setS⊆ L of locations, Player 1 has the objective to stay within setS forever, i.e.
Obj = SafeG(S). Let us define, as for reachability, a sequence of sets of locations
that approximate the set of winning locations for Player 1. Clearly,W0 = S is the set
of locations from which Player 1 can ensure to stay withinS for at least 0 rounds.
Now,W1 =W0∩CPre(W0) is the set of locations from which Player 1 can ensure to
stay withinSfor at least 1 round, and more generally,Wi =Wi−1∩CPre(Wi−1), i ≥ 1
is the set of locations from which Player 1 can ensure to stay within S for ta leasti
rounds. Clearly, we have thatL ⊇ W0 ⊇ W1 ⊇ ·· · ⊇ Wi ⊇ ·· · ⊇ ∅. As L is a finite
set, we must reach a fixed pointW for somek ≤ |L| andW = Wk = Wk−1, and so
the sequence eventually stabilizes on the set of locations from which Player 1 can

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 9

force to stay withinS forever, i.e. on the set of locations from which Player 1 has a
strategy to win the safety game defined byS.

Example 7.Let us consider again example of Fig. 1.2 but now with the objective
Obj= SafeG({L0,L2}). So the objective for Player 1 is now to avoid locationsL1 and
L3. Let us compute the sequence of sets of locations that approximate the winning
set for Player 1. By definition of this sequence,W0 = {L0,L2}. Let us compute the
controllable predecessors of this set of locations:CPre(W0) = {L2}. Indeed,L0 is
not a controllable predecessor of{L0,L2} as, fromL0, Player 2 can force to move
the pebble onto the locationL1 by choosing to play the edge labeled byu2. While
L2 is a controllable predecessor of the setW0 as inL2 Player 1 can move the pebble
onto the locationL0 ∈ {L0,L1} by playing the actionb, soW1 = {L2}. And clearly,
CPre(W1) =∅. So, there is no location inG from which Player 1 can ensure to stay
within {L0,L2} forever and Player 1 cannot win the game.

Let us now change the objective and considerObj= SafeG({L0,L1,L2}). We start
the computation withW0 = {L0,L1,L2}, and computeW1 =W0∩CPre(W0). All the
edges leavingL0 reach a location inW0 soL0 ∈CPre(W0), in L1 all edges of Player 2
and all edges of Player 1 labeled witha reach a location inW0 soL1 ∈ CPre(W0),
and inL2 all edges of Player 2 and all edges of Player 1 labeled withb reach a
location inW0 soL2 ∈ CPre(W0). The sequence of sets stabilizes asW1 = W0, and
so Player 1 has a strategy to win the safety objectiveObj= SafeG({L0,L1,L2}) from
all locations in{L0,L1,L2}. �

Remark 1.The main drawback of the algorithms that we have outlined above is that
they compute winning information about locations that are not necessarily reachable
by an interaction between Player 1 and Player 2 from the initial location. In practice,
that can deteriorate the performances of the algorithms. There are solutions to avoid
that problem, see for example the on-the-fly algorithm of [2], but the description of
those solutions goes beyond the objectives of this introduction.

1.5 Adding time to game structures

To add time to game structures, we adapt the syntax of timed automata as defined in
Chapter XXX and partition discrete transitions as controllable and uncontrollable.
A timed game automatonG= (L, ℓinit,X, Inv,Act1,Act2,E) is a structure, where:

• L is a finite set of discrete locations andℓinit is the initial location of the timed
game;

• X is a finite set of clocks, and we denote byConstr(X) the set ofclock con-
straints, i.e. conjunctions of atomic constraints of the formsx ∼ c or x− y∼ c,
wherec∈ N andx,y∈ X;

• Inv : L → Constr(X) is a function that labels each locationℓ∈ L with an invariant
Inv(ℓ) that restricts the possible values that clocks inX can take when the control
of the automaton is in locationℓ,

10 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

• Act1 are the actions of Player 1,Act2 are the actions of Player 2 such thatAct1∩
Act2 =∅, andE ⊆ L× (Act1∪Act2)×Constr(X)×2X ×L is the set of discrete
transitions of the timed game. A tuple(ℓ,α,φ ,R, ℓ′) ∈ E is a transition that goes
from locationℓ to locationℓ′, that is labeled with actionα (if α ∈ Act1 then
the transition is controllable, otherwise it is uncontrollable), with guardφ (the
transition can be taken only if the values of clocks satisfy the guard), and reset
setR (the clocks in the setRare reset when the transition is taken).

x=0

x<=1

x<1

x<1
L5 (Goal)L1

L4

L2

L3

x<=1

x<=2
L0 x>1

x>=2

Fig. 1.4 An example of a timed game automaton

Example 8.An example of a timed game automaton is given in Fig. 1.4. The only
syntactical difference with plain timed automata is induced by the partition of the
alphabet of labels for the transitions: the transitions labeled with an element ofAct1
belong to Player 1, and the transitions labeled with an element of Act2 belong to
Player 2. As for untimed games, the edges controlled by Player 1 are depicted by
plain edges, and the edges controlled by Player 2 are depicted as dashed edges.

