
LED’s CHAT
a new software approach/architecture for scalable
distributed lighting control

Peter Niebert
Aix-Marseille University / LED‘s CHAT

5th International LED professional Symposium +Expo
LpS 2015 | Sept 22-24, 2015 | Bregenz

Context
q  Digitization follows LEDification

q  LEDs allow/need control for efficient use
q  LED driver and controller integrated into luminaries
q Control of luminaries over networks

q  The promise
q Many light sources
q  Expressive, structured, reactive, « smart » light

q  Traditional control
q  A hierarchy of networks, cables ...
q Centralized logic

q  Distributed control
q  Push decisions to the luminaries themselves
q  Allow them to cooperate among each other
q Creates commissioning free or easy platforms : plug and play
q  Scalable: no practical limit to network size (thousands to millions of independent nodes)
q Robust: graceful degradation ...

q  LED‘s CHAT : distributed, scalable, real time

Historical decentralized control

q  Light switch
q  PIR sensor ...

q Local decision and effect

q No connections between luminaries
©Dr.E.	sur	flickr	

Classical centralized control

q  Interconnection bus
q  (Multi-)Master – slave approach
q Bus shared for all messages
q Slaves interprete and execute commands addressed to them
q Slaves may answer to the master

q  Examples
q DaLi (slow and robust)
q DMX (not so slow, but very limited)
q  IP based systems (not so limited, but setup remains complicated)

Hierarchical networks

q  Problem :
q Limits of backend networks

q  Examples :
q DaLi (64) DMX (512) address spaces
q Bus bandwidth

q  Frequent solution :
q « Groups » to execute the same command sent just once
q Backbone networks and gateways

¤  KNX tree topology, KNX to DaLi gateways
¤  IP backbones

q Separate solutions for commissioning (if not fully manual)
q Zoo of expensive controllers

Source:	Industrial	Ethernet	Book	Issue	69	/	35	

« Zoo » of controllers really needed?

q  Luminaries could be smarter without additional cost

q Luminaries are already equipped with an underused microcontroller and communication
hardware

q What if THEY form the backbone network?
q What if THEY could communicate with each other?! LED’s CHAT!

q Neighboring luminaries do related work
q Topology can be meaningful.

q Origins of LED’s CHAT
q Started as a university project
q Prototype installation at a cultural event (Marseille European Capital of Culture)
q Academic freedom from standards : we could try something radically different.
q Current philosophy : interoperable on the outside, proprietary (and free) inside

q  Prototype created in 2013
q 500 modules, each with 31 RGB LEDs and 4 IR sensors
q  Installation exposed during 3 months in Marseille, > 4000 visitors
q  Interaction with « torches »

What’s on the modules

In boxes and with diffusers …

LED‘s CHAT installation scenario

What is distributed control

q Centralized control
q Master takes decisions for each module and emits commands
q Network transports commands to modules
q Modules/Slaves execute commands

q Distributed control
q Modules execute control code and take decisions themselves
q Network allows modules to communicate with each other and with Master
q Master still emits global decisions and data, but much less than in centralized control

Centralized or distributed?

©	woodleywonderworks,	sur	flickr	

Advantages of distributed control

q Much reduced bandwidth between master and modules
q Can be close to zero for fully distributed applications

q  As a result, nearly full scalability :
q As you add more modules

¤  you get more computing power
¤  you get more local bandwidth

q Local communication means no interference, as opposed to bus architecture

q With less bandwidth, you get more!
q The power of distributed algorithms!
q Cooperation between neighbors!

q ChatOS (our distributed operating system)
q Real time behavior with garanteed bandwidth for neighbors
q Quasisynchronous operation of modules

Distributed algorithms?!

q What are they?!

q Tasks performed together by the modules by computation and communication

q What can they do for you?!
q Topology discovery and observation
q Dynamic creation of « groups », e.g. variable zones in open spaces …
q Synchronous execution with little communication

¤  The conductor won’t read the partition to the musician, both read it at the same time
q Sensor fusion and local diffusion
q Firmware upgrade, ephemeral application distribution
q Classical tasks like broadcast and convergecast

¤  Video diffusion, data collection …

Sensor fusion

q Neighboring modules can share their sensor observations
q Sensor fusion without the need of passing by the master/gateway
q E.g. distance or presence sensors
q Fusion for robustness and resolution, boundary detection, etc.

