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Résumé et mots clés

Un automate cellulaire est composé d’une grille de cellules, chacune ayant un état
(issu d’un ensemble fini) qui évolue selon une règle locale (homogène dans l’espace
et le temps).

Cette thèse se concentre sur deux classes particulières d’automates cellulaires : les
automates cellulaires majoritaires et le modèle de pile de sable. Ces deux classes
d’automates cellulaires sont liées par plusieurs aspects théoriques discutés dans ce
travail. Notre attention se porte sur un problème de décision connu sous le nom de
problème de prédiction, consistant à déterminer si une cellule donnée change d’état
au cours de la simulation d’un automate cellulaire. La complexité algorithmique de
ce problème offre des indications précieuses sur les algorithmes les plus efficaces
pour calculer la dynamique de l’automate. Pour le cas bidimensionnel, la complexité
du problème de prédiction demeure une question ouverte tant pour les automates
cellulaires majoritaires que pour les piles de sable.

La principale contribution de cette thèse réside dans la classification systématique
des variations des automates cellulaires majoritaires et du modèle de pile de sable,
en fonction de la complexité algorithmique de leurs problèmes de prédiction. Notre
première approche implique la fusion de deux règles majoritaires distinctes, stables
et biaisées, donnant naissance à ce que nous appelons des automates cellulaires
majoritaires hétérogènes. Nous prouvons que, pour les automates cellulaires
majoritaires hétérogènes unidimensionnels, le problème de prédiction est dans la
classe de complexité NL, mais devient P-complet pour des dimensions supérieures.

Ensuite, nous examinons une variante appelée majorité gelée et introduisons le
concept de voisinages en forme de L. Notamment, Nous démontrons que, pour le
plus petit voisinage en forme de L, le problème de prédiction est dans la classe
de complexité NC. En revanche, pour tout voisinage plus grand, le problème de
prédiction devient P-Complet.

Enfin, nous étudions le problème de prédiction pour les piles de sable pour chaque
sous-voisinage du voisinage de Moore. Nous prouvons que 12 d’entre eux ont un
problème de prédiction P-complet. Pour les autres, nous prouvons qu’ils ne peuvent
pas croiser l’information, si le bit d’information est la présence (ou l’absence) d’une
avalanche. Nous introduisons également le concept de problème de prédiction
chronométré, une variation du problème de prédiction canonique où un pas de temps
précis fait partie de l’entrée. Nos recherches révèlent que le problème de prédiction
chronométré est P-complet pour 52 voisinages différents.

Mots clés: Automates cellulaires majoritaires, modèle de pile de sable, prédiction,
systèmes dynamiques discrets, complexité algorithmique.
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Resumen y palabras clave

Un automata celular consiste en una grilla de celdas, cada una con un estado (de
un conjunto finito) que evoluciona según una regla local (homogénea en espacio y
tiempo).

Esta tesis se centra en dos clases de autómatas celulares: los Autómatas Celulares
de Mayoría y el Modelo de Pila de Arena, que están relacionados por varios aspectos
teóricos discutidos aquí. Abordamos el problema de predicción, que busca determinar
si una celda cambia de estado durante la simulación. La complejidad de este problema
proporciona información valiosa sobre los algoritmos eficientes para calcular la
dinámica del autómata, siendo un problema abierto en el caso bidimensional tanto
para los Autómatas Celulares de Mayoría como para la Pila de Arena..

La contribución principal de esta tesis radica en la clasificación sistemática
de variaciones del Autómata Celular de Mayoría y del modelo de pila de arena,
según la complejidad de sus problemas de predicción. Específicamente, nuestra
primera aproximación implica la combinación de dos reglas de mayoría distintas,
denominadas estable y sesgada, dando lugar a lo que llamamos Autómatas Celulares
de Mayoría Heterogéneos. Demostramos que, para los Autómatas Celulares de
Mayoría Heterogéneos unidimensionales, el problema de predicción está en la clase
de complejidad NL. Sin embargo, se vuelve P-completo para dimensiones mayores.

A continuación, investigamos una variante conocida como la mayoría congelante e
introducimos el concepto de vecindades en forma de L. Demostramos que, para la
vecindad en forma de L más pequeña, el problema de predicción está en la clase de
complejidad NC. Por el contrario, para cualquier vecindad en forma de L de mayor
tamaño, el problema de predicción se vuelve P-completo.

Finalmente, estudiamos el problema de predicción para pilas de arena para cada
subvecindad de la vecindad de Moore. Demostramos que 12 de ellas tienen un
problema de predicción P-completo. Para el resto, demostramos que no pueden
cruzar información, si el bit de información es la presencia (o ausencia) de una
avalancha. También, introducimos el problema de predicción cronometrado, una
variación del problema de predicción donde un paso de tiempo particular es parte de
la entrada. Nuestra investigación revela que el problema de predicción cronometrado
es P-completo para 52 vecindades, lo que sugiere que algunas vecindades pueden
simular eficientemente la evaluación de circuitos solo en su dinámica transitoria.

Palabras clave: automatas celulares de mayoría, modelo de pilas de arena,
predicción, sistemas dinámicos discretos, complejidad computacional.
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Abstract and keywords

A cellular automaton consists of a grid of cells, each of which has a state (from a finite
set) that evolves following a local rule (homogeneous in space and time).

In this thesis we center our attention on two particular classes of cellular automata:
The Majority Cellular Automata and the Sandpile Model. These two classes of cellular
automata are related by several theoretical aspects discussed in this work. We focus on
a decision problem known in the literature as the prediction problem. This problem
consist in determine whether a given cell of a cellular automaton changes it state
during it simulation. Depending on the computational complexity of solving this
problem, it offers valuable insights into the most efficient algorithms that can be
employed for computing the automaton dynamics. For the 2-dimensional case, to
determine the complexity of the prediction problem remains an open problem for
both the Majority Cellular Automata and Sandpile.

The key contribution of this thesis lies in the systematic classification of variations
within both the Majority Cellular Automaton and the sandpile model, contingent
upon the computational complexity of their prediction problems. Specifically, our
first approach involves mixing two majority rules herein referred to as stable and
biased, resulting in what we term Heterogeneous Majority Cellular Automata. We
prove that for the 1-dimensional Heterogeneous Majority Cellular Automata, the
prediction problem is in NL. However it becomes P-complete for greater dimensions.

Secondly, we investigate a variant known as the freezing majority and we introduce
the concept of L-shaped neighborhoods. Notably, we demonstrate that for the smallest
L-shaped neighborhood the prediction problem resides within the complexity class
NC. Conversely, for any L-shaped neighborhood of a larger size, the prediction
problem becomes P-Complete.

Finally, we study the prediction problem for sandpiles for every sub-neighborhood
of the Moore neighborhood. We prove that 12 of them have a P-complete prediction
problem. For the rest of them, we prove that they cannot cross information, if the
bit of information is the presence (or absence) of an avalanche. We go further by
introducing the concept of timed prediction problem, a variation of the canonical
prediction problem where a precise time step is part of the input. Our research reveals
that the timed prediction problem is P-complete for 52 different neighborhoods,
suggesting that some neighborhoods may efficiently simulate circuit evaluation only
in their transient dynamics.

Keywords: Majority cellular automata, sandpile models, prediction, discrete
dynamical systems, computational complexity.
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Introduction

In the field of computer science, the study of discrete dynamical systems has emerged
as a fascinating tool that offers a unique lens through which we can understand
complex phenomena. One of the most iconic and influential branches of these
systems, characterized by their discrete space and time, is cellular automata. Cellular
automata are simple yet powerful mathematical constructs that have captured the
imagination of computer scientists, mathematicians, and physicists for decades. A
cellular automaton consists of a grid of cells, each of which has a state (from a finite
set) that evolves following a local rule (homogeneous in space and time). The study of
discrete dynamical systems, and specially cellular automata, has not only enriched our
understanding of fundamental computational principles but has also paved the way
for the development of innovative models and applications across various domains
AGUR et al. 2002a; C. CASTELLANO et al. 2009; R. HEGSELMANN 1998; KŮRKA 1997;
ROY et al. 2021 ; T. C. SCHELLING 1978.

In this thesis we center our attention on two particular classes of cellular automata :
The Majority Cellular Automata and the Sandpile Cellular Automata. The Majority
Cellular Automata (MCA) can be defined as two-states cellular automata (namely
with states −1 and +1), where in each step, each site takes the most represented
state in its neighborhood. The majority rule is one of the simplest defined rules, and
appears naturally in models from physics, biology, social phenomena, and elections
systems Thomas C SCHELLING 2006 ; C. CASTELLANO et al. 2009 ; Rainer HEGSELMANN

1998; ANCONA et al. 2022; AGUR et al. 2002a; YASSINE 2012. On the other hand, the
sandpile CA, originally introduced by Bak, Tang and Wiesenfeld as the first example of
a dynamical system exhibiting self-organized criticality BAK et al. 1987, simulates the
behavior of sand grains on a 2-dimensional grid. Each grid cell has a capacity threshold.
When a cell accumulates more sand grains than its capacity, it becomes unstable and
redistributes some of its grains to its neighboring cells. This redistribution process,
often referred to as an avalanche, occurs iteratively, with unstable cells toppling and
causing their neighbors to become unstable in a cascading fashion. Although these
models are usually formulated over 2-dimensional lattices with the von Neumann
neighborhood (the cells surrounding a cell in the four cardinal directions), they can be
naturally extended to arbitrary graph topologies, hence to d-dimensional grids. The
remarkable feature of these automata over arbitrary graphs is its Turing universality E.
GOLES et MARGENSTERN 1997 ; Eric GOLES et Pedro MONTEALEGRE 2014. This means
that it has the capacity to simulate any given Turing machine, a foundational concept
in computer science representing a general-purpose computing device. Knowing this,
a pivotal question in the field of computer science arose, as articulated by Moore
and Nilsson C. MOORE et al. 1999 for the sandpile CA : given an initial distribution of
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grains in a sandpile, what is the eventual state it converges to after all possible topplings
have occurred? This problem, commonly referred to as the prediction problem for
sandpiles, serves as a cornerstone in the study of sandpile dynamics. As one might
envision, there exists a variant of the prediction problem for the MCA initially studied
by Cristopher MOORE 1997. Depending on the computational complexity of solving
this problem, it offers valuable insights into the most efficient algorithms that can
be employed for computing the automaton dynamics. The initial results of Moore
and Nilsson unveil fundamental differences in the computational capabilities of both
the MCA and the sandpile CA depending on dimensionality. They demonstrated that
in three or more dimensions, the dynamics is intrinsically sequential (P-complete),
implying that solving the prediction problem inherently requires a naive simulation
approach (unless P = NC). On the other hand, in the one-dimensional case, they
presented a fast parallel algorithm (NC). Determining the computational complexity
of the 2-dimensional cases are still open problems today. This dimensionality-sensitive
results also applies for the biased majority automata (called Half-or-More automata
ibid.) which corresponds to the majority automata where the sites do not consider
their own state in the neighborhood, and privilege state +1 in tie cases.

When establishing the P-completeness of the prediction problem associated with
a cellular automaton, the prevailing framework in the literature is the well-known
Banks approach BANKS 1971. This approach hinges on reducing from the monotone
circuit value problem (MCVP), via constructing a series of circuitry gadgets. These
gadgets typically consist of wires and logic gates (AND and OR). Nevertheless, when the
support of the dynamics is symmetric and planar, it may be necessary to design more
devices, such as diodes and crossover gates E. GOLES, P. MONTEALEGRE, K. PERROT

et G. THEYSSIER 2017; E. GOLES, TSOMPANAS et al. 2020; MODANESE et al. 2022.
Crossover gates, in particular, hold a significant role as they often present the greatest
challenge in terms of construction in a 2-dimensional context. In essence, crossover
gates consist of a rectangular finite configuration that facilitates the unimpeded
transmission of information (commonly referred to as a signal) from one edge
to the opposite (e.g., from north to south), without interfering with information
traveling in the perpendicular direction (e.g., from west to east). The underlying
challenge in the context of 2-dimensional MCA and sandpile models is the absence
of an evident construction of a crossover gate. Furthermore, the work of Goles and
Gajardo GAJARDO et al. 2006 has sustained this difficulty, proving that a crossover gate
cannot exist for the 2-dimensional sandpile, whether one considers the von Neumann
neighborhood or the Moore neighborhood (the eight adjacent cells surrounding a
cell). There is no equivalent result for the MCA. It is crucial to emphasize that the
impossibility to construct a crossover gate solely signifies the limitation of the Banks
approach, therefore the classification of the prediction problem remains unsolved, as
we mentioned before.

The key contribution of this thesis lies in the systematic classification of variations
within both the Majority Cellular Automaton (MCA) and the sandpile CA, contingent
upon the computational complexity of their prediction problems.
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Thesis Outline
This thesis is structured into five Chapters. Chapter 1 contains primary definitions
used throughout this work. It introduces Cellular Automata, focusing on the variants
studied in this thesis, i.e., the Majority Cellular Automata and the sandpile CA. The
Chapter also delves into the essential elements of computational complexity theory
for understanding the ensuing results, including the definition of prediction and timed
prediction problems. Additionally, it provides a toolbox containing existing techniques
sourced from the literature.

In Chapter 2, we expose and overview of existing results in the literature regarding
the Majority Cellular Automata, the Sanpile Model and their various adaptations. Our
work is is line with a series of previous works that aim to understand the computational
complexity of both, the majority rule and the sandpile CA. This includes findings
on freezing dynamics, generalization to arbitrary topologies, and the interrelations
between the Majority Cellular Automata and the sandpile CA. There are several
variations of these two models that have NC, P-complete or even NP-complete
prediction problems.

Our contributions start at Chapter 3. Here we unveil our results concerning
the variations proposed of the Majority Cellular Automata. Specifically, our initial
approach involves mixing the canonical majority and the biased majority, resulting
in what we term Heterogeneous Majority Cellular Automata (HMCA). Significantly,
we establish that, for dimension 1, the prediction problem for HMCA falls within
the complexity class NL, whereas for higher dimensions, it becomes P-complete.
Furthermore, in the context of the MCA, we investigate a variant known as the freezing
majority, where a cell in state 1 remains unchanged in every subsequent step. To
analyze these cellular automata, we introduce the concept of L-shaped neighborhoods.
Notably, we demonstrate that for the conventional L-neighborhood (recognized in
literature as the Toom neighborhood TOOM 1980), considering the center site along
with the upper and right sites, the prediction problem resides within the complexity
class NC. Conversely, for any L-neighborhood of a larger size, the prediction problem
becomes P-Complete.

Moving to Chapter 4, we extend notions in relation to the complexity of 2-
dimensional sandpiles by meticulously studying all the sub-neighborhoods within the
Moore neighborhood, i.e., all the 256 possible combinations of the eight cells included
in the Moore neighborhood. Surprisingly, we found that there are 12 neighborhoods
that admit a crossover gate. For them, we construct all the necessary circuitry for
proving theP-completeness of their prediction problem. In contrast, for the remaining
sub-neighborhoods, we extend the findings of Goles and Gajardo by establishing
the impossibility of a crossover gate. While some of these proofs present fairly
straightforward conclusions, others require deeper analysis and geometric arguments.
We extend these results by studying the timed prediction problem for all these subsets.
Our research reveals that the timed prediction problem is P-complete for 52 different
neighborhoods : despite the fact that most of them do not permit a regular crossover
gate, their inner dynamics is provably inherently sequential.
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Finally, in Chapter 5 we discuss the outcomes derived from this work and the current
state of the art. Additionally, we put forth perspectives on the studied topics to guide
future investigations.
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1 Preliminaries

1.1 Cellular Automata
Cellular automata are discrete dynamical systems defined on a d-dimensional regular
grid of cells, where each cell changes its state by the action of a local function or
automata rule, which depends on the state of the cell and the state of its neighbors. In
this model, each cell can only have a finite number of states taken from a set Q.

A configuration of the grid is a function c that assigns values in Q to every cell of
the d-dimensional grid. The value of the cell u in the configuration c is denoted as
cu . A periodic configuration is a configuration defined by a repeating d-dimensional
pattern of cell states in the shape of a d-cube of side n, which is repeated all over
de d-dimensional grid. For instance, if d = 2, a periodic configuration of the two-
dimensional grid is given by a square area of n ×n cells.

Let ⊂fin denote finite subsets. For every cell u ∈Zd we refer as N (u)⊂finZ
d to the

neighborhood of u. In addition, for a cell u ∈Zd , we call cN (u) the restriction of c to the
neighborhood of u. For a cellular automaton, the size of the neighborhood of a cell is
uniform, i.e. |N (u)| is the same for each cell. Morever, we have that N (u) =N (0)+u.
We consider N = N (0). The most famous neighborhoods, for their simplicity and
symmetries, are von Neumann and Moore, respectively defined for 2-dimensional
grids as :

Nvn = {(x, y) ∈Z2 | |x|+ |y | = 1} and Nm = {(x, y) ∈Z2 | 1 ≤ x2 + y2 ≤ 2}.

