
Fundamenta Informaticae XXI (2001) 1001–1016 1001

DOI 10.3233/FI-2016-0000

IOS Press

Copyful Streaming String Transducers

Emmanuel Filiot∗

Université libre de Bruxelles

efiliot@ulb.ac.be

Pierre-Alain Reynier†

Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

Abstract. Copyless streaming string transducers (copyless SST) have been introduced by R. Alur
and P. Černý in 2010 as a one-way deterministic automata model to define transductions of finite
strings. Copyless SST extend deterministic finite state automata with a set of variables in which
to store intermediate output strings, and those variables can be combined and updated all along
the run, in a linear manner, i.e., no variable content can be copied on transitions. It is known
that copyless SST capture exactly the class of MSO-definable string-to-string transductions, and
are as expressive as deterministic two-way transducers. They enjoy good algorithmic properties.
Most notably, they have decidable equivalence problem (in PSpace).

On the other hand, HDT0L systems have been introduced for a while, the most prominent result
being the decidability of the equivalence problem. In this paper, we propose a semantics of
HDT0L systems in terms of transductions, and use it to study the class of deterministic copyful
SST. Our contributions are as follows:

(i) HDT0L systems and total deterministic copyful SST have the same expressive power,

(ii) the equivalence problem for deterministic copyful SST and the equivalence problem for
HDT0L systems are inter-reducible, in quadratic time. As a consequence, equivalence of
deterministic SST is decidable,

(iii) the functionality of non-deterministic copyful SST is decidable,

(iv) determining whether a non-deterministic copyful SST can be transformed into an equivalent
non-deterministic copyless SST is decidable in polynomial time.

∗Thanks for something to somebody
†Thanks for something else to somebody else

1002 E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers

Keywords: words, transducers, equivalence problem

1. Introduction

The theory of languages is extremely rich and important automata-logic correspondences have been
shown for various classes of logics, automata, and structures. There are less known automata-logic
connections in the theory of transductions. Nevertheless, important results have been obtained for
the class of MSO-definable transductions, as defined by Courcelle. Most notably, it has been shown
by J. Engelfriet and H.J. Hoogeboom that MSO-definable (finite) string to string transductions are
exactly those transductions defined by deterministic two-way transducers [1]. This result has then
been extended to ordered ranked trees by J. Engelfriet and S. Maneth, for the class of linear-size
increase macro tree transducers [2] and recently to nested word-to-word transductions [3]. MSO-
definable transductions of finite strings have also been characterized by a new automata model, that of
(copyless) streaming string transducers, by R. Alur and P. Černý [4].

Copyless streaming string transducers (SST) extend deterministic finite state automata with a fi-
nite set of string variables X,Y, Each variable stores an intermediate string output and can be
combined and updated with other variables. Along the transitions, a finite string can be appended
or prepended to a variable, and variables can be reset or concatenated. The variable updates along
the transitions are formally defined by variable substitutions and the copyless restriction is defined by
considering only linear substitutions. Therefore, variable updates such as X := XX are forbidden
by the copyless restriction. The SST model has then been extended to other structures such as infinite
strings [5], trees [6], and quantitative languages [7].

Two examples of SST are depicted in Figure 1:

• The SST T0 depicted on the left realizes the function f0 mapping any input word u ∈ Σ∗ to the
word uu, where u is the mirror image of the word u. Indeed, when the input word u has been
read by the automaton, the variable X contains the word u, while the variable Y contains the
word u. Hence, the final output, defined as XY , is equal to the concatenation uu. It is worth
noting that this SST is copyless.

• The SST T1 depicted on the right realizes the function f1 mapping any input word u = an, with
n ≥ 1, to the output word a2n . This SST is copyful.

One of the most important and fundamental problem in the theory of transducers is the equiva-
lence problem, which asks, given two transducers, whether they realize the same transduction. This
problem is well known to be decidable for rational functions, and more generally for MSO-definable
transductions [8], and hence for copyless SST (in PSpace, as shown in [9]). The problem gets unde-
cidable when the transducers define binary relations instead of functions: it is already undecidable for
non-deterministic finite state transducers [10], a strict subclass of non-deterministic SST. However, it
was unknown whether, in the functional case, decidability still holds without the copyless restriction,
as mentioned in [11], an extended version of [6].

HDT0L systems allow to define languages by means of morphism iteration: a sequence of indices
i1, . . . , ik induces a composition of morphisms (one morphism for each index ij) which, applied on an

E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers 1003

XY

σ

∣∣∣∣∣ X := Xσ

Y := σY

XX

a
∣∣∣ X := a

a
∣∣∣ X := XX

Figure 1. Two streaming string transducers T0 (left) and T1 (right).

initial and fixed word, produces a new word. An important result related to HDT0L systems has been
obtained in the 80’s, see [12]. It states that the equivalence of finite-valued transducers over HDT0L
languages is decidable, with unknown complexity.

In this paper, we build a tight connection between HDT0L systems and streaming string trans-
ducers. To this end, we introduce a new semantics of HDT0L systems, viewed as transducers. This
allows us to prove that (total) copyful SST and HDT0L systems (seen as transducers) have the same
expressive power, with back and forth transformations of quadratic complexity. As a corollary of this
result, we obtain that the equivalence problem of copyful SST and the equivalence problem of HDT0L
systems are inter-reducible, in quadratic time. This result has two consequences:

• first, the decidability of (deterministic) SST equivalence directly follows from [12],

• second, the functionality problem for non-deterministic (copyful) SST is decidable.

