
Introduction Transducers Logic Regular Functions Recent Results

Transductions

Emmanuel Filiota and Pierre-Alain Reynierb

a Université libre de Bruxelles &FNRS
b LIS, Aix-Marseille Université & CNRS

EJCIM School

1 / 73

Introduction Transducers Logic Regular Functions Recent Results

Specification Computation

Describe properties Decide those properties

AutomataLogic

Regular languages

L ⊆ Σ∗

FAMSO[S]
Büchi’s Theorem 62

Many extensions: infinite words, finite and infinite trees,
graphs, other logics ...
Famous application: Model-checking A |= φ ?

L(A)∩L(A¬φ)=∅

2 / 73

Introduction Transducers Logic Regular Functions Recent Results

Specification Computation

Describe properties Decide those properties

AutomataLogic

Regular languages

L ⊆ Σ∗

FAMSO[S]
Büchi’s Theorem 62

Many extensions: infinite words, finite and infinite trees,
graphs, other logics ...
Famous application: Model-checking A |= φ ?

L(A)∩L(A¬φ)=∅

2 / 73

Introduction Transducers Logic Regular Functions Recent Results

Specification Computation

Describe properties Decide those properties

AutomataLogic

Regular languages

L ⊆ Σ∗

FAMSO[S]
Büchi’s Theorem 62

Many extensions: infinite words, finite and infinite trees,
graphs, other logics ...

Famous application: Model-checking A |= φ ?
L(A)∩L(A¬φ)=∅

2 / 73

Introduction Transducers Logic Regular Functions Recent Results

Specification Computation

Describe properties Decide those properties

AutomataLogic

Regular languages

L ⊆ Σ∗

FAMSO[S]
Büchi’s Theorem 62

Many extensions: infinite words, finite and infinite trees,
graphs, other logics ...
Famous application: Model-checking A |= φ ?

L(A)∩L(A¬φ)=∅

2 / 73

Introduction Transducers Logic Regular Functions Recent Results

Specification Computation

Describe properties Decide those properties

AutomataLogic

Regular languages

L ⊆ Σ∗

FAMSO[S]
Büchi’s Theorem 62

Many extensions: infinite words, finite and infinite trees,
graphs, other logics ...
Famous application: Model-checking A |= φ ?

L(A)∩L(A¬φ)=∅

2 / 73

Introduction Transducers Logic Regular Functions Recent Results

Objective of the talk

What about transductions ?

f : Σ∗ ↪→ Σ∗

Append a # abbab 7→ abbab#

Delete all b abbab 7→ aa

Squeeze all white space sequences ≥ 2 ejcim 19 7→ ejcim 19

Add a parity bit 0100101 7→ 10100101

Mirror the input word ejcim 7→ micje

Copy the input word yes 7→ yesyes

3 / 73

Introduction Transducers Logic Regular Functions Recent Results

Objective of the talk

What about transductions ?

f : Σ∗ ↪→ Σ∗

Append a # abbab 7→ abbab#

Delete all b abbab 7→ aa

Squeeze all white space sequences ≥ 2 ejcim 19 7→ ejcim 19

Add a parity bit 0100101 7→ 10100101

Mirror the input word ejcim 7→ micje

Copy the input word yes 7→ yesyes

3 / 73

Introduction Transducers Logic Regular Functions Recent Results

Objective of the talk

What about transductions ?

f : Σ∗ ↪→ Σ∗

Append a # abbab 7→ abbab#

Delete all b abbab 7→ aa

Squeeze all white space sequences ≥ 2 ejcim 19 7→ ejcim 19

Add a parity bit 0100101 7→ 10100101

Mirror the input word ejcim 7→ micje

Copy the input word yes 7→ yesyes

3 / 73

Introduction Transducers Logic Regular Functions Recent Results

Objective of the talk

What about transductions ?

f : Σ∗ ↪→ Σ∗

Append a # abbab 7→ abbab#

Delete all b abbab 7→ aa

Squeeze all white space sequences ≥ 2 ejcim 19 7→ ejcim 19

Add a parity bit 0100101 7→ 10100101

Mirror the input word ejcim 7→ micje

Copy the input word yes 7→ yesyes

3 / 73

Introduction Transducers Logic Regular Functions Recent Results

Objective of the talk

What about transductions ?

f : Σ∗ ↪→ Σ∗

Append a # abbab 7→ abbab#

Delete all b abbab 7→ aa

Squeeze all white space sequences ≥ 2 ejcim 19 7→ ejcim 19

Add a parity bit 0100101 7→ 10100101

Mirror the input word ejcim 7→ micje

Copy the input word yes 7→ yesyes

3 / 73

Introduction Transducers Logic Regular Functions Recent Results

Objective of the talk

What about transductions ?

f : Σ∗ ↪→ Σ∗

Append a # abbab 7→ abbab#

Delete all b abbab 7→ aa

Squeeze all white space sequences ≥ 2 ejcim 19 7→ ejcim 19

Add a parity bit 0100101 7→ 10100101

Mirror the input word ejcim 7→ micje

Copy the input word yes 7→ yesyes

3 / 73

Introduction Transducers Logic Regular Functions Recent Results

Objective of the talk

What about transductions ?

f : Σ∗ ↪→ Σ∗

Append a # abbab 7→ abbab#

Delete all b abbab 7→ aa

Squeeze all white space sequences ≥ 2 ejcim 19 7→ ejcim 19

Add a parity bit 0100101 7→ 10100101

Mirror the input word ejcim 7→ micje

Copy the input word yes 7→ yesyes

3 / 73

Introduction Transducers Logic Regular Functions Recent Results

Outline

1. automata for transductions

2. closure properties and decision problems

3. logics for transductions

4. a more expressive class of functions

5. recent results

4 / 73

Introduction Transducers Logic Regular Functions Recent Results

Automata models for transductions

5 / 73

Introduction Transducers Logic Regular Functions Recent Results

Automata for transductions: transducers

fdel :

b:ε b:εa:a

a:a

aabaa 7→ aaaa

aaba 7→ undefined

dom(fdel) = ’even number of a’

6 / 73

Introduction Transducers Logic Regular Functions Recent Results

Automata for transductions: transducers

fdel :

b:ε b:εa:a

a:a

aabaa 7→ aaaa

aaba 7→ undefined

dom(fdel) = ’even number of a’

6 / 73

Introduction Transducers Logic Regular Functions Recent Results

Automata for transductions: transducers

fdel :

b:ε b:εa:a

a:a

aabaa 7→ aaaa

aaba 7→ undefined

dom(fdel) = ’even number of a’

6 / 73

Introduction Transducers Logic Regular Functions Recent Results

Automata for transductions: transducers

fdel :

b:ε b:εa:a

a:a

aabaa 7→ aaaa

aaba 7→ undefined

dom(fdel) = ’even number of a’

6 / 73

Introduction Transducers Logic Regular Functions Recent Results

Parity bit 01101 7→ 101101, 01111 7→ 001111

qe

qo

0:0

0:0

1:11:1

q0

0:00

0:10

1:11

1:01

7 / 73

Introduction Transducers Logic Regular Functions Recent Results

Parity bit 01101 7→ 101101, 01111 7→ 001111

qe

qo

0:0

0:0

1:11:1q0

0:00

0:10

1:11

1:01

7 / 73

Introduction Transducers Logic Regular Functions Recent Results

Parity bit 01101 7→ 101101, 01111 7→ 001111

qe

qo

0:0

0:0

1:11:1q0

0:00

0:10

1:11

1:01

7 / 73

Introduction Transducers Logic Regular Functions Recent Results

Non-determinism and relations

In general, transducers define binary relations in Σ∗ × Σ∗

σ:ε

σ:σ

realizes {(u, v) | v is a subword of u}

8 / 73

Introduction Transducers Logic Regular Functions Recent Results

Formal Definition

Definition
A transducer is a tuple T = (Σ, Q, I, F,∆) where:

I Σ is a finite alphabet

I Q is a finite set of states

I I ⊆ Q are the initial states and F ⊆ Q are the final states

I ∆ ⊆ Q× Σ× Σ∗ ×Q is the transition relation.

Semantics
A run is a sequence of transitions

r = q0
σ1:v1−−−→ q1 . . . qn−1

σn:vn−−−→ qn σi ∈ Σ

Its input is in(r) = σ1 . . . σn and its output out(r) = v1 . . . vn.
The (rational) relation defined by T is:

JT K = {(in(r), out(r)) | r is an accepting run}

9 / 73

Introduction Transducers Logic Regular Functions Recent Results

Formal Definition

Definition
A transducer is a tuple T = (Σ, Q, I, F,∆) where:

I Σ is a finite alphabet

I Q is a finite set of states

I I ⊆ Q are the initial states and F ⊆ Q are the final states

I ∆ ⊆ Q× Σ× Σ∗ ×Q is the transition relation.

Semantics
A run is a sequence of transitions

r = q0
σ1:v1−−−→ q1 . . . qn−1

σn:vn−−−→ qn σi ∈ Σ

Its input is in(r) = σ1 . . . σn and its output out(r) = v1 . . . vn.
The (rational) relation defined by T is:

JT K = {(in(r), out(r)) | r is an accepting run}
9 / 73

Introduction Transducers Logic Regular Functions Recent Results

Closure Properties: Domain and Co-Domain

Given R ⊆ Σ∗ × Σ∗:

I dom(R) = {u | ∃(u, v) ∈ R}
I codom(R) = {v | ∃(u, v) ∈ R}

Proposition

The domain and co-domain of a rational relation are regular.

10 / 73

Introduction Transducers Logic Regular Functions Recent Results

Closure Properties: Domain and Co-Domain

Given R ⊆ Σ∗ × Σ∗:

I dom(R) = {u | ∃(u, v) ∈ R}
I codom(R) = {v | ∃(u, v) ∈ R}

Proposition

The domain and co-domain of a rational relation are regular.

10 / 73

Introduction Transducers Logic Regular Functions Recent Results

Closure Properties: Union

Proposition

Rational relations are closed under union.

11 / 73

Introduction Transducers Logic Regular Functions Recent Results

Closure Properties: Intersection

1. show that {(anbm, an) | n,m ≥ 0} is rational.

2. show that {(anbm, am) | n,m ≥ 0} is rational.

3. are rational relations closed under intersection ? why ?

12 / 73

Introduction Transducers Logic Regular Functions Recent Results

Closure Properties: Intersection

1. show that {(anbm, an) | n,m ≥ 0} is rational.

2. show that {(anbm, am) | n,m ≥ 0} is rational.

3. are rational relations closed under intersection ? why ?

12 / 73

Introduction Transducers Logic Regular Functions Recent Results

Closure Properties: Intersection

1. show that {(anbm, an) | n,m ≥ 0} is rational.

2. show that {(anbm, am) | n,m ≥ 0} is rational.

3. are rational relations closed under intersection ? why ?

12 / 73

Introduction Transducers Logic Regular Functions Recent Results

Closure Properties: Intersection

Proposition

Rational relations are not closed under intersection.

What about complement ?

Proposition

Rational relations are not closed under complement.

13 / 73

Introduction Transducers Logic Regular Functions Recent Results

Closure Properties: Intersection

Proposition

Rational relations are not closed under intersection.

What about complement ?

Proposition

Rational relations are not closed under complement.

13 / 73

Introduction Transducers Logic Regular Functions Recent Results

Closure Properties: Intersection

Proposition

Rational relations are not closed under intersection.

What about complement ?

Proposition

Rational relations are not closed under complement.

13 / 73

Introduction Transducers Logic Regular Functions Recent Results

Closure Properties: Composition

Def: R2 ◦R1 = {(u,w) | ∃(u, v) ∈ R1, (v, w) ∈ R2}.

Proposition

Rational relations are closed under composition.

14 / 73

Introduction Transducers Logic Regular Functions Recent Results

Closure Properties: Composition

Def: R2 ◦R1 = {(u,w) | ∃(u, v) ∈ R1, (v, w) ∈ R2}.

Proposition

Rational relations are closed under composition.

14 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof

Let T1 = (Σ, Q1, I1, F1,∆1) and T2 = (Σ, Q2, I2, F2,∆2).

I For all u ∈ Σ∗ and p2 ∈ Q2, let

Prod2(u, p2) = {(v, q2) ∈ Σ∗ ×Q2 | p2
u|v−−→T2 q2}

I The composition JT2K ◦ JT1K is realised by the transducer
T = (Σ, Q1 ×Q2, I1 × I2, F1 × F2,∆) where:

∆ = {(p1, p2)
σ|v−−→ (q1, q2) | ∃p1

σ|u−−→T1 q1∧(v, q2) ∈ Prod2(u, p2)}

15 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof

Let T1 = (Σ, Q1, I1, F1,∆1) and T2 = (Σ, Q2, I2, F2,∆2).

I For all u ∈ Σ∗ and p2 ∈ Q2, let

Prod2(u, p2) = {(v, q2) ∈ Σ∗ ×Q2 | p2
u|v−−→T2 q2}

I The composition JT2K ◦ JT1K is realised by the transducer
T = (Σ, Q1 ×Q2, I1 × I2, F1 × F2,∆) where:

∆ = {(p1, p2)
σ|v−−→ (q1, q2) | ∃p1

σ|u−−→T1 q1∧(v, q2) ∈ Prod2(u, p2)}

15 / 73

Introduction Transducers Logic Regular Functions Recent Results

Transducer vs Automata

T :
a:ε

a:a

a:ε

a:a

I Consider r1, r2 two runs on a3. We have
(in(r1), out(r1)) = (in(r2), out(r2)) but different in-out
words:

(a, a)(a, a)(a, ε) 6= (a, ε)(a, a)(a, a)

I Transducers are asynchronous

I Make most transducer problems conceptually difficult (and
even computationally).