Formally, a cellular automaton (CA) with states Q and local function f : Q |N (u)| →Q,

is a map F : Qnd →Qnd
, such that F (c)u = f (cN (u)), for all u ∈Zd . We call F the global

function or the global rule of the CA. The dynamic is defined by assigning to each
state of the configuration c a new state given by the synchronous update of the local
function on c . In addition, it is also possible to define a function F by assigning to each
cell a local function. In this case, it is possible to assign different rules to each cell.

1.1.1 Majority Cellular Automata
Great part of this work is based on the Majority Cellular Automata (MCA). In
this cellular automaton, each cell has one of two possible internal states (usually
represented by {−1,1}). Each cell will change its state according to a majority local rule.
In each time step, this local rule forces each cell to take the most represented state in
its neighborhood. Depending on the neighborhood, there may be an even number of
neighbors, therefore there are some cases in which exactly one half of the neighbors
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1 Preliminaries – 1.1 Cellular Automata

are in one state and the other half are in the other. In this tie case scenario, the rule is
not a priori defined. However, in the literature, different approaches are considered to
define transitions in tie case scenarios.

The first case is the one known as stable majority, in which, in the tie case scenario,
the rule preserves the original state of the cell. So, for example, if a cell is in state 1 and
there is a tie case scenario, it will remain in the state 1 (see Figure 1.1 for an example).
Formally, the stable majority local rule is defined by :

f (c)u =


1 if

∑
v∈N (u)

cv > 0,

cu if
∑

v∈N (u)
cv = 0,

−1 if
∑

v∈N (u)
cv < 0.

F−→ F−→ F−→ F←→

FIGURE 1.1 : Example of majority cellular automata with the von Neumman
neighborhood Nvn. Gray cells represent the +1 state, while white cells
are in the −1 state. A cell in state −1 (resp. +1) changes to +1 (resp. −1)
only if it has at least three neighbors in state +1 (resp. −1). Notice that
the configuration illustrated in the last image changes to the one on its
left, then the initial configuration converges to a limit-cycle of length 2.

The second case that is considered in this work is the one of the biased majority in
which in a tie case scenario a cell changes to a fixed state. Formally, for s ∈ {−1,1}, the
s-biased majority local rule is defined by :

f s(c)u =


1 if

∑
v∈N (u)

cv > 0,

s if
∑

v∈N (u)
cv = 0,

−1 if
∑

v∈N (u)
cv < 0.

From now on, we call the 1-biased majority rule simply as biased majority rule. In
general terms, a d-dimensional heterogeneous automata corresponds to a function F :

{−1,1}Z
d 7→ {−1,1}Z

d
together with an assignation of local functions g :Zd → { f1, . . . , fk }

such that F (c)u = fg (u)(cN (u)), i.e., each cell is alway governed by a particular local
function from { f1, . . . , fk }. Thus, the d-dimensional heterogeneous majority automata
is a d-dimensional heterogeneous automata where the set of available local functions
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1 Preliminaries – 1.1 Cellular Automata

corresponds to the majority and biased majorities ({ f , f 1}).

1.1.2 Freezing Majority Cellular Automata
There is widely studied class of cellular automata called Freezing Cellular Automata. In
a freezing dynamic, states can only increase according to a given order. For example, in
the particular case of the binary states Q = {−1,1} (or Q = {0,1}), there is no transition
from 1 to −1 (resp. 0), i.e., a cell that reaches state 1 stays frozen.

Formally, the Freezing Majority Cellular Automata (FMCA) are defined by the local
function

f (c)u =
{

1 if xu = 1 or
∑

v∈N (u) xv > 0

−1 otherwise.

1.1.3 Sandpile Cellular Automata
As its name suggests a sandpile cellular automaton simulates the behavior of sand
grains falling down on a d-dimensional grid. A sandpile cellular automaton is defined
by a neighborhood N ⊂finZ

d . We assume this neighborhood N spans Zd , otherwise
we have independent subdynamics. We denote its size by θN = |N |. A configuration
c :Zd →N assigns c(u) grains to cell u ∈Zd . Let H (α) = 1 if α≥ 0 and H (α) = 0 if α< 0

denote the Heaviside step function, then the sandpile dynamics FN :NZ
d →NZ

d
is

defined as :

∀u ∈Zd : FN (c)(u) = c(u)−θN ·H (c(u)−θN )+
∑

v∈N

H (c(u − v)−θN ) .

In words, each cell reaching the threshold θN topples or fires, sending one grain to
each out-neighbor which relative positions are given by N . This local rule is applied
in parallel at every cell of the lattice (See an example on Figure 1.2). However, it is
worth mentioning that even in the case of applying a sequential update schedule,
the sandpile CA always converges to the same stable configuration, i.e., the final
configuration is independent of the order in which the grain topplings occur. This
was demonstrated by DHAR 1990 and it is commonly refeared as the Abelian property
of sandpiles. This is the reason why the sandpile CA is widely known as the Abelian
Sandpile Model.
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FIGURE 1.2 : Example of sandpile dynamics for Moore neighborhood Nm. The
numbers indicate the amount of grains in every cell. A blank site
represents an empty cell.
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1 Preliminaries – 1.2 Computational Complexity Theory

When it is clear from the context, we drop the subscript notations and simply
denote θ and F the threshold and the evolution rule. The quantity of sand grains in a
configuration is denoted G (c) =∑

u∈Zd c(u), it is invariant by F for any sandpile CA :
G (c) = G (F (c)). A configuration c is finite when it contains a finite number of sand
grains (G (c) ∈N), and stable when no toppling occurs (∀u ∈Zd : c(u) < θ). From any
finite configuration c, the dynamics converges to a stable configuration denoted c◦ =
limt→∞ F t (c), see for example FORMENTI et K. PERROT 2019. It is worth mentioning
that all the results presented in this thesis pertain to 2-dimensional sandpile CA.

1.2 Computational Complexity Theory
In this section we briefly define the main concepts of computational complexity theory
used in this work. However, we encourage the interested reader to consult GREENLAW

et al. 1995 for more detailed insights in the topic.
As this section functions as an introduction to the computational complexity

concepts used in this thesis, we only focus in the P complexity class and its subclasses.

1.2.1 Decision Problems
In the field of computer science, a decision problem is roughly a question with a
binary response, denoted either as 1 (YES) or 0 (NO). If a decision problem can be
solved by a Turing machine, it is termed decidable, otherwise it is undecidable. Clearly,
determining whether a decision problem is decidable or undecidable requires a formal
proof. Decidability holds tremendous importance in the field of computer science.
Proofs for demonstrating that a decision problem is decidable usually consist in
proposing an algorithm that solves it. The latter leads to a natural categorization of
the decidible problems, which will be further addressed in the following subsection.

1.2.2 Complexity Classes
Given a decidable problem, its complexity can be defined as the amount of resources,
like time or space, needed to solve it as a function of the size of the input, which is
usually denoted by n. One fundamental set of computational decision problems is the
class P, which is the class of problems solvable in polynomial time (O (ni ) for some
constant i ) on a deterministic Turing machine. The class P is informally known as
the class of problems that admit an efficient algorithm. However, within P there exist
other complexity classes that denote problems solvable with even greater efficiency.
One of these classes is the NC class, which contains the problems solvable in poly-
logarithmic time by a Parallel Random Access Machine (PRAM) (see JÁJÁ 1992 for a
detailed definition), with a polynomial number of processors. In other words, NC is
the class of problems which have a fast parallel algorithm. One can be more specific
and define the NCi class as the subset of NC problems that can be solved in O ((logn)i )
parallel time. Clearly we have :
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1 Preliminaries – 1.2 Computational Complexity Theory

NC1 ⊆NC2 ⊆ ·· · ⊆NCi ⊆ ·· · ⊆NC

Another of these classes are the L and NL classes. The L class consists in the decision
problems that can be solved by a deterministic Turing machine in logarithmic space.
On the other hand, NL is the non-deterministic version of L. The hierarchy for these
complexity classes is the following one :

NC1 ⊆ L⊆NL⊆NC2 ⊆P

Additionally to the complexity classes themselves, there is an important set of
problems within each class. Given a complexity class C, a problem is said to be C-
complete if

1. it belongs to C and

2. there exists a reduction from any problem in C to this specific problem.

If only the second condition is satisfied, the problem is termed C-hard. The concept of
hardness is relevant as none of the previously mentioned classes (and including others
like NP) are known to be distinct from one another. It is important to mention that
the reduction is expected to be efficient in the sense that it should not have a higher
complexity than the class C itself. This efficiency criterion ensures that the reduction
process aligns with the complexity level inherent to class C.

Throughout this work, we consider logarithmic space many-one reductions
when proving P-completeness. Let us consider two decision problems A and B . A
logarithmic space many-one reduction from A to B is a logarithmic space computable
function f that maps instances of A to instances of B . In this fashion, if we have an
efficient algorithm for deciding B (let us say polynomial), then naturally we have an
efficient algorithm for deciding A. Thus, reductions provide a method for evaluating
the relative computational complexity of two problems (in our example B is at least as
hard to solve as A).

A frequently explored concept in the literature is that of inherently sequential
problems. In simple terms, a problem is called inherently sequential if the time needed
to decide it cannot be substantially accelerated, regardless of the number of processors
employed. A problem classified in NC is considered efficiently parallizable, in contrast
to the inherently sequential problems. Conversely, the P-complete problems are the
more probable candidates for being inherently sequential.

1.2.3 Circuit Value Problem
The Circuit Value Problem (CVP) is a decision problem that Ladner demonstrated to
be P-complete shortly after the formulation of Cook-Levin’s theorem LADNER 1975.
The CVP can be viewed as analogous to the NP-complete problem Satisfability. The
definitions and results exposed here are taken from GREENLAW et al. 1995 ; JÁJÁ 1992.
CVP asks whether a given Boolean circuit outputs True or False with a given input. A
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1 Preliminaries – 1.2 Computational Complexity Theory

Boolean circuit is an idealization of real electronic device and, as an abstraction of
a real circuit, it ignores a host of important practical considerations such as circuit
area, volume, pin limitations, power dissipation, packaging, and signal propagation
delay. A circuit is simply a formal model of a combinational logic circuit. It is an acyclic
directed graph in which the edges carry unidirectional logical signals and the vertices
compute elementary logical functions (and, or, not). The entire graph computes a
Boolean function from the inputs to the outputs in a natural way. An example of a
circuit is given in Figure 1.3 for a better understanding of the concept.

x1 x2 x3 x4

∧ ∧ ∨

∨ ∧ ¬

∧

∨

?

FIGURE 1.3 : Example of a Boolean circuit. The nodes labeled as xi with {1,2,3,4}
represent de inputs. The node labeled with a question mark represents
the circuit output.

Formally, the CVP is defined as follows :

Circuit Value Problem (CVP)
Input:

• An encoding ᾱ of a Boolean circuit α

• an input x1, . . . , xn

• a designated output y

Question: is output y of α True on input x1, . . . , xn ?

Theorem 1.1 (GREENLAW et al. 1995). The Circuit Value Problem is P-complete.

The formal proof of this fact is quite technical. However, it consists in simulating an
arbitrary Turing machine using Boolean circuits.

In addition to the canonical CVP, there are a multitude of variations of it. One of
them, of special importance in this work, is the Monotone Circuit Value Problem
(MCVP), which consists only in monotone circuits, i.e., Boolean circuits composed
only of AND and OR gates. The MCVP turns out to be also a P-complete problem.
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1 Preliminaries – 1.2 Computational Complexity Theory

1.2.4 Prediction Problems
In this thesis, we focus on prediction problems. A prediction problem is a decision
problem such that one asks if a given cell of a cellular automaton changes its state
at some point of the computation. We also define what we call a timed prediction
problem, where a timestep t is given as part of the problem input and one asks whether
the given cell has a different state at timestep t than at the beginning (timestep 0).

Formally, the prediction problem associated with a cellular automaton is defined as
follows :

Prediction problem (PRED)
Input:

• a finite configuration c ∈NZd

• a cell u ∈Zd

Question: does ∃t ∈N : F t (c)u ̸= cu ?

Notice that a global function is not required as an input because the prediction
problem is defined for a specific, predetermined class of cellular automata, contingent
upon the context. As we mention, we also consider the timed prediction problem,
defined formally as :

Timed prediction problem (TIMED-PRED)
Input:

• a finite configuration c ∈NZd

• a cell u ∈Zd

• a timestep t

Question: does F t (c)u = cu ?

It is not clear which of these two problems is (computationally) more difficult.
The core of this work is a classification of the prediction problems associated with

several instances of the MCA and the sandpile CA into complexity classes.
Evidently, the prediction problem can be solved by simply simulating the dynamics

of the cellular automata until reaching an attractor (or for the given number of time-
steps in the case of the timed prediction problem). This is called the trivial algorithm.
In Eric GOLES et OLIVOS 1980 Goles et al. showed that the dynamics of the majority
automaton reaches an attractor in a number of time-steps that is linear in the size
of the configuration. Moreover, the reached attractor is either a fixed-point or a limit
cycle of period two. This result implies that the prediction problem associated to a
d-dimensional MCA can be solved in polynomial time. Similar results for the sandpile
cellular automata are shown in FORMENTI et K. PERROT 2019, i.e., the prediction
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1 Preliminaries – 1.3 Toolbox

problem associated with a d-dimensional sandpile CA can be solved by applying
the global function a polynomial number of times. Therefore, if we aim to solve the
prediction problem more efficiently than the trivial algorithm, we would have to
classify it in a proper subclass of P.

1.3 Toolbox

1.3.1 The Banks’ Approach
When it comes to prove that the prediction problem of a certain cellular automaton
is a P-complete problem, the Banks’ approach BANKS 1971 is widely used, moreover
it is the only known approach for proving P-completeness in this context. Roughly,
the Banks’ approach consists in simulating an arbitrary boolean circuit on the grid
by using a series of gadgets, constructed specifically for a given cellular automaton,
in order to reduce from the MCVP (see Figure 1.4). These gadgets consist in all the
necessary circuitry for performing universal computation. The latter usually consists
in wires, turns, AND gates, OR gates, diodes and crossover gates. It turns out that all
gates are usually straightforward to design, except crossover gates. The inexistence
of crossover gates is therefore a strong indication that such a reduction may not be
possible, but it is relative to a precise definition of crossover gate (to prove that none
exist) which enforces a precise (hence restrictive) consideration of what a wire, or
more generally a signal is. Providing a general definition of signal is far from obvious
DELORME et al. 2002.
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FIGURE 1.4 : Banks’ approach. On the left, an illustration of a logic circuit. On the right,
a schematic representation of how the Banks’ approach is employed to
simulate this circuit. Each cell in this grid represents a gadget. All the
circuits inputs and gates are positioned on the diagonal, connected by
wires. Crossover gates must be used when two wires intersect. The blank
cells represent an stable background.

1.3.2 NC subroutines
As we mention before, the complexity class NC contains all the problems with
an efficient parallel solution (polylogarithmic time with a polynomial number of
processors). In this subsection we formalize the concept of parallel algorithm and
mention a few fast parallel algorithms used in this thesis. All the material presented
here is taken from GREENLAW et al. 1995 ; JÁJÁ 1992.

A universally accepted model of sequental computing is the Random Access Machine
(RAM) model, which can be characterized in mainly three components :

1. Memory structure : The memory is divided into individual cells, each of them
identified by a unique address. This memory is typically assumed to be large
enough to hold the input data and any other variables required by an algorithm.

2. Operations : This model supports basic arithmetic operations (addition,
subtraction, multiplication, and division), logical operations (AND, OR, NOT),
memory access operations (reading from and writing to memory cells),
assignment of a value to a memory cell, conditionnal statements and repetition
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structures (loops). Each operation is assumed to take a constant amount of time
(O (1)).

3. Sequential execution : Every instruction is executed in a sequential manner one
after the other one. There is no notions of parallelism or concurrency.

A natural generalization of the RAM model is the Parallel RAM (PRAM). As it name
indicates, it extends the RAM model to include parallelism. The PRAM model assumes
that multiple processors operate in parallel, each of them identified by an index i . Each
processor has it own local memory, and all processors have access to a shared global
memory. Also, all the processors work in a synchronized manner under a general
global clock. PRAM is usually categorized based on how processors access the shared
memory as follows :

• Exclusive Read Exclusive Write (EREW) : No two processors can access one
memory cell simultaneously for reading nor writing operations.

• Concurrent Read Exclusive Write (CREW) : Simoultaneous reading is allowed
but only one processor can write on an specyfic memory cell at a time.

• Concurrent Read Concurrent Write (CRCW) : Simoultaneous reading and writing
is allowed in this variant. Hence, some method of simoultaneous writing has to
be defined (e.g. lowest processor index).

The reason why we introduce the PRAM model is because it is closely related to
NC. Let us define EREWi , CREWi and CRCWi as the classes of decision problems
solvables by the EREW, CREW and CRCW PRAMs, respectively, in O ((logn)i ) time,
using a polynomial number or processors. Then the following holds :

Proposition 1.1. let i ≥ 1, then

NCi ⊆EREWi ⊆CREWi ⊆CRCWi ⊆NCi+1

This basically means that solving a problem under the PRAM model in
polylogarithmic time using a polyomial number of processors, means the problem is
in NC. The NC class can also be defined as the set of problems that can be decided by a
family of logspace-uniform circuits of polylogarithmic depth and a polynomial number
of gates. A family of circuits {αn} is termed logspace-uniform if the transformation
from 1n to the αn circuit description can be done in O (log(size(αn))) space on a
deterministic Turing machine, where size(αn) is the number of gates of αn . Note that
this implies that NC can be formulated without using the PRAM classes as follows :

NC= ⋃
i≥1

NCi

In fact, as stated in JÁJÁ 1992, the class NC remains invariant across various parallel
models, underscoring its fundamental importance in complexity theory.