Last, we study the class of transductions defined by copyless SST (even in the non-deterministic
case), and show that it corresponds to transductions defined by (copyful) SST of linear size increase
(the length of any output word is linearly bounded by the length of the input). We show that the
linear size increase property can be decided in polynomial time: give a (copyful) SST, it is decidable
in PTIME whether it defines a transduction of linear size increase. This implies that given a copyful
SST (determministic or not), it is decidable in PTIME whether it is equivalent to a copyless SST.
This complexity bound is obtained by a reduction to a boundedness problem for products of matrices
studied by Mandel and Simon [15].

Related Work The decidability of equivalence for copyful and deterministic SST is a consequence
of a result from [13] about the decidability of equivalence for deterministic top-down tree-to-string
transducers which, casted to monadic trees (i.e. strings), yields a formalism expressively equivalent
to copyful deterministic SSTs. The equivalence problem for copyful deterministic SST has also been
shown to be decidable, with a self-contained proof, in [14]. With respect to the equivalence problem,
our contribution in this paper is rather to show that HDT0L systems and SST are essentially the
same formalisms, and as a consequence, known results [12] can be reused to obtain decidability of
equivalence. See also Remark 4.3 for a more detailed comparison with [14].

Organization of the paper. We introduce the models of streaming string transducers and HDT0L
systems in Section 2. In Section 3, we prove that these two models are equi-expressive. We apply

1004 E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers

this result to prove the decidability of the equivalence of copyful SST and of the functionality of non-
deterministic SST in Section 4. Last, in Section 5, we study the subclass of transductions defined by
copyful SST of linear-size increase.

2. Preliminaries

For all finite alphabets Σ, we denote by Σ∗ the set of finite words over Σ, and by ε the empty word.
Given two alphabets Σ and Γ, a transduction R from Σ∗ to Γ∗ is a subset of Σ∗ × Γ∗. It is functional
if it defines a function, i.e. for all w ∈ Σ∗, there exists at most one v ∈ Γ∗ such that (w, v) ∈ R.
The domain of R, denoted by Dom(R), is the set Dom(R) = {w ∈ Σ∗ | ∃v ∈ Γ∗, (w, v) ∈ R}. A
transduction is total if Dom(R) = Σ∗. Given two finite alphabets Σ,Γ, a morphism from Σ∗ to Γ∗ is
a mapping h : Σ∗ → Γ∗ such that h(uv) = h(u)h(v) for any two words u, v ∈ Σ∗.

2.1. Streaming String Transducers

Let X be a finite set of variables denoted by X,Y, . . . and Γ be a finite alphabet. A substitution s is
defined as a mapping s : X → (Γ ∪ X)∗. Let SX ,Γ be the set of all substitutions. Any substitution s
can be extended to ŝ : (Γ ∪ X)∗ → (Γ ∪ X)∗ in a straightforward manner. The composition s1 ◦ s2

(or s1s2 for short) of two substitutions s1, s2 ∈ SX ,Γ is defined as the standard function composition
ŝ1 ◦ s2, i.e. (s1s2)(X) = (ŝ1s2)(X) = ŝ1(s2(X)) for all X ∈ X .

Definition 2.1. A non-deterministic streaming string transducer (NSST for short) is a tuple T =
(Σ,Γ, Q,Q0, Qf ,∆,X , ρ, s0, sf) where:

• Σ and Γ are finite alphabets of input and output symbols,

• Q is a finite set of states,

• Q0 ⊆ Q is a set of initial states,

• Qf ⊆ Q is a set of final states,

• ∆ ⊆ Q× Σ×Q is a transition relation,

• X is a finite set of variables,

• ρ : ∆→ SX ,Γ is a variable update function,

• s0 : X → Γ∗ is the initial function that gives the initial content of the variables,

• sf : Qf → (X ∪Γ)∗ is the final output function, which gives what is output for each final state.

The concept of a run of an NSST is defined in an analogous manner to that of a finite state au-
tomaton: it is a finite sequence r ∈ (QΣ)∗Q, denoted r = q0

σ1−→ q1
σ2−→ q2 . . . qn−1

σn−→ qn, such
that (qi, σi+1, qi+1) ∈ ∆ for all 0 ≤ i < n. It is accepting if q0 ∈ Q0 and qn ∈ Qf . The sequence

E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers 1005

of substitutions s = 〈si〉1≤i≤n in SX ,Γ of r is defined for all 1 ≤ i ≤ n, by si = ρ(qi−1, σi, qi). We
define the substitution induced by r as the element sr = s1 . . . sn.

If r is accepting, the output of r, denoted by Out(r) ∈ Γ∗, is defined as

Out(r) = s0srsf (qn) where 〈si〉1≤i≤n ∈ (SX ,Γ)∗ is the sequence of substitutions of r}.

For all words w ∈ Σ∗, the output of w by T , denoted by T (w), is

T (w) = {Out(r) | r is an accepting run of T on w}

The domain of T , denoted by Dom(T), is defined as the set of words w such that T (w) 6= ∅. The
transduction JT K defined by T is the relation from Σ∗ to Γ∗ given by the set of pairs (w, v) such that
v ∈ T (w).