q  Fully scalable, very low latency

q  Speaking of sensors …
q You already have a microcontroller with your luminary!
q Why do you want another one for creating a sensor?!
q Adding useful sensors to lighting modules is not expensive

q  Sensors :
q Ambient light, presence, movement … for applications
q Temperature, voltage, current … for monitoring and failure prevention

Demonstration of Sensor Fusion

So what is the role of the gateway?

q Central view has many uses
q Time base, route optimizations …, gateway has more computing power …

q  Interoperability
q via IP and software
q via physical interfaces (KNX, DMX, …) where required

q  Examples
q KNX or DMX messages can be received and broadcast in the LED’s CHAT network

¤  LED’s CHAT distributed application code specifies how to interprete
¤  address or group membership can be statically or dynamically assigned by a distributed

algorithm to each LED!

q External information sources (video …) can be broadcasted into the network
q Sensor data can be aggregated and recovered.

LED‘s CHAT Ecosystem

q ChatOS Base
q Lightweight distributed operating system for microcontrollers
q Basic distributed system services

¤  discovery, distributed synchronization (hot pluggable)
¤  Network wide synchronous communication and execution
¤  API for hardware access (sensor reading, LED control)

q Basic gateway services
¤  Application distribution and firmware update
¤  topology discovery and tracking (hotplug / failures ...)
¤  Dispatching of synchronous commands
¤  Broadcast and convergecast services

q  LED‘s CHAT Application model
q Distributed synchronous programming model
q Applications in neighboring modules advance synchronously

¤  No need for handshake on application level!
¤  Guaranteed synchronous communication between neighbors!

LED‘s CHAT Ecosystem simulation

q ChatOS Base
q Lightweight distributed operating system for microcontrollers
q Basic distributed system services

¤  discovery, distributed synchronization (hot pluggable)
¤  Network wide synchronous communication and execution
¤  API for hardware access (sensor reading, LED control)

q Basic gateway services
¤  Application distribution and firmware update
¤  topology discovery and tracking (hotplug / failures ...)
¤  Dispatching of synchronous commands
¤  Broadcast and convergecast services

q  LED‘s CHAT Application model
q Distributed synchronous programming model (C++)
q Applications in neighboring modules advance synchronously

¤  No need for handshake on application level!
¤  Guaranteed synchronous communication between neighbors!

LED’s CHAT Simulator

q  Both application and operating system can be simulated
q Except for low level synchronization and communication

q Real time simulation in Game Engine
q Realistic rendering (not real time) available
q Debugging of application code with VisualStudio

Communication layer and
hardware drivers for LEDs and

Sensors

Communication layer and
hardware drivers for LEDs and

Sensors

Distributed system services

Libraries

Application (firmware/software)

Distributed system services

Libraries

Application (firmware/software)

Hardware abstraction Layer

simulated abstract hardware

LED’s CHAT Simulator

Hardware requirements

q Mid range and lower end microcontrollers
q Depends on the number of LEDs and the complexity of the control task

¤  For one point sources Cortex M0/M0+ or equivalent is clearly sufficient
¤  For multi pixel modules, midrange µC are a better choice (ARM Cortex M3, PIC32, …)

q  That said …
q an operational prototype with low end 8 bit micro controllers and 6 LEDs was our first

experiment.

Some use cases

q  Ephemeral installations
q Easy commissioning makes LED’s CHAT great for exhibition spaces, etc

q  Expressive interactive lighting
q  Interaction is immediate and low latency, great user experience
q High quality transitions due to distributed effect generation

q Open space ceiling light
q Dynamic zones, ambient lighting for well being …

q  Total cost of ownership advantages
q Modularity, easy commissioning (plug and play)
q Graceful degratation in case of component or connection failure
q Component failure can be automatically detected and signaled

LED‘s CHAT, the company

q  2015 startup

q The CEO (business development), two software engineers, a scientific advisor (me)

q Current status :

q Consolidating technology towards commercial level
q Discussing with potential customers and partners

q  Looking for partnerships of several kinds
q Pilot projects
q  Industrialization, co-development
q  Investment

q  Interested?

Conclusions

q Distributed control is possible without additional hardware
q But respecting current standards, potential is rather limited
q LED’s CHAT is proprietary, but interoperable (gateway)

q Distributed control has many advantages
q Easy commissioning, graceful degradation
q More efficient use of bandwidth
q Scalability

q  Adoption
q To some extend, partial adoption in many products (auto addressing)
q LED’s CHAT goes further and distributes the essential part of control software

q  LED’s CHAT system
q Proof of concept prototype
q Maturing software ecosystem
q Simulator for development and project support

 Thank you!