A state of a timed automaton is a pair(ℓ,v), whereℓ is a location andv is a
valuation for the clocks, i.e. a functionv : X →R≥0 that assigns to each clockx∈ X
a positive real numberv(x). In a timed automaton, when the automaton is in a state
(ℓ,v), time can elapse as long as it does not violateInv(ℓ) (the invariant that labels
ℓ). For example in the timed game automaton of Fig. 1.4, from state (L0,v) with
v(x) = 1, time can elapse fort time units if 1+ t ≤ 2, in that case state(L0,v′) is
reached withv′(x) = v(x)+ t.

A transition(ℓ1,a,φ ,R, ℓ2) can be taken in state(ℓ,v) wheneverℓ= ℓ1, the guard
φ is satisfied byv, which is denoted byv |= φ , and the clock valuationv[R := 0],

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 11

which maps a clockx ∈ X \R to v(x), and a clockx ∈ R to 0, is such that it satis-
fies Inv(ℓ2), i.e.v[R := 0] |= Inv(ℓ2). For instance, in the timed game automaton of
Fig. 1.4, in state(ℓ0,

1
2), Player 2 can take the uncontrollable transition toℓ2 as the

guard onx is satisfied (12 < 1.) The state that is reached after this transition is the
pair (ℓ2,0) as the clockx is reset by this transition.

For a more systematic presentation of the semantics of timedautomata, the reader
is referred to Chapter XXX. In this section, we focus on intuitions and do not always
give all the formal definitions.

1.5.1 Rounds in timed games

Remember thatuntimedtwo-player games are played for an infinite number of
rounds. Each round is played as follows: Player 1 chooses oneaction α ∈ Act1
among the actions that label the controllable transitions leaving the location where
the pebble lieson , and then Player 2 moves the pebble by usinga transition that is
labeled either byα or by an action fromAct2 (an uncontrollable transition.)

In timed games, we additionally need to know at what time Player 1 wants to
play. So in addition to an action to play, Player 1 chooses a delay t. Then given a
pair (t,α), Player 2 either decides to wait fort time units and to take a transition
that is labeled with the letterα ∈ Act1, and for which the guard on the transition is
satisfied, or Player 2 decides to wait for a delay oft ′ ≤ t and use a transition labeled
by an action fromAct2, and for which the guard evaluates to true.

Example 9.Let us consider the timed game automaton of Fig. 1.4. As in this exam-
ple, there are at most one controllable and one uncontrollable transition out of each
location, we did not give names to the transitions. This example is a timed game
automaton with a reachability objective for Player 1: her objective is to reach the lo-
cation labeled withgoal. Initially the pebble lies onL0 and the value of the clockx
is equal to 0. Let us assume that Player 1 proposes to wait exactly for 1 time unit
and to take the transition that leads toL1. In this case, the two following scenarios
are possible. Either Player 2 lets time elapse for at least 1 time unit, the value of the
clock x is then equal to 1, and the pebble can be moved on locationL1 as proposed
by Player 1 (indeed, the guardx ≤ 1 is satisfied.) Or, Player 2 decides to wait for
t < 1 time units, and to move the pebble to locationL2 using the uncontrollable edge
from L0 toL2. Again, this is possible because after waiting fort < 1 time units, the
value ofx is less than 1 time unit, and so the guardx< 1 on the transition fromL0
to L2 is satisfied.

Assume for now that Player 2 follows the second scenario. Thepebble is now
lying onL2 and the value of clockx is equal to 0 (as it has been reset when moving
the pebble using the transition fromL0 toL2.) From that position, let us assume that
Player 1 chooses to wait for12 time units and proposes to move to locationL3. As
there is no alternative for Player 2, time elapses for1

2 time units, and the pebble is
moved fromL2 toL3.