Deterministic and functional SST A deterministic SST (SST for short) is an NSST such that
|Q0| = 1 and for all p ∈ Q, σ ∈ Σ, there exists at most one q ∈ Q such that (p, σ, q) ∈ ∆.When
an SST is deterministic, we identify Q0 with q0, and given t ∈ ∆, we write ρ(t) = s instead of
ρ(t) = {s}.

In the following, the streaming string transducers we consider are deterministic, unless they are
explicitly stated to be non deterministic.

In [4, 16], the variable updates are required to be copyless, i.e. for every variable X ∈ X , and for
every transition t ∈ ∆, X occurs at most once in ρ(t)(X1), . . . , ρ(t)(Xn) where {X1, . . . , Xn} = X .
One of the main result of [4] is to show that this restriction, as well as determinism, allows one to
capture exactly the class of MSO-definable transductions.

It is worth noting that any SST, since it is deterministic, defines a functional transduction. More
generally, we say that an NSST T is functional if JT K is functional. It is known that functional NSST
with copyless update are no more expressive than (deterministic) SST with copyless update [16]. We
show a similar result for (copyful) SST:

Proposition 2.2. Functional NSST and SST are equi-expressive.

Proof:
Let T = (Σ,Γ, Q,Q0, Qf ,∆,X , ρ, s0, sf) be a functional NSST. Without loss of generality, we
assume that T is trim, i.e. every state of T is reachable from some initial state, and co-reachable
from an accepting state. Any SST can be made trim by filtering out the states that do not have this
property (which is decidable in PTime).

The main idea is to realize a subset construction on T (a similar construction was given in [5]). On
states, the subset construction is just as the subset construction for NFA. On variables, one needs to
duplicate each variable as many times as the number of states. The invariant property is the following:
after reading a word w, if there exists a run ρ of T on w leading to q, then for all X ∈ X such that
there exists an accepting continuation w′ of w (i.e. ww′ ∈ Dom(T)) whose output uses the content of
X after ρ, then Xq and X have the same content after reading w. There might be several runs of T
leading to q, but since T is trim and functional, then content of F does not depend on the chosen run.
Hence the invariant is well-defined.

1006 E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers

Formally, we define an equivalent SST T ′ = (Σ,Γ, Q′, q′0, Q
′
f ,∆

′,X ′, ρ′, s′0, s′f) such that the
tuple (Σ,Γ, Q′, q′0, Q

′
f ,∆

′) is the DFA resulting from the classical subset construction (in particular
Q′ = 2Q) and such that:

• X ′ = X ×Q (each variable is denoted by Xq)

• ∀t′ = (Q1, σ,Q2) ∈ ∆′, ∀q2 ∈ Q2, ∀X ∈ X , ρ′(t′)(Xq2) = renameq1(ρ(t)(X)) for some
q1 ∈ Q1 such that t = (q1, σ, q2) ∈ ∆, where renameq1 is the identity morphism on Σ and
replaces any Y ∈ X by Yq1 . As explained before, the functionality of T entails that the choice
of q1 is not important (a different choice would give the same value to Xq2). This choice can be
made canonical by using some order on the states of T .

• ∀P ∈ Q′f , ρ′(P) = renameq(ρ(q)) for some q ∈ P ∩ Qf . Once again, by functionality of T ,
the choice of q does not matter and can be made canonical.

ut

We say that an SST T is total if JT K is total. We also show that regarding the equivalence problem,
considering total SST is harmless, as one can modify a SST in linear time in order to make it total.

Proposition 2.3. Given two SST T, T ′, one can build in linear time two total SST Ttot and T ′tot such
that JT K = JT ′K iff JTtotK = JT ′totK.

Proof:
Let # 6∈ Γ. Any (partial) SST T can be transformed into an SST Ttot that defines the following
transduction: JTtotK(u) = JT K(u) if u ∈ Dom(T), and JTtotK(u) = # otherwise. This is achieved
using a new variable X# whose content is always #, and by completing the rules of T by adding
an accepting sink state qsink. We also modify final states and the final output function: states that
were not final are declared final, and the final output function associates with these states the variable
X#. ut

2.2. HDT0L Systems

Lindenmayer introduced in the sixties a formal grammar in order to model the developement process
of some biological systems [17]. We consider here a particular class of these systems, called HDT0L
systems (HDT0L stands for Deterministic 0-context Lindenmayer systems with Tables and with an
additional Homomorphism).

Definition 2.4. (HDT0L System)
An HDT0L system over Σ and Γ is defined as a tuple H = (Σ, A,Γ, v, h, (hσ)σ∈Σ) where:

• Σ, A and Γ are finite alphabets,

• v ∈ A∗ is the initial word,

• h is a morphism from A∗ to Γ∗,

E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers 1007

• for each σ ∈ Σ, hσ is a morphism from A∗ to A∗.

The equivalence problem for HDT0L systems asks, given H = (Σ, A,Γ, v, h, (hσ)σ∈Σ) and G =
(Σ, A,Γ, w, g, (gσ)σ∈Σ) two HDT0L systems, whether the following formula holds:

∀k ≥ 1∀σ1 ∈ Σ . . . ∀σk ∈ Σ, h(hσ1 . . . hσk(v)) = g(gσ1 . . . gσk(w)).