16 / 73

Introduction Transducers Logic Regular Functions Recent Results

Transducer vs Automata

T :
a:ε

a:a

a:ε

a:a

I Consider r1, r2 two runs on a3. We have
(in(r1), out(r1)) = (in(r2), out(r2)) but different in-out
words:

(a, a)(a, a)(a, ε) 6= (a, ε)(a, a)(a, a)

I Transducers are asynchronous

I Make most transducer problems conceptually difficult (and
even computationally).

16 / 73

Introduction Transducers Logic Regular Functions Recent Results

Transducer vs Automata

T :
a:ε

a:a

a:ε

a:a

I Consider r1, r2 two runs on a3. We have
(in(r1), out(r1)) = (in(r2), out(r2)) but different in-out
words:

(a, a)(a, a)(a, ε) 6= (a, ε)(a, a)(a, a)

I Transducers are asynchronous

I Make most transducer problems conceptually difficult (and
even computationally).

16 / 73

Introduction Transducers Logic Regular Functions Recent Results

Different classes of transductions

fSWAP : uσ → σu σ ∈ {a, b}, u ∈ {a, b}∗

Are the classes of sequential and rational functions decidable ?

Class Membership Problems (for transductions)

Given T a non-deterministic transducer:

Functionality decide if JT K is a function,

Determinizability decide if T is equivalent to some
input-deterministic transducer.

17 / 73

Introduction Transducers Logic Regular Functions Recent Results

Different classes of transductions

fSWAP : uσ → σu σ ∈ {a, b}, u ∈ {a, b}∗

Are the classes of sequential and rational functions decidable ?

Class Membership Problems (for transductions)

Given T a non-deterministic transducer:

Functionality decide if JT K is a function,

Determinizability decide if T is equivalent to some
input-deterministic transducer. 17 / 73

Introduction Transducers Logic Regular Functions Recent Results

Some application of the functionality problem

Testing unambiguity of NFA.

18 / 73

Introduction Transducers Logic Regular Functions Recent Results

Another Fundamental Problem: Equivalence

Def Given two transducers T1, T2, does JT1K = JT2K hold?

Case of functional transducers
Equivalence reduces to functionality:

1. test whether dom(T1) = dom(T2)

2. test whether T1] T2 is functional.

19 / 73

Introduction Transducers Logic Regular Functions Recent Results

Functionality problem: Results

Lem (Schützenberger) Non-functionality is witnessed by runs
r1, r2 such that

(1) r1, r2 are over the same input
(2) r1, r2 produce different outputs
(3) r1, r2 have polynomial length

Coro Functionality is decidable in PSpace.

20 / 73

Introduction Transducers Logic Regular Functions Recent Results

Functionality problem: Results

Lem (Schützenberger) Non-functionality is witnessed by runs
r1, r2 such that

(1) r1, r2 are over the same input
(2) r1, r2 produce different outputs
(3) r1, r2 have polynomial length

Coro Functionality is decidable in PSpace.

20 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the Lemma

Assume (u, v), (u,w) ∈ R where v 6= w, given by runs r1, r2

resp. If u is long enough:

q0r1 : q q q qf
u1:v1 u2:v2 u3:v3 u4:v4

p0r2 : p p p pf
u1:w1 u2:w2 u3:w3 u4:w4

Show v1v2v3v4 6= w1w2w3w4 =⇒

v1v4 6= w1w4 ∨ v1v2v4 6= w1w2w4 ∨ v1v3v4 6= w1w3w4

21 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the Lemma

Assume (u, v), (u,w) ∈ R where v 6= w, given by runs r1, r2

resp. If u is long enough:

q0r1 : q q q qf
u1:v1 u2:v2 u3:v3 u4:v4

p0r2 : p p p pf
u1:w1 u2:w2 u3:w3 u4:w4

Show v1v2v3v4 6= w1w2w3w4 =⇒

v1v4 6= w1w4 ∨ v1v2v4 6= w1w2w4 ∨ v1v3v4 6= w1w3w4

21 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof (Ced)

(v1v4 = w1w4∧v1v2v4 = w1w2w4∧v1v3v4 = w1w3w4) =⇒ v1v2v3v4 = w1w2w3w4

1. Wlog, assume that v1 = ε. If not, assume v1 prefix of w1, i.e. w1 = v1w′1
and eliminate v1 from all rhs (the case w1 prefix of v1 is symmetric). So, we
want

(v4 = w1w4 ∧ v2v4 = w1w2w4 ∧ v3v4 = w1w3w4) =⇒ v2v3v4 = w1w2w3w4

2. In v2v4 = w1w2w4, replace v4 by w1w4, then we get v2w1w4 = w1w2w4.
Similarly, one gets v3w1w4 = w1w3w4. Simplify by w4 and we get:

v2w1 = w1w2 (1) v3w1 = w1w3 (2)

3. Finally:

v2v3v4 = v2v3w1w4 by v4 = w1w4

= v2w1w3w4 by (2)

= w1w2w3w4 by (1)

22 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof (Ced)

(v1v4 = w1w4∧v1v2v4 = w1w2w4∧v1v3v4 = w1w3w4) =⇒ v1v2v3v4 = w1w2w3w4

1. Wlog, assume that v1 = ε. If not, assume v1 prefix of w1, i.e. w1 = v1w′1
and eliminate v1 from all rhs (the case w1 prefix of v1 is symmetric). So, we
want

(v4 = w1w4 ∧ v2v4 = w1w2w4 ∧ v3v4 = w1w3w4) =⇒ v2v3v4 = w1w2w3w4

2. In v2v4 = w1w2w4, replace v4 by w1w4, then we get v2w1w4 = w1w2w4.
Similarly, one gets v3w1w4 = w1w3w4. Simplify by w4 and we get:

v2w1 = w1w2 (1) v3w1 = w1w3 (2)

3. Finally:

v2v3v4 = v2v3w1w4 by v4 = w1w4

= v2w1w3w4 by (2)

= w1w2w3w4 by (1)

22 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof (Ced)

(v1v4 = w1w4∧v1v2v4 = w1w2w4∧v1v3v4 = w1w3w4) =⇒ v1v2v3v4 = w1w2w3w4

1. Wlog, assume that v1 = ε. If not, assume v1 prefix of w1, i.e. w1 = v1w′1
and eliminate v1 from all rhs (the case w1 prefix of v1 is symmetric). So, we
want

(v4 = w1w4 ∧ v2v4 = w1w2w4 ∧ v3v4 = w1w3w4) =⇒ v2v3v4 = w1w2w3w4

2. In v2v4 = w1w2w4, replace v4 by w1w4, then we get v2w1w4 = w1w2w4.
Similarly, one gets v3w1w4 = w1w3w4. Simplify by w4 and we get:

v2w1 = w1w2 (1) v3w1 = w1w3 (2)

3. Finally:

v2v3v4 = v2v3w1w4 by v4 = w1w4

= v2w1w3w4 by (2)

= w1w2w3w4 by (1)

22 / 73

Introduction Transducers Logic Regular Functions Recent Results

Functionality Problem in PTime

Thm (Gurari,Ibarra,83). Functionality is decidable in PTime.

I reversal-bounded counter machines

I emptiness in PTime if fixed number of counters

I later shown with a direct proof by
Carton,Beal,Prieur,Sakarovitch (Squaring Transducers)

23 / 73

Introduction Transducers Logic Regular Functions Recent Results

Squaring Transducers Carton,Beal,Prieur,Sakarovitch,
01

Some Definitions
Given a transducer T = (Σ, Q, I, F,∆),

I q ∈ Q is co-accessible by u if q
u|v−−→ qf ∈ F for some v

I CoAcc = {(p, q) ∈ Q2 | p, q co-accessible by some u}

I Let u, v ∈ Σ∗, u∧ v is the longest common prefix of u and v

I delay(u, v) = (u′, v′) where u = (u ∧ v)u′ and v = (u ∧ v)v′

Lemma (The delay is compositional)

delay(u1u2, v1v2) = delay(delay(u1, u2).(v1, v2)).

24 / 73

Introduction Transducers Logic Regular Functions Recent Results

Squaring Transducers Carton,Beal,Prieur,Sakarovitch,
01

Some Definitions
Given a transducer T = (Σ, Q, I, F,∆),

I q ∈ Q is co-accessible by u if q
u|v−−→ qf ∈ F for some v

I CoAcc = {(p, q) ∈ Q2 | p, q co-accessible by some u}
I Let u, v ∈ Σ∗, u∧ v is the longest common prefix of u and v

I delay(u, v) = (u′, v′) where u = (u ∧ v)u′ and v = (u ∧ v)v′

Lemma (The delay is compositional)

delay(u1u2, v1v2) = delay(delay(u1, u2).(v1, v2)).

24 / 73

Introduction Transducers Logic Regular Functions Recent Results

Squaring Transducers Carton,Beal,Prieur,Sakarovitch,
01

Some Definitions
Given a transducer T = (Σ, Q, I, F,∆),

I q ∈ Q is co-accessible by u if q
u|v−−→ qf ∈ F for some v

I CoAcc = {(p, q) ∈ Q2 | p, q co-accessible by some u}
I Let u, v ∈ Σ∗, u∧ v is the longest common prefix of u and v

I delay(u, v) = (u′, v′) where u = (u ∧ v)u′ and v = (u ∧ v)v′

Lemma (The delay is compositional)

delay(u1u2, v1v2) = delay(delay(u1, u2).(v1, v2)).

24 / 73

Introduction Transducers Logic Regular Functions Recent Results

Squaring Transducers Carton,Beal,Prieur,Sakarovitch,
01

Some Definitions
Given a transducer T = (Σ, Q, I, F,∆),

I q ∈ Q is co-accessible by u if q
u|v−−→ qf ∈ F for some v

I CoAcc = {(p, q) ∈ Q2 | p, q co-accessible by some u}
I Let u, v ∈ Σ∗, u∧ v is the longest common prefix of u and v

I delay(u, v) = (u′, v′) where u = (u ∧ v)u′ and v = (u ∧ v)v′

Lemma (The delay is compositional)

delay(u1u2, v1v2) = delay(delay(u1, u2).(v1, v2)).

24 / 73

Introduction Transducers Logic Regular Functions Recent Results

The Delay is Compositional (“Proof”)

25 / 73

Introduction Transducers Logic Regular Functions Recent Results

The Delay is Compositional (“Proof”)

25 / 73

Introduction Transducers Logic Regular Functions Recent Results

Squaring Transducers

State delays

delays(p, q) = {delay(v, w) | ∃u ∈ Σ∗∃p0
u|v−−→ p∃q0

u|w−−→ q}

First observation
T is functional iff for all states (pf , qf) ∈ F 2 ∩Acc,
delays(pf , qf) = {(ε, ε)}

Second observation
Let (p, q) ∈ CoAcc. If |delays(p, q)| > 1 then T is not functional.

26 / 73

Introduction Transducers Logic Regular Functions Recent Results

Squaring Transducers

State delays

delays(p, q) = {delay(v, w) | ∃u ∈ Σ∗∃p0
u|v−−→ p∃q0

u|w−−→ q}

First observation
T is functional iff for all states (pf , qf) ∈ F 2 ∩Acc,
delays(pf , qf) = {(ε, ε)}

Second observation
Let (p, q) ∈ CoAcc. If |delays(p, q)| > 1 then T is not functional.

26 / 73

Introduction Transducers Logic Regular Functions Recent Results

Squaring Transducers

State delays

delays(p, q) = {delay(v, w) | ∃u ∈ Σ∗∃p0
u|v−−→ p∃q0

u|w−−→ q}

First observation
T is functional iff for all states (pf , qf) ∈ F 2 ∩Acc,
delays(pf , qf) = {(ε, ε)}

Second observation
Let (p, q) ∈ CoAcc. If |delays(p, q)| > 1 then T is not functional.

26 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the Second Observation

Second observation
Let (p, q) ∈ CoAcc. If |delays(p, q)| > 1 then T is not functional.

27 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the second observation

Assume

(α1, β1) := delay(u1, v1)
6=

(α′1, β
′
1) := delay(u′1, v

′
1).

By contradiction, assume that u1u2 = v1v2 and u′1u2 = v′1v2. Then α1u2 = β1v2
and α′1u2 = β′1v2. As (α1, β1) and (α′1, β

′
1) are delays, the following cases may

arise:

1. α1 and β1 start with distinct letters. Impossible.

2. α′1 and β′1 start with distinct letters. Impossible.

3. α1 = α′1 = ε: then u2 = β1v2 = β′1v2, hence β1 = β′1, impossible.

4. α1 = β′1 = ε, then u2 = β1v2 and v2 = α′1u2. Then u2 = β1α′1u2, hence
β1 = α1 = α′1 = β′1 = ε, impossible.

5. cases β1 = β′1 = ε and β1 = α′1 = ε are symmetrical.

28 / 73

Introduction Transducers Logic Regular Functions Recent Results

Squaring Transducers: Algorithm for functionality

1. compute CoAcc (quadratic time)

2. Visited = {(p0, q0, (ε, ε)) | (p0, q0) ∈ CoAcc ∩ I2}
3. Waiting = Visited

4. While (Waiting6= ∅)

5. Remove some (p, q, d) ∈Waiting

6. For all p
σ:v−−→ p′, q

σ:w−−→ q′ s.t. (p′, q′) ∈ CoAcc do:

7. d′ = delay(d.(v, w))

8. if (p′, q′, d′) 6∈ Visited:

9. if ∃(p′, q′, d′′) ∈ Visited s.t. d′ 6= d′′ return NO

10. if (p′, q′) ∈ F 2 and d′ 6= (ε, ε) return NO

11. add (p′, q′, d′) to Waiting and to Visited

12. return YES

29 / 73

Introduction Transducers Logic Regular Functions Recent Results

Invariant

Lemma
For all (p, q, d) ∈ Visited, there exist p0, q0 ∈ I, u, v, w ∈ Σ∗

such that:

1. p0
u:v−−→ p

2. q0
u:w−−→ q

3. d = delay(v, w)

4. (p, q) ∈ CoAcc

30 / 73

Introduction Transducers Logic Regular Functions Recent Results

Correctness of the algorithm

1. if it returns NO, then by the Invariant and the two
observations, T is not functional

2. conversely, if it returns YES, then we show that in the end,
we have (?)