12 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

From there, Player 1 chooses to wait for1
2 time units and proposes to move the

pebble toL1. Again, as there is no alternative for Player 2, time elapses for 1
2 time

units and the pebble is moved fromL3 to L1. When the pebble arrives onL1, the
value of the clockx is equal to1

2 +
1
2 = 1. Then Player 1 chooses to wait say for

11
4 time units and to move the pebble to locationgoal. This is a valid move as the

value ofx is then equal to 1+ 11
4 = 21

4 and so the guardx ≥ 2 is satisfied, again
as Player 2 has no other alternatives, the pebble is moved on locationgoal, and the
play is winning for Player 1. �

When moving the pebble according to the rules defined above, atimed playof

the form(ℓ0,v0)
(t0,e0)
−−−→ (ℓ1,v1)

(t1,e1)
−−−→ . . .

(tn−1,en−1)
−−−−−−→ (ℓn,vn)

(tn,en)
−−−→ . . . is generated

by the interaction between the two players. In this timed play, each(ti ,ei) specifies
the time that has elapsed and the transition that has been taken during the roundi.

As for untimed games, objectives are defined by a set of discrete locationsT ⊆ L
of the automaton that Player 1 wants to reach for reachability games, or by a set
of discrete locationsS⊆ L in which Player 1 wants to stay in for safety games.
For reachability and safety objectives, it can be shown thatPlayer 1 has a winning
strategy if and only if she has a winning memoryless strategy[3]. For timed games,
a memoryless strategyis a functionλ1 : L×R≥0

|X| → R≥0 ×Act1 that specifies,
given the current state of the game(ℓ,v), the timet ∈ R≥0 to wait and the action
α ∈ Act1 to play.

1.6 Solving two-player timed games

We have seen that, in the case of untimed games, reachabilityand safety objec-
tives can be solved using a notion ofcontrollable predecessors. This notion can be
extended to timed games. Again, we do not formalize all the details here but we
give enough intuition so that the reader can understand the main ideas behind the
algorithms for solving timed games.

Intuitively, a state(ℓ,v) is a controllable predecessor of a set of statesT =
{(ℓ0,v0),(ℓ1,v1), . . . ,(ln,vn), . . .}, if there existα ∈ Act1 and a delayt ∈ R≥0 such
that the following four conditions hold:

1. for all delayst ′, 0≤ t ′ ≤ t, v+ t ′ |= Inv(ℓ), i.e. time can elapse from(ℓ,v) for t
time unit without violating the invariant labelingℓ;

2. there exists a transitione= (ℓ,α,φ ,R, ℓ′) such thatv+ t |= φ andv+ t[R := 0] |=
Inv(ℓ′), i.e. there is a transition labelled withα that can be taken aftert time
units;

3. for all transitionse= (ℓ,α,φ ,R, ℓ′) such thatv+ t satisfiesφ , (ℓ′,v+ t[R := 0])
belongs toT, i.e. any choice of a transition labelled withα taken aftert time
units leads toT;

4. for all transitionse= (ℓ,u,φ ,R, ℓ′) and delayst ′ such that 0≤ t ′ ≤ t, u ∈ Act2,
andv+ t ′ satisfiesφ , then(ℓ′,v+ t ′[R := 0]) belongs toT, i.e. any uncontrollable
transition that can be taken withint time units leads toT.

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 13

The sets of states that we have to handle are infinite, so they cannot be repre-
sented in extension. We need a symbolic data structure able to represent infinite
sets. Those sets can be represented symbolically using formulas in an adequate con-
straint language. All sets manipulated during the computation of the timed control-
lable predecessors are representable by union of clock constraints. To illustrate the
use of clock constraints and how the computation of the controllable predecessor in
the timed setting is done, we consider our running example ofFig. 1.4.

L0

(0)

x0 1 2 3 x0 1 2 3 x0 1 2 3 x0 1 2 3

L1

(1)

x0 1 2 3 x0 1 2 3 x0 1 2 3 x0 1 2 3

L2

(2)

x0 1 2 3 x0 1 2 3 x0 1 2 3 x0 1 2 3

L3

(3)

x0 1 2 3 x0 1 2 3 x0 1 2 3 x0 1 2 3
• • •

Fig. 1.5 Computation of the timed controllable states.

Example 10.The computation of the set of winning states is depicted in Fig. 1.5.
The first part of the picture, marked(1), depicts the set of states of the form(L1,v)
with v≥ 1. All those states are winning in 1 step because whenx≥ 1, the uncontrol-
lable transition fromL1 toL2 cannot be taken by Player 2 (as it is guarded byx< 1),
and by waiting until clockx reaches a value equal to or greater than 2, Player 1 can
move the pebble fromL1 to locationgoal. The part marked(2) of the picture depicts
the set of states that are winning in at most 2 discrete steps.The states that have been
added are controllable predecessors of the states that are winning in 1 step. First, let
us consider(L0,v) with v(x) = 1. This state is winning as, on the one hand, none of
the uncontrollable transitions is enabled in this state, and on the other hand, the con-
trollable transition fromL0 toL1 is enabled, and when it is taken the game reaches
a winning state (in 1 step.) Second, consider the set of states (L3,v) with v(x) ≤ 1.
From all those states, Player 1 can wait untilx= 1 and then she can take the control-
lable transition toL2, reaching a set of winning states in 1 step. The states depicted
in part(3) and(4) are computed in a similar manner. �

1.7 The Chinese juggler control problem in UPPAAL -TIGA

UPPAAL -TIGA is a tool developed at Aalborg University. It handles timed game
automata as presented in the previous section. The tool can be downloaded from
http://www.cs.aau.dk/ ˜ adavid/tiga/download.html . We refer the
reader to the user manual for details about the features and the usage of UPPAAL -
TIGA in practice. In this section, we show how to model the Chinesejuggler control
problem with timed game automata. We use screenshots from the tool to illustrate

14 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

its user interface. The interested reader can download the UPPAAL -TIGA model of
our running example fromhttp://... .Kim, can we add this

on the tiga web site
???

Note that for the sequel, we assume that the reader is familiar with notation of the
UPPAAL tool as described in Chapter YY. The models that are used hereare game
extensions of the UPPAAL models, we make it clear what are those extensions in
the sequel.

1.7.1 Modeling of the components

A timed game in UPPAAL -TIGA is modeled compositionally by defining timed
game automata that specify the behavior of the components ofthe system. This mod-
eling approach is similar to the one used for regular models in UPPAAL (see Chap-
ter YY for additional material on compositional modeling).As in UPPAAL models,
components in UPPAAL -TIGA synchronize using shared events (implemented by
channels). For the rest of this section, we assume that the reader is familiar with this
modeling paradigm.

Fig. 1.6 shows the timed automaton model forPlate i ∈ {1,2}. The timed game
automaton has the set of locations{Stable,Spinning,Longspinning,Crashed}.
The locationStable intends to model the situation when the plate is stable, the lo-
cationCrashed models the situation when the plate has crashed,Spinning mod-
els the situation when the juggler does spin the plate spin for a timet ≤ STABSHORT

seconds (whereSTABSHORTis a constant equal to 2), andLongspinning when
the juggler does spin the plate for more thanSTABSHORTseconds.

mosquito?

stopspin? stopspin?

x=0
StabTime =3,
x=0

startspin?

Crashed

Stable

Spinning Longspinning

StabTime = StabTime−1

x >= StabTime

StabTime>0

StabTime=5,
x=0

x<=STABSHORT

x==STABSHORT

Fig. 1.6 A model for the plate.

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 15

The automaton uses one clockx. The use ofx is twofold. First, when the control
is in locationStable , the variablex records the time elapsed since the plate was
last spun by the juggler. When the control is inSpinning or Longspinning , x
records the time elapsed since the plate has last been spun under the impulsion of
the juggler. Let us now have a look at the transitions betweencontrol locations.

First, we consider the uncontrollable transitions. There are two uncontrollable
transitions that leaveStable . The self loop is taken whenever the mosquito
touches the plate (this is ensured by the synchronization onthe eventmosquito?).
The effect is to substract value 1 from the integer variableStabTime that models
the length of the time interval during which the plate is guaranteed to stay stable
without being spun by the juggler. This can be done only if theguardStabTime> 0
is true (making sure that the value ofStabTime cannot become negative.)

The uncontrollable transition going fromStable to Crashed can be taken (by
Player 2) whenever the value of the clockx exceeds the time for which the plate is
guaranteed to be stable (since the last time it has been spun by the juggler.) As this
transition is uncontrollable, Player 2 can decide to take itat any time when the guard
is true. Player 2 may not take the transition immediately when the guard becomes
true but we cannot rely on this: that is why it is an uncontrollable transition in our
model.

Second, we consider the controllable transitions. The transition between loca-
tionsSpinning andLongspinning is taken exactly when the value ofx is equal
to STABSHORT. It accounts for the fact that the juggler is spinning the plate for an
interval of more thanSTABSHORTseconds. In fact, the behavior of this transition
is deterministic and so it could have been defined as uncontrollable, that would not
make any difference. The other three controllable transitions are related to actions
controlled by the juggler. When the plate isStable , the juggler can decide to give
it more spinning by emitting the eventstartspin! . This has the effect to trigger
this transition (reception of the eventstartspin!) and to move the control to
locationSpinning . The control leaves the locationSpinning :

• either because the juggler has decided to stop spinning (event stopspin?)
beforeSTABSHORTseconds, in that case, the control moves back to location
Stable , the clockx is reset, and the interval for which the plate is guaranteed
to be stable is 3 seconds (updateStabTime=3),

• or because the juggler has spun the plate forSTABSHORTseconds, and the
control moves toLongspinning . This later location is left when the event
stopspin? occurs, in that case the control moves back toStable and the
plate is guaranteed to be stable for 5 seconds (updateStabTime=5).