This problem is known to be decidable [12], with unknown complexity. The original proof of [12]
is based on Ehrenfeucht’s conjecture and Makanin’s algorithm. Honkala provided a simpler proof
in [18], based on Hilbert’s Basis Theorem.

In order to transfer this decidability result to SST, we introduce a semantics of HDT0L systems in
terms of transductions.

Definition 2.5. (Transduction realized by an HDT0L system)
Let H = (Σ, A,Γ, v, h, (hσ)σ∈Σ) be an HDT0L system. We define JHK as a (total) transduction from
Σ∗ to Γ∗ defined by JHK(σ1 . . . σk) = h(hσ1 . . . hσk(v)).

Example 2.6. Let us consider the function f0 introduced in the introduction. We define an HDT0L
H0 = (Σ, A,Σ, v0, h, (hσ)σ∈Σ) such that JH0K = f0, withA = {$1, $2, a, b}, Σ = {a, b}, v0 = $1$2,
and the morphisms are defined as follows:

h : a → a ha : a → a hb : a → a

b → b b → b b → b

$1 → ε $1 → $1a $1 → $1b

$2 → ε $2 → a$2 $2 → b$2

For instance, we have the following derivation:

JH0K(abb) = hhabb($1$2) = hhab ◦ hb($1$2) = hhab($1bb$2) = hha($1bbbb$2)

= h($1abbbba$2) = abbbba

We can now rephrase the result of [12] as follows:

Theorem 2.7. [12] Given two HDT0L systems H1, H2 over Σ and Γ, it is decidable whether JH1K =
JH2K.

In the next section, we show that HDT0L systems and total SST define the same class of transduc-
tions.

3. SST and HDT0L systems are equi-expressive

Let Σ and Γ be two alphabets. In this section, we always consider that SST and HDT0L systems are
over Σ and Γ. We prove the following theorem:

1008 E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers

q1 X$1X$2

Xa := a

Xb := b

X$1 := ε

X$2 := ε

σ

∣∣∣∣∣∣∣∣∣∣
Xa := Xa

Xb := Xb

X$1 := X$1Xσ

X$2 := XσX$2

Figure 2. The SST T2 equivalent to the HDT0L system H0 of Example 2.6.

Theorem 3.1. HDT0L systems over Σ and Γ and total SST define the same class of transductions.
Moreover, the constructions are effective in both directions, in quadratic time.

A direct consequence of this result is:

Corollary 3.2. The equivalence problems for HDT0L systems and for (copyful) streaming string
transducers are inter-reducible in quadratic time.

We prove successively the two directions of Theorem 3.1.

Lemma 3.3. For all HDT0L systems H , there exists an equivalent (total) SST T with only one state.
Moreover, T can be constructed in linear time.

Proof:
Let H = (Σ, A,Γ, v, h, (hσ)σ∈Σ) be an HDT0L system. We construct a total SST T over Σ and Γ
such that JT K = JHK. The SST has one state q, both initial and accepting. Its set of variables is the set
X = {Xa | a ∈ A}. Its transitions are defined by q σ−→ q for all σ ∈ Σ.

To define the update functions, we first introduce the morphism renameX : A∗ → X ∗ defined for
all a ∈ A by renameX(a) = Xa. Then, the update function ρ is defined, for all σ ∈ Σ and a ∈ A by
ρ((q, σ, q))(Xa) = renameX(hσ(a)).

Finally, the initial function is defined by s0(Xa) = h(a) for all a ∈ A, and the final function sf
by sf (q) = renameX(v). ut

Example 3.4. For the HDT0L system H0 of Example 2.6, we obtain the SST T2 depicted in Figure 2.

We now prove the converse.

Lemma 3.5. For all total SST T , there exists an equivalent HDT0L system H , which can be con-
structed in quadratic time.

E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers 1009

Proof:
Let T = (Σ,Γ, Q, q0, Qf ,∆,X , ρ, s0, sf) be a total SST (remember that by default an SST is deter-
ministic). We define an equivalent HDT0L H as follows.

We construct the finite alphabet A = {αq | α ∈ Γ ∪ X , q ∈ Q} (which is of quadratic size in
the size of T , this is where the quadratic complexity stated above comes from). For every q ∈ Q, we
consider the morphism subscriptq : (Γ∪X)∗ → A∗ defined for all α ∈ Γ∪X by subscriptq(α) = αq.

As T is total, we have that Qf = Q. We consider an enumeration q1, . . . , qn of Q. We define the
initial word v as follows:

v = subscriptq1(sf (q1)) . . . subscriptqn(sf (qn))

We define the morphism h : A∗ → Γ∗ as follows:

h : γq0 → γ with γ ∈ Γ

Xq0 → s0(X) with X ∈ X
αq → ε with q 6= q0 and α ∈ Γ ∪ X

Last, given σ ∈ Σ we define the morphism hσ : A∗ → A∗ as follows. Given a state q, we define
the set Preσq ⊆ Q as the set of states p such that (p, σ, q) ∈ ∆.