Visited ⊇ {(p, q, delay(v, w)) | ∃p0
u:v−−→ p, q0

u:w−−→ q, (p, q) ∈ CoAcc}

and in particular, Visited contains all such
(p, q, delay(v, w)) such that (p, q) ∈ F 2 ∩Acc.
If T is not functional, by Obs1 there exists (p, q, d) such
that (p, q) ∈ F 2 ∩Acc and d 6= (ε, ε), hence the the test at
line 10 eventually fails. Contradiction.

To show ?, use induction on |u| and delay compositionality.

31 / 73

Introduction Transducers Logic Regular Functions Recent Results

Correctness of the algorithm

1. if it returns NO, then by the Invariant and the two
observations, T is not functional

2. conversely, if it returns YES, then we show that in the end,
we have (?)

Visited ⊇ {(p, q, delay(v, w)) | ∃p0
u:v−−→ p, q0

u:w−−→ q, (p, q) ∈ CoAcc}

and in particular, Visited contains all such
(p, q, delay(v, w)) such that (p, q) ∈ F 2 ∩Acc.

If T is not functional, by Obs1 there exists (p, q, d) such
that (p, q) ∈ F 2 ∩Acc and d 6= (ε, ε), hence the the test at
line 10 eventually fails. Contradiction.

To show ?, use induction on |u| and delay compositionality.

31 / 73

Introduction Transducers Logic Regular Functions Recent Results

Correctness of the algorithm

1. if it returns NO, then by the Invariant and the two
observations, T is not functional

2. conversely, if it returns YES, then we show that in the end,
we have (?)

Visited ⊇ {(p, q, delay(v, w)) | ∃p0
u:v−−→ p, q0

u:w−−→ q, (p, q) ∈ CoAcc}

and in particular, Visited contains all such
(p, q, delay(v, w)) such that (p, q) ∈ F 2 ∩Acc.
If T is not functional, by Obs1 there exists (p, q, d) such
that (p, q) ∈ F 2 ∩Acc and d 6= (ε, ε), hence the the test at
line 10 eventually fails. Contradiction.

To show ?, use induction on |u| and delay compositionality.

31 / 73

Introduction Transducers Logic Regular Functions Recent Results

Summary of yesterday’s talk

Given T a non-deterministic transducer:

Functionality decide if JT K is a function,

Determinizability decide if T is equivalent to some
input-deterministic transducer.

Ü We have seen that Functionality can be decided in PTime.

32 / 73

Introduction Transducers Logic Regular Functions Recent Results

Equivalence Problem: Results

For functional transducers T1, T2

I PSpace-c (hardness by automata equivalence)

I PTime if dom(T1) = dom(T2) is known.

In general

I Undecidable (Griffith 68), even if one alphabet is unary
(Ibarra 78)

I Decidable for finite-valued transducers (Culik Karhumäki
86) 1.

1∃K∀u |T (u)| ≤ K
33 / 73

Introduction Transducers Logic Regular Functions Recent Results

Equivalence Problem: Results

For functional transducers T1, T2

I PSpace-c (hardness by automata equivalence)

I PTime if dom(T1) = dom(T2) is known.

In general

I Undecidable (Griffith 68), even if one alphabet is unary
(Ibarra 78)

I Decidable for finite-valued transducers (Culik Karhumäki
86) 1.

1∃K∀u |T (u)| ≤ K
33 / 73

Introduction Transducers Logic Regular Functions Recent Results

Equivalence Problem: Results

For functional transducers T1, T2

I PSpace-c (hardness by automata equivalence)

I PTime if dom(T1) = dom(T2) is known.

In general

I Undecidable (Griffith 68), even if one alphabet is unary
(Ibarra 78)

I Decidable for finite-valued transducers (Culik Karhumäki
86) 1.

1∃K∀u |T (u)| ≤ K
33 / 73

Introduction Transducers Logic Regular Functions Recent Results

Summary – Transducers
Expressiveness:

input-deterministic functional non-deterministic

PTime???

fdel fswap Rsubword< <

Equivalence: (dom(T1) = dom(T2) is known)

input-deterministic functional non-deterministic

PTime PTime undec

34 / 73

Introduction Transducers Logic Regular Functions Recent Results

Summary – Transducers
Expressiveness:

input-deterministic functional non-deterministic

PTime???

fdel fswap Rsubword< <

Equivalence: (dom(T1) = dom(T2) is known)

input-deterministic functional non-deterministic

PTime PTime undec

34 / 73

Introduction Transducers Logic Regular Functions Recent Results

Determinizability

Def Given a transducer T , does there exist an
input-deterministic transducer T ′ such that JT K = JT ′K?

Remark: we now assume that T is:

I functional (otherwise the answer is NO)

I trim (can be achieved in PTime)

Thm (Choffrut77, Weber,Klemm,95). Determinizability is
decidable in PTime.

I equivalent input-deterministic transducer of exp. size

I characterization based on a pattern of the transducer
(twinning property) due to (Choffrut77)

I PTime membership due to (Weber,Klemm,95)

35 / 73

Introduction Transducers Logic Regular Functions Recent Results

Determinizability

Def Given a transducer T , does there exist an
input-deterministic transducer T ′ such that JT K = JT ′K?

Remark: we now assume that T is:

I functional (otherwise the answer is NO)

I trim (can be achieved in PTime)

Thm (Choffrut77, Weber,Klemm,95). Determinizability is
decidable in PTime.

I equivalent input-deterministic transducer of exp. size

I characterization based on a pattern of the transducer
(twinning property) due to (Choffrut77)

I PTime membership due to (Weber,Klemm,95)

35 / 73

Introduction Transducers Logic Regular Functions Recent Results

Determinizability: example

= white space

0 12

a:a :ε:

a:a

:ε

:ε

aa a 7→ aa a

Is non-determinism needed ? No.

3 4

a:a :ε:ε

a: a

36 / 73

Introduction Transducers Logic Regular Functions Recent Results

Determinizability: example

= white space

0 12

a:a :ε:

a:a

:ε

:ε

aa a 7→ aa a

Is non-determinism needed ? No.

3 4

a:a :ε:ε

a: a

36 / 73

Introduction Transducers Logic Regular Functions Recent Results

Determinizability: example

= white space

0 12

a:a :ε:

a:a

:ε

:ε

aa a 7→ aa a

Is non-determinism needed ?

No.

3 4

a:a :ε:ε

a: a

36 / 73

Introduction Transducers Logic Regular Functions Recent Results

Determinizability: example

= white space

0 12

a:a :ε:

a:a

:ε

:ε

aa a 7→ aa a

Is non-determinism needed ? No.

3 4

a:a :ε:ε

a: a

36 / 73

Introduction Transducers Logic Regular Functions Recent Results

How to get a deterministic FT ?

0 12

a:a :ε:

a:a

:ε

:ε

I extend automata subset construction with outputs

I output the longest common prefix

q0

a:a

q1

()

, q2

(ε)

:

ε

:ε

a: a

37 / 73

Introduction Transducers Logic Regular Functions Recent Results

How to get a deterministic FT ?

0 12

a:a :ε:

a:a

:ε

:ε

I extend automata subset construction with outputs

I output the longest common prefix

q0

a:a

q1

()

, q2

(ε)

:

ε

:ε

a: a

37 / 73

Introduction Transducers Logic Regular Functions Recent Results

How to get a deterministic FT ?

0 12

a:a :ε:

a:a

:ε

:ε

I extend automata subset construction with outputs

I output the longest common prefix

q0

a:a

q1

()

, q2

(ε)

:

ε

:ε

a: a

37 / 73

Introduction Transducers Logic Regular Functions Recent Results

How to get a deterministic FT ?

0 12

a:a :ε:

a:a

:ε

:ε

I extend automata subset construction with outputs

I output the longest common prefix

q0

a:a

q1

()

, q2

(ε)

:

ε
:ε

a: a

37 / 73

Introduction Transducers Logic Regular Functions Recent Results

How to get a deterministic FT ?

0 12

a:a :ε:

a:a

:ε

:ε

I extend automata subset construction with outputs

I output the longest common prefix

q0

a:a

q1

()

, q2

(ε)

:ε

:ε

a: a

37 / 73

Introduction Transducers Logic Regular Functions Recent Results

How to get a deterministic FT ?

0 12

a:a :ε:

a:a

:ε

:ε

I extend automata subset construction with outputs

I output the longest common prefix

q0

a:a

q1(), q2(ε)

:ε

:ε

a: a

37 / 73

Introduction Transducers Logic Regular Functions Recent Results

How to get a deterministic FT ?

0 12

a:a :ε:

a:a

:ε

:ε

I extend automata subset construction with outputs

I output the longest common prefix

q0

a:a

q1(), q2(ε)

:ε
:ε

a: a

37 / 73

Introduction Transducers Logic Regular Functions Recent Results

How to get a deterministic FT ?

0 12

a:a :ε:

a:a

:ε

:ε

I extend automata subset construction with outputs

I output the longest common prefix

q0

a:a

q1(), q2(ε)

:ε
:ε

a: a

37 / 73

Introduction Transducers Logic Regular Functions Recent Results

Can we always get an equivalent deterministic FT ?

I not in general: input-deterministic transducers are less
expressive than functional ones

q0 q1q2 q3q4
a:b

a:b

b:ba:c

a:c

c:c

Semantics

JT K :

 anb 7→ bn+1

anc 7→ cn+1

functional but not determinizable

38 / 73

Introduction Transducers Logic Regular Functions Recent Results

Can we always get an equivalent deterministic FT ?

I not in general: input-deterministic transducers are less
expressive than functional ones

q0 q1q2 q3q4
a:b

a:b

b:ba:c

a:c

c:c

Semantics

JT K :

 anb 7→ bn+1

anc 7→ cn+1

functional but not determinizable

38 / 73

Introduction Transducers Logic Regular Functions Recent Results

Can we always get an equivalent deterministic FT ?

I not in general: input-deterministic transducers are less
expressive than functional ones

q0 q1q2 q3q4
a:b

a:b

b:ba:c

a:c

c:c

Semantics

JT K :

 anb 7→ bn+1

anc 7→ cn+1

functional but not determinizable

38 / 73

Introduction Transducers Logic Regular Functions Recent Results

Subset construction fails ...

q0 q1q2 q3q4
a:b

a:b

b:ba:c

a:c

c:c

Subset construction:

q0

q1

(b)

q2

(c)

a:

ε

q1(bb)

q2(cc)

a:ε q1(bbb)

q2(ccc)

a:ε

39 / 73

Introduction Transducers Logic Regular Functions Recent Results

Subset construction fails ...

q0 q1q2 q3q4
a:b

a:b

b:ba:c

a:c

c:c

Subset construction:

q0
q1

(b)

q2

(c)

a:

ε q1(bb)

q2(cc)

a:ε q1(bbb)

q2(ccc)

a:ε

39 / 73

Introduction Transducers Logic Regular Functions Recent Results

Subset construction fails ...

q0 q1q2 q3q4
a:b

a:b

b:ba:c

a:c

c:c

Subset construction:

q0
q1(b)

q2(c)

a:ε

q1(bb)

q2(cc)

a:ε q1(bbb)

q2(ccc)

a:ε

39 / 73

Introduction Transducers Logic Regular Functions Recent Results

Subset construction fails ...

q0 q1q2 q3q4
a:b

a:b

b:ba:c

a:c

c:c

Subset construction:

q0
q1(b)

q2(c)

a:ε q1(bb)

q2(cc)

a:ε

q1(bbb)

q2(ccc)

a:ε

39 / 73

Introduction Transducers Logic Regular Functions Recent Results

Subset construction fails ...

q0 q1q2 q3q4
a:b

a:b

b:ba:c

a:c

c:c

Subset construction:

q0
q1(b)

q2(c)

a:ε q1(bb)

q2(cc)

a:ε q1(bbb)

q2(ccc)

a:ε

.

39 / 73

Introduction Transducers Logic Regular Functions Recent Results

Subset construction fails ...

q0 q1q2 q3q4
a:b

a:b

b:ba:c

a:c

c:c

Subset construction:

q0
q1(b)

q2(c)

a:ε q1(bb)

q2(cc)

a:ε q1(bbb)

q2(ccc)

a:ε

39 / 73

Introduction Transducers Logic Regular Functions Recent Results

How to guarantee termination of subset construction?

Reminder:
delay(u, v) = (u′, v′) such that u = `u′, v = `v′ and ` = u ∧ v.

We say that T satisfies the Twinning Property iff for all
situations

q0

q q

p p

u1:v1

u1:w1

u2:v2

u2:w2

it is the case that delay(v1, w1) = delay(v1v2, w1w2).

Lemma[Characterization] T is determinizable iff it satisfies the
Twinning Property.

40 / 73

Introduction Transducers Logic Regular Functions Recent Results

How to guarantee termination of subset construction?

Reminder:
delay(u, v) = (u′, v′) such that u = `u′, v = `v′ and ` = u ∧ v.

We say that T satisfies the Twinning Property iff for all
situations

q0

q q

p p

u1:v1

u1:w1

u2:v2

u2:w2

it is the case that delay(v1, w1) = delay(v1v2, w1w2).

Lemma[Characterization] T is determinizable iff it satisfies the
Twinning Property.

40 / 73

Introduction Transducers Logic Regular Functions Recent Results

How to guarantee termination of subset construction?

Reminder:
delay(u, v) = (u′, v′) such that u = `u′, v = `v′ and ` = u ∧ v.

We say that T satisfies the Twinning Property iff for all
situations

q0

q q

p p

u1:v1

u1:w1

u2:v2

u2:w2

it is the case that delay(v1, w1) = delay(v1v2, w1w2).

Lemma[Characterization] T is determinizable iff it satisfies the
Twinning Property.

40 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the characterization (T |= TP⇒ T det.)