Later in this work, we employ a pair of NC subroutines, which we articulate in the
following propositions.

26



1 Preliminaries – 1.3 Toolbox

Proposition 1.2 (Prefix-sum). The following problem can be solved by a CREW PRAM
algorithm with O (n) processors in O (logn) time : given a finite set A = {x1, . . . , xn}, k ≤ n
and a binary associative operation ⊕ in A, compute

⊕k
i=1 xi .

It is noteworthy that the elements of A can be any objects, as long as ⊕ is an binary
associative operation.

Proposition 1.3 (Matrix multiplication). Let A and B two n ×n matrices. The matrix
product A ×B can be calculated by a CRCW PRAM algorithm in O (logn) time using
O (n2) processors.

This can be extended to rectangular matrices.
For the interested reader, JÁJÁ 1992 contains several parallel techniques that solve

non-trivial problems, such as the pointer jumping technique.
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2 State of the Art

Our work is is line with a series of previous works that aim to understand the
computational complexity of both, the majority rule and the sandpile CA, by studying
the prediction problem for different variants of these models. We mention these works
in this Section as well as the relation between the MCA and the sandpile CA.

As previously discussed, the complexity of the prediction problem can be
categorized within P through the use of the trivial algorithm. Nevertheless, more
accurate results emerge when studying a grid of dimensions greater than 2. In such
instances, the prediction problem is P-complete. Moreover, the prediction problem
has been proven to be in NC for the one dimensional case. The latter applies for the
Stable MCA, the Biased MCA (both in Cristopher MOORE 1997) and the sandpile CA
C. MOORE et al. 1999 considering the von Neumann neighborhood. Note that these
results leave the two-dimensional case as an open problem, introducing an intriguing
element. This particular case seems to represent a sort of boundary or limit between
the P-complete problems and P with its internal complexity classes.

Another interesting fact is shown in Eric GOLES, Pedro MONTEALEGRE et Kévin
PERROT 2021, where the authors studied the freezing version of the sandpile CA. The
notable outcome of this work in this context is that it gives insights on how to simulate
two-dimensional freezing sandpiles using two-dimensional MCA. This establishes
a key relationship between these two models in the context of our work and opens
several interesting questions : can the majority simulate the canonical sandpile CA?
can a sandpile simulate a (freezing) MCA? Are these two classes of CA equivalent in
some sense ?

2.1 The Majority Rule Variants
Freezing majority. Freezing automata model forest fires KARAFYLLIDIS et al. 1997,
infection spreading FUENTES et al. 1999, bootstrap percolation CHALUPA et al. 1979
and voting systems Cristopher MOORE 1997. Theoretical facts about these automata
can be seen in Eric GOLES, OLLINGER et al. 2015.

The prediction problem for the freezing stable majority automata was studied by
Goles et al. in E. GOLES, MONTEALEGRE-BARBA et al. 2013, where the authors show that
in two dimensions the prediction problem for the freezing majority automata is in NC.
At the same time, in three or more dimensions the prediction problem in P-complete.
Later, in E. GOLES, D. MALDONADO et al. 2017; Eric GOLES, Diego MALDONADO et al.
2020 the authors showed an analogous result for the freezing biased majority automata.
In both articles, the efficient algorithms are based in some topological properties of
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the set of stable sites, that is to say, the set of nodes initially in −1 that never switch their
state. Unfortunately, these topological properties are not preserved when the freezing
property is lifted. Hence, it is unclear how to use the algorithms for the freezing cases
into the non-freezing cases.

Majority automata networks. Another approach consists in generalizing the majority
cellular automata from grids into an arbitrary graph. In that context, two perspectives
have been taken in order to show the P-Completeness. In Eric GOLES et Pedro
MONTEALEGRE 2015 it is shown that the prediction problem for the majority rule
is P-Complete, even when the topology is restricted to planar graphs where every
node has an odd number of neighbors. The result is based in a crossover gadget that
uses a sort of traffic lights, that restricts the flow of information depending on the
parity of the time-step. Then in Eric GOLES et Pedro MONTEALEGRE 2014 it is shown
that the prediction problem for the majority rule is P-Complete when the topology is
restricted to regular graphs of degree 3 (i.e. each node has exactly three neighbors).
Both results are valid for the stable and biased majorities, as these rules are equal
when the nodes have and odd number of neighbors.

Signed majority. In E. GOLES, P. MONTEALEGRE, K. PERROT et G. THEYSSIER 2017
the authors study the majority rule in two dimensional grids where the relations
between neighboring cells have a sign. The signed majority consists in a modification
of the majority rule, where the most represented state in a neighborhood is computed
multiplying the state of each neighbor by the corresponding sign in the relation.
The authors show that when the configuration of signs is the same on every site
(i.e. we have an homogeneous cellular automata) then the dynamics and complexity
of the signed majority is equivalent to the standard majority. Interestingly, when
the configuration of signs may differ from site to site, the prediction problem is P-
complete.

Asynchronous prediction. Another variant considers the prediction problem under a
sequential updating scheme. More precisely, the asynchronous prediction problem
asks for the existence of a permutation of the cells that produces a change in the
state of a given cell, in a given time-step. In fact, in Cristopher MOORE 1997 Moore
suggested in this case it holds a similar dichotomy than in the synchronous case :
namely, the complexity in the two-dimensional case is lower than in three or more
dimensions. This conjecture was proven in Eric GOLES, Diego MALDONADO et al. 2020
where it was shown that the asyncrhonous prediction in two dimensions is in NC,
while it is NP-complete in three or more dimensions.

2.2 The Sandpile Variants
Sandpiles on lattices. The study of the computational complexity of sandpile CA
started with the work of Moore and Nilssen in 1999 C. MOORE et al. 1999, where it
is proven that the prediction problem with von Neumann neighborhood is in NC in
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dimension one (the bound has been improved to AC1 in MILTERSEN 2007), and is P-
complete in dimension three and above. The two dimensional case is left open in this
preliminary work, and has been the subject of subsequent works in many directions.
A survey FORMENTI et K. PERROT 2019 proves than all prediction problems on lattices
(Zd ) are solvable in polynomial time, generalizing a result of Tardos TARDOS 1988 on
finite undirected graphs. The survey FORMENTI et K. PERROT 2019 also generalizes
the dimension sensitivity, by proving that the prediction problem is in NC for all
one dimensional sandpile CA, and is P-complete for all three or more dimensional
sandpile CA.

Crossover impossibilities. Towards the understanding of the computational
complexity of the two dimensional sandpile CA with von Neumann neighborhood,
Goles and Gajardo GAJARDO et al. 2006 proved that it is impossible to contruct a
crossover gate (with elementary signals following the approach initiated by Banks
on cellular automata BANKS 1971). In the present work, we develop on this standard
approach and on obstacles to the simulation of monotone circuit value problem within
sandpiles (crossover impossibility). Out of this context, the design of unconventional
signals and unconventional circuit simulation is largely open DELORME et al. 2002.
The authors of GAJARDO et al. 2006 also introduced the firing graph, which is a
central concept of Section 4.2 (Definition 4.3). Despite the fact that crossover gates are
known to be impossible in the two dimensional sandpile model with von Neumann
neighborhood of radius one Nvn, no NC algorithm is known. The situation is identical
for the Moore neighborhood Nm GAJARDO et al. 2006 ; NGUYEN et al. 2018.

Neighborhood shapes. More two dimensional sandpile CA have been proven to have
P-complete prediction problems, by reduction from MCVP. It turns out that slight
modifications of von Neumann neighborhood, such as that of radius two or more,
are P-complete GAJARDO et al. 2006. It is also the case for Kadanoff sandpile CA of
radius two or more FORMENTI, E. GOLES et al. 2012. More generally, the shape of
the neighborhood is not an obstacle to the existence of a crossover gate. Indeed, it
is proven in NGUYEN et al. 2018 that increasing the radius of any shape leads to a
neighborhood that is eventually able to perform a crossover. This is in particular the
case of Moore neighborhood of big enough radius, and even of a discrete circular
neighborhood of big enough radius.

Fungal sanpiles. Fungal sandpiles received a recent interest, it consists in splitting
the rule application into an horizontal and a vertical phase. Crossover gates have
been proven to exist even on very restricted version of the model, which has required
subtle considerations on delays in the composition of semi-crossover gates E. GOLES,
TSOMPANAS et al. 2020 ; MODANESE et al. 2022.

Reusable wires. A general framework for the design of P-completeness reductions in
discrete dynamical systems is presented in E. GOLES, P. MONTEALEGRE, K. PERROT et
G. THEYSSIER 2017, in terms of cellular automata and threshold networks. A focus is
put on intrinsic universality, and the power of reusable wires (which is presumably
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impossible to implement in sandpiles, because of the abelian property that the order
of topplings commute) is emphazised through the discovery of a planar crossover gate
in this context.

On overall, many neighborhoods in dimension two are known to have a P-complete
sandpile prediction problem, and are therefore intrisically sequential. On the other
hand, few others are known to have a sandpile prediction problem in NC, and are
therefore efficiently parallelizable. More precisely, it is known that there are infinitely
many neighborhoods N ⊂finZ

2 having a P-complete prediction problem. To the
best of our knowledge, it is currently not known whether there is an infinity of
neighborhoods N ⊂finZ

2 having a prediction problem in NC. Also, only finitely many
neighborhoods are known to have a crossover impossibility.

Freezing sandpiles. The freezing world also received a dedicated attention. In the
context of sandpiles, the complexity of the prediction problem is still open for the von
Neumann neighborhood of radius one, although important restrictions are proven
to be either equivalent, or in NC E. GOLES, P. MONTEALEGRE et K. PERROT 2021. For
example, the prediction problem for 2-dimensional freezing sanpiles with the von
Neumann neighborhood is still as computationally hard for initial configurations
restricted to cells with 0, 2 and 4 grains only.
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3 Majority Cellular Automata

This Chapter is structured into three sections. In Section 3.1, our focus is on the study
of the Heterogeneous Majority Cellular Automata. We establish that the prediction
problem for the 1-dimensional HMCA belongs to NL, while it turns out to be a P-
complete problem for greater dimensions. Moving on to Section 3.2, our attention
shifts to the study of the Freezing L-shaped MCA. We prove that, when considering the
smallest L-shaped neighborhood (comprising the top and right sites), the problem
can be solved efficiently with a parallel algorithm (NC). In contrast, it is P-complete
for any larger L-shaped neighborhood. Finally, in Section 3.3 we provide the chapter’s
conclusions and outline potential directions for future research.

3.1 Heterogeneous Majority Cellular Automata
In this section, we study the prediction problem in heterogeneous majority automata
setup, i.e., mixing both the stable and biased majority rules. Note that the fact that
the prediction problem for the canonical majority cellular automata has been proven
P-complete for dimensions ≥ 3, implies the same complexity for the heterogeneous
majority for dimensions ≥ 3 as one can choose the same rule everywhere. On the other
hand, it is known that for 1-dimensional majority cellular automata, the prediction
problem is in NC. Differently as before, this result does not direclty apply to the 1-
dimensional heterogeneous majority CA. The results presented in this work show
that the prediction problem for the 2-dimensional heterogeneous majority cellular
automata is a P-complete problem (recall that the 2-dimensional case is an open
problem for the canonical MCA). On the other hand, we prove that the prediction
problem for the 1-dimensional heterogeneous majority is in NL.

3.1.1 1-dimensional Case
In this section, we show that restricted to one dimension, the heterogeneous majority
cellular automata can be efficiently predicted. Indeed, we show that restricted to d = 1,
the prediction problem belongs to NL. In fact, we show a stronger result : we show
that if we consider the dynamics given by two consecutive iterations of an arbitrary
1-dimensional HMCA, i.e., if we study the dynamics given by F 2 where F is the global
rule of the HMCA then, we have that it defines a bounded-change cellular automata.

Proposition 3.1 (Guillaume THEYSSIER et al. 2022). Restricted to one-dimensional
bounded-change cellular automata, the prediction problem is in NL.
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Obviously, an HMCA is not bounded-change. For instance, if we take d = 1, n even
and we define the configuration c that spatially alternates 1 and −1, we have that it
induces a limit cycle of period two, independently of the local rule (biased or stable)
that we choose. More precisely, if d = 1 and n is even, we can define for i ∈ {1, . . . ,n} :

ci =
{ −1 if i is even

1 otherwise

We have that F t+2(c) = F t (c) for all t ≥ 0. Nevertheless, the situation is different
when we look at the evolution of the rule every two time-steps. More precisely, let F
be the global function of a one-dimensional HMCA, and let us call F 2 = F ◦F . In the
following, we show that F 2 is bounded-change.

Lemma 3.1. Let F be a one-dimensional HMCA. Then F 2 is a two-change one-
dimensional cellular automata.

Proof. For simplicity, in the following we identify state −1 with 0. Our proof consists
in showing that, if a cell has a state transition from 0 to 1 under F 2, then this cell will
remain fixed in state 1 on every following iteration of F 2. This means that in total a
cell can have at most two state transitions under F 2.

Let us denote by u an arbitrary cell such that there exists an even time-step t so that
c t

u = 0 and c t+2
u = 1. We claim that c t+2k

u = 1 for every k > 1. We separate the proof of
our claim in five cases, depending on the local functions of the cells adjacent to u. Let
us call ℓ and r , respectively the left and right neighbors of u.

In our figures, cell u is highlighted, and the local rules of the cells are specified by a
“b” or an “s” meaning “biased” and “stable” majorities, respectively. For instance, the
case bbs is the case where u and ℓ have the biased majority, and r has the is stable
majority.

In our cases we repeatedly use the following observations. First, if in a given
time-step two adjacent cells are in state 1, then they will remain on state 1 on every
future time-step independently of the local functions. Second, if in a given time-step
two adjacent cells are in state 0, and the local function of both cells have is stable
majority, then both cells will remain in state 0 on every future time-step. Now we are
ready to tackle the cases.

Case 1 : bbb, bbs and sbb. Let us consider the case where u and ℓ have the biased
majority rule (case sbb is symmetric to bbs). Since u is in state 1 at time-step (t +2),
then at time-step t +3 cell ℓ will be in state 1 making u to stay in state 1 in time-step
t +4. Inductively, we conclude that c t+2k

u = 1 for every k > 1.
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ℓ u r
b b b/s

t · 0 ·
t +1 · · ·
t +2 · 1 ·
t +3 1 · ·
t +4 · 1 ·

Case 2 : bsb. This case is similar to Case 1. If cell u reaches state 1 at time-step (t +2),
then both neighbors will be in state 1 on time-step t + 3, which turns u into 1 on
time-step t +4. Inductively, we conclude that c t+2k

u = 1 for every k > 1.

ℓ u r
b s b

t · 0 ·
t +1 · · ·
t +2 · 1 ·
t +3 1 · 1
t +4 · 1 ·

Case 3 : sbs. First notice that if r and ℓ are in state 0 on t , then the three cells will
remain fixed in state 0 on every future time-step, which contradicts the choice of u
and t . Then, at least one neighbor of u is in state 1 on t .

Without loss of generality, let us suppose that c t
ℓ
= 1. This implies that c t+1

u = 1, since
u has the biased majority rule. Moreover, since c t+2

u = 1, necessarily one neighbor of u
is in state 1 at time-step t +1. This implies that in time-step t +1, cell u and one of its
neighbors are simultaneously in state 1. This implies that c t+k

u = 1 for every k > 0.

ℓ u r
s b s

t 1 0 ·
t +1 1 1 ·
t +2 1 1 ·

ℓ u r
s b s

t 1 0 ·
t +1 · 1 1
t +2 · 1 1

Case 4 : sss. If the three cells are ruled by the stable majority and at least one neighbor
is in state 0 on time-step t , then u will get fixed in 0, contradicting the choice of u and
t . Then we assume that c t

ℓ
= c t

r = 1. This implies that c t+1
u = 1. Since c t+2

u = 1, then at
least one of the neighbors of u is in state 1 at time-step (t +1) (in our figure below, we
assume without loss of generality that c t+1

r = 1). Then, we have two adjacent cells in
state 1, making c t+k

u = 1 for every k > 0.
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ℓ u r
s s s

t 1 0 1
t +1 · 1 1
t +2 · 1 1

Case 5 : bss and ssb. Let us study the case bss (the case ssb is symmetric). Observe
that c t

r = 1, beacause otherwise we will have two adjacent stable cells in 0 on the same
time-step, fixing them on every future time-step, contradicting the choice of t and u.
Since c t+2

u = 1, at least one of the neighbors of u has to be in 1 in time-step t +1.