We define: (by convention, the product over the empty set gives the empty word)

∀γq ∈ A, hσ(γq) = Πp∈Preσq subscriptp(γ)

∀Xq ∈ A, hσ(Xq) = Πp∈Preσq subscriptp(ρ(p, σ, q)(X))

Intuitively, the HDT0L system simulates the computations of the SST in a backward manner,
starting from the final states. These computations are encoded using the labelling of symbols by
states. One can easily prove by induction on the length of some input word w that after reading w,
for every state q, the projection of hw(v) on the subalphabet subscriptq(Γ∪X) encodes the run of the
SST on w starting in state q, which is unique since T is deterministic. The morphism h then simply
erases parts of the computations that did not reach the initial state q0. ut

Connections between SSTs and one-state SSTs We point out the following results, which follow
from Lemma 3.3 and Lemma 3.5.

Corollary 3.6. For all SST T , one can construct in quadratic time a (total) SST T ′ with only one
state which coincides with T on its domain, i.e. JT K = JT ′K|Dom(T).

Proof:
If T is total, then the result is a direct consequence of the successive application of Lemma 3.5 and
Lemma 3.3. Note that in this case, T ′ has only one state.

If T is not total, we make it total as in the proof of Proposition 2, and obtain a total SST S which
can be converted into a single state SST S′. ut

A direct consequence of the previous corollary is the following result:

1010 E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers

Corollary 3.7. For all SST T , one can construct in polynomial time an equivalent SST T ′ such that
the underlying input DFA of T ′ is the minimal complete DFA recognizing Dom(T).

Proof:
By Corollary 3.6, we can construct a one-state SST T ′ which coincides with T on its domain. Then,
we minimize the underlying input DFA of T (which recognizes Dom(T)) into a minimal complete
DFA Amin. Finally, we construct an SST T ′′ equivalent to T with underlying DFA Amin, as a kind
of product of T ′ and Amin: if Amin = (Σ, P, p0, Pf , δ) and T ′ = (Σ,Γ, {q}, q, {q}, {(q, σ, q) | σ ∈
Σ},X , ρ, s0, sf), then we let T ′′ = (Σ,Γ, P, p0, Pf , δ,X , ρ′′, s0, s

′′
f) where:

• ρ′′(p, σ, p′) = ρ(q, σ, q) for all (p, σ, p′) ∈ δ,

• s′′f (pf) = sf (q) for all pf ∈ Pf .
ut

Remark 3.8. By these results, any total SST is equivalent to some one-state SST. A direct transfor-
mation of total SST into one-state SST was also given in [14] (Proposition 8). Here, we obtain this
result as a direct corollary of the back and forth transformations between SST and HDT0L systems.

4. Applications: SST Equivalence and Functionality of NSST

Based on the correspondence between SST and HDT0L systems, and the fact that the HDT0L system
equivalence problem is decidable, we show that that the SST equivalence and functionality problems
are decidable.

Theorem 4.1. 1. Given two SST T and T ′, it is decidable whether they are equivalent, i.e. JT K =
JT ′K.

2. Given an NSST T , it is decidable whether T is functional.

Proof:
The first statement is straightforward by Theorem 3.1, Theorem 2.7 and Proposition 2.3.

To prove the second statement, we reduce the functionality problem to the equivalence of two
(deterministic) SST T1 and T2. Let T = (Σ,Γ, Q,Q0, Qf ,∆,X , ρ, s0, sf) be an NSST. We extend
the alphabet Σ with pairs of rules of T as follows: Σ′ = Σ ×∆2. Now, T1 and T2 are defined as the
square of T : they run on words w′ over Σ′, and make sure that the sequence of transitions are valid
runs of T on the Σ-projections of w′. In addition, Ti simulates T on the (i+ 1)-th component, for all
i = 1, 2, by following the transitions defined on the input letters. Clearly, T1 and T2 have the same
domain, are deterministic, and are equivalent iff all pairs of accepting runs of T on the same input
word produce the same output, i.e., iff T is functional. The conclusion follows from statement 1. ut

Conversely, as equivalence problems of HDT0L and of SST are inter-reducible, we can also use
known results about SST equivalence to prove new results on HDT0L. We say that an HDT0L system
H = (Σ, A,Γ, v, h, (hσ)σ∈Σ) is copyless if for each σ ∈ Σ, the morphism hσ is linear, i.e. each
element a ∈ A appears at most once in {hσ(a) | a ∈ A}.

E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers 1011

Theorem 4.2. For copyless HDT0L systems, the equivalence problem can be solved in PSpace.

Proof:
The construction of Lemma 3.3 which transforms an HDT0L system into an equivalent SST, when
applied to a copyless HDT0L system, yields a copyless SST. Inspecting this construction, for all
σ ∈ Σ and a ∈ A, we have ρ((q, σ, q))(Xa) = renameX(hσ(a)). Let {a1, . . . , an} = A be some
enumeration of A. Then

ρ((q, σ, q))(Xa1) . . . ρ((q, σ, q))(Xan) = renameX(hσ(a1)) . . . renameX(hσ(an))

= renameX(hσ(a1 . . . an))

Since hσ is copyless, hσ(a1 . . . an) does not contain twice the same symbol, and hence the word
renameX(hσ(a1 . . . an)) does not contain twice the same variable. In other words, ρ((q, σ, q)) is
copyless. ut
Remark 4.3. (Complexity)
It has been shown in [14] that the equivalence problem for (copyful) SST is in the Ackermann com-
plexity class. Unlike our result on the decidability of this problem, which is based on the known
decidability of the HDT0L equivalence problem [12] (without any bound given), the latter result is
self-contained and goes via a reduction to the equivalence problem of polynomial automata. The pur-
pose of our paper was rather to show that HDT0L systems and SST are essentially the same objects
(and hence that decidability of SST equivalence can be directly obtained using known results). Com-
bining the result of [14] with our correspondence between HDT0L and SSTs (Theorem 3.1), one
obtains that the equivalence problem for HDT0L systems lies in the complexity class Ackermann. To
the best of our knowledge, no upper bound was known for this problem. However, it is still open
whether this bound is tight.