This template timed game automaton is instantiated twice, one time forPlate
1 and one time forPlate 2 .

We can now have a look at the other components of our model. Fig. 1.7 depicts
a model of the mosquito. The mosquito can at any time touch oneof the two plates
provided that he has not touched a plate within the lastD times units (this is forced
by the guardy≥ D). This last constraint is enforced using the clocky which is reset
each time a plate is touched. The self-loop is labeled with the eventmosquito!

16 Franck Cassez, Kim Larsen, Jean-François Raskin, and Pierre-Alain Reynier

mosquito!

y=0y >= D
startspin!

stopspin!

Turn

z=0
z>=1

Wait

Fig. 1.7 A model for the mosquito Fig. 1.8 A model for the juggler

which is either received by Plate 1 or Plate 2. The transitionis uncontrollable as it
belongs to the mosquito and not to the controller that we wantto synthesize.

Finally, the juggler is modeled by the timed automaton givenin Fig. 1.8. The
juggler can be in two different states that are modeled by twolocations:Wait mod-
els the situation when the juggler does not spin any of the twoplates,Turn models
the situation when the juggler spins one of the plates. The eventsstartspin!
andstopspin! are synchronized with either Plate 1 or Plate 2. Clockz is used to
express that the juggler should spin a plate for at least 1 time unit.

1.7.2 Analysis of the model

We can now analyze the model of the Chinese Juggler presentedabove with the tool
UPPAAL -TIGA. We want to determine if the Juggler has a strategy to win the timed
game for the safety objective ‘none of the two plates ever crashes””. This control
objective is expressed by the following expression in the UPPAAL -TIGA syntax:

control: A[] not (Plate1.Crashed or Plate2.Crashed)

This formula asks to find a control strategy (keywordcontrol) for the juggler
such that on all resulting plays (modalityA), it is always the case (modality[]) that
(Plate1.Crashed or Plate2.Crashed) is false.

If we impose to the mosquito to stay away from the two plates for at leastD = 2
seconds after touching one of the plates, then the Juggler has a strategy to win.
UPPAAL -TIGA is able to determine that property, and furthermore, the tool also
synthesizes a winning strategy. The strategy that the tool synthesizes is as follows:.... Kim, can you pro-

vide a picture of the
winning strategy for
the parameters as de-
scribed above ?

Now, if we setD = 1, then the Juggler does not have a strategy to win as the
mosquito can act very fast.

1.8 Conclusion

In this chapter, we have introduced the basic concepts and algorithmic ideas that
underly the automatic synthesis of discrete and timed controllers for systems mod-
eled by game automata and timed game automata. We have shown that the game

1 An Introduction to Automatic Synthesis of Discrete and Timed Controllers 17

metaphor is natural to model control problems. Even if thoseideas are relatively
recent, they have been implemented into the tool UPPAAL -TIGA and they can be
applied to interesting case studies.

In the next chapter, we show how to use UPPAAL -TIGA to automatically syn-
thesize a controller to regulate a pressure accumulator andto optimize its energy
consumption.

References

1. Gerd Behrmann, Agǹes Cougnard, Alexandre David, Emmanuel Fleury, Kim Guldstrand
Larsen, and Didier Lime. Uppaal-tiga: Time for playing games! InCAV - International Con-
ference on Computer Aided Verification, volume 4590 ofLecture Notes in Computer Science,
pages 121–125. Springer, 2007.

2. Franck Cassez, Alexandre David, Emmanuel Fleury, Kim Guldstrand Larsen, and Didier Lime.
Efficient on-the-fly algorithms for the analysis of timed games. InCONCUR - International
Conference Concurrency Theory, volume 3653 ofLecture Notes in Computer Science, pages
66–80. Springer, 2005.

3. Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete controllers for
timed systems. In E.W. Mayr and C. Puech, editors,STACS - Theoretical Aspects of Computer
Science, volume 900 ofLecture Notes in Computer Science, pages 229–242. Springer-Verlag,
1995.

4. Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In POPL - Annual
Symposium on Principles of Programming Languages, pages 179–190. ACM Press, 1989.

5. Peter J. Ramadge and W. Murray Wonham. Supervisory control of aclass of discrete-event
processes.SIAM Journal of Control and Optimization, 25(1):206–230, 1987.