ℓ u r
b s s

t · 0 1
t +1 · · 1
t +2 · 1 ·

ℓ u r
b s s

t · 0 1
t +1 1 · ·
t +2 · 1 ·

If c t+1
u = 1, then we have that u and one of its neighbors are in state 1 in t + 1,

implying that u and that neighbor get fixed in state 1 on every future time-step.

ℓ u r
b s s

t 1 0 1
t +1 · 1 1
t +2 1 1 1

ℓ u r
b s s

t 1 0 1
t +1 1 1 ·
t +2 1 1 ·

If c t+1
u = 0, then necessarily ℓ and r are in state 1 at time-step (t +1). Since r has a

stable-majority local rule and c t
u = 0, then necessarily the right neighbor of r , namely

w , is in state 1 at time-step t . This means that c t+k
r = c t+k

w = 1 for every k > 0. This
implies that u and r are in state 1 at time-step t +2, meaning that c t+1+k

u = 1 for every
k > 0.

ℓ u r w
b s s

t 0 0 1 1
t +1 1 0 1 1
t +2 · 1 1 1
t +3 1 1 1 1

On all cases we conclude that c t+2k
u = 1 for every k > 1. Therefore, the cellular

automata given by global function F 2 is 2-change. ■

Theorem 3.1. The prediction problem is in NL for every one-dimensional HMCA.
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Proof. Let (F,c, t , i ) be an input of the prediction problem, where F is defined by some
assignation of local rules F . Let us denote G the global function F 2. Observe that as
a consequence of Proposition 3.1 there exists a nondeterministic logarithmic-space
algorithm A solving the prediction problem. Suppose first that t is even. In this case
we simply run A on input (G ,c, t/2, i ). Observe that G t/2(c)i = F t (c)i . This implies
that the output of A on input (G ,c, t/2, i ) is the answer of the prediction problem on
input (F,c, t , i ).

Suppose now that t is odd. In this case we run A on inputs

(G ,c, (t −1)/2, i −1), (G ,c, (t −1)/2, i ) and (G ,c, (t −1)/2, i +1).

From the outputs given by A we can deduce the values of G (t−1)/2(c)i−1, G (t−1)/2(c)i

and G (t−1)/2(c)i+1. This values correspond to the states of cells i − 1, i and i + 1 in
F t−1(c). Finally, using the local function of i we can compute F t

i (c) and decide the
output. We deduce that the prediction problem is in NL. ■

3.1.2 2-dimensional Case
In this section we give evidence that the prediction problem is harder to compute
in the two-dimensional case than in the one-dimensional case. More precisely, we
show that with the right combination of local functions and cell states, it is possible
to simulate any monotone Boolean circuit in the two-dimensional grid. Hence, the
prediction problem for the two-dimensional HMCA is P-complete.

Theorem 3.2. Restricted to two-dimensional HMCA with the von Neumann
neighborhood, the prediction problem is P-complete.

Proof. To show that the prediction problem is P-complete we reduce the Monotone
Circuit Value problem to it. To do so, we simulate the input and the different parts of a
Boolean circuit using a certain combination of biased and stable rules, on a certain
initial configuration.

In fact, according to E. GOLES, P. MONTEALEGRE, K. PERROT et G. THEYSSIER 2017, it
is enough to construct a series of gadgets, namely wires, conjunction and disjunction
gates, together with a cross-over and signal multipliers. These gadgets have to be of
constant size, and have to have two inputs and two outputs consistently fulfilling that
the inputs are in the west and north side, and the outputs are in the east and south side
of the gadget. Also, any rotation of these orientation constraints is valid. Additionally,
inputs and outputs have to be placed in such a way that when two gadgets are put
together, one of the outputs of one matches one of the inputs of the other. We follow
this approach and build gadgets satisfying these conditions.

First, we explain how to simulate wires, i.e. gadgets that allow us to propagate signals
through the grid. Wires are made by three rows (columns) of cells with the biased
majority rule, two of them fully in state +1 while the other one remains in state −1. To
have a TRUE signal, turn to +1 the first two cells of one side of the wire. An example of
a wire is depicted in Figure 3.1.
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FIGURE 3.1 : Examples of the functioning of wires. In left we have wire initialized as a
FALSE signal. In the middle we have a wire initialized as a TRUE signal.
In the right hand we have a wire with TRUE signal, after four time steps.

In all our figures, use the colors black ( ) and white ( ) to represent states −1 and
+1 of the cells with the stable majority rule, while cyan ( ) and orange ( ) represents
states −1 and +1 for the cells with the biased majority rule. Notice that for a wire to
work, it needs a background of stable cells in state −1.

Next, we show how to simulate logic gates. Since we only simulate monotone circuits,
we need to simulate conjunction and disjunciton gates with fan-in 2 and fan-out 2.
Our gadgets, that we call logic gadgets, are depicted in Figure 3.2.

(a) Conjunction gadget (b) Disjunction gadget

FIGURE 3.2 : Logic gadgets that simulate conjunction gates (left) and disjunction gates
(right).

Conjunction gates output TRUE only when both inputs are TRUE. In Figure 3.3 we
show the evolution of a conjunction gadget in different combinations of input values.
The disjunction gate construction is similar (see Figure 3.2b), but its outputs are TRUE
with at least one TRUE input.

To simulate any circuit, we need to cross signals, but since the HMCA space is a
planar graph, it is not evident we can do it. In order to do so, we created a cross-
over gadget (Figure 3.4) that can distinguish one signal from the other by using the
oscillating behavior of the HMCA as “traffic lights”, letting the west signal go through its
east output only, and the north signal through the south output only. For an example
see Figure 3.5. In the case both signals are TRUE, the cross-over gadget works as a
conjunction gate. No prior signal coordination is needed.

Finally, as the space is an undirected graph but circuits are defined over directed
graph, we need diodes making the signals going only in directions west-east and
north-south (Figure 3.6). For a better understanding of the diode behavior see Figures
3.7 and 3.8.
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These diodes have to be appended to every gadgets outputs. In Figure 3.9 we depict
the complete conjunction, disjunction and crossing gadgets, including the output
diodes. Observe that, in at most 39 time-steps, the gadgets will produce the output
values. In fact, the latter upper-bound is uniform for all the gadgets.

■
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t = 0 t = 12 t = 38

t = 0 t = 12 t = 13

t = 0 t = 12 t = 13

FIGURE 3.3 : Behavior of the conjunction gadget when two inputs are TRUE (top),
when the left input is TRUE (middle) and when only the top input is
TRUE (bottom).
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FIGURE 3.4 : Cross-over gadget.

t = 0 t = 7 t = 8

t = 14 t = 26 t = 39

FIGURE 3.5 : Cross-over gadget behavior with one TRUE input.

(a) Vertical diode (b) Horizontal diode

FIGURE 3.6 : Diode gadgets. The vertical diode allows signal to pass only from top to
bottom, while the horizontal diode allows the signal to go only from left
to right.
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t = 0 t = 6 t = 7 t = 14

FIGURE 3.7 : Horizontal diode behavior when a signal comes from the west.

t = 0 t = 5 t = 6

FIGURE 3.8 : Horizontal diode behavior when a signal comes from the east.

FIGURE 3.9 : Disjunction (left), Conjunction (middle) and crossing gadgets (right)
including their output diodes.
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3.2 Freezing L-shaped Majority Cellular Automata
In this section, we classify the prediction problem for several families of freezing MCA
whose neighborhoods are L-shaped. More precisely, it is proved that for the classic
L-neighborhood that consider the center site as well as the upper and the right sites,
the decision problem is in NC. While for any other greater size L-neighborhood the
prediction problem is P-complete, that is, there are no efficient parallel procedures
to determine the state of one or more cells (unless P=NC). It should be noted that
the classic L-neighborhood appeared in the literature associated with the problem of
characterizing eraser cellular automata, that is, given an initial configuration with a
finite number of 1s, characterizing the local rules that “erase” the islands of 1s in finite
time, that is, every configuration with a finite number of 1s, converge to the consensus
state 0∗ TOOM 1980 ; Peter GÁCS et al. 1978 ; Péter GÁCS et al. 2022. In fact, also related
with erasers, in Peter GÁCS et al. 1978 was conceived a non-connected majority CA
whose neighborhood depends on each cell state. Specifically, for a cell i , if its state
is 0 then the neighborhood corresponds to cells (i −3), (i −1) and i , while if the site
i is in state 1 the majority is calculated over the cells i , (i +1) and (i +3). This rule
solves the majority problem in most of the cases except on initial configurations close
to equilibrium, meaning that both opinions are equally represented (also called null
mangetization in the literature).

More precisely, we define an L-shaped neighborhood with two sets SN ,SE⊂finN\{0}.
In this fashion, we define the L-shaped Freezing Majority Cellular Automata (LFMCA)
by the local function :

f (c)(i , j ) =


1 if c(i , j ) = 1,

1 if
∑

k∈SN c(i , j+k) +
∑

k∈SE c(i+k, j ) > |SN |
2 + |SE |

2 ,

−1 otherwise.

This means that a cell in state 1 remains fixed in this state, while if it is in state −1,
the majority is computed over the neighborhood defined by SN and SE . Here, SN (resp.
SE ) describes the cells to the north (resp. east) of the central cell.

3.2.1 The classic L-shaped neighborhood
In this part of our work, we study the prediction problem for the LFMCA considering
the classic L-shaped neighborhood, also known as the Toom neighborhood. This
neighborhood is defined by SN = SE = {1}.

In Lemma 3.2, we prove a geometric property of this LFMCA that we exploit in
Theorem 3.3 in order to prove that there exist an efficient parallel algorithm (NC) for
solving the prediction problem.

Lemma 3.2. Let us take the LFMCA defined by SN = SE = {1} over the grid G = (V ,E),

and an initial configuration c ∈ {−1,+1}n2
and let

−→
G = (V−1,

−→
E ) be a graph such that

V−1 = {v ∈ V : cv = −1} and
−→
E = {(v1, v2) : v1 = (i , j )∧ (v2 = (i +1, j )∨ v2 = (i , j +1))},
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then a cell v will remain fixed in state −1 if and only if it is in a cycle or in a path to a

cycle of
−→
G .

Proof. First of all, note that graph
−→
G contains all the cells that are initially in state −1.

Let us begin by proving that if v is in a cycle of
−→
G , then it remains fixed in state −1.

First, if v is in a cycle, it means it has at least one neighbor in state −1 at t = 0. We can
assume that the other neighbor is in state +1, since this implies that cell v will change
its state if and only if the neighbor in state −1 also changes. We can also extend this
assumption for every node in the cycle. Since every node in the cycle is in state −1,
and that they depend of each other to change their states, none of them will change.
Something similar occurs when v is in a path to a cycle : it depends on the path nodes
which in turn depend of the cycle, then it remain fixed in state −1.

In the other hand, let us prove that if there does not exist a time-step t such that

F t (c)v =+1, it implies that v is in a cycle or in a path to a cycle of
−→
G . If v is always in

state −1, it means that at least one if its neighbors is also always in state −1, which in
turn always has a neighbor in state −1, and so on. If we continue with this reasoning,
at some point we will reach the “end” of the grid (remember we are considering
periodical border conditions), and moreover, we will reach an already visited node.
This node can be v , which means it is in a cycle. If it is not v , it means v is in a path to
the cycle. ■

Theorem 3.3. The prediction problem is in NC for the LFMCA with SN = SE = {1}.

Proof. To prove it, we need to compute the graph
−→
G from Lemma 3.2 and then check

whether the given node v is in a cycle, in a path to a cycle or neither. Keep in mind
that everything have to be done in poly-logarithmic time with a polynomial number
of processors.

For calculating
−→
G (Algorithm 1), we assign a processor to every node of the graph

G . If the node is in state +1, the processor do nothing, otherwise, it will store in
memory a pointer to every neighbor in state −1. This is done in constant time using
n2 processors.

For checking whether node v is in a cycle or in a path to a cycle, we first compute the
powers of matrix A, i.e., A, A2, . . . , An . It can be done using the prefix sum and matrix
multiplication techniques. We consider this algorithm as a black box (Algorithm 2).

To check if v is in a cycle, it is enough to read the entry (i , j ), (i , j ) of every power of
A. This can be done in constant time (Algorithm 3).

Finally, to decide whether v is in a path to a cycle, we use the following technique.

Let us take the adjacency matrix A of graph
−→
G , and add a new node named u, such

that every node in a cycle points to it. Let us call this new matrix B . We can compute
B by parallel executing the Algorithm 3 on every node. Next, we calculate the first
n +1 powers of B . Finally, it is enough to check if there exists a k ≤ n +1 such that
B k [u, v] = 1. The latter can be done similarly to Algorithm 3. ■
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Algorithm 1: Computing
−→
G .

Input: An initial configuration c (size n ×n).

Output: Adjacency matrix A of graph
−→
G (size n2 ×n2).

for 1 ≤ i , j ≤ n pardo
if ci , j =−1 then

if ci+1, j =−1 then
A[(i , j ), (i +1, j )] = 1

end
if ci , j+1 =−1 then

A[(i , j ), (i , j +1)] = 1
end

end
end

Algorithm 2: Computing A, A2, . . . , An .

Input: Adjacency matrix A (size n2 ×n2)
Output: Powers of A P = A, A2, . . . , An

Algorithm 3: Checking if v = (i , j ) is in a cycle of
−→
G .

Input: Powers of A : P = A, A2, . . . , An

Output: answer = 1 if v is in a cycle of
−→
G , answer = 0 otherwise

answer = 0
for 1 ≤ k ≤ n pardo

if P [k][(i , j ), (i , j )] = 1 then
answer = 1

end
end

44



3 Majority Cellular Automata – 3.2 Freezing L-shaped Majority Cellular Automata

3.2.2 Greater size L-shaped neighborhoods
As we mentioned before, we also tackle the prediction problem for greater size
L-shaped neighborhoods. In particular, we consider the “connected” L-shaped
neighborhood, defined by the sets SE = {1,2, . . . ,kE } and SN = {1,2, . . . ,kN } with
kE ,kN ∈N. The LMFCA with a connected L-shaped neighborhood have a P-complete
prediction problem (Theorem 3.4). We also consider two types of “non-connected”
L-shaped neighborhoods. First, we tackle the non-connected L-shaped neighborhood
where both SE and SN are of size 2 (Theorem 3.5). Secondly, in Theorem 3.6 we
consider the L-shaped neighborhood where all the elements of SE (resp. SN ) are
equally separated by a constant p (resp. p ′). These two types of non-connected LMFCA
turn out to have P-complete prediction problems.

Theorem 3.4. When restricted to the LMFCA with sets SE = {1,2, . . . ,kE } and SN =
{1,2, . . . ,kN } such that kE ,kN > 3, the prediction problem is P-complete.

Proof. In order to prove that the prediction problem is P-complete, we reduce the
monotone circuit value problem to it. To do so, we simulate the input and the different
parts of a Boolean circuit in a certain initial configuration that depends on the sets SE

and SN . Without loss of generality, we assume that kE ≥ kN .
In fact, according to E. GOLES, P. MONTEALEGRE, K. PERROT et G. THEYSSIER 2017, it

is enough to construct a series of gadget, namely wires, conjunction and disjunction
gates, together with a cross-over and signal multipliers. These gadgets have to be of
constant size and have to have two inputs and two outputs consistently fulfilling that
the inputs are in the east and north side and the outputs are in the west and south
side of the gadget. Additionally, inputs and outputs have to be placed in such a way
that when two gadgets are put together, one of the outputs of one matches one of
the inputs of the other. We follow this approach and build gadgets satisfying these
conditions.

First, we explain how to simulate wires, i.e., gadgets that allow us to propagate
signals through the grid. Since kE and kN are not necessarily equal, the vertical and
horizontal wires are not necessarily the same shape. Hence, we will see both cases

separately. Vertical wires are made by a =
⌊

kE+kN
2

⌋
columns of cells in state +1, as

shown in Figure 3.10, and the signal have to pass b = kE −a columns to the left. For
creating a TRUE signal, the first cell in the signal column has to be in state +1.

In the other hand, horizontal wires (see Figure 3.11) are made by kN rows in state
+1, and the signal is supposed to be just in the row below. In this case, for initializing a
TRUE signal, it is necessary to have the first c cells in state +1, where

c =
{

b +1 if kE +kN is even,

b otherwise.

Note that the horizontal wires cannot use more than a columns, or they would
spread horizontally over all the rows they use. However, note that they can be separated
by kE +kN −a −2 columns and still work as wires without getting row-wise spread.
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. . . . . .

...

...

FIGURE 3.10 : Vertical wires. Top left : Wire initialized as a FALSE signal, the arrow
represents the cell that has to be in state +1 in order to turn on the
signal. Top right : Wire initialized as a TRUE signal. Bottom left : Wire
initialized as a TRUE signal after 1 step. Bottom right : Wire with a TRUE
signal after some steps.

Next, we show how to simulate logic gates. Since we only simulate monotone circuits,
we need to simulate conjunction and disjunction gates with fan-in 2 and fan-out 2. The
conjunction and disjunction gadgets are depicted in Figures 3.12 and 3.13, respectively.
Conjunction gates output TRUE only when both inputs are TRUE. The disjunction
gate construction is similar, but its outputs are TRUE with at least one TRUE input.