5. SST of Linear Size Increase

A transductionR ⊆ Σ∗×Γ∗ is linear size increase (LSI) if for some constantK ≥ 0, for all (u, v) ∈ R,
|v| ≤ K|u|. For instance, transductions defined by ε-free finite state transducers (without variables)
are LSI, by takingK as the length of the longest word occurring on a single transition. It is not difficult
to see that it is also the case of transductions defined by copyless NSST:

Proposition 5.1. ([16])
Any transduction defined by a copyless NSST is linear size increase.

Proof:
It suffices to take K = |X |M where |X | is the number of variables of the NSST, and M is the length
of the maximal number of output symbols occurring in the rhs of a substitution ρ(t), for t ∈ ∆ a
transition, or the initial function s0, or the terminal function sf . Formally, K = max{K1,K2,K3}
where for πΓ the projection on alphabet Γ, we have:

K1 = max{|πΓ(ρ(t)(X)) | t ∈ ∆, X ∈ X}
K2 = max{|s0(X)| | X ∈ X}
K3 = max{|πΓ(sf (q))| | q ∈ Qf}

1012 E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers

ut

An objective of this section is to show that the converse also holds for transductions defined by
NSST: any LSI transduction defined by an NSST is definable by some copyless NSST. We also give
an effective characterisation of the LSI transductions defined by NSST, which allows one to decide
in PTIME whether a given NSST is actually equivalent to a copyless NSST. In the functional case,
the subclass of copyless NSST (which is known to be equivalent to copyless deterministic SST [5])
is of great interest, as it exactly corresponds to the class of regular functions which enjoys multiple
characterizations (MSO transductions and deterministic two-way transducers for instance) and has
been widely studied in the literature (see for instance [19] for a survey). Again in the functional case,
similar definability questions have been investigated for tree transductions defined by deterministic
macro tree transducers, where the LSI (semantical) restriction is shown to be decidable [20].

To prove the equivalence between NSST of linear size increase and copyless NSST, we use an
intermediate class called bounded copy NSST [5]. Intuitively, the bounded copy restriction allows for
a bounded number of copies of the same variable. It is formally defined through a natural notion of
variable flow, which forms what is called the flow transition monoid [21, 22].

Let T be an SST with states Q and variables X . The flow transition monoid MT of T is a set of
square matrices over non-negative integers enriched with a new absorbing element ⊥. The matrices
are indexed by elements of Q × X . Given an input word u, the image of u in MT is the matrix m
such that for all states p, q and all variables X,Y , m[p,X][q, Y] = n ∈ N if, and only if, there exists
a run r of T on u from state p to state q, and X occurs n times in sr(Y), where sr is the substitution
induced by r. In this case, we say that (p,X) flows n times to (q, Y) along u and we may also write

(p,X)
u|n−−→ (q, Y). Respectively, m[p,X][q, Y] = ⊥ iff there is no run of T on u from state p to state

q. Then, an NSST T is bounded copy if MT is finite. Note that T is copyless iff MT contains only
matrices whose values are in {0, 1,⊥}.

Theorem 5.2. Given a transduction R ⊆ Σ∗ × Γ∗ defined by some (copyful) NSST, the following
statements are equivalent:

1. R is definable by a bounded-copy NSST

2. R is definable by a copyless NSST

3. R is linear size increase

Moreover, it is decidable in PTIME whether a given (copyful) NSST defines a transduction of linear
size increase.

Proof:
Let T = (Σ,Γ, Q, q0, Qf ,∆,X , ρ, s0, sf) be an NSST. Consider a run q0

σ1−→ q1 . . . qn−1
σn−→ qn = p

of T starting in the initial state. By definition of the semantics of T , after this run, one can associate, in
state p, with variable X the content ν(X) ∈ Γ∗ defined as s0s1 . . . sn(X) where si = ρ(qi−1, σi, qi).
We use the notation q0

σ1...σn−−−−→ (p, ν) to describe this fact, and may remove the label σ1 . . . σn when it
is useless.

E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers 1013

We also say that a pair (p,X) ∈ Q × X is co-accessible whenever there exists a word u, a state

qf ∈ Qf and a variable Y ∈ X such that Y appears in the final output sf (qf) and (p,X)
u|n−−→ (qf , Y)

with n ≥ 1.
We introduce the following notations:

• we let val(p,X) = {ν(X) ∈ Γ∗ | there exists a run q0 → (p, ν)}

• we let Inf = {(p,X) | (p,X) is co-accessible and val(p,X) is infinite}

We now consider the set of square matrices M Inf
T indexed by elements of Inf and obtained by re-

stricting the matrices of MT to Inf. Consider three pairs (p,X), (q, Y), (s, Z) such that (p,X)
u1|n1−−−→