(n: number of states, M : maximal length of output word)

Lemma If T satisfies the Twinning Property, then for all runs
p0

u:v−−→ p and q0
u:w−−→ q, we have |delay(v, w)| ≤ 2n2M .

Proof: We proceed by contradiction, and consider a
counter-example of minimal length, with input word u. Two
cases:

I If |u| ≤ n2, then |delay(v, w)| ≤ |v|+ |w| ≤ 2n2M .

I If |u| > n2, then there is a loop. By the twinning property,
and the compositionality of delay, we obtain a shorter
counter-example. Contradiction.

We have: T |= Twinning Property ⇒ Subset constr. terminates

⇒ T determinizable

41 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the characterization (T |= TP⇒ T det.)

(n: number of states, M : maximal length of output word)

Lemma If T satisfies the Twinning Property, then for all runs
p0

u:v−−→ p and q0
u:w−−→ q, we have |delay(v, w)| ≤ 2n2M .

Proof: We proceed by contradiction, and consider a
counter-example of minimal length, with input word u. Two
cases:

I If |u| ≤ n2, then |delay(v, w)| ≤ |v|+ |w| ≤ 2n2M .

I If |u| > n2, then there is a loop. By the twinning property,
and the compositionality of delay, we obtain a shorter
counter-example. Contradiction.

We have: T |= Twinning Property ⇒ Subset constr. terminates

⇒ T determinizable

41 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the characterization (T |= TP⇒ T det.)

(n: number of states, M : maximal length of output word)

Lemma If T satisfies the Twinning Property, then for all runs
p0

u:v−−→ p and q0
u:w−−→ q, we have |delay(v, w)| ≤ 2n2M .

Proof: We proceed by contradiction, and consider a
counter-example of minimal length, with input word u. Two
cases:

I If |u| ≤ n2, then |delay(v, w)| ≤ |v|+ |w| ≤ 2n2M .

I If |u| > n2, then there is a loop. By the twinning property,
and the compositionality of delay, we obtain a shorter
counter-example. Contradiction.

We have: T |= Twinning Property ⇒ Subset constr. terminates

⇒ T determinizable

41 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the characterization (T det.⇒ T |= TP)
We only give some intuition.

By contraposition, suppose that T 6|= Twinning Property.
For instance:

a:ε

a:ε

a:ε

a:ε

a:a

b:ε

Iterating the loop yields an infinite number of distinct delays.
(ε, a), (ε, aa), (ε, aaa) . . .

Any equivalent input-deterministic transducer should store
them, impossible with finitely many states.

42 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the characterization (T det.⇒ T |= TP)
We only give some intuition.

By contraposition, suppose that T 6|= Twinning Property.
For instance:

a:ε

a:ε

a:ε

a:ε

a:a

b:ε

Iterating the loop yields an infinite number of distinct delays.
(ε, a), (ε, aa), (ε, aaa) . . .

Any equivalent input-deterministic transducer should store
them, impossible with finitely many states.

42 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the characterization (T det.⇒ T |= TP)
We only give some intuition.

By contraposition, suppose that T 6|= Twinning Property.
For instance:

a:ε

a:ε

a:ε

a:ε

a:a

b:ε

Iterating the loop yields an infinite number of distinct delays.
(ε, a), (ε, aa), (ε, aaa) . . .

Any equivalent input-deterministic transducer should store
them, impossible with finitely many states.

42 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the characterization (T det.⇒ T |= TP)
We only give some intuition.

By contraposition, suppose that T 6|= Twinning Property.
For instance:

a:ε

a:ε

a:ε

a:ε

a:a

b:ε

Iterating the loop yields an infinite number of distinct delays.
(ε, a), (ε, aa), (ε, aaa) . . .

Any equivalent input-deterministic transducer should store
them, impossible with finitely many states.

42 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the characterization (T det.⇒ T |= TP)
We prove now T determinizable ⇒ T |= Twinning Property.

Consider an input-deterministic transducer D s.t. JT K = JDK and an instance of
the Twinning Property:

q0

q q

p p f2

f1
u1:v1

u1:w1

u2:v2

u2:w2

u3:v3

u4:w3

∀i, u1ui2u3 ∈ dom(JT K)⇒ ∃i ≥ 1, j ≥ 0 | there is a loop in D on ui2 after u1u
j
2

We obtain : (for some output words x1, x2, x3, y3 in D)

∀` ≥ 0,
JT K(u1u

j
2 u

`i
2 u3) = v1v

j
2 v

`i
2 v3 = x1x`2x3

JT K(u1u
j
2 u

`i
2 u4) = w1w

j
2 w

`i
2 w3 = x1x`2y3

Thus v1vω2 = x1xω2 = w1wω2 and |v2| = |w2|.
This entails delay(v1, w1) = delay(v1v2, w1w2).

43 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the characterization (T det.⇒ T |= TP)
We prove now T determinizable ⇒ T |= Twinning Property.

Consider an input-deterministic transducer D s.t. JT K = JDK and an instance of
the Twinning Property:

q0

q q

p p f2

f1
u1:v1

u1:w1

u2:v2

u2:w2

u3:v3

u4:w3

∀i, u1ui2u3 ∈ dom(JT K)⇒ ∃i ≥ 1, j ≥ 0 | there is a loop in D on ui2 after u1u
j
2

We obtain : (for some output words x1, x2, x3, y3 in D)

∀` ≥ 0,
JT K(u1u

j
2 u

`i
2 u3) = v1v

j
2 v

`i
2 v3 = x1x`2x3

JT K(u1u
j
2 u

`i
2 u4) = w1w

j
2 w

`i
2 w3 = x1x`2y3

Thus v1vω2 = x1xω2 = w1wω2 and |v2| = |w2|.
This entails delay(v1, w1) = delay(v1v2, w1w2).

43 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the characterization (T det.⇒ T |= TP)
We prove now T determinizable ⇒ T |= Twinning Property.

Consider an input-deterministic transducer D s.t. JT K = JDK and an instance of
the Twinning Property:

q0

q q

p p f2

f1
u1:v1

u1:w1

u2:v2

u2:w2

u3:v3

u4:w3

∀i, u1ui2u3 ∈ dom(JT K)⇒ ∃i ≥ 1, j ≥ 0 | there is a loop in D on ui2 after u1u
j
2

We obtain : (for some output words x1, x2, x3, y3 in D)

∀` ≥ 0,
JT K(u1u

j
2 u

`i
2 u3) = v1v

j
2 v

`i
2 v3 = x1x`2x3

JT K(u1u
j
2 u

`i
2 u4) = w1w

j
2 w

`i
2 w3 = x1x`2y3

Thus v1vω2 = x1xω2 = w1wω2 and |v2| = |w2|.
This entails delay(v1, w1) = delay(v1v2, w1w2).

43 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the characterization (T det.⇒ T |= TP)
We prove now T determinizable ⇒ T |= Twinning Property.

Consider an input-deterministic transducer D s.t. JT K = JDK and an instance of
the Twinning Property:

q0

q q

p p f2

f1
u1:v1

u1:w1

u2:v2

u2:w2

u3:v3

u4:w3

∀i, u1ui2u3 ∈ dom(JT K)⇒ ∃i ≥ 1, j ≥ 0 | there is a loop in D on ui2 after u1u
j
2

We obtain : (for some output words x1, x2, x3, y3 in D)

∀` ≥ 0,
JT K(u1u

j
2 u

`i
2 u3) = v1v

j
2 v

`i
2 v3 = x1x`2x3

JT K(u1u
j
2 u

`i
2 u4) = w1w

j
2 w

`i
2 w3 = x1x`2y3

Thus v1vω2 = x1xω2 = w1wω2 and |v2| = |w2|.
This entails delay(v1, w1) = delay(v1v2, w1w2).

43 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof of the characterization (T det.⇒ T |= TP)
We prove now T determinizable ⇒ T |= Twinning Property.

Consider an input-deterministic transducer D s.t. JT K = JDK and an instance of
the Twinning Property:

q0

q q

p p f2

f1
u1:v1

u1:w1

u2:v2

u2:w2

u3:v3

u4:w3

∀i, u1ui2u3 ∈ dom(JT K)⇒ ∃i ≥ 1, j ≥ 0 | there is a loop in D on ui2 after u1u
j
2

We obtain : (for some output words x1, x2, x3, y3 in D)

∀` ≥ 0,
JT K(u1u

j
2 u

`i
2 u3) = v1v

j
2 v

`i
2 v3 = x1x`2x3

JT K(u1u
j
2 u

`i
2 u4) = w1w

j
2 w

`i
2 w3 = x1x`2y3

Thus v1vω2 = x1xω2 = w1wω2 and |v2| = |w2|.
This entails delay(v1, w1) = delay(v1v2, w1w2).

43 / 73

Introduction Transducers Logic Regular Functions Recent Results

Decidability of determinizability

Lemma[Characterization] T is determinizable iff it satisfies the
Twinning Property.

For all situations

q0

q q

p p

u1:v1

u1:w1

u2:v2

u2:w2

it is the case that delay(v1, w1) = delay(v1v2, w1w2).

Claim: T violates the TP iff there exists situation as above
such that:

1. |v2| 6= |w2|, or

2. |v2| = |w2| 6= 0 and there is a mismatch between v1 and w1

44 / 73

Introduction Transducers Logic Regular Functions Recent Results

Decidability of determinizability

Lemma[Characterization] T is determinizable iff it satisfies the
Twinning Property.

For all situations

q0

q q

p p

u1:v1

u1:w1

u2:v2

u2:w2

it is the case that delay(v1, w1) = delay(v1v2, w1w2).

Claim: T violates the TP iff there exists situation as above
such that:

1. |v2| 6= |w2|, or

2. |v2| = |w2| 6= 0 and there is a mismatch between v1 and w1

44 / 73

Introduction Transducers Logic Regular Functions Recent Results

Decidability of determinizability (2)
T violates the TP iff there exists situation as above such that:

1. |v2| 6= |w2|, or
2. |v2| = |w2| 6= 0 and there is a mismatch between v1 and w1

To decide 1.:
consider a weighted graph with vertices (p, q) such that (p, q)

n−→ (p′, q′) iff ∃σ,

p
σ:v−−→ p′, q

σ:w−−−→ q′ and n = |v| − |w|
 verify that every cycle has weight 0

To decide 2.:

I Compute X = {(p, q) s.t. ∃u2.(p, q)
u2:(v2,w2)−−−−−−−→ (p, q), |v2| = |w2| 6= 0}

I non-deterministically guess a path (p0, p0)
u1:(v1,w1)−−−−−−−→ (p, q) ∈ X such that

there is a mismatch between v1 and w1

I its length can be bounded by 2n2

I non-deterministically guess the mismatch

I position of the mismatch stored using two registers, whose values are

bounded by 2n2M

I NLogSpace

All together: decidable in PTime (and even in NLogSpace)

45 / 73

Introduction Transducers Logic Regular Functions Recent Results

Decidability of determinizability (2)
T violates the TP iff there exists situation as above such that:

1. |v2| 6= |w2|, or
2. |v2| = |w2| 6= 0 and there is a mismatch between v1 and w1

To decide 1.:
consider a weighted graph with vertices (p, q) such that (p, q)

n−→ (p′, q′) iff ∃σ,

p
σ:v−−→ p′, q

σ:w−−−→ q′ and n = |v| − |w|
 verify that every cycle has weight 0

To decide 2.:

I Compute X = {(p, q) s.t. ∃u2.(p, q)
u2:(v2,w2)−−−−−−−→ (p, q), |v2| = |w2| 6= 0}

I non-deterministically guess a path (p0, p0)
u1:(v1,w1)−−−−−−−→ (p, q) ∈ X such that

there is a mismatch between v1 and w1

I its length can be bounded by 2n2

I non-deterministically guess the mismatch

I position of the mismatch stored using two registers, whose values are

bounded by 2n2M

I NLogSpace

All together: decidable in PTime (and even in NLogSpace)

45 / 73

Introduction Transducers Logic Regular Functions Recent Results

Decidability of determinizability (2)
T violates the TP iff there exists situation as above such that:

1. |v2| 6= |w2|, or
2. |v2| = |w2| 6= 0 and there is a mismatch between v1 and w1

To decide 1.:
consider a weighted graph with vertices (p, q) such that (p, q)

n−→ (p′, q′) iff ∃σ,

p
σ:v−−→ p′, q

σ:w−−−→ q′ and n = |v| − |w|
 verify that every cycle has weight 0

To decide 2.:

I Compute X = {(p, q) s.t. ∃u2.(p, q)
u2:(v2,w2)−−−−−−−→ (p, q), |v2| = |w2| 6= 0}

I non-deterministically guess a path (p0, p0)
u1:(v1,w1)−−−−−−−→ (p, q) ∈ X such that

there is a mismatch between v1 and w1

I its length can be bounded by 2n2

I non-deterministically guess the mismatch

I position of the mismatch stored using two registers, whose values are

bounded by 2n2M

I NLogSpace

All together: decidable in PTime (and even in NLogSpace)

45 / 73

Introduction Transducers Logic Regular Functions Recent Results

Decidability of determinizability (2)
T violates the TP iff there exists situation as above such that:

1. |v2| 6= |w2|, or
2. |v2| = |w2| 6= 0 and there is a mismatch between v1 and w1

To decide 1.:
consider a weighted graph with vertices (p, q) such that (p, q)

n−→ (p′, q′) iff ∃σ,

p
σ:v−−→ p′, q

σ:w−−−→ q′ and n = |v| − |w|
 verify that every cycle has weight 0

To decide 2.:

I Compute X = {(p, q) s.t. ∃u2.(p, q)
u2:(v2,w2)−−−−−−−→ (p, q), |v2| = |w2| 6= 0}