Finally, to simulate any circuit, we need to cross signals. In order to do so, we need a
cross-over gadget (Figure 3.14) that let the east signal go through its west output only
and the north signal through the south output only. In the case both signals are TRUE,
the cross-over gadget works as a conjunction gate. No prior signal coordination is
needed.
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FIGURE 3.11 : Horizontal wires. Top left : Wire initialized as a FALSE signal, the arrow
represents the cells that have to be in state +1 in order to turn on the
signal. Top right : Wire initialized as a TRUE signal. Bottom left : Wire
initialized as a TRUE signal after 1 step. Bottom right : Wire with a TRUE
signal after some steps.
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. . . . . .

. . . . . .

. . . . . .

FIGURE 3.12 : Connected neighborhood AND gadget

■

Theorem 3.5. When restricted to the LMFCA defined with sets SE = {iE , jE } and SN =
{iN , jN } for some iE , jE , iN , jN such that :

• iN is not a multiple of iE ,

• iE is not a multiple of iN ,

• jN is not a multiple of iE ,
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FIGURE 3.13 : Connected neighborhood OR gadget
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FIGURE 3.14 : Connected neighborhood Crossover gadget

• jE is not a multiple of iN ,

• 0 < iE < jE −1 and 0 < iN < jN −1,

the prediction problem is P-complete.

Proof. As well as Theorem 3.4, we reduce the monotone circuit value problem to the
prediction problem. To do so, we construct the conjunction, disjunction and cross-
over gadget. These gadgets are depicted in Figures 3.15, 3.16 and, 3.17 respectively.
Note that, for a signal to be initialized as TRUE, it only needs one cell in state +1. It
is of utmost importance that such cell is the cell immediately at the north(east) for
the signal column(row), otherwise, it will lead to malfunction of the gadget. The latter
fact allows to put the gadgets just one beside/above/below the other. Finally, note that
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the gadgets size depends on a fixed value k > 0, which has to be the same for every
gadget. ■

iN − 1

iN + jN − 1

jN − iN − 1

k times

iN − 1

2jN

iE − 1 jE − iE − 1

k times

iE − 1 iE + jE − 1 2jE

1

1

......

...

...

FIGURE 3.15 : Non-connected neighborhood AND gadget
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1
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FIGURE 3.16 : Non-connected neighborhood OR gadget
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iE − 1 jE − 1 2jE

1

1

......
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FIGURE 3.17 : Non-connected neighborhood Crossover gadget

Theorem 3.6. When restricted to the LFMCA defined with sets SE and SN satisfying all
the following conditions :

• |SE | ≥ 2,

• |SN | ≥ 2,

• (∃p ∈N)(∀a ∈ SE ) : a = 0 mod p, and

• (∃p ′ ∈N)(∀b ∈ SN ) : b = 0 mod p ′,

the prediction problem is P-complete.

Proof. Since every element of SE is a multiple of p, it will create partitions over the grid.
The same happens with SN . These partitions do not interact with each other, i.e., cells
from one partition do not have neighbors from any other partition. This independence
let us see each partition as an independent grid, then one can directly use the gadgets
from Theorem 3.4. The latter mean that one can reduce the monotone circuit value
problem to this instance of the prediction problem, then it is P-complete. ■
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3.3 Chapter Conclusions and Future Work
In Section 3.1, we approximated the prediction problem for the conventional 2-
dimensional Majority Cellular Automaton (MCA) by combining both the canonical
majority and the biased majority. Our findings indicated that this combination results
in a P-complete problem. This raises additional questions beyond the prediction
aspect of the canonical majority : What is the complexity of the prediction problem
when considering a combination of biased-to-0 and biased-to-1 majority rules?
Furthermore, do mixed rules lead to an increase/decrease in the complexity of the
associated prediction problem ? These questions remain open and present promising
avenues for future investigations.

On the other hand, in Section 3.2, we prove the existence of a fast parallel solution for
the prediction problem associated with the Freezing MCA when considering the Toom
neighborhood. However, the complexity shifts to P-complete as the neighborhood
size expands. We propose two possible directions for future work on this topic. First,
considering neighborhoods defined over the first quadrant, in other words, for a
given radius r , the neighborhood of cell (0,0) could be any subset of the square
delimited by coordinates (0,0) and (r,r ). This includes a broader category of L-
shaped neighborhood, as the ones investigated in this study exhibit certain regular
characteristics (connected, equally spaced neighbors, disconnected but with a size
equal to 2). Secondly, another direction for future research involves studying the
complexity of the prediction problem for the non-freezing MCA, taking into account
the L-shaped neighborhoods defined as described above.
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This Chapter is aimed to the study of both prediction and timed-prediction problems
over 2-dimensional sandpiles. As we mentioned before, both of these problems
are properly classified for one dimension sandpiles as NC problems, while for
dimensions greater of equal to three the prediction problem is P-complete. The case
of the 2-dimensional sandpile considering either the von Neumann or the Moore
neighborhood is still an open problem. The underlying challenge in the context
of 2-dimensional sandpile models is the absence of an evident construction of a
crossover gate. Furthermore, the work of Goles and Gajardo GAJARDO et al. 2006
has sustained this difficulty, proving that a crossover gate cannot exist for the 2-
dimensional sandpile, whether one considers the von Neumann neighborhood or
the Moore neighborhood (the eight adjacent cells surrounding a cell). It is crucial
to emphasize that the impossibility to construct a crossover gate solely signifies the
limitation of the Banks approach, therefore the classification of the prediction problem
remains unsolved, as we mentioned before.

This leads us to the focus of this Chapter, where we extend notions in relation
to the complexity of 2-dimensional sandpiles by meticulously studying all the sub-
neighborhoods within the Moore neighborhood, i.e., all the 256 possible combinations
of the eight cells included in the Moore neighborhood. Surprisingly, we found that
there are 12 neighborhoods that admit a crossover gate. For them, we construct all
the necessary circuitry for proving the P-completeness of their prediction problem.
In contrast, for the remaining sub-neighborhoods, we extend the findings of Goles
and Gajardo by establishing the impossibility of a crossover gate. While some of these
proofs present fairly straightforward conclusions, others require deeper analysis and
geometric arguments. In this Chapter, we also prove that the timed prediction problem
isP-complete for 52 different neighborhoods : despite the fact that most of them do not
permit a regular crossover gate, their inner dynamics is provably inherently sequential.

This Chapter is divided as follows. In Section 4.1 we restate the prediction problem
and the timed prediction problem into more adequate although equivalent versions
for the sandpile CA. Section 4.2 conducts an exhaustive analysis of the prediction
problem associated to every possible sub-neighborhood of the Moore neighborhood.
In Section 4.3 we spotlight neighborhoods with a P-complete timed prediction
problem. Concluding this Chapter, Section 4.4 presents a comprehensive discussion
concerning prediction problems within the context of sandpiles. It considers the
analytical tools employed in their study and explores potential model variations,
providing perspectives on the subject.

53



4 The Sandpile Cellular Automata – 4.1 Sandpiles Prediction Problems and
Crossovers

4.1 Sandpiles Prediction Problems and Crossovers
For the sake of simplicity, in this section we define an equivalent version of both, the
prediction and timed-prediction problem. Also, since for the odel the rule is always the
same and it is the neighborhood that changes, we define the prediction problem for a
specyfic neighobrhood N as N -PRED. For any p ∈Z2, let 1p be the configuration
containing a unique grain at position p, and let + denote the cell-wise addition of two
configurations (∀p ∈Z2 : (c + c ′)(p) = c(p)+ c ′(p)). N -PRED asks whether cell q ∈Z2

topples during the evolution from c +1p to (c +1p)◦.

N -sandpile prediction problem (N -PRED)
Input:

• a finite stable configuration c ∈NZ2

• and two positions p, q ∈Zd .

Question: does ∃t ∈N : F t (c +1p)(q) ≥ θ ?

In the case of the N -TIMED-PRED, it asks whether cell q topples at time step t ∈N
during the evolution from c +1p :

N -sandpile timed prediction problem (N -TIMED-PRED)
Input:

• a finite stable configuration c ∈NZ2

• two positions p, q ∈Zd

• and a time t ∈N.

Question: does F t (c +1p)(q) ≥ θ ?

Since some of our results prove the inexistance of a crossover gate for a particular
neighborhood, we first need to precisely define what a crossover gate is. We denote
[n] = {1, . . . ,n} and JnK= {0, . . . ,n −1}.

Definition 4.1 (Crossover gate). A crossover gate is a square subset of the lattice on
which a stable configuration is set, such that it transports signals from two pairs of
opposite sides, independently from each other : two wires cross each other. Given
a sandpile CA N , a crossover gate is formally defined as a configuration g : JmK2 →
{0, . . . ,θ−1} together with two pairs (n, s), (w,e) ∈ (JmK2 \{0,m−1}2)2 of cells not in the
corners such that :

• (n, s) are on opposite sides of JmK2, i.e. ∃!in,s ∈ J2K such that |nin,s − sin,s | = m −1 ;

• (w,e) are on opposite sides of JmK2, i.e. ∃!iw,e ∈ J2K such that |wiw,e−eiw,e | = m−1 ;
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• (n, s) and (w,e) are on different sides of JmK2, i.e. in,s ̸= ie,w ;

• adding a grain at n eventually topples s, without toppling any cell on the other
sides, i.e. ∃t ∈N : F t (g +1n)(s) ≥ θ but, denoting O(i ) = {x ∈ JmK2 | ∃ j ∈ [2] \ {i } :
x j ∈ {0,m −1}} the sides in dimensions different than i , we have ∀p ∈ O(in,s) :
∀t ∈N : F t (g +1n)(p) < θ.

• adding a grain at w eventually topples e, without toppling any cell on the other
sides, i.e. ∃t ∈N : F t (g +1e )(w) ≥ θ but, denoting O(i ) = {x ∈ JmK2 | ∃ j ∈ [2] \ {i } :
x j ∈ {0,m −1}} the sides in dimensions different than i , we have ∀p ∈ O(in,s) :
∀t ∈N : F t (g +1n)(p) < θ.

7

7

7

7

7

7

7

7

7

7

7

7 (0, 0)

FIGURE 4.1 : Example (from GAJARDO et al. 2006) of crossover gate of size 11×11, for
the von Neumann neighborhood of radius two whose eight cells are
depicted on the right :

Nvn2 =⋃
i∈{−2,−1,1,2}{(i ,0), (0, i )}).

Adding a grain at the grey cell on the north side (resp. black cell on the
west side) triggers a chain reaction of topplings eventually toppling the
grey cell on the south side (resp. black cell on the east side).

An example of crossover gate is depicted on Figure 4.1, with n = (5,10), s = (5,0), w =
(0,5),e = (10,5) : adding a grain at n eventually topples s without toppling any cell
from the east nor west sides, and adding a grain at w eventually topples e without
toppling any cell from the north nor south sides. It is necessary to provide this formal
definition (because we will state some impossibility results), although it is difficult
to use in practice, and in the following no precise reference to its constituents will
be made. The main tool we will employ is the pair of firing graphs, presented at the
beginning of Section 4.2.

For the timed prediction problem, a timed crossover gate is required. It is the same
as a crossover gate, except that all quantifications over time t are bounded to a given
value T ∈N+ called the delay of the gate (which is part of the definition of the gate).
That is, when adding a grain to one side (at n or w), the cell on the opposite side (s or
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66

01000010

17

00010001

24

00011000

33

00100001

34

00100010

68

01000100

132

10000100

136
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10000010
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00010010

20

00010100
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01000001
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01001000
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192

11000000

96

01100000

48

00110000
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10010000

87

01010111
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01011011

93

01011101
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01011110
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10100111

171

10101011

173

10101101

174

10101110

82

01010010

81

01010001

84

01010100

88

01011000

161

10100001

162

10100010

164

10100100

168

10101000

200

11001000

145

10010001

50

00110010

100

01100100

148

10010100

97

01100001

194

11000010

56

00111000

208

11010000

224

11100000

112

01110000

176

10110000

74

01001010

21

00010101

26

00011010

37

00100101

42

00101010

69

01000101

133

10000101

138

10001010

67

01000011

28

00011100

38

00100110

41

00101001

19

00010011

76

01001100

134

10000110

137

10001001

146

10010010

52

00110100
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01101000

193

11000001
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01100010

49

00110001

152

10011000

196

11000100

131

10000011

22

00010110

44

00101100

73

01001001

35

00100011

25

00011001

70

01000110

140

10001100

226

11100010

113

01110001

114

01110010

177

10110001

184

10111000

212

11010100

216

11011000

228

11100100

210

11010010

116

01110100

120

01111000

178

10110010

180

10110100

209

11010001

225

11100001

232

11101000

202

11001010

58

00111010

101

01100101

149

10010101

106

01101010

53

00110101

154

10011010

197

11000101

90

01011010

85

01010101

165

10100101

170

10101010

151

10010111

62

00111110

109

01101101

203

11001011

163

10100011

86

01010110

89

01011001

172

10101100

195

11000011

54

00110110

60

00111100

105

01101001

108

01101100

147

10010011

150

10010110

201

11001001

99

01100011

51

00110011

57

00111001

102

01100110

153

10011001

156

10011100

198

11000110

204

11001100

TABLE 4.1 : Equivalence classes of neighborhoods among subsets of Nm. The
representative of each class is highlighted. (Part 1/2)

e) must topple at time step T , and no cell on the other sides must topple before time
step T +1.

4.2 Crossover among subsets of Moore
In this section we present an exhaustive study of whether each subset of the Moore
neighborhood Nm admits a crossover gate or not, in the (uniform) sandpile CA.
Observe that some of the 28 subsets of Nm (which has 8 elements) do not span Z2, and
the existence of a crossover gate is invariant by rotation and axial symmetries of the
neighborhood. It reduces the number of neighborhoods to study to 43 equivalence
classes, presented in Table 4.1. The numbering of neighborhoods is presented below.

Definition 4.2 (Subset of Moore neighborhood). Let n,ne,e,se,s,sw,w,nw denote the
eight cardinal coordinates, starting with north and clowkwise. We will denote a subset
of Moore neighborhood as an 8-bits string, where the i -th bit encodes whether the i -th
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166
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00011101

43

00101011
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01000111

78

01001110

141

10001101
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10001110

135

10000111
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00010111

30

00011110

45

00101101

46

00101110
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01001011

77

01001101

139

10001011

143

10001111
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00011111

47

00101111

79

01001111

242

11110010

241

11110001

244

11110100

248

11111000

234

11101010

117

01110101
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01111010

181

10110101

186

10111010

213

11010101

218

11011010

229

11100101

211

11010011

124

01111100
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10110110

233

11101001

115

01110011

185

10111001

220

11011100

230

11100110

227

11100011

118

01110110

121

01111001

179

10110011

188

10111100

214

11010110

217

11011001

236

11101100

103

01100111

59

00111011

157

10011101

206

11001110

199

11000111

55

00110111

61

00111101

107

01101011

110

01101110

155

10011011

158

10011110

205

11001101

250

11111010

245

11110101

243

11110011

246

11110110

249

11111001

252

11111100

119

01110111

123

01111011

187

10111011

189

10111101

221

11011101

222

11011110

231

11100111

238

11101110

215

11010111

125

01111101

126

01111110

183

10110111

190

10111110

219

11011011

235

11101011

237

11101101

95

01011111

175

10101111

111

01101111

63

00111111

159

10011111

207

11001111

247

11110111

251

11111011

253

11111101

254

11111110

127

01111111

191

10111111

223

11011111

239

11101111

240

11110000

255

11111111

TABLE 4.1 : Equivalence classes of neighborhoods among subsets of Nm. The
representative of each class is highlighted. (Part 2/2)
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coordinate in the list n,e,s,w,nw,ne,se,sw, is part of the neighborhood (bit 1), or not (bit
0). We may also interpret 8-bits strings as numbers (converted to decimal) with the least
significant bit to the right, see Figure 4.2.

8

00001000

74

01001010

39

00100111

135

10000111

127

01111111

FIGURE 4.2 : From left to right, subsets of Moore neighborhoods corresponding
to 00001000 = 8, 01001010 = 74, 00100111 = 39, 10000111 = 135,
01111111= 127.

In this numbering scheme, the von Neumann neighborhood (Nvn) corresponds
to 11110000 = 240, while the Moore neighborhood (Nm) corresponds to 11111111 =
255. It is worth noting that neighborhoods with numbers ≤ 15 consist exclusively of
diagonal neighbors. Consequently, these neighborhoods do not span Z2.

We illustrate with a small figure next to each Theorem statement which
neighborhoods we are considering. They are named in the same order they are shown.

Let us start with the early results that motivate the present study.

Theorem 4.1 (GAJARDO et al. 2006; NGUYEN et al. 2018). Neighborhoods 240 (von
Neumann Nvn) and 255 (Moore Nm) do not admit a crossover gate.