(q, Y)
u2|n2−−−→ (s, Z), n1, n2 ≥ 1 and (p,X), (s, Z) ∈ Inf. Then we necessarily have (q, Y) ∈ Inf. This

implies that the elements of M Inf
T can be generated from the (finite) set of matrices {mInf

a | a ∈ Σ},
where, for each a ∈ Σ, ma is the image of letter a in the monoid MT , and mInf

a is the restriction of ma

to Inf.
We claim that the four following properties are equivalent:

1. JT K is definable by a bounded-copy NSST,

2. JT K is definable by a copyless NSST,

3. JT K is linear size increase,

4. M Inf
T is finite.

Before proving the claim, we show that it implies decidability, thanks to property 4. First, the
set Inf is computable in polynomial time (fixpoint computation in the set of pairs (p,X) ∈ Q × X).
Second, the (finite) set of matrices {mInf

a | a ∈ Σ} can be computed in polynomial time and the
finiteness of M Inf

T can thus be decided in polynomial time, as shown by Mandel and Simon in [15].
We turn to the proof of the claim, and to this end we prove the implications 1⇒ 2⇒ 3⇒ 4⇒ 1.

1⇒ 2 We prove that every bounded-copy NSST is equivalent to some copyless NSST. This property
has been proven for deterministic SST in [5, 22]. We explain how to lift it to non-deterministic
SST. We consider the deterministic SST T̄ defined over the alphabet ∆. It is obtained from T by
replacing any transition t = (p, a, q) by the transition (p, t, q). Then, we let Ū be the equivalent
copyless SST over the alphabet ∆, obtained thanks to [5, 22]. Last, we let U be the copyless
NSST obtained from Ū by modifying the transitions as follows: if e = (s1, t, s2) is a transition
of Ū with t = (p, a, q), then we replace e by the transition (s1, a, s2). It is immediate to verify
that U is a copyless NSST equivalent to T .

2⇒ 3 This implication has been proven in Proposition 5.1.

3⇒ 4 We prove the contraposition, by showing that if the property 4. of the claim is not satisfied,
then JT K is not LSI. We thus assume that the set M Inf

T is infinite. By the characterization of this
property proven in [15] by Mandel and Simon, two cases may occur:

1014 E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers

1. there exists (p,X) ∈ Inf such that (p,X)
u|n−−→ (p,X) with n ≥ 2, for some word u,

2. there exist two distinct nodes (p,X), (q, Y) ∈ Inf such that (p,X)
u|n1−−−→ (p,X), (p,X)

u|n2−−−→
(q, Y) and (q, Y)

u|n3−−−→ (q, Y), with n1, n2, n3 ≥ 1, for some word u.

In the first case, as (p,X) ∈ Inf, we can choose two words u1 and u2 such that q0
u1−→ (p, ν)

with ν(X) 6= ε, and (p,X) is co-accessible by the word u2. Then, for every i ≥ 0, we consider
the word vi = u1u

iu2. We have |JT K(vi)| ≥ |ν(X)|.ni ≥ 2i. This proves that JT K is not LSI.

In the second case, for every n ≥ 1, one has (p,X)
un|m−−−→ (q, Y) for some m ≥ n. As

(p,X), (q, Y) ∈ Inf, there exist words u1, u2 such that q0
u1−→ (p, ν) and (q, Y) is co-accessible

by the word u2. Then, for every i ≥ 0, we consider the word vi = u1u
iu2. We have |JT K(vi)| ≥

i.|ν(X)| ≥ |vi|−|u1u2|
|u| .|ν(X)|. As (p,X) ∈ Inf, ν(X) can be chosen to be arbitrarily large,

hence JT K is not LSI.

4⇒ 1 The constraint expressed by property 4. of the claim precisely states that, with respect to pairs
(p,X) ∈ Inf, the NSST is bounded-copy. We can build an equivalent bounded-copy NSST as
follows. For each state p and each variableX such that (p,X) is co-accessible and not in Inf, we
can compute the finite set of possible valuations ofX , denoted as ν1, . . . , νk. Then, we consider
duplicates of state p in which the valuation of X is fixed. Now, for every transition leaving state
p, the substitution is modified so as to remove the reference toX , and replace it by the valuation
of X . Similarly, if a variable X is such that (p,X) is not co-accessible, the substitutions can
be modified so as to ensure that the only possible valuation of X in state p is ε. A consequence
of these modifications is that for every flow of variables involving a pair not in Inf, the value
will be 0, while flows between elements of Inf are unchanged. As a consequence, the resulting
NSST has a finite flow transition monoid, and is thus bounded-copy.

ut

6. Conclusion

Our results establish a bridge between the theory of SST and the theory of systems of iterated mor-
phisms. It allows to solve an interesting open problem for copyful streaming string transducers,
namely the decidability of the equivalence problem. For transductions defined by non-deterministic
SST, we have proven the decidability of the functionality problem, as well as the linear size increase
property (which entails definability by a copyless non-deterministic SST). Our results are summarised
in Fig. 3, in which the arrows have to be interpreted as the definability problems of deciding whether
given a transducer in the starting class, it is equivalent to a transducer in the target class.

We hope that these positive decidability results will pave the way to a further study of the class of
copyful SST. As future work, we want to investigate what the theory of iterated morphisms can bring
to the theory of SST, and conversely, in terms of tight complexity results.