I non-deterministically guess a path (p0, p0)
u1:(v1,w1)−−−−−−−→ (p, q) ∈ X such that

there is a mismatch between v1 and w1

I its length can be bounded by 2n2

I non-deterministically guess the mismatch

I position of the mismatch stored using two registers, whose values are

bounded by 2n2M

I NLogSpace

All together: decidable in PTime (and even in NLogSpace)

45 / 73

Introduction Transducers Logic Regular Functions Recent Results

Decidability of determinizability (2)
T violates the TP iff there exists situation as above such that:

1. |v2| 6= |w2|, or
2. |v2| = |w2| 6= 0 and there is a mismatch between v1 and w1

To decide 1.:
consider a weighted graph with vertices (p, q) such that (p, q)

n−→ (p′, q′) iff ∃σ,

p
σ:v−−→ p′, q

σ:w−−−→ q′ and n = |v| − |w|
 verify that every cycle has weight 0

To decide 2.:

I Compute X = {(p, q) s.t. ∃u2.(p, q)
u2:(v2,w2)−−−−−−−→ (p, q), |v2| = |w2| 6= 0}

I non-deterministically guess a path (p0, p0)
u1:(v1,w1)−−−−−−−→ (p, q) ∈ X such that

there is a mismatch between v1 and w1

I its length can be bounded by 2n2

I non-deterministically guess the mismatch

I position of the mismatch stored using two registers, whose values are

bounded by 2n2M

I NLogSpace

All together: decidable in PTime (and even in NLogSpace)

45 / 73

Introduction Transducers Logic Regular Functions Recent Results

Decidability of determinizability (2)
T violates the TP iff there exists situation as above such that:

1. |v2| 6= |w2|, or
2. |v2| = |w2| 6= 0 and there is a mismatch between v1 and w1

To decide 1.:
consider a weighted graph with vertices (p, q) such that (p, q)

n−→ (p′, q′) iff ∃σ,

p
σ:v−−→ p′, q

σ:w−−−→ q′ and n = |v| − |w|
 verify that every cycle has weight 0

To decide 2.:

I Compute X = {(p, q) s.t. ∃u2.(p, q)
u2:(v2,w2)−−−−−−−→ (p, q), |v2| = |w2| 6= 0}

I non-deterministically guess a path (p0, p0)
u1:(v1,w1)−−−−−−−→ (p, q) ∈ X such that

there is a mismatch between v1 and w1

I its length can be bounded by 2n2

I non-deterministically guess the mismatch

I position of the mismatch stored using two registers, whose values are

bounded by 2n2M

I NLogSpace

All together: decidable in PTime (and even in NLogSpace)
45 / 73

Introduction Transducers Logic Regular Functions Recent Results

Summary – Transducers
Expressiveness:

input-deterministic functional non-deterministic

PTimePTime

fdel fswap Rsubword< <

Equivalence: (dom(T1) = dom(T2) is known)

input-deterministic functional non-deterministic

PTime PTime undec

46 / 73

Introduction Transducers Logic Regular Functions Recent Results

Summary – Transducers
Expressiveness:

input-deterministic functional non-deterministic

PTimePTime

fdel fswap Rsubword< <

Equivalence: (dom(T1) = dom(T2) is known)

input-deterministic functional non-deterministic

PTime PTime undec

46 / 73

Introduction Transducers Logic Regular Functions Recent Results

Logics for transductions

47 / 73

Introduction Transducers Logic Regular Functions Recent Results

MSO on words
Over some finite alphabet Σ:

ϕ ::= ϕ ∧ ϕ | ¬ϕ | ∃xϕ | ∃Xϕ | x ∈ X | σ(x) | S(x, y) σ ∈ Σ

Over finite words, (set) variables interpreted by (sets of)
positions.
Notation: ≤ is the transitive closure of S

Some examples

I first position is an a: ∃x a(x) ∧ ∀y(x ≤ y)

I does not contain ab: ¬∃x∃y.S(x, y) ∧ a(x) ∧ b(y)

I counting modulo: odd number of a, even length, ...

Lφ = {w ∈ Σ∗ | w |= φ}

Büchi-Elgot-Trakhenbrot

L ⊆ Σ∗ is MSO-definable iff it is recognisable by some FA.

48 / 73

Introduction Transducers Logic Regular Functions Recent Results

MSO on words
Over some finite alphabet Σ:

ϕ ::= ϕ ∧ ϕ | ¬ϕ | ∃xϕ | ∃Xϕ | x ∈ X | σ(x) | S(x, y) σ ∈ Σ

Over finite words, (set) variables interpreted by (sets of)
positions.
Notation: ≤ is the transitive closure of S

Some examples

I first position is an a: ∃x a(x) ∧ ∀y(x ≤ y)

I does not contain ab: ¬∃x∃y.S(x, y) ∧ a(x) ∧ b(y)

I counting modulo: odd number of a, even length, ...

Lφ = {w ∈ Σ∗ | w |= φ}

Büchi-Elgot-Trakhenbrot

L ⊆ Σ∗ is MSO-definable iff it is recognisable by some FA.

48 / 73

Introduction Transducers Logic Regular Functions Recent Results

MSO on words
Over some finite alphabet Σ:

ϕ ::= ϕ ∧ ϕ | ¬ϕ | ∃xϕ | ∃Xϕ | x ∈ X | σ(x) | S(x, y) σ ∈ Σ

Over finite words, (set) variables interpreted by (sets of)
positions.
Notation: ≤ is the transitive closure of S

Some examples

I first position is an a: ∃x a(x) ∧ ∀y(x ≤ y)

I does not contain ab: ¬∃x∃y.S(x, y) ∧ a(x) ∧ b(y)

I counting modulo: odd number of a, even length, ...

Lφ = {w ∈ Σ∗ | w |= φ}

Büchi-Elgot-Trakhenbrot

L ⊆ Σ∗ is MSO-definable iff it is recognisable by some FA.

48 / 73

Introduction Transducers Logic Regular Functions Recent Results

MSO on words
Over some finite alphabet Σ:

ϕ ::= ϕ ∧ ϕ | ¬ϕ | ∃xϕ | ∃Xϕ | x ∈ X | σ(x) | S(x, y) σ ∈ Σ

Over finite words, (set) variables interpreted by (sets of)
positions.
Notation: ≤ is the transitive closure of S

Some examples

I first position is an a: ∃x a(x) ∧ ∀y(x ≤ y)

I does not contain ab: ¬∃x∃y.S(x, y) ∧ a(x) ∧ b(y)

I counting modulo: odd number of a, even length, ...

Lφ = {w ∈ Σ∗ | w |= φ}

Büchi-Elgot-Trakhenbrot

L ⊆ Σ∗ is MSO-definable iff it is recognisable by some FA.
48 / 73

Introduction Transducers Logic Regular Functions Recent Results

Examples of MSO formulae

I The first position:
φfirst(x) =

I Sets X,Y partition the set of positions:
φpartition(X,Y) =

I Set X is the set of even positions:
φeven(X) =

49 / 73

Introduction Transducers Logic Regular Functions Recent Results

Examples of MSO formulae

I The first position:
φfirst(x) =

I Sets X,Y partition the set of positions:
φpartition(X,Y) =

I Set X is the set of even positions:
φeven(X) =

49 / 73

Introduction Transducers Logic Regular Functions Recent Results

Examples of MSO formulae

I The first position:
φfirst(x) =

I Sets X,Y partition the set of positions:
φpartition(X,Y) =

I Set X is the set of even positions:
φeven(X) =

49 / 73

Introduction Transducers Logic Regular Functions Recent Results

Extension to transductions

φ(x): MSO formula with one free FO variable x
w ∈ Σ∗, i ∈ {1, . . . , |w|}
Notation: w, i |= φ(x): φ(x) evaluates to True at position i in w

Consider formula φv1 , . . . , φvk :
w = a1 . . . an vj1 . . . vjn ⇐⇒ ∀i ∈ {1, . . . , n}, w, i |= φvji (x)

Example (Delete a’s)

φb(x) ≡ b(x)

φε(x) ≡ a(x)

Realizes the function f : u ∈ {a, b}∗ 7→ b|u|b

50 / 73

Introduction Transducers Logic Regular Functions Recent Results

Extension to transductions

φ(x): MSO formula with one free FO variable x
w ∈ Σ∗, i ∈ {1, . . . , |w|}
Notation: w, i |= φ(x): φ(x) evaluates to True at position i in w

Consider formula φv1 , . . . , φvk :
w = a1 . . . an vj1 . . . vjn ⇐⇒ ∀i ∈ {1, . . . , n}, w, i |= φvji (x)

Example (Delete a’s)

φb(x) ≡ b(x)

φε(x) ≡ a(x)

Realizes the function f : u ∈ {a, b}∗ 7→ b|u|b

50 / 73

Introduction Transducers Logic Regular Functions Recent Results

Extension to transductions

φ(x): MSO formula with one free FO variable x
w ∈ Σ∗, i ∈ {1, . . . , |w|}
Notation: w, i |= φ(x): φ(x) evaluates to True at position i in w

Consider formula φv1 , . . . , φvk :
w = a1 . . . an vj1 . . . vjn ⇐⇒ ∀i ∈ {1, . . . , n}, w, i |= φvji (x)

Example (Delete a’s)

φb(x) ≡ b(x)

φε(x) ≡ a(x)

Realizes the function f : u ∈ {a, b}∗ 7→ b|u|b

50 / 73

Introduction Transducers Logic Regular Functions Recent Results

Extension to transductions

Example (Append #)

I replace label σ of x by σ if x is not the last position

φσ(x) ≡ σ(x) ∧ ∃y S(x, y)

I replace label σ of x by σ# if x is the last position

φσ#(x) ≡ σ(x) ∧ ∀y ¬S(x, y)

51 / 73

Introduction Transducers Logic Regular Functions Recent Results

Extension to transductions

Example (Append #)

I replace label σ of x by σ if x is not the last position

φσ(x) ≡ σ(x) ∧ ∃y S(x, y)

I replace label σ of x by σ# if x is the last position

φσ#(x) ≡ σ(x) ∧ ∀y ¬S(x, y)

51 / 73

Introduction Transducers Logic Regular Functions Recent Results

Extension to transductions

Example (Append #)

I replace label σ of x by σ if x is not the last position

φσ(x) ≡ σ(x) ∧ ∃y S(x, y)

I replace label σ of x by σ# if x is the last position

φσ#(x) ≡ σ(x) ∧ ∀y ¬S(x, y)

51 / 73

Introduction Transducers Logic Regular Functions Recent Results

Extension to transductions

Example (Add a parity bit)

I replace label σ of x by 1σ if x is the first position and odd
number of 1

φ1σ(x) ≡ σ(x) ∧ ∀y ¬S(y, x) ∧ φodd1

I replace label σ of x by 0σ if x is the first position and even
number of 1

φ0σ(x) ≡ σ(x) ∧ ∀y ¬S(y, x) ∧ φeven1

I replace label σ of x by σ if x is not the first position

φσ(x) ≡ σ(x) ∧ ∃y S(y, x)

51 / 73

Introduction Transducers Logic Regular Functions Recent Results

Extension to transductions

Example (Add a parity bit)

I replace label σ of x by 1σ if x is the first position and odd
number of 1

φ1σ(x) ≡ σ(x) ∧ ∀y ¬S(y, x) ∧ φodd1

I replace label σ of x by 0σ if x is the first position and even
number of 1

φ0σ(x) ≡ σ(x) ∧ ∀y ¬S(y, x) ∧ φeven1

I replace label σ of x by σ if x is not the first position

φσ(x) ≡ σ(x) ∧ ∃y S(y, x)

51 / 73

Introduction Transducers Logic Regular Functions Recent Results

Extension to transductions

Example (Add a parity bit)

I replace label σ of x by 1σ if x is the first position and odd
number of 1

φ1σ(x) ≡ σ(x) ∧ ∀y ¬S(y, x) ∧ φodd1

I replace label σ of x by 0σ if x is the first position and even
number of 1

φ0σ(x) ≡ σ(x) ∧ ∀y ¬S(y, x) ∧ φeven1

I replace label σ of x by σ if x is not the first position

φσ(x) ≡ σ(x) ∧ ∃y S(y, x)

51 / 73

Introduction Transducers Logic Regular Functions Recent Results

Extension to transductions

Example (Add a parity bit)

I replace label σ of x by 1σ if x is the first position and odd
number of 1

φ1σ(x) ≡ σ(x) ∧ ∀y ¬S(y, x) ∧ φodd1

I replace label σ of x by 0σ if x is the first position and even
number of 1

φ0σ(x) ≡ σ(x) ∧ ∀y ¬S(y, x) ∧ φeven1

I replace label σ of x by σ if x is not the first position

φσ(x) ≡ σ(x) ∧ ∃y S(y, x)
51 / 73

Introduction Transducers Logic Regular Functions Recent Results

Büchi Theorem for Rational Transductions

Def f : Σ∗ ↪→ Σ∗ is MSO-definable if it can be “described” by a
finite set of formulas φv1(x), . . . , φvk(x) (v1, . . . , vk ∈ Σ∗).

w = a1 . . . an vj1 . . . vjn ⇐⇒ ∀i ∈ {1, . . . , n}, w, i |= φvji (x)

Thm f : Σ∗ ↪→ Σ∗ is MSO-definable iff it is realisable by a
finite state transducer.

What about mirror ? ejcim 7→ micje

Replace label of position x by σ if last− x is labeled σ.
Not MSO-definable.

52 / 73

Introduction Transducers Logic Regular Functions Recent Results

Büchi Theorem for Rational Transductions

Def f : Σ∗ ↪→ Σ∗ is MSO-definable if it can be “described” by a
finite set of formulas φv1(x), . . . , φvk(x) (v1, . . . , vk ∈ Σ∗).

w = a1 . . . an vj1 . . . vjn ⇐⇒ ∀i ∈ {1, . . . , n}, w, i |= φvji (x)

Thm f : Σ∗ ↪→ Σ∗ is MSO-definable iff it is realisable by a
finite state transducer.

What about mirror ? ejcim 7→ micje

Replace label of position x by σ if last− x is labeled σ.
Not MSO-definable.