×
11110000 = 240

×
11111111 = 255

This reduces the equivalence classes from 43 to 41.
The causal structure of topplings is captured by the concept of firing graph,

introduced in GAJARDO et al. 2006. It is at the basis of our reasonings in this work. Given
a neighborhood N , we say that cell v1 is an in-neighbor of cell v2 when (v2 −v1) ∈N .
In the symmetric situation (v1 − v2) ∈N it is called an out-neighbor. Observe that v1

may be both an in-neighbor and an out-neighbor of v2. In particular, this is always
the case for symmetric neighborhoods, such as von Neumann Nvn and Moore Nm.

Definition 4.3 (Firing graphs). Given a crossover gate g on cells n, s, w,e ∈ JmK2, we
define its two firing graphs Gg

ns = (Vns , Ans) and G g
we = (Vwe , Awe ) as :

• Vns (resp. Vwe ) is the set of fired cells after adding a grain at cell n (resp. w) ;

• there is an arc (v1, v2) ∈ Ans (resp. Awe ) when v1, v2 ∈Vns (resp. Vwe ), and both :

– v1 is an in-neighbor of v2 for N , and

– v1 is fired strictly before v2 after adding a grain at cell n (resp. w).

The endpoints of a firing graph are called starting cells (n and w) and ending cells (s
and e) respectively. For every arc (v1, v2) in a firing graph, we call v1 a predecessor of
v2. Naturally, for every arc (v1, v2), we call v2 a successor of v1. The transitive and
reflexive closure of the predecessor (resp. successor) relationship is the ancestor
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(resp. descendant) relationship. By definition, a predecessor is necessarily an in-
neighbor, and a successor is necessarily an out-neighbor. The firing graph captures
the effective causal relationships among cells within a given crossover gate, whereas
the in-neighbor and out-neighbor relationships can be seen as potential.

Section outline. We present our findings across distinct subsections to facilitate a
structured exploration of our results. Initially, our intention was to group numerous
neighborhoods into collective proofs. However, we encountered challenges in
grouping them together because there is no evident factorization of the arguments,
i.e., almost all the proofs are unique for each neighborhood. As a result, we opted to
categorize them into separate subsections based on their distinctive characteristics.
In Subsection 4.2.1, we show a striking discovery, two sub-neighbors of Nm, identified
by the numbers 135 and 143, unexpectedly exhibit the capability for a crossover
gate. We prove that both problems 135-PRED and 145-PRED are P-complete by
crafting all the necessary circuitry for reducing from MCVP. In Subsection 4.2.2, we
introduce the framework used for proving the impossibility of a crossover gate for all
the other neighborhoods. This framework hinges on a pivotal concept, the “crossing
constraint”, which serves as a primary component in the subsequent proofs presented
in this section. In Subsection 4.2.3, we prove that all the neighborhoods generating
planar graphs on the grid do not admit a crossover gate. Moving to Subsection 4.2.4,
our attention turns to neighborhoods 247 and 127. These neighborhoods stand out
for their size of 7, which means they are only missing one cell out of the eight
found in the Moore neighborhood. Subsection 4.2.5 is dedicated to the study of
neighborhoods featuring only two cells on the diagonals, while Subsection 4.2.6
focuses on neighborhoods with three and four diagonal cells. At this stage, we are
left with just two remaining equivalence classes, represented by neighborhoods
95 and 39. We have assigned individual subsections to these classes due to their
distinct proofs involving the new concept of “temporal minimality of escape cells”. In
Subsection 4.2.7, we exploit it to prove that a crossover is impossible for neighborhood
95. Finally, Subsection 4.2.8 is dedicated in its entirety to the comprehensive study
of neighborhood 39, undoubtedly presenting the most intricate proof among all
the Moore sub-neighborhoods. This subsection entails not only a synthesis of prior
concepts but also the introduction of new ones, all within a proof structure that
relies on nested cases and inductions under narrow hypotheses. The intricacy of the
proof can be attributed to the intuitive notion that neighborhood 39 almost permits
a crossover gate, which is discussed at the beginning of the Subsection. Table 4.2
summarizes the results of this section.

4.2.1 Crossover possibility
Neighborhoods studied in this subsection :
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Section 4.2.1 4.2.3 4.2.4 4.2.5 4.2.6 4.2.7 4.2.8

Type P-complete Planar
Too many
neighbors

2
diagonals

3 and 4
diagonals

Escape
cell

Almost
crossing

N
ei

gb
o

rh
o

o
d

s

135

10000111

143

10001111

66

01000010

192

11000000

130

10000010

208

11010000

146

10010010

200

11001000

82

01010010

98

01100010

74

01001010

226

11100010

210

11010010

202

11001010

106

01101010

90

01011010

242

11110010

234

11101010

250

11111010

247

11110111

127

01111111

35

00100011

67

01000011

131

10000011

163

10100011

99

01100011

195

11000011

83

01010011

115

01110011

227

11100011

211

11010011

243

11110011

103

01100111

151

10010111

87

01010111

199

11000111

215

11010111

119

01110111

111

01101111

95

01011111

39

00100111

Have a
crossover

gate
✓ ✗

TABLE 4.2 : Summary of results exposed in Section 4.2.

135

10000111

143

10001111

Two non-equivalent subsets of Moore neighborhood admit a crossover gate, and
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4 The Sandpile Cellular Automata – 4.2 Crossover among subsets of Moore

are consequently P-complete to predict, as formalized by N -PRED problem. They
are neighborhoods 135 and 143, for which we present gadgets for the purpose of
implementing arbitrary Boolean circuits. Following one grain addition (at p), the
dynamics of the sandpile then simulates the computation of the circuit, until the
output bit causes (bit 1) or not (bit 0) the toppling of a given cell (at q).

Theorem 4.2. N -PRED is P-complete for neighborhoods 135 and 143.

×
10000111 = 135

×
10001111 = 143

Proof. We prove P-completeness by reduction from monotone circuit value problem
(MCVP) with gates of fan-in and fan-out two (problem AM2CVP in GREENLAW et al.
1995), We consider an embedding of the monotone circuit on the two dimensional grid
(see Figure 4.3), and replace all the elements by the corresponding sandpile gadgets of
fixed size.

x1 x2 x3 x4

∧ ∧ ∨

∨ ∧ ∨

∧

∨

?

x1

x2

x3

x41

∨

∨

∧
∧

∨

∨
∧

∨

∧

∨

?

▼ ▼ ▼

▼ ▼ ▼

▼ ▼

▼

▼

▶

▶
▶

▶
▶
▶

▶

▶

FIGURE 4.3 : Embedding of a MCVP instance of fan-in and fan-out two (left) on the
grid (right). Diodes (represented as ▶ and ▼) are used systematically
between layers in order to enforce the flow of information (and prevent
it to go backward).

For neighborhoods 135 and 143 we eplain how to build : background, constants
0 and 1, west-east and north-south wires, west-south and north-east turns, signal-
duplications, and gates, or gates, crossover gates and diodes. All these elements are
of size 10×10, and are presented for both sandpile CA on Figure 4.4 : signals 1 are
chains of topplings, signals 0 are stable, and gates plug neatly along their sides. A
single constant 1 gate is used, whose central cell is reset to 3 and is the vertex p on
which a sand grain will be added. It triggers the avalanche process (chain reaction
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of topplings), whose signal is duplicated (using or gates) so as to reach the variable
gadgets xi . These variable gadgets are either or gates (for inputs set to 1 in the MCVP
instance) or constant zero gates (for inputs set to 0). The questioned cell is a wire,
with one vertex containing 3 sand grains being the vertex q on which N -PRED asks
whether it topples. The answer is equivalent to having the circuit outputing 1. The
reduction can be performed in logarithmic space, because it amounts to computing
positions in Z2 for each of the elements of the circuit. ■

In the following subsections we prove that none of the remaining 39 equivalence
classes, i.e., no other sub-neighborhood within the Moore neighborhood, admit a
crossover gate.

4.2.2 Crossover impossibility : crossing constraint
In order to prove impossibility of crossover gates, our proofs will proceed by
contradiction, assuming a crossover gate exists. In this subection we give a general
setup that will be used in most proofs. We take a result from NGUYEN et al. 2018,
proving that if a crossover gate exists, then there also exists a crossover gate where the
two firing graphs have disjoint vertex sets (they have no cell in common). In ibid. it is
stated for Eulerian graphs, a property verified by the sandpile CA as introduced in the
present work.

Lemma 4.1 (ibid.). If a sandpile CA N admits a crossover gate, then it also admits a
crossover gate g with firing graphs G g

ns = (Vns , Ans) and G g
we = (Vwe , Awe ), such that

Vns ∩Vwe =;.

Because of Lemma 4.1, from now on, everytime time we refer to firing graphs of a
crossover gate, we assume that they are disjoint. The following Lemma is a very basic
consideration used intensively in the coming proofs, describing the initial setup for
further reasonings.

Lemma 4.2 (Crossing constraint). If N ⊂finNm admits a crossover gate g , then there
exists (i , j ) ∈Z2 such that the two firing graphs Gg

ns , Gg
we verify, up to rotation :

• (i , j ), (i +1, j +1) ∈V (G g
ns) and ((i +1, j +1), (i , j )) ∈ E(G g

ns),

• (i +1, j ), (i , j +1) ∈V (G g
we ) and ((i , j +1), (i +1, j )) ∈ E(G g

we ).

Proof. Since at some point at least one edge of G g
ns has to go over at least one edge of

G g
we , and considering the fact that N ⊆Nm, the only way of crossing is in a diagonal

fashion. Otherwise, N is not a sub-neighborhood of Nm. ■
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(b) West-east wire, diode.
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(c) North-south wire, diode.
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(f) Or gate, signal-duplication.
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(g) And gate.
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(h) Crossover gate. (i) Crossover firing graphs.

FIGURE 4.4 : Wiring toolkit and gates for 135. For 143, all non-empty cells must have
one additionnal grain. No number means 0 grains (empty). Important
cells are highlighted. The background and contant 0 gates are simply
full of 0s. Diodes and wires coincide. Note that the constant 1 gate sends
its signal to both east and south. Gates take their inputs from west and
north then send their output to both east and south. The crossover gate
is bicolored relative the the west to east and north to south signals, whose
firing graphs are also presented (last figure).

v0 = (i, j)

v1 = (i+ 1, j + 1)u1 = (i, j + 1)

u0 = (i+ 1, j)

FIGURE 4.5 : Illustration of the crossing constraint (Lemma 4.2), up to rotation. One
firing graph with plain arcs and vertices vi , the other one with bold arcs
and vertices ui (effective causalities). All subsequent figures will use the
same convention, with dashed arrows usually representing in-neighbors
(potential causality).
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In the proofs, we will denote the four cells given by Lemma 4.2 as v0 = (i , j ), u0 =
(i +1, j ), u1 = (i , j +1), v1 = (i +1, j +1), as illustrated on Figure 4.5. Besides, depending
of the orientation of the crossing contraint, we say that a crossover gate g with firing
graphs G g

ns and G g
we , can cross :

• downwards, if (u1,u0) ∈ E(G g
ns) and (v1, v0) ∈ E(G g

we ) ;

• rightwards, if (u1,u0) ∈ E(G g
ns) and (v0, v1) ∈ E(G g

we ) ;

• upwards, if (u0,u1) ∈ E(G g
ns) and (v0, v1) ∈ E(G g

we ) ; or

• leftwards if (u0,u1) ∈ E(G g
ns) and (v1, v0) ∈ E(G g

we ).

Most of our reasonings will be based on the fact that, if some vertex v from one firing
graph is an in-neighbor of vertex u from the other firing graph, then vertex u must
have at least two predessors in its firing graph (otherwise it is also fired in the other
firing graph, contradicting our assumption that the two firing graphs are disjoint). The
arguments applies to any number of in-neighbors from the other firing graph : a vertex
must have strictly more predecessors from its own firing graph than in-neighbors
from the other firing graph.

4.2.3 Crossover impossibility : planar neighborhoods
Neighborhoods studied in this subsection :

66

01000010

192

11000000

130

10000010

208

11010000

146

10010010

200

11001000

82

01010010

98

01100010

74

01001010

226

11100010

210

11010010

202

11001010

106

01101010

90

01011010

242

11110010

234

11101010

250

11111010

Among the 39 remaining non-equivalent neighborhoods, a first pruning can be done
looking at those neighborhoods that describe a planar graph. Indeed, the crossover
impossibility is a corollary of Lemma 4.1 in this case. We first introduce formally the
sandpile graph corresponding to a given neighborhood, which is an infinite graph
representing the potential chain of reactions that can occur in the sandpile dynamics
of a given neighborhood.

Definition 4.4 (Sandpile graph). Given a neighborhood N ⊂finZ
2, its sandpile graph

has vertex set Z2, and arcs (v1, v2) when (v2 − v1) ∈N .

Corollary 4.1. If neighborhood N has a planar sandpile graph, then it does not admit
a crossover gate.
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Proof. It follows directly from Lemma 4.1, which states that the two firing graphs
(which are finite subgraphs of the sandpile graph) of a crossover gate can have disjoint
sets of vertices (cells). If the sandpile graph is planar, then it is impossible to have a
path from n to s and a path from w to e without any cell in common. ■

There are 17 non equivalent planar neighborhoods, for which Corollary 4.1 can be
applied to deduce the impossibility of crossover.

Theorem 4.3. Neighborhoods 66, 192, 130, 208, 146, 200, 82, 98, 74, 226, 210, 202, 106,
90, 242, 234, and 250 are planar, and therefore do not admit a crossover gate.

4.2.4 Crossover impossibility : too many neighbors
Neighborhoods studied in this subsection :

247

11110111

127

01111111

In this subsection we study the two neighborhoods which are missing only one cell
among the 8 cells of the Moore neighborhood. Neigborhood 247 misses one cell on the
diagonal, and neighborhood 127 misses one cell on the side. Starting from the crossing
constraint of Lemma 4.2, the argument in this case is that the predessors of u1 and v1

cannot be chosen without interacting too much with each other (via the in-neighbor
relationship). For the former we quickly reach an impossibility of crossover, whereas
the latter requires substantial case analysis.

Theorem 4.4. Neighborhood 247 does not admit a crossover gate.

×
11110111 = 247

Proof. The four cells given by Lemma 4.2 can be oriented as a downward or rightward
crossing.

Downward crossing. This case is depicted on Figure 4.6. Both cells u0 and u1 are
in-neighbors of v1, consequently it needs three predecessors which can be selected
among cells v2 = (i+2, j+1), v3 = (i+2, j+2), a = (i+1, j+2) and b = (i , j+2). However,
if both cells a and b are selected as the predecessors of v1, then u1 would have four
in-neighbors from the opposite firing graph, then it would need five predecessors
which is not possible. Hence, only one of a and b can be a predecessor of v1, while the
other two have to be the cells v2 and v3. Now considering that cells v0, v1 and a (resp.
b) are in-neighbors of u1, it needs four predecessors in order not to topple in the other
firing graph, which can only be cells b (resp. a), u2 = (i −1, j +2), u3 = (i −1, j +1),
and u4 = (i −1, j ). Since b (resp. a) is an in-neighbor of v1, this latter needs an extra
predecessor, which is not possible by our previous considerations.

Rightward crossing. It is, up to rotation, the same proof. ■
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u0

u1

u2

u3

u4 v0

v1 v2

v3ab

FIGURE 4.6 : Proof of Theorem 4.4 for neighborhood 247, downward crossing. Only
one of the cells a and b can be a predecessor of v1.

Theorem 4.5. Neighborhood 127 does not admit a crossover gate.

×
01111111 = 127

Proof. The four cells given by Lemma 4.2 can be oriented as an upward, downward,
rightward or leftward crossing.

Upward crossing. For a better understanding of this proof, see Figure 4.7a. Since v0

and v1 are in-neighbors of u0, it needs three predecessors which can be taken among
cells u2 = (i , j −1), u3 = (i+2, j −1), u4 = (i+2, j ) and u5 = (i+2, j +1). Let us prove that
cells u4 and u5 cannot both be predecessors of u0. If we pick both u4 and u5, since they
are in-neighbors of v1, then v1 would need four predecessors (because u1 is also an
in-neighbor of v1). One of them is v0 by the crossing constraint (Lemma 4.2), while the
three other ones must be cells v2 = (i+2, j+2), v3 = (i+1, j+2) and v4 = (i , j+2). In turn,
since v1, v3 and v4 are in-neighbors of u1, this latter would need four predecessors.
One of them is u0 by Lemma 4.2, while the other ones can only be cells u6 = (i−1, j+2),
u7 = (i −1, j +1) and u8 = (i −1, j ). Considering that u0, u1, u7 and u8 are in-neighbors
of v0, then it would need five predecessors, which is not possible. In simple words,
cells u4 and u5 cannot be prededecessors of u0 simultaneously, because it causes a
ripple effect which lets v0 without enough predecessors.