E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers 1015

fun
cti

on
al

copyless deterministic SST

bounded copy NSST

linear size increase copyful NSST

= [5, 22]

= Thm. 5.2

copyful NSST

copyful deterministic SST

copyful NSST

= Prop. 2.2

ge
ne

ral
ca

se
copyless NSST

bounded copy NSST

linear size increase copyful NSST
= Thm. 5.2

= Thm. 5.2

PTIME

Thm 5.2

PTIME

Thm 5.2

DECIDABLE

in PSPACE from copyless NSST [16]

DECIDABLE (Thm 4.1)

Figure 3. Comparison between transducer classes and decidability of the corresponding definability problems

References
[1] Engelfriet J, Hoogeboom HJ. MSO definable string transductions and two-way finite-state transducers.

ACM Trans. Comput. Logic, 2001. 2:216–254.

[2] Engelfriet J, Maneth S. Macro tree transducers, attribute grammars, and MSO definable tree translations.
Information and Computation, 1999. 154(1):34–91.

[3] Dartois L, Filiot E, Reynier PA, Talbot JM. Two-Way Visibly Pushdown Automata and Transducers. In:
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’16. ACM,
2016 pp. 217–226.

[4] Alur R, Černý P. Expressiveness of streaming string transducers. In: FSTTCS, volume 8. 2010 pp. 1–12.

[5] Alur R, Filiot E, Trivedi A. Regular Transformations of Infinite Strings. In: LICS. IEEE. ISBN 978-1-
4673-2263-8, 2012 pp. 65–74.

[6] Alur R, D’Antoni L. Streaming Tree Transducers. In: ICALP (2), volume 7392 of LNCS. Springer, 2012
pp. 42–53.

[7] Alur R, D’Antoni L, Deshmukh JV, Raghothaman M, Yuan Y. Regular Functions and Cost Register
Automata. In: 28th Annual ACM/IEEE Symp. on Logic in Computer Science, LICS 2013. IEEE Computer
Society. ISBN 978-1-4799-0413-6, 2013 pp. 13–22. doi:10.1109/LICS.2013.65. URL http://doi.

ieeecomputersociety.org/10.1109/LICS.2013.65.

[8] Engelfriet J, Maneth S. The equivalence problem for deterministic MSO tree transducers is decidable. Inf.
Process. Lett., 2006. 100(5):206–212.

[9] Alur A, Černý P. Streaming transducers for algorithmic verification of single-pass list-processing pro-
grams. In: POPL. 2011 pp. 599–610.

[10] Griffiths TV. The Unsolvability of the Equivalence Problem for Lambda-Free Nondeterministic General-
ized Machines. J. ACM, 1968. 15(3):409–413. doi:10.1145/321466.321473.

1016 E. Filiot, P.-A. Reynier / Copyful Streaming String Transducers

[11] Alur R, D’Antoni L. Streaming Tree Transducers. CoRR, 2011. abs/1104.2599. URL http://arxiv.

org/abs/1104.2599.

[12] Culik II K, Karhumäki J. The Equivalence of Finite Valued Transducers (On HDT0L Languages) is
Decidable. Theor. Comput. Sci., 1986. 47(3):71–84. doi:10.1016/0304-3975(86)90134-9. URL http:

//dx.doi.org/10.1016/0304-3975(86)90134-9.

[13] Seidl H, Maneth S, Kemper G. Equivalence of Deterministic Top-Down Tree-to-String Transducers is De-
cidable. In: IEEE 56th Annual Symp. on Foundations of Computer Science, FOCS 2015. IEEE Computer
Society, 2015 pp. 943–962.

[14] Benedikt M, Duff T, Sharad A, Worrell J. Polynomial automata: Zeroness and applications. In: 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Iceland, June
20-23, 2017. 2017 pp. 1–12.

[15] Mandel A, Simon I. On Finite Semigroups of Matrices. Theor. Comput. Sci., 1977. 5(2):101–111.

[16] Alur R, Deshmukh JV. Nondeterministic Streaming String Transducers. In: ICALP, volume 6756 of
LNCS. Springer, 2011 pp. 1–20.

[17] Lindenmayer A. Mathematical models for cellular interaction in development. Journal of Theoretical
Biology, 1968. 18:280–315.

[18] Honkala J. A short solution for the HDT0L sequence equivalence problem. Theor. Comput. Sci.,
2000. 244(1-2):267–270. doi:10.1016/S0304-3975(00)00158-4. URL https://doi.org/10.1016/

S0304-3975(00)00158-4.

[19] Filiot E, Reynier PA. Transducers, logic and algebra for functions of finite words. SIGLOG News, 2016.
3(3):4–19. doi:10.1145/2984450.2984453. URL http://doi.acm.org/10.1145/2984450.2984453.

[20] Engelfriet J, Maneth S. Macro Tree Translations of Linear Size Increase are MSO Definable. SIAM J.
Comput., 2003. 32(4):950–1006.

[21] Filiot E, Krishna SN, Trivedi A. First-order Definable String Transformations. In: 34th International
Conference on Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2014,
volume 29 of LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014 pp. 147–159.

[22] Dartois L, Jecker I, Reynier PA. Aperiodic String Transducers. In: Developments in Language Theory -
20th International Conference, DLT 2016, volume 9840 of Lecture Notes in Computer Science. Springer,
2016 pp. 125–137.