52 / 73

Introduction Transducers Logic Regular Functions Recent Results

Büchi Theorem for Rational Transductions

Def f : Σ∗ ↪→ Σ∗ is MSO-definable if it can be “described” by a
finite set of formulas φv1(x), . . . , φvk(x) (v1, . . . , vk ∈ Σ∗).

w = a1 . . . an vj1 . . . vjn ⇐⇒ ∀i ∈ {1, . . . , n}, w, i |= φvji (x)

Thm f : Σ∗ ↪→ Σ∗ is MSO-definable iff it is realisable by a
finite state transducer.

What about mirror ? ejcim 7→ micje

Replace label of position x by σ if last− x is labeled σ.
Not MSO-definable.

52 / 73

Introduction Transducers Logic Regular Functions Recent Results

Büchi Theorem for Rational Transductions

Def f : Σ∗ ↪→ Σ∗ is MSO-definable if it can be “described” by a
finite set of formulas φv1(x), . . . , φvk(x) (v1, . . . , vk ∈ Σ∗).

w = a1 . . . an vj1 . . . vjn ⇐⇒ ∀i ∈ {1, . . . , n}, w, i |= φvji (x)

Thm f : Σ∗ ↪→ Σ∗ is MSO-definable iff it is realisable by a
finite state transducer.

What about mirror ? ejcim 7→ micje

Replace label of position x by σ if last− x is labeled σ.

Not MSO-definable.

52 / 73

Introduction Transducers Logic Regular Functions Recent Results

Büchi Theorem for Rational Transductions

Def f : Σ∗ ↪→ Σ∗ is MSO-definable if it can be “described” by a
finite set of formulas φv1(x), . . . , φvk(x) (v1, . . . , vk ∈ Σ∗).

w = a1 . . . an vj1 . . . vjn ⇐⇒ ∀i ∈ {1, . . . , n}, w, i |= φvji (x)

Thm f : Σ∗ ↪→ Σ∗ is MSO-definable iff it is realisable by a
finite state transducer.

What about mirror ? ejcim 7→ micje

Replace label of position x by σ if last− x is labeled σ.
Not MSO-definable.

52 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof: from transducers to MSO

W.l.o.g., we assume T unambiguous.

For each transition t = (p, a, v, q) of T , we define the language
Lt ⊆ (Σ× {0, 1})∗ such that:

w ∈ Lt ⇐⇒ ∃ run q0
u|v−−→ qf s.t. π2(w)[i] = 1 iff t used at position i

Lt is regular, recognized by At, obtained as follows:

I p
(a,1)−−−→ q

I p′
(b,0)−−−→ q′ for each transition t′ = (p′, b, v′, q′) 6= t

By the previous result, Lt can be translated into φt(x).

We let φv(x) =
∨
t=(p,a,v,q) φt(x).

53 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof: from transducers to MSO

W.l.o.g., we assume T unambiguous.

For each transition t = (p, a, v, q) of T , we define the language
Lt ⊆ (Σ× {0, 1})∗ such that:

w ∈ Lt ⇐⇒ ∃ run q0
u|v−−→ qf s.t. π2(w)[i] = 1 iff t used at position i

Lt is regular, recognized by At, obtained as follows:

I p
(a,1)−−−→ q

I p′
(b,0)−−−→ q′ for each transition t′ = (p′, b, v′, q′) 6= t

By the previous result, Lt can be translated into φt(x).

We let φv(x) =
∨
t=(p,a,v,q) φt(x).

53 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof: from transducers to MSO

W.l.o.g., we assume T unambiguous.

For each transition t = (p, a, v, q) of T , we define the language
Lt ⊆ (Σ× {0, 1})∗ such that:

w ∈ Lt ⇐⇒ ∃ run q0
u|v−−→ qf s.t. π2(w)[i] = 1 iff t used at position i

Lt is regular, recognized by At, obtained as follows:

I p
(a,1)−−−→ q

I p′
(b,0)−−−→ q′ for each transition t′ = (p′, b, v′, q′) 6= t

By the previous result, Lt can be translated into φt(x).

We let φv(x) =
∨
t=(p,a,v,q) φt(x).

53 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof: from transducers to MSO

W.l.o.g., we assume T unambiguous.

For each transition t = (p, a, v, q) of T , we define the language
Lt ⊆ (Σ× {0, 1})∗ such that:

w ∈ Lt ⇐⇒ ∃ run q0
u|v−−→ qf s.t. π2(w)[i] = 1 iff t used at position i

Lt is regular, recognized by At, obtained as follows:

I p
(a,1)−−−→ q

I p′
(b,0)−−−→ q′ for each transition t′ = (p′, b, v′, q′) 6= t

By the previous result, Lt can be translated into φt(x).

We let φv(x) =
∨
t=(p,a,v,q) φt(x).

53 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof: from MSO to transducers

For each φv(x), build an automaton Av that recognizes words
w ∈ (Σ× {0, 1})∗ such that π2(w)[i] = 1 iff w, i |= φv(x).

Claim: As φv1 , . . . , φvk define a function f , for each word
w ∈ dom(f), and for each position i ∈ {1, . . . , |w|}, there is
exactly one j such that w, i |= φvj .

Consider the automaton A = Πk
j=1Avj , synchronised on Σ.

Transform it into a transducer by outputting vj if transition
(a, 1) is used in Avj .

This construction is correct thanks to previous claim.

54 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof: from MSO to transducers

For each φv(x), build an automaton Av that recognizes words
w ∈ (Σ× {0, 1})∗ such that π2(w)[i] = 1 iff w, i |= φv(x).

Claim: As φv1 , . . . , φvk define a function f , for each word
w ∈ dom(f), and for each position i ∈ {1, . . . , |w|}, there is
exactly one j such that w, i |= φvj .

Consider the automaton A = Πk
j=1Avj , synchronised on Σ.

Transform it into a transducer by outputting vj if transition
(a, 1) is used in Avj .

This construction is correct thanks to previous claim.

54 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof: from MSO to transducers

For each φv(x), build an automaton Av that recognizes words
w ∈ (Σ× {0, 1})∗ such that π2(w)[i] = 1 iff w, i |= φv(x).

Claim: As φv1 , . . . , φvk define a function f , for each word
w ∈ dom(f), and for each position i ∈ {1, . . . , |w|}, there is
exactly one j such that w, i |= φvj .

Consider the automaton A = Πk
j=1Avj , synchronised on Σ.

Transform it into a transducer by outputting vj if transition
(a, 1) is used in Avj .

This construction is correct thanks to previous claim.

54 / 73

Introduction Transducers Logic Regular Functions Recent Results

Proof: from MSO to transducers

For each φv(x), build an automaton Av that recognizes words
w ∈ (Σ× {0, 1})∗ such that π2(w)[i] = 1 iff w, i |= φv(x).

Claim: As φv1 , . . . , φvk define a function f , for each word
w ∈ dom(f), and for each position i ∈ {1, . . . , |w|}, there is
exactly one j such that w, i |= φvj .

Consider the automaton A = Πk
j=1Avj , synchronised on Σ.

Transform it into a transducer by outputting vj if transition
(a, 1) is used in Avj .

This construction is correct thanks to previous claim.

54 / 73

Introduction Transducers Logic Regular Functions Recent Results

The class of regular functions

55 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

`

a

a d

d

o

o

s

s

s

s

n

n

o

o

b

b

a

a

bb oo nn ss ss oo dd a

1

1 2

2

3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a d

d o

o

s

s

s

s

n

n

o

o

b

b

a

a

bb oo nn ss ss oo dd a

1

1 2

2

3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a

d

d o

o s

s

s

s

n

n

o

o

b

b

a

a

bb oo nn ss ss oo dd a

1

1 2

2

3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a

d

d

o

o s

s s

s

n

n

o

o

b

b

a

a

bb oo nn ss ss oo dd a

1

1 2

2

3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a

d

d

o

o

s

s s

s n

n

o

o

b

b

a

a

bb oo nn ss ss oo dd a

1

1 2

2

3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a

d

d

o

o

s

s

s

s n

n o

o

b

b

a

a

bb oo nn ss ss oo dd a

1

1 2

2

3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a

d

d

o

o

s

s

s

s

n

n o

o b

b

a

a

bb oo nn ss ss oo dd a

1

1 2

2

3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a

d

d

o

o

s

s

s

s

n

n

o

o b

b a

a

bb oo nn ss ss oo dd a

1

1 2

2

3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a

d

d

o

o

s

s

s

s

n

n

o

o

b

b a

a

bb oo nn ss ss oo dd a

1

1 2

2

3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a

d

d

o

o

s

s

s

s

n

n

o

o b

b a

a

bb oo nn ss ss oo dd a

1

1 2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a

d

d

o

o

s

s

s

s

n

n o

o b

b

a

a

b

b oo nn ss ss oo dd a

1

1 2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a

d

d

o

o

s

s

s

s n

n o

o

b

b

a

a

b

b o

o nn ss ss oo dd a

1

1 2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a

d

d

o

o

s

s s

s n

n

o

o

b

b

a

a

b

b

o

o n

n ss ss oo dd a

1

1 2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a

d

d

o

o s

s s

s

n

n

o

o

b

b

a

a

b

b

o

o

n

n s

s ss oo dd a

1

1 2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a

d

d o

o s

s

s

s

n

n

o

o

b

b

a

a

b

b

o

o

n

n

s

s s

s oo dd a

1

1 2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

` a

a d

d o

o

s

s

s

s

n

n

o

o

b

b

a

a

b

b

o

o

n

n

s

s

s

s o

o dd a

1

1 2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

`

a

a d

d

o

o

s

s

s

s

n

n

o

o

b

b

a

a

b

b

o

o

n

n

s

s

s

s

o

o d

d a

1

1 2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

`

a

a

d

d

o

o

s

s

s

s

n

n

o

o

b

b

a

a

b

b

o

o

n

n

s

s

s

s

o

o

d

d a

1

1 2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

`

a

a

d

d

o

o

s

s

s

s

n

n

o

o

b

b

a

a

b

b

o

o

n

n

s

s

s

s

o

o

d

d a

1

1

2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

`

a

a

d

d

o

o

s

s

s

s

n

n

o

o

b

b

a

a

b

b

o

o

n

n

s

s

s

s

o

o

d

d a

1

1

2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march

u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

`

a

a

d

d

o

o

s

s

s

s

n

n

o

o

b

b

a

a

b

b

o

o

n

n

s

s

s

s

o

o

d

d a

1

1

2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

`

a

a

d

d

o

o

s

s

s

s

n

n

o

o

b

b

a

a

b

b

o

o

n

n

s

s

s

s

o

o

d

d a

1

1

2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Two-way finite transducers (2FT)

input

output

`

`

a

a

d

d

o

o

s

s

s

s

n

n

o

o

b

b

a

a

b

b

o

o

n

n

s

s

s

s

o

o

d

d a

1

1

2

2 3

3

σ:ε,→

a:ε,←

σ:σ,←

`:ε

Other examples
march, 2019 7→ 2019,march
u 7→ uu (copy)

u 7→ f1(u)f2(u) (copy+trans)

u1#u2# . . .#uk 7→ u1# . . .#uk (local reverse)

56 / 73

Introduction Transducers Logic Regular Functions Recent Results

Some important results on two-way transducers

Over (functional) transductions:

I equivalence is decidable in PSPace
(Gurari 82) (Culik, Karhumäki,87)

I closed under composition
(Chytil, Jakl, 77)

I equivalent to reversible2 two-way transducers
(Dartois,Fournier,Jecker,Lhote,17)

I and to many other models ...

2Σ∗aΣ∗ is not definable by any one-way reversible automaton
57 / 73

Introduction Transducers Logic Regular Functions Recent Results

Some important results on two-way transducers

Over (functional) transductions:

I equivalence is decidable in PSPace
(Gurari 82) (Culik, Karhumäki,87)

I closed under composition
(Chytil, Jakl, 77)

I equivalent to reversible2 two-way transducers
(Dartois,Fournier,Jecker,Lhote,17)

I and to many other models ...

2Σ∗aΣ∗ is not definable by any one-way reversible automaton
57 / 73

Introduction Transducers Logic Regular Functions Recent Results

Some important results on two-way transducers

Over (functional) transductions:

I equivalence is decidable in PSPace
(Gurari 82) (Culik, Karhumäki,87)

I closed under composition
(Chytil, Jakl, 77)

I equivalent to reversible2 two-way transducers
(Dartois,Fournier,Jecker,Lhote,17)

I and to many other models ...

2Σ∗aΣ∗ is not definable by any one-way reversible automaton
57 / 73

Introduction Transducers Logic Regular Functions Recent Results

Some important results on two-way transducers

Over (functional) transductions:

I equivalence is decidable in PSPace
(Gurari 82) (Culik, Karhumäki,87)

I closed under composition
(Chytil, Jakl, 77)

I equivalent to reversible2 two-way transducers
(Dartois,Fournier,Jecker,Lhote,17)

I and to many other models ...

2Σ∗aΣ∗ is not definable by any one-way reversible automaton
57 / 73

Introduction Transducers Logic Regular Functions Recent Results

Transducers with registers

X

σ | X := σX

mirror

Y X

σ

∣∣∣∣∣∣ X := σX

Y := Y σ

id.mirror

aX

a | X := aXX

exp: an 7→ a2n

I deterministic one-way

I equivalent to 2FT if linear updates
(Alur, Cerny, 10)

I decidable equivalence problem
(F., R.,17) (Benedikt et. al., 17)

58 / 73

Introduction Transducers Logic Regular Functions Recent Results

(Courcelle) MSO Transducers
“interpreting the output structure in the input structure”

I output predicates defined by MSO formulas interpreted
over the input structure

s t r e s s e d

S S S S S S S

SSSSSSS

φS(x, y) ≡ S(y, x)

φσ(x) ≡ σ(x)

I input structure can be copied a fixed number of times:
u 7→ uu, or u 7→ u.mirror(u).