As a consequence, both u2 and u3 must to be predecessors of u0, while the third
one has to be selected between u4 and u5. For the porpose of this proof, it does not
matter if we choose u4 or u5, since both are in-neighbors of v1. Then, without loss
of generality, let us pick cell u4 as the third predecessor of u0. In this way, v1 needs
only three predecessors. The predecessors of v1 can be chosen among cells u5, v2, v3

and v4. However, if we choose u5, then u0 would need an extra predecessor, which is
impossible. On the other hand, if we choose v3 and v4, it will again cause a ripple effect
which lets cell v0 without enough predecessors. Hence, similarly as before, v2 must
be one of the predecessors of v1, while the other one has to be chosen between v3

and v4. Without loss of generality (since they are both in-neighbors of u1), we choose
v3. Let us take a look at cell u1. Since v1 and v3 are its in-neighbors, it needs three
predecessors. We already know that one of them is u0, while the other two have to be
selected among cells v4, u6, u7 and u8. Nevertheless, if v4 is one of them, cell v1 would
need an extra predecessor, which is not possible. Furthermore, if both u7 and u8 are
predecessors of u1, then v0 would need five predecessors, which we already know is
not possible. In other words, one of the predecessors of u1 must be cell u6, while the
second one has to be selected between u7 and u8. Again, for porpouse of this proof, it
does not matter which one we choose, so let us consider that it is u7. The latter makes
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v0 to have three in-neighbors from the opposite firing graph (cells u0, u1 and u7), thus
it needs four predecessors which is not possible.

Downward crossing. We will use the same cell names as in the previous case.
First, let us take a look at cell u0. Since v0 and v1 are its in-neighbors, it needs three
predecessors. One of them is u1 by Lemma 4.2, while the other two have to be selected
among cells u2, u3, u4 and u5. Let us assume u2 is not a predecessor of u0, i.e., it
does not belong to the firing graph of u (see Figure 4.7b). Note that if both cells u4

and u5 are in-neighbors of u0, then the cell v1 would have three in-neighbors from
the opposite firing graph, i.e., it would need four predecessors, which is not possible.
Therefore, u3 must be one of the predecessors of u0, while the other one has to be
chosen between u4 and u5. For the purpose of this proof, it does not matter which one
we choose, so, without loss of generality, let us consider that it is u4. Now, considering
that cells u1 and u4 are in-neighbors of v1, it needs three predecessors, which have to
be cells v2, v3 and v4. Since v1, v3 and v4 are also in-neighbors of u1, this latter needs
four predecessors, which is impossible.

As a consequence, cell u2 must be a predecessor of u0. By symmetry, it also implies
that cell v5 = (i , j −1) must be a predecessor of v0. However, it would generate an
upward crossing with arcs (u2,u0) and (v5, v0), which we already proved is not allowed
in a crossover gate for neighborhood 127.

Rightward crossing. In this case, we will not use the same cell numbering as in
the previous case. An illustration of this proof is depicted on Figure 4.7c. Let us focus
on cell v0. Since u0 and u1 are its in-neighbors, it needs three predecessors, which
can be chosen among cells v2 = (i + 1, j − 1), v3 = (i − 1, j − 1), v4 = (i − 1, j ) and
v5 = (i −1, j +1). However, if both cells v4 and v5 are its predecessors, since they are
also in-neighbors of u1, then u1 would need four predecessors (v1 is also a predecessor
of u1), which is not possible. It means that both cells v2 and v3 must be predecessors
of v0, while the third one has to be chosen between cells v4 and v5. For the purpose
of this proof, it does not matter which one we pick. Without loss of generality, let us
consider v4 as a predecessor of v0. Since v1 and v4 are in-neighbors of u1, it needs three
predecessors which can be selected among cells v5, u2 = (i −1, j +2), u3 = (i , j +2)
and u4 = (i + 1, j + 2). Nevertheless, selecting v5 would make v0 to need an extra
predecessor, which is impossible. In other words, the predecessors of u1 must be cells
u2, u3 and u4. Note that u1, u3 and u4 are also in-neighbors of v1, i.e., cell v1 needs
four predecessors. One of them is v0 by Lemma 4.2, while the other three have to be
cells v6 = (i +2, j +2), v7 = (i +2, j +1) and v8 = (i +2, j ). Considering that v0, v1, v7

and v8 are all in-nighbors of u8, then this latter needs five predecessors, which is not
possible.

Leftward crossing. Considering the symmetry of neighborhood 127, the proof for
this case is analogous to the rightward crossing. ■
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u0

u1

u2 u3

u4

u5

u6

u7

u8 v0

v1

v2v3v4

(a) Upward crossing. Pairs of
cells cannot belong to the
same firing graph : u4 with u5,
v3 with v4, and u7 with u8.

u0

u1

u2 u3

u4

u5

v0

v1

v2v3v4

v5×
(b) Downward crossing.

Assuming u2 does
not belong to the
firing graph of u.

u0

u1

u2 u3 u4

v0

v1

v2v3

v4

v5

v6

v7

v8

(c) Rightward crossing. Only
one of v4 and v5 can be a
predecessor of v0.

FIGURE 4.7 : Proof of Theorem 4.5 for neighborhood 127.

4.2.5 Crossover impossibility : two diagonals
Neighborhoods studied in this subsection :

35

00100011

67

01000011

131

10000011

163

10100011

99

01100011

195

11000011

83

01010011

115

01110011

227

11100011

211

11010011

243

11110011

Let us now study the neighborhoods having only two cells in the diagonals,
numbered 35, 67, 131, 163, 99, 195, 83, 115, 227, 211 and 243. In all these cases, it
is enough to check whether a downward crossing is possible, because the two cells
in the diagonals are on positions south-east and south-west (up to the equivalences
presented in Table 4.1). The arguments are adapted to each neighborhood, they rely
on short case analysis leading either to a direct contradiction, or by induction to the
fact that a crossover gate would be of infinite size.

Theorem 4.6. Neighborhoods 35 and 67 do not admit a crossover gate.

×
00100011 = 35

×
01000011 = 67

Proof. The proofs for the neighborhoods 35 and 67 are very similar. According to
the definitions of these neighborhoods, the four cells given by Lemma 4.2 must be
oriented downward, as depicted on Figure 4.8a.

One of the cells v0 or v1 is an in-neighbor of u0, hence u0 requires another
predecessor (otherwise it also belongs to the other firing graph), which must be at
position u2 = (i +2, j +1). There is a horizontal pattern u1, v1,u2 of three adjacent
cells, alternating between the two firing graphs. We will now show that in both
neighborhoods 35 and 67, it implies that there is another such pattern on the row
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just above. Since the crossover gate must eventually connect the in-neghbors of these
two extremities (e.g. u1 and u2) to a unique cell on the border, we conclude that the
crossover gate cannot have a finite size, which is impossible.

v0

v1

u0

u1 u2

(a) 35,67. From the
crossing constraint,
u2 is a predecessor
of u0.

v0

v1

u0

u1 u2

(b) 35. Two in-neighbors for each
of u1 and u2 must be choosen
in the hatched area.

v0

v1

v2

u0

u1 u2

u3 u4

(c) 35,67. The contradictory
pattern repetition is da-
shed.

FIGURE 4.8 : Proof of Theorem 4.6 for neighborhoods 35 and 67.

Consider neighborhood 35, and the three potential predecessors v2 of cell v1. If
v2 = (i + 1, j + 2) is just above v1, then it is an in-neghbor of both u1 and u2, as a
consequence each of them must have two predecessors. Now observe (see Figure 4.8b)
that any choice of these two predecessors for each lead to the fact that v1 belongs
to both firing graphs, hence contradicting Lemma 4.1. Therefore v2 = (i , j + 2) or
v2 = (i +2, j +2). The two cases are symmetric and we consider v2 = (i +2, j +2) (see
Figure 4.8c). Since v2 is an in-neighbor of u2, cell u2 must have two predecessors,
which can only be cells u3 = (i +1, j +2) and u4 = (i +3, j +2). Cells u3, v2,u4 form a
pattern leading to the announced contradiction.

Consider neighborhood 65. Cell u1 is an in-neighbor of v1, therefore v1 must have
two predecessors, including v2 = (i + 2, j + 2) (see Figure 4.8c). Since v3 is an in-
neighbor of u2, cell u2 must have two predecessors, which can only be cells u3 =
(i+1, j+2) and u4 = (i+4, j+2). Cells u3, v3,u4 form a pattern leading to the announced
contradiction. ■

Theorem 4.7. Neighborhood 131 does not admit a crossover gate.

×
10000011 = 131

Proof. The four cells given by Lemma 4.2 must be oriented downward, as depicted
on Figure 4.9. Cell v0 is an in-neighbor of u1, therefore u1 requires two predecessors
which can only be cells u2 = (i −1, j +2) and u3 = (i +1, j +2). Similarly, in the other
firing graph, cells v2 = (i , j +2) and v3 = (i +2, j +2) must be predecessors of v1. This
generates another downward crossing just above the original one, and by induction
the crossover gate must be of infinite size, a contradiction. ■
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v0

v1

v2 v3

u0

u1

u2 u3

FIGURE 4.9 : Proof of Theorem 4.7 for neighborhood 131.

Theorem 4.8. Neighborhood 163 does not admit a crossover gate.

×
10100011 = 163

Proof. The four cells given by Lemma 4.2 must be oriented downward, as depicted on
Figure 4.10. Let us focus on node u1. Since v0 is an in-neighbor of it, u1 needs at least
two predecessors. The available cells are a = (i−1, j+1), b = (i , j+1) and c = (i+1, j+1).
This means that at least one of the predecessors is cell b or c . However, it would imply
that node v1 has three or four predecessors (because u0 is also an in-neighbor of v1),
which is impossible : not enough cells are available in the in-neighborhood of v1. ■

v0

v1

u0

u1

a b c

FIGURE 4.10 : Proof of Theorem 4.8 for neighborhood 163. The dashed arrows
represent the possible predecessors of cells u1 and v1.

Theorem 4.9. Neighborhoods 99 and 195 do not admit a crossover gate.

×
01100011 = 99

×
11000011 = 195

Proof. For neighborhood 99, cell u0 needs three predecessors, but there are only
two available. The same thing happens with cell v1 in the case of the neighborhood
195. ■

Theorem 4.10. Neighborhood 83 does not admit a crossover gate.

×
01010011 = 83

Proof. The four cells given by Lemma 4.2 must be oriented downward. Cell v1 is an in-
neighbor of u1, therefore u1 needs two predecessors in its firing graph. There are three
available cells : u2 = (i+1, j+2), u3 = (i−1, j+2) and u4 = (i−1, j+1) (see Figure 4.11a).
However, if u4 is a predecessor of u1, then cell v0 will have two in-neighbors in the
opossite firing graph (u0 and u4), and it would need three predecessors, which is not
possible. As a consequence, the only possible predecessors for u1 are the cells u2 and
u3. By the symmetry of neighborhood 83, the same reasoning applies to obtain the
predecessors of v1, which can only be the cells v2 = (i , j +2) and v3 = (i +2, j +2) (see
Figure 4.11b). This creates another downward crossing above the initial one, meaning
by induction that the crossover gate is of infinite size, a contradiction. ■
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v0

v1

u0

u1

u2u3

u4

(a) Available predecessors of cell u1.

v0

v1

v2 v3

u0

u1

u2u3

(b) Cells u2 and u3 (resp. v2 and v3)
must be predecessors of u1 (resp.
v1).

FIGURE 4.11 : Proof of Theorem 4.10 for neighborhood 83.

Theorem 4.11. Neighborhood 115 does not admit a crossover gate.

×
01110011 = 115

Proof. The four cells given by Lemma 4.2 must be oriented downward, as depicted
on Figure 4.12. Cells v0 and v1 are in-neighbors of u0, hence cell u0 needs at least
three predecessors in the firing graph, which can only be cells u1, u2 = (i +2, j +1) and
u3 = (i +2, j ). Since u1 and u2 are in-neighbors of v1, cell v1 needs three predecessors,
and the only cells availables for this are the three cells above it : v2 = (i , j +2), v3 =
(i +1, j +2), v4 = (i +2, j +2). In turn, this causes cell u2 to need three predecessors
too, but it does not have enough available in-neighbors. ■

v0

v1

v2 v3 v4

u0

u1 u2

u3

FIGURE 4.12 : Proof of Theorem 4.11 for neighborhood 115.

Theorem 4.12. Neighborhood 227 does not admit a crossover gate.

×
11100011 = 227

Proof. The four cells given by Lemma 4.2 must be oriented downward, as depicted on
Figure 4.13. Both cells u0 and u1 are in-neighbors of cell v1, consequently cell v1 needs
at least three predecessors, which can only be cells v2 = (i , j +2), v3 = (i +1, j +2) and
v4 = (i +2, j +2). Since v2 and v3 are in-neighbors of u1, the latter must have three
predecessors, which is not possible. ■
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v0

v1

u0

u1

v2 v3 v4

FIGURE 4.13 : Proof of Theorem 4.12 for neighborhood 227.

Theorem 4.13. Neighborhoods 211 and 243 do not admit a crossover gate.

×
11010011 = 211

×
11110011 = 243

Proof. The four cells given by Lemma 4.2 must be oriented downward, as depicted
on the two cases of Figure 4.14. Let us focus on cell u1. Since v0 and v1 are both
in-neighboors of u1, it needs at least three predecessors.

For neighborhood 211 these three predecessors of u1 can only be cells u2 = (i −
1, j +1), u3 = (i −1, j +2) and a = (i +1, j +2) (see Figure 4.14a). By the symmetry
of neighborhood 211, the same reasonong applies to v1, and its only three available
predecessors are v2 = (i +2, j +1), v3 = (i +2, j +2) and b = (i , j +2). Now, observe that
cells v1, v2 and b are all in-neighbors of a. Cell a therefore requires four predecessors,
which is not possible.

In the case of the neighborhood 243 (see Figure 4.14b), the three predecessors of
cell u1 can be selected among cells u2, u3, a and b. Hence at least one of a and b
must be chosen. Since a and b are both in-neighbors of v1, the latter needs at least
four predecessors (because u0 and u1 are also in-neighbors of v1), which is again not
possible. ■

v0

v1 v2

v3a

u0

u1u2

u3 b

(a) 211,243 : Cell a (resp. b) is a
predecessor of v1 (resp.u1).

v0

v1 v2

v3a

u0

u1u2

u3 b

(b) 243 : Cell a (resp. b) is a predeces-
sor of u1 (resp. v1).

FIGURE 4.14 : Proof of Theorem 4.13 for neighborhoods 211 and 243.

4.2.6 Crossover impossibility : three or four diagonals
Neighborhoods studied in this subsection :

103

01100111

151

10010111

87

01010111

199

11000111

215

11010111

119

01110111

111

01101111
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In this subsection we study neighborhoods having three or four diagonal cells, hence
for which the crossing constraint (Lemma 4.2) has two to four possible orientations.
We continue to present proofs by contradiction, following case analysis. Neighborhood
111 requires a somewhat long development. For neighborhoods 95 and 39, we present
a different approach in the next subsection.

Theorem 4.14. Neighborhood 103 does not admit a crossover gate.

×
01100111 = 103

Proof. The four cells given by Lemma 4.2 can have two orientations : downward or
rightward crossing.

Downward crossing. See Figure 4.15. First notice that v0 and v1 are in-neighbors of
cell u0, hence it needs two extra predecessors, which can only be cells u2 = (i , j −1)
and u3 = (i +2, j +1). At the same time, u1 is an in-neighbor of cell v1, hence it needs
two predecessors, that have to be selected among cells v2 = (i , j +2), v3 = (i +1, j +2)
and v4 = (i +2, j +2). Consequently, at least one of v2 or v3 must be a predecessor
of v1. The latter means that cell u1 also needs two predecessors, which can in turn
be chosen among cells v2, v3, u4 = (i −1, j ), u5 = (i −1, j +1) and u6 = (i −1, j +2).
However, chosing v2 or v3 makes v1 need another predecessor, but it already ran out
of possibilities. Then the remaining cells are u4, u5 and u6, and at least one of u4 and
u5 must be a predecessor of u1. If we chose u4 (resp. u5), then the cell v0 has two
in-neighbors from the opposite firing graph, and it needs three predecessors, which
can only be cells v1, v5 and u5 (resp. u4). This implies that u1 needs an additional
predecessor, but the only remaing available cells are v2 or v3, which we already showed
cannot be selected as predecessors of u1.

Rightward crossing. Up to rotation, the rightward crossing has the same proof of
impossibility as the downward crossing. ■

v0

v1

v2 v3 v4

v5

u0

u1

u2

u3

u4

u5

u6

FIGURE 4.15 : Proof of Theorem 4.14 for neighborhood 103.

Theorem 4.15. Neighborhood 151 does not admit a crossover gate.

×
10010111 = 151

Proof. Downward crossing. Let us place the four cells given by Lemma 4.2 as depicted
in Figure 4.16a. First of all, notice that cell u1 has v0 and v1 as in-neighbors, hence it
needs three predecessors which can be only cells u2 = (i +1, j +1), u3 = (i −1, j +1) and
u4 = (i −1, j −1). On the other hand, cell u0 is an in-neighbor of v1, consequently v1

needs at least two predecessors. These predecessors can be chosen among cells v2 =
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(i +2, j +1), v3 = (i , j +1) and v ′ = (i +2, j +1). However, if we take v ′ as a predecessor
of v1, then cell u2 would need three predecessors, which is not possible. Hence, the
predecessors of v1 must be cells v2 and v3. Now let us focus on cell v3. Both cells u2

and u3 are in-neighbors of v3, consequently it needs three predecessors, that have to
be cells v4 = (i +1, j +3), v5 = (i −1, j +3) and v6 = (i −1, j +1). Finally, cell v6 needs
three predecesors because u1 and u4 are in-neighbors of it. Nevertheless, v6 does not
have enough available in-neighbors (see Figure 4.16b).