59 / 73

Introduction Transducers Logic Regular Functions Recent Results

(Courcelle) MSO Transducers
“interpreting the output structure in the input structure”

I output predicates defined by MSO formulas interpreted
over the input structure

s t r e s s e d

S S S S S S S

SSSSSSS

φS(x, y) ≡ S(y, x)

φσ(x) ≡ σ(x)

I input structure can be copied a fixed number of times:
u 7→ uu, or u 7→ u.mirror(u).

59 / 73

Introduction Transducers Logic Regular Functions Recent Results

(Courcelle) MSO Transducers
“interpreting the output structure in the input structure”

I output predicates defined by MSO formulas interpreted
over the input structure

s t r e s s e d

S S S S S S S

SSSSSSS

φS(x, y) ≡ S(y, x)

φσ(x) ≡ σ(x)

I input structure can be copied a fixed number of times:
u 7→ uu, or u 7→ u.mirror(u).

59 / 73

Introduction Transducers Logic Regular Functions Recent Results

(Courcelle) MSO Transducers
“interpreting the output structure in the input structure”

I output predicates defined by MSO formulas interpreted
over the input structure

s t r e s s e d

S S S S S S S

SSSSSSS

φS(x, y) ≡ S(y, x)

φσ(x) ≡ σ(x)

I input structure can be copied a fixed number of times:
u 7→ uu, or u 7→ u.mirror(u).

59 / 73

Introduction Transducers Logic Regular Functions Recent Results

(Courcelle) MSO Transducers
“interpreting the output structure in the input structure”

I output predicates defined by MSO formulas interpreted
over the input structure

s t r e s s e d

S S S S S S S

SSSSSSS

φS(x, y) ≡ S(y, x)

φσ(x) ≡ σ(x)

I input structure can be copied a fixed number of times:
u 7→ uu, or u 7→ u.mirror(u).

59 / 73

Introduction Transducers Logic Regular Functions Recent Results

(Courcelle) MSO Transducers
“interpreting the output structure in the input structure”

I output predicates defined by MSO formulas interpreted
over the input structure

s t r e s s e d

S S S S S S S

SSSSSSS

φS(x, y) ≡ S(y, x)

φσ(x) ≡ σ(x)

I input structure can be copied a fixed number of times:
u 7→ uu, or u 7→ u.mirror(u).

59 / 73

Introduction Transducers Logic Regular Functions Recent Results

Other example : u 7→ u.mirror(u)

s t r e s s e d

s t r e s s e d

copy 1

copy 2

S S S S S S S

S S S S S S S

SSSSSSS

S

SSSSSS

S

Formulas

copy 1: φ1S(x, y) ≡ S(x, y)

copy 2: φ2S(x, y) ≡ S(y, x)

copy 1 to copy 2: φ1→2
S (x, y) ≡ x = y ∧ last(x)

copy 2 to copy 1: φ2→1
S (x, y) ≡ ⊥

for all copies i: φiσ(x) ≡ σ(x)

60 / 73

Introduction Transducers Logic Regular Functions Recent Results

Other example : u 7→ u.mirror(u)

s t r e s s e d

s t r e s s e d

copy 1

copy 2

S S S S S S S

S S S S S S S

SSSSSSS

S

SSSSSS

S

Formulas

copy 1: φ1S(x, y) ≡ S(x, y)

copy 2: φ2S(x, y) ≡ S(y, x)

copy 1 to copy 2: φ1→2
S (x, y) ≡ x = y ∧ last(x)

copy 2 to copy 1: φ2→1
S (x, y) ≡ ⊥

for all copies i: φiσ(x) ≡ σ(x)

60 / 73

Introduction Transducers Logic Regular Functions Recent Results

Other example : u 7→ u.mirror(u)

s t r e s s e d

s t r e s s e d

copy 1

copy 2

S S S S S S S

S S S S S S S

SSSSSSS

S

SSSSSS

S

Formulas

copy 1: φ1S(x, y) ≡ S(x, y)

copy 2: φ2S(x, y) ≡ S(y, x)

copy 1 to copy 2: φ1→2
S (x, y) ≡ x = y ∧ last(x)

copy 2 to copy 1: φ2→1
S (x, y) ≡ ⊥

for all copies i: φiσ(x) ≡ σ(x)

60 / 73

Introduction Transducers Logic Regular Functions Recent Results

Other example : u 7→ u.mirror(u)

s t r e s s e d

s t r e s s e d

copy 1

copy 2

S S S S S S S

S S S S S S S

SSSSSSS

S

SSSSSS

S

Formulas

copy 1: φ1S(x, y) ≡ S(x, y)

copy 2: φ2S(x, y) ≡ S(y, x)

copy 1 to copy 2: φ1→2
S (x, y) ≡ x = y ∧ last(x)

copy 2 to copy 1: φ2→1
S (x, y) ≡ ⊥

for all copies i: φiσ(x) ≡ σ(x)

60 / 73

Introduction Transducers Logic Regular Functions Recent Results

Other example : u 7→ u.mirror(u)

s t r e s s e d

s t r e s s e d

copy 1

copy 2

S S S S S S S

S S S S S S S

SSSSSSS

S

SSSSSS

S

Formulas

copy 1: φ1S(x, y) ≡ S(x, y)

copy 2: φ2S(x, y) ≡ S(y, x)

copy 1 to copy 2: φ1→2
S (x, y) ≡ x = y ∧ last(x)

copy 2 to copy 1: φ2→1
S (x, y) ≡ ⊥

for all copies i: φiσ(x) ≡ σ(x)

60 / 73

Introduction Transducers Logic Regular Functions Recent Results

Other example : u 7→ u.mirror(u)

s t r e s s e d

s t r e s s e d

copy 1

copy 2

S S S S S S S

S S S S S S S

SSSSSSS

S

SSSSSS

S

Formulas

copy 1: φ1S(x, y) ≡ S(x, y)

copy 2: φ2S(x, y) ≡ S(y, x)

copy 1 to copy 2: φ1→2
S (x, y) ≡ x = y ∧ last(x)

copy 2 to copy 1: φ2→1
S (x, y) ≡ ⊥

for all copies i: φiσ(x) ≡ σ(x)

60 / 73

Introduction Transducers Logic Regular Functions Recent Results

Other example : u 7→ u.mirror(u)

s t r e s s e d

s t r e s s e d

copy 1

copy 2

S S S S S S S

S S S S S S S

SSSSSSS

S

SSSSSS

S

Formulas

copy 1: φ1S(x, y) ≡ S(x, y)

copy 2: φ2S(x, y) ≡ S(y, x)

copy 1 to copy 2: φ1→2
S (x, y) ≡ x = y ∧ last(x)

copy 2 to copy 1: φ2→1
S (x, y) ≡ ⊥

for all copies i: φiσ(x) ≡ σ(x)

60 / 73

Introduction Transducers Logic Regular Functions Recent Results

Other example : u 7→ u.mirror(u)

s t r e s s e d

s t r e s s e d

copy 1

copy 2

S S S S S S S

S S S S S S S

SSSSSSS

S

SSSSSS

S

Formulas

copy 1: φ1S(x, y) ≡ S(x, y)

copy 2: φ2S(x, y) ≡ S(y, x)

copy 1 to copy 2: φ1→2
S (x, y) ≡ x = y ∧ last(x)

copy 2 to copy 1: φ2→1
S (x, y) ≡ ⊥

for all copies i: φiσ(x) ≡ σ(x)

60 / 73

Introduction Transducers Logic Regular Functions Recent Results

Büchi Theorem for Regular Transductions
Let f : Σ∗ ↪→ Σ∗.

Theorem (Engelfriet, Hoogeboom, 01)

The following are equivalent:

1. f is definable by a deterministic two-way transducer

2. f is MSO-definable.

Consequence Equivalence is decidable for MSO-transducers,
and they are closed under composition.

Proof ideas: MSO-transducers are 2-way transducers with MSO
jumps φc→c

′
S (x, y)

I turn jumps into walks
I hold enough information to decide MSO-formulas locally:

states = MSO-types

f = f̂ ◦ ftypes (use composition closure of 2-way trans)

61 / 73

Introduction Transducers Logic Regular Functions Recent Results

Büchi Theorem for Regular Transductions
Let f : Σ∗ ↪→ Σ∗.

Theorem (Engelfriet, Hoogeboom, 01)

The following are equivalent:

1. f is definable by a deterministic two-way transducer

2. f is MSO-definable.

Consequence Equivalence is decidable for MSO-transducers,
and they are closed under composition.

Proof ideas: MSO-transducers are 2-way transducers with MSO
jumps φc→c

′
S (x, y)

I turn jumps into walks
I hold enough information to decide MSO-formulas locally:

states = MSO-types

f = f̂ ◦ ftypes (use composition closure of 2-way trans)

61 / 73

Introduction Transducers Logic Regular Functions Recent Results

Büchi Theorem for Regular Transductions
Let f : Σ∗ ↪→ Σ∗.

Theorem (Engelfriet, Hoogeboom, 01)

The following are equivalent:

1. f is definable by a deterministic two-way transducer

2. f is MSO-definable.

Consequence Equivalence is decidable for MSO-transducers,
and they are closed under composition.

Proof ideas: MSO-transducers are 2-way transducers with MSO
jumps φc→c

′
S (x, y)

I turn jumps into walks
I hold enough information to decide MSO-formulas locally:

states = MSO-types

f = f̂ ◦ ftypes (use composition closure of 2-way trans)
61 / 73

Introduction Transducers Logic Regular Functions Recent Results

Summary – Expressiveness

input-deterministic functional non-deterministic

1-way

(rational)

2-way

(regular)

PSPace

PTimePTime
UndecDec

(F., Gauwin, R., Servais, 13)

(Baschenis, Gauwin, Muscholl, Puppis,17)

< <

= <
∧ ∧ ∧

62 / 73

Introduction Transducers Logic Regular Functions Recent Results

Summary – Expressiveness

input-deterministic functional non-deterministic

1-way

(rational)

2-way

(regular)
PSPace

PTimePTime

UndecDec

(F., Gauwin, R., Servais, 13)

(Baschenis, Gauwin, Muscholl, Puppis,17)

< <

= <
∧ ∧ ∧

62 / 73

Introduction Transducers Logic Regular Functions Recent Results

Summary – Expressiveness

input-deterministic functional non-deterministic

1-way

(rational)

2-way

(regular)
PSPace

PTimePTime
UndecDec

(F., Gauwin, R., Servais, 13)

(Baschenis, Gauwin, Muscholl, Puppis,17)

< <

= <
∧ ∧ ∧

62 / 73

Introduction Transducers Logic Regular Functions Recent Results

Summary – Equivalence problem

dom(T1) = dom(T2) is known.

input-deterministic functional non-deterministic

1-way

(rational)

2-way

(regular)

PSPace

PTime PTime

PSPace

undec

undec

63 / 73

Introduction Transducers Logic Regular Functions Recent Results

Some other (recent) results

64 / 73

Introduction Transducers Logic Regular Functions Recent Results

Other specification languages

I FO-transducers
I equivalent to aperiodic transducers with registers (F.,

Krishna, Trivedi, 14)

I and to aperiodic 2-way transducers (Dartois, Jecker, R., 16)

I regular function expressions
I iterated sum f∗(u) = f(u1)f(u2) . . . f(un) for u = u1 . . . un
I chain sum f c(u) = f(u1u2)f(u2u3) . . . f(un−1un)
I introduced by Alur, Freilich, Raghothaman in 14
I direct construction from 2FT by Baudru, R. in 18
I extended to infinite words by Dave, Gastin, Krishna in 18
I non-deterministic 2FT by Choffrut, Guillon in 14

I functions on lists, equipped with function composition ◦ by
Bojanczyk, Daviaud and Krishna in 18

I an expressive decidable logic tailored to (non-functional)
transductions Dartois, F., Lhote, 18

65 / 73

Introduction Transducers Logic Regular Functions Recent Results

Other specification languages

I FO-transducers
I equivalent to aperiodic transducers with registers (F.,

Krishna, Trivedi, 14)

I and to aperiodic 2-way transducers (Dartois, Jecker, R., 16)

I regular function expressions
I iterated sum f∗(u) = f(u1)f(u2) . . . f(un) for u = u1 . . . un
I chain sum f c(u) = f(u1u2)f(u2u3) . . . f(un−1un)
I introduced by Alur, Freilich, Raghothaman in 14
I direct construction from 2FT by Baudru, R. in 18
I extended to infinite words by Dave, Gastin, Krishna in 18
I non-deterministic 2FT by Choffrut, Guillon in 14

I functions on lists, equipped with function composition ◦ by
Bojanczyk, Daviaud and Krishna in 18

I an expressive decidable logic tailored to (non-functional)
transductions Dartois, F., Lhote, 18

65 / 73

Introduction Transducers Logic Regular Functions Recent Results

Other specification languages

I FO-transducers
I equivalent to aperiodic transducers with registers (F.,

Krishna, Trivedi, 14)

I and to aperiodic 2-way transducers (Dartois, Jecker, R., 16)

I regular function expressions
I iterated sum f∗(u) = f(u1)f(u2) . . . f(un) for u = u1 . . . un
I chain sum f c(u) = f(u1u2)f(u2u3) . . . f(un−1un)
I introduced by Alur, Freilich, Raghothaman in 14
I direct construction from 2FT by Baudru, R. in 18
I extended to infinite words by Dave, Gastin, Krishna in 18
I non-deterministic 2FT by Choffrut, Guillon in 14

I functions on lists, equipped with function composition ◦ by
Bojanczyk, Daviaud and Krishna in 18

I an expressive decidable logic tailored to (non-functional)
transductions Dartois, F., Lhote, 18

65 / 73

Introduction Transducers Logic Regular Functions Recent Results

Other specification languages

I FO-transducers
I equivalent to aperiodic transducers with registers (F.,

Krishna, Trivedi, 14)

I and to aperiodic 2-way transducers (Dartois, Jecker, R., 16)

I regular function expressions
I iterated sum f∗(u) = f(u1)f(u2) . . . f(un) for u = u1 . . . un
I chain sum f c(u) = f(u1u2)f(u2u3) . . . f(un−1un)
I introduced by Alur, Freilich, Raghothaman in 14
I direct construction from 2FT by Baudru, R. in 18
I extended to infinite words by Dave, Gastin, Krishna in 18
I non-deterministic 2FT by Choffrut, Guillon in 14

I functions on lists, equipped with function composition ◦ by
Bojanczyk, Daviaud and Krishna in 18

I an expressive decidable logic tailored to (non-functional)
transductions Dartois, F., Lhote, 18

65 / 73

Introduction Transducers Logic Regular Functions Recent Results

Definability Problems

Definition
F : logical fragment of MSOT (e.g. FOT)
Input: T an MSOT
Output: Is JT K FO-definable ?

Results

I Decidable for ”rational” MSOT (=rational functions)
F., Gauwin, Lhote, 16

I Open for MSOT

66 / 73

Introduction Transducers Logic Regular Functions Recent Results

Definability Problems

Definition
F : logical fragment of MSOT (e.g. FOT)
Input: T an MSOT
Output: Is JT K FO-definable ?

Results

I Decidable for ”rational” MSOT (=rational functions)
F., Gauwin, Lhote, 16

I Open for MSOT

66 / 73

Introduction Transducers Logic Regular Functions Recent Results

Register Minimization Problems

Rational functions = Register transd. with updates X := Y u

Theorem (Daviaud, R., Talbot,
16)

A transducer T can be expressed
using k registers iff it satisfies the
Twinning Property of order k.

u1:w1,0 u2:w2,0

v1:w′1,0 v2:w′2,0 vk:w
′
k,0

u1:w1,1 u2:w2,1

v1:w′1,1 v2:w′2,1 vk:w
′
k,1

u1:w1,k u2:w2,k

v1:w′1,k v2:w′2,k vk:w
′
k,k

For all situations like:

k synchronised loops

k
+

1
ru

n
s

there are two runs 0 ≤ i < j ≤ k s.t. for every loop `,

we have delay(w1,i . . . w`,i, w1,j . . . w`,j) = delay(w1,i . . . w`,iw
′
`,i, w1,j . . . w`,jw

′
`,j)

Other results:

I multi-sequential transducers Daviaud, Jecker, R., Villevalois, 17

I concatenation-free non-det reg. transducers Baschenis, Gauwin,

Muscholl, Puppis, 16

I concatenation-free det. reg transducers R., Villevalois, 19

67 / 73

Introduction Transducers Logic Regular Functions Recent Results

Register Minimization Problems

Rational functions = Register transd. with updates X := Y u

Theorem (Daviaud, R., Talbot,
16)

A transducer T can be expressed
using k registers iff it satisfies the
Twinning Property of order k.

u1:w1,0 u2:w2,0

v1:w′1,0 v2:w′2,0 vk:w
′
k,0

u1:w1,1 u2:w2,1

v1:w′1,1 v2:w′2,1 vk:w
′
k,1

u1:w1,k u2:w2,k

v1:w′1,k v2:w′2,k vk:w
′
k,k

For all situations like:

k synchronised loops

k
+

1
ru

n
s

there are two runs 0 ≤ i < j ≤ k s.t. for every loop `,

we have delay(w1,i . . . w`,i, w1,j . . . w`,j) = delay(w1,i . . . w`,iw
′
`,i, w1,j . . . w`,jw

′
`,j)

Other results:

I multi-sequential transducers Daviaud, Jecker, R., Villevalois, 17

I concatenation-free non-det reg. transducers Baschenis, Gauwin,

Muscholl, Puppis, 16

I concatenation-free det. reg transducers R., Villevalois, 19

67 / 73

Introduction Transducers Logic Regular Functions Recent Results

Register Minimization Problems

Rational functions = Register transd. with updates X := Y u

Theorem (Daviaud, R., Talbot,
16)

A transducer T can be expressed
using k registers iff it satisfies the
Twinning Property of order k.

u1:w1,0 u2:w2,0

v1:w′1,0 v2:w′2,0 vk:w
′
k,0

u1:w1,1 u2:w2,1

v1:w′1,1 v2:w′2,1 vk:w
′
k,1

u1:w1,k u2:w2,k

v1:w′1,k v2:w′2,k vk:w
′
k,k

For all situations like:

k synchronised loops

k
+

1
ru

n
s

there are two runs 0 ≤ i < j ≤ k s.t. for every loop `,

we have delay(w1,i . . . w`,i, w1,j . . . w`,j) = delay(w1,i . . . w`,iw
′
`,i, w1,j . . . w`,jw

′
`,j)

Other results:

I multi-sequential transducers Daviaud, Jecker, R., Villevalois, 17

I concatenation-free non-det reg. transducers Baschenis, Gauwin,

Muscholl, Puppis, 16

I concatenation-free det. reg transducers R., Villevalois, 19

67 / 73

Introduction Transducers Logic Regular Functions Recent Results

Origin semantics (Bojanczyk, 14)

a aa aa aa 7→ 6=
a aa aa aa 7→

Origin semantics JT Ko inherent to most transducer models T !

I existence of a canonical transducer if origin is taken into
account (Bojanczyk, 14)

I decidable FO-definability of MSOT with origin

I algorithmic problems modulo origin (JT1Ko = JT2Ko)
I extended to ”similar” origins through resynchronisers (F.,

Maneth, R., Talbot, 15) (F., Jecker, Löding, Winter,16), (Bose, Muscholl,

Penelle, Puppis, 18)

I study of rational relation subclasses by control languages
REL(C), C ⊆ {in, out}∗ (Descotte, Figueira, Libkin, Puppis)

68 / 73

Introduction Transducers Logic Regular Functions Recent Results

Origin semantics (Bojanczyk, 14)

a aa aa aa 7→ 6=
a aa aa aa 7→

Origin semantics JT Ko inherent to most transducer models T !

I existence of a canonical transducer if origin is taken into
account (Bojanczyk, 14)

I decidable FO-definability of MSOT with origin

I algorithmic problems modulo origin (JT1Ko = JT2Ko)
I extended to ”similar” origins through resynchronisers (F.,

Maneth, R., Talbot, 15) (F., Jecker, Löding, Winter,16), (Bose, Muscholl,

Penelle, Puppis, 18)

I study of rational relation subclasses by control languages
REL(C), C ⊆ {in, out}∗ (Descotte, Figueira, Libkin, Puppis)

68 / 73

Introduction Transducers Logic Regular Functions Recent Results

Origin semantics (Bojanczyk, 14)

a aa aa aa 7→ 6=
a aa aa aa 7→

Origin semantics JT Ko inherent to most transducer models T !

I existence of a canonical transducer if origin is taken into
account (Bojanczyk, 14)

I decidable FO-definability of MSOT with origin

I algorithmic problems modulo origin (JT1Ko = JT2Ko)
I extended to ”similar” origins through resynchronisers (F.,

Maneth, R., Talbot, 15) (F., Jecker, Löding, Winter,16), (Bose, Muscholl,

Penelle, Puppis, 18)

I study of rational relation subclasses by control languages
REL(C), C ⊆ {in, out}∗ (Descotte, Figueira, Libkin, Puppis)

68 / 73

Introduction Transducers Logic Regular Functions Recent Results

Origin semantics (Bojanczyk, 14)

a aa aa aa 7→ 6=
a aa aa aa 7→

Origin semantics JT Ko inherent to most transducer models T !

I existence of a canonical transducer if origin is taken into
account (Bojanczyk, 14)

I decidable FO-definability of MSOT with origin

I algorithmic problems modulo origin (JT1Ko = JT2Ko)
I extended to ”similar” origins through resynchronisers (F.,

Maneth, R., Talbot, 15) (F., Jecker, Löding, Winter,16), (Bose, Muscholl,

Penelle, Puppis, 18)

I study of rational relation subclasses by control languages
REL(C), C ⊆ {in, out}∗ (Descotte, Figueira, Libkin, Puppis)

68 / 73

Introduction Transducers Logic Regular Functions Recent Results

An expressive origin-based logic tailored to
transductions (Dartois, F., Lhote, 18)

a b a b a b

a b a b a b a

input

origin

output

transduction ≈ set of origin graphs

MSO[≤in,≤out, o]

Results

I T |= φ decidable for 2-way transducers

I undecidable satisfiability

I decidable fragment with regular synthesis

I correspondence with data words

69 / 73

Introduction Transducers Logic Regular Functions Recent Results

An expressive origin-based logic tailored to
transductions (Dartois, F., Lhote, 18)

a b a b a b

a b a b a b a

input

origin

output

transduction ≈ set of origin graphs

MSO[≤in,≤out, o]

Results

I T |= φ decidable for 2-way transducers

I undecidable satisfiability

I decidable fragment with regular synthesis

I correspondence with data words

69 / 73

Introduction Transducers Logic Regular Functions Recent Results

An expressive origin-based logic tailored to
transductions (Dartois, F., Lhote, 18)

a b a b a b

a b a b a b a

input

origin

output

transduction ≈ set of origin graphs

MSO[≤in,≤out, o]

Results

I T |= φ decidable for 2-way transducers

I undecidable satisfiability

I decidable fragment with regular synthesis

I correspondence with data words

69 / 73

Introduction Transducers Logic Regular Functions Recent Results

An expressive origin-based logic tailored to
transductions (Dartois, F., Lhote, 18)

a b a b a b

a b a b a b a

input

origin

output

transduction ≈ set of origin graphs

MSO[≤in,≤out, o]

Results

I T |= φ decidable for 2-way transducers

I undecidable satisfiability

I decidable fragment with regular synthesis

I correspondence with data words

69 / 73

Introduction Transducers Logic Regular Functions Recent Results

Some Other Results

I machine-independent characterisations
Cadilhac, Krebs, Ludwig, Paperman, 15

I uniformisation problems (Ismaël’s Jecker and Sarah
Winter’s PhD thesis). E.g. given R rational, is there f
sequential such that

I f ⊆ R
I dom(f) = dom(R)

I learning
Boiret, Lemay, Niehren 12

I data word transducers Léo Exibard’s PhD thesis

I other structures: infinite strings, nested words, trees,
graphs, data words ...

70 / 73

Introduction Transducers Logic Regular Functions Recent Results

Some Other Results

I machine-independent characterisations
Cadilhac, Krebs, Ludwig, Paperman, 15

I uniformisation problems (Ismaël’s Jecker and Sarah
Winter’s PhD thesis). E.g. given R rational, is there f
sequential such that

I f ⊆ R
I dom(f) = dom(R)

I learning
Boiret, Lemay, Niehren 12

I data word transducers Léo Exibard’s PhD thesis

I other structures: infinite strings, nested words, trees,
graphs, data words ...

70 / 73

Introduction Transducers Logic Regular Functions Recent Results

Some Other Results

I machine-independent characterisations
Cadilhac, Krebs, Ludwig, Paperman, 15

I uniformisation problems (Ismaël’s Jecker and Sarah
Winter’s PhD thesis). E.g. given R rational, is there f
sequential such that

I f ⊆ R
I dom(f) = dom(R)

I learning
Boiret, Lemay, Niehren 12

I data word transducers Léo Exibard’s PhD thesis

I other structures: infinite strings, nested words, trees,
graphs, data words ...

70 / 73

Introduction Transducers Logic Regular Functions Recent Results

Some Other Results

I machine-independent characterisations
Cadilhac, Krebs, Ludwig, Paperman, 15

I uniformisation problems (Ismaël’s Jecker and Sarah
Winter’s PhD thesis). E.g. given R rational, is there f
sequential such that

I f ⊆ R
I dom(f) = dom(R)

I learning
Boiret, Lemay, Niehren 12

I data word transducers Léo Exibard’s PhD thesis

I other structures: infinite strings, nested words, trees,
graphs, data words ...

70 / 73

Introduction Transducers Logic Regular Functions Recent Results

Some Other Results

I machine-independent characterisations
Cadilhac, Krebs, Ludwig, Paperman, 15

I uniformisation problems (Ismaël’s Jecker and Sarah
Winter’s PhD thesis). E.g. given R rational, is there f
sequential such that

I f ⊆ R
I dom(f) = dom(R)

I learning
Boiret, Lemay, Niehren 12

I data word transducers Léo Exibard’s PhD thesis

I other structures: infinite strings, nested words, trees,
graphs, data words ...

70 / 73

Introduction Transducers Logic Regular Functions Recent Results

A Few Applications

I language and speech processing (M. Mohri)

I regular model-checking

I text analysis, document transformation

I reactive synthesis

I Tools: OpenFST, Vaucanson, DreX (Alur, d’Antoni,
Raghothaman)

I line of works on symbolic transducers (d’Antoni, Veanes ...)

71 / 73

Introduction Transducers Logic Regular Functions Recent Results

Thanks!

Thanks for your attention!

72 / 73

Introduction Transducers Logic Regular Functions Recent Results

Announcements

RP’19, September 11-13, Brussels

I conference on reachability problems

I talks with submitted papers or w/o

I best papers invited for a journal issue

I deadline in June

I invited speakers: Henzinger, Protasov, Lasota, Sriram S.,
Raskin.

1 PostDoc position at ULB

I transducer and synthesis problems

I up to 2 years

I flexible starting date

73 / 73

Introduction Transducers Logic Regular Functions Recent Results

Announcements

RP’19, September 11-13, Brussels

I conference on reachability problems

I talks with submitted papers or w/o

I best papers invited for a journal issue

I deadline in June

I invited speakers: Henzinger, Protasov, Lasota, Sriram S.,
Raskin.

1 PostDoc position at ULB

I transducer and synthesis problems

I up to 2 years

I flexible starting date

73 / 73

	Introduction
	Transducers
	Logic
	Regular Functions
	Recent Results