Rightward crossing. Same proof up to rotation. ■

u0

u1

u2u3

u4 v0

v1

v3

v2

v′

(a) Available predecessors of v1.

v0

v1

v2

v3

v4v5

v6

u0

u1

u2u3

u4

(b) Predecessors of cells v1 and v3.

FIGURE 4.16 : Proof of Theorem 4.15 for neighborhood 151.

Theorem 4.16. Neighborhood 87 does not admit a crossover gate.

×
01010111 = 87

Proof. Rightward crossing. This case is depicted on Figure 4.17a Let us first focus on
cell v0. Since u0 is its in-neighbor, it needs two predecessors which can be cells v2 =
(i −1, j −1), v3 = (i −1, j ), and v2 = (i −1, j +1). If cells v3 and v4 are both predecessors
of v0, considering that they are also in-neighbors of u1, then u1 would need four
predecessors (v1 is also an in-neighbor), which is not possible. In other words, v2 has
to be one of the predecessors of v0, while the second one has to be chosen between
v3 and v4. For the purpose of this proof, there is no difference if we choose v3 or v4,
then, without loss of generality, let us pick v3. Now, u1 has two in-neighbors from the
opposite firing graph : v1 and v3, and consequently it needs three predecessors that
can only be cells v4, u2 = (i −1, j +2) and u3 = (i +1, j +2). However, since v4 is an
in-neighbor of v0, it follows that v0 needs an extra predecessor, which is not possible.

Downward crossing. For this case, we use the same cell numbering as before. This
proof is depicted in Figure 4.17b. First of all, let us prove that cells u2 and u3 have to
be predecessors of u1. Initially, u1 has only one in-neighbor from the oppossite firing
graph, which is cell v1, then it needs two predecessors. As we want to prove that both
u2 and u3 have to be predecessors of u1, let us show what happens if we pick one of v3

or v4. Considering that v3 (resp. v4) and u0 are in-neighbors of v0, the latter therefore
needs three predecessors. One of them is v1 by Lemma 4.2, while the other two can
only be cells v2 and v4 (resp. v3). Note that v4 (resp. v3) is also an in-neighbor of u1,
hence now it needs an extra predecessor. In other words, selecting one of v3 and v4

as a predecessors of u1, just makes u1 need an extra predecessor. Subsequently, we
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can ensure that u2 and u3 are predecessors of u1 since there are the only remaining
in-neighbors.

Now, we prove that no matter what predecessors are chosen, the following happens
(see Figure 4.17c) : the initial cross implies either another cross, or a given pattern P ;
then in turn the pattern P implies either another cross, or another pattern P . Inasmuch
as the crossover gate has to be of finite size, this leads to contradiction. Since u1 is an
in-neighbor of v1, cell v1 needs two predecessors. Its available in-neighbors are cells
v ′ = (i , j +2), v2 = (i +2, j +1) and v3 = (i +2, j +2). However, if v ′ is a predecessor, then
it would be generating another cross above the original one. Therefore, the only option
left is to consider cells v2 and v3 as the predecessors of v1. This is the first appearance
of the pattern, which consists in cells u2, v ′, u1, v1 and v2. Considering that v3 is an in-
neighbor of u3, then u3 needs two predecessors, which can only be cells u4 = (i , j +3)
and u5 = (i +2, j +3) (cell v ′ cannot be chosen since it makes v1 to exhaust its available
predecessors). Since in turn u3 is an in-neighbor of v3, cell v3 needs two predecessors
which can be chosen among cells v ′′ = (i+1, j+3), v4 = (i+3, j+2) and v5 = (i+3, j+3).
If v ′′ is chosen, then it generates another cross, therefore it is necessary to select v4

and v5. Here the pattern appears again, formed by cells u4, v ′′, u3, v3 and v4. ■

u0

u1

u2 u3

v0

v1

v2

v3

v4

(a) Rightward crossing.
Cell v0 exhausts its
in-neighbors.

u0

u1

u2 u3

v0

v1

v2

v3

v4

(b) Downward crossing.
Selecting v4 as a
predecessor of u1.

u0

u1

u2

u3

u4 u5

v0

v1 v2

v3 v4

v5

v′

v′′

×
×

(c) Downward crossing. An infinite
pattern appears. The first occur-
rence is dashed, the second one
is dotted.

FIGURE 4.17 : Proof of Theorem 4.16 for neighborhod 87.

Theorem 4.17. Neighborhood 199 does not admit a crossover gate.

×
11000111 = 199

Proof. Downward crossing. Cells u0 and u1 are in-neighbors of v1, i.e., v1 needs
three predecessors, but it does not have enough available in-neighbors. Therefore a
downward crossing is impossible.

Rightward crossing. The cells and arcs used for this proof are depicted in Figure 4.18.
Cells u0 and u1 are in-neighbors of v1, therefore it needs three predecessors which
can only be cells v0, v2 = (i +2, j +2) and v3 = (i , j +2). On the other hand, cell v0 is an
in-neighbor of u1, hence u1 needs two predecessors. The in-neighbors available are
cells u′ = (i +1, j +2), u2 = (i −1, j +2), u3 = (i −1, j +1), u4 = (i −1, j ). If we choose u′

as one of the predecessors, we would be generating a downwawrds crossing with arcs
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(u′,u1) and (v3, v1), but this is impossible for neighborhood 199 by the previous case.
Additionaly, if we choose both u3 and u4, then cell v0 would need three predecessors
which is not possible. In other words, one of the predecessors of u1 has to be u2, while
the other one has to be either u3 or u4. Since u3 and u4 are in-neighbors of v0, it
needs two predecessors and v4 = (i −1, j −1) together with v5 = (i , j −1) are the only
in-neighbors available. Cells u3 and u4 cannot be predecessors of v0, because is would
follow that u1 needs an extra predecessor, which can only be contradictory by the
preceding case analysis.

Now let us focus on cell u0. It has two in-neighbors from the opposite firing graph,
which are cells v0 and v5, and consequently it needs three predecessors, which can
only be cells u1, u5 = (i +1, j −1) and u6 = (i +2, j +1). Remark that we can consider
without loss of generality that v1 has a successor. We deduce that the successor of v1

can only be v ′ = (i +2, j ). However this creates a downward crossing with arcs (v1, v ′)
and (u6,u0), which is impossible by the previous case. ■

u0

u1

u2 u′

u3

u4

u5

u6

v0

v1

v2v3

v4 v5

v′

FIGURE 4.18 : Proof of Theorem 4.17 for neighborhood 199. Dashed arrows show the
possible predecessors of u1, however only one from the hatched area
can be selected.

Theorem 4.18. Neighborhood 215 does not admit a crossover gate.

×
11010111 = 215

Proof. Downward crossing. The cells for this proof are depicted in Figure 4.19a. Note
that cells u0 and u1 are both in-neighbors of cell v1, hence it needs three predecessors.
The only available cells for being predecessors of v1 are cells v2 = (i +2, j +1), v3 =
(i +2, j +2) and v4 = (i , j +2). Now, let us consider cell u1. It has cells v0 and v1 as
in-neighbors, hence it also needs three predecessors which can be selected among
cells u2 = (i +1, j +2), u3 = (i −1, j +2), u4 = (i −1, j +1), and u5 = (i −1, j ). However, if
both cells u4 and u5 are predecessors of u1, then cell v0 would need four predecessors,
which is not possible. The latter means that u2 and u3 have to be predecessors of u1,
while the third predecessor has to be selected between cells u4 and u5. Nevertheless,
observe that v1, v3 and v4 are all in-neighbors of cell u2, therefore u2 needs four
predecessors, which is also impossible.

Rightward crossing. The cells for this proof are depicted in Figure 4.19b.
Analogously to the rightward crossing, u2 and u3 have to be two of the three
predecessors of u1, and the third one has to be selected between u4 and u5. Now
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let us take a look at cell v0. It has two in-neighbors from the opossite firing graph :
the first one is either u4 or u5, and the other is u0. Consequently, cell v0 needs three
predecessors, which is not possible. ■

v0

v1

v2

v3v4

u0

u1

u2u3

u4

u5

(a) Downward crossing.

v0

v1

v4

u0

u1

u2u3

u4

u5

(b) Rightward crossing.

FIGURE 4.19 : Proof of Theorem 4.18 for neighborhood 215.

Theorem 4.19. Neighborhood 119 does not admit a crossover gate.

×
01110111 = 119

Proof. Downward crossing. Note that cells v0 and v1 are in-neighbors of u0, therefore
it needs three predecessors. One of them is u1 by the crossing constraint (Lemma 4.2).
The other two can be selected among u2 = (i , j −1), u3 = (i +2, j ) and u′ = (i +2, j +1).
However, if u′ is a predecessor of u0 (see Figure 4.20a), then v1 would have two in-
neighbors from the opposite firing graph (cells u1 and u′). It means that v1 would
need three predecessors, which can only be cells v2 = (i +2, j +2), v3 = (i +1, j +2)
and v4 = (i , j +2). In this situation, cell u1 has three in-neighbors from the oppossite
firing graph : cells v1, v3 and v4. It follows that it needs four predecessors, which is not
possible. In other words, u′ cannot be a predecessor of u0.

We deduce that we have to pick cells u2 and u3 as predecessors of u0 (see
Figure 4.20b). In that case, v1 needs only two predecessors. Since v3 and v4 cannot
simultaneously be predecessors of v1 (otherwise u1 would need four predecessors
again), only one of them has to be selected, while the second one must be cell v2.
Note that cell u′ cannot be selected as a predecessor of v1, since it would make u0 to
need an extra predecessor, which is not posible. Now cell u1 needs three predecessors,
which can only be cells u4 = (i −1, j +2), u5 = (i −1, j +1) and u6 = (i −1, j ). Note that
v3 and v4 cannot be selected as predecessors of u1, because it would make cell v1 need
an extra predecessor, nevertheless there are no more available in-neighbors. Since u0,
u1, u5 and u6 are all in-neighbors of v0, cell c0 needs five predecessors, which is not
possible.

Rightward crossing. The proof for this case is depicted in Figure 4.20c. Analogously
to the downward crossing, cell u0 needs two more predecessors and u′ cannot be
chosen as one of them by the exact same reasoning. As a consequence, we have to take
cells u1, u2 and u3 as predecessors of u0. Now cell v1 needs two predecessors, one of
them is v0 while the other can be chosen among cells v2, v3 and v4. Let us study these
cases separately.

If we choose v3 (resp. v4), then u1 needs three predecessors as both v1 and v3

(resp. v4) are its in-neighbors. These three predecessors have to be chosen among the
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cells v4 (resp. v3), u4, u5 and u6. The latter implies that at least one of u5 and u6 is a
predecessor of u1. Since u0, u5 and u6 are in-neighbors of v0, then it needs at least
three predecessors which is not possible.

On the other hand, if we choose v2 then u1 needs only two predecessors (as v1 is its
in-neighbor). These two predecessors have to be taken from cells v3, v4, u4, u5 and u6.
Note that if we take v3 (resp. v4), then cell v1 would need an extra predecessor, which
can only be cell v4 (resp. v3), what in turn would make u1 to need an extra predecessor.
In other terms, selecting v3 or v4 is optional in this case and, without loss of generality,
we will consider only cells u4, u5 and u6, as possible predecessors for u1. The latter
implies that at least one of u5 and u6 is a predecessor of u1. Since u0, u5 and u6 are
in-neighbors of v0, then it needs at least three predecessors which is not possible. ■

u0

u1

u2

u3

u′

v0

v1

v2v3v4

(a) Cell u′ cannot be
chosen as a prede-
cessor of u0.

u0

u1

u2

u3
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u6 v0
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v4 v3 v2

(b) Downward crossing. Cell
v0 does not have enough
in-neighbors.
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u3
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u4
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u6 v0

v1

v4 v3 v2

(c) Rightward crossing. Cell
v0 does not have enough
in-neighbors.

FIGURE 4.20 : Proof of Theorem 4.19 for neighborhood 119.

Theorem 4.20. Neighborhood 111 does not admit a crossover gate.

×
01101111 = 111

Proof. Upward crossing. The cells for this proof are depicted in Figure 4.21a. First of
all, notice that cell u0 needs three predecessors. They can only be cells u2 = (i , j −1),
u3 = (i +2, j −1) and u4 = (i +2, j +1). On the other hand, v0 needs two predecessors,
which can be selected among cells v2 = (i −1, j +1), v3 = (i −1, j ), v4 = (i −1, j −1)
and v ′ = (i +1, j −1). We will prove that v ′ has to be a predecessor of v0, which creates
another upward crossing just below the original one, with arcs (v ′, v0) and (u2,u0).
By induction, this new upward crossing creates another one, etc, and the crossover
gate must have an infinite size, which is absurd. We prove the latter by contradiction,
assuming v ′ is not a predecessor of v0. In such a case, both predecessors of v0 have
to be chosen among v2, v3 and v4. Note that if we choose v3 and v4, they make u2 to
need four predecessors, which is not possible. In other words, one predecessor of v0

must be v2, while the second predecessor is v3 or v4. If we choose v3 (resp. v4), then
cell u2 needs three predecessors. The predecessors of u2 can only be cells v4 (resp. v3),
u5 = (i −1, j −2) and u6 = (i +1, j −2). Considering that v4 (resp. v3) is an in-neighbor
of v0, then v0 needs an extra predecessor and the only remaining in-neighbor of v0 is
v ′.
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Leftward crossing. This case is symmetric to the upward crossing.
Downward crossing. We rename the cells for this case, starting with u0,u1, v0, v1

given by Lemma 4.2 as depicted in Figure 4.21b. Both v0 and v1 are in-neighbors of
u0, hence it needs three predecessors. One of them is u1, while the other two have to
be chosen among cells u2 = (i , j −1), u3 = (i +2, j −1) and u′ = (i +2, j +1). We first
proceed by contradiction, assuming u′ is a prodecessor of u0, in order to prove that
this is impossible (see Figure 4.21b). Let us consider cell v1. It has one in-neighbor
from the opposite firing graph (cell u1), i.e., it needs two predecessors which can be
selected among cells v ′ = (i +2, j ), v2 = (i +2, j +2), v3 = (i +1, j +2) and v4 = (i , j +2).
We can immediatly discard cell v ′ since it creates a leftward crossing with arcs (v ′, v1)
and (u′,u0), which we already proved impossible. Moreover, cells v2 and v3 cannot
both be predecessors of v1. This is because they are, together with v1, in-neighbors
of u′, making it to need four predecessors, which is not possible. It follows that one
of the in-neighbors of v1 must be v4, while the second one can be chosen between
v2 and v3. If v2 (resp. v3) is chosen, then cell u′ needs three predecessors that can
only be cells u′′ = (i +3, j ), u′′′ = (i +3, j +2) and v3 (resp. v2). Since v3 (resp. v2) is
also an in-neighbor of v1, cell v1 needs an extra predecessor and the only available
in-neighbor is v ′ which, as we already mentioned, generates a leftward crossing. With
this we proved that u′ cannot be a predecessor of u0.

The latter implies that the predecessors of u0 are u2 and u3, so let us continue the
reasoning with this hypothesis (see Figure 4.21c). Apart from u2 and u3, we rename
again the cells for a better understanding of the proof. Note that u1 is an in-neighbor
of v0, hence v0 needs an extra predecessor which can be selected among cells v2 =
(i +1, j −1), v3 = (i −1, j +1), v4 = (i −1, j ) and v5 = (i −1, j ). We now prove that none
of them can be the extra predecessor of v0, thus the downward crossing is not possible.
Let us proceed by cases.

Case v2. It generates an upward crossing with arcs (v2, v0) and (u2,u0), which has
already been proven impossible.

Case v3. Since v3 is an in-neighbor of u1, cell u1 needs two predecessors which can
be selected among cells v4, u4 = (i −1, j +2), u5 = (i , j +2) and u6 = (i +1, j +2). We
again proceed by exhaustion.
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FIGURE 4.21 : Proof of Theorem 4.20 for neighborhood 111.
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First, let us prove that v4 cannot be a predecessor of u1 (see Figure 4.21d). In such
a case, cell v0 needs an extra predecessor which can only be cell v5 (selecting v2

generates an upward crossing). Since v0 and v5 are in-neighbors of u2, it needs three
predecessors and the only remaining in-neighbors are the cells u4, u7 = (i −1, j −2)
and u8 = (i +1, j −2). At the same time, since v4 is an in-neighbor of v5, cell v5 requires
two predecessors which can be selected among cells v6 = (i −2, j ), v7 = (i −2, j −1),
v8 = (i −2, j −2) and v9 = (i , j −2). Selecting v9 creates an upward crossing with arcs
(v9, v5) and (u7,u2), thus we can discard it. On the other hand, selecting (at least) one
of v6 and v7 (which is mandatory) makes v4 to exhaust its possible predecessors (note
that v3 is also an in-neighbor v4). We conclude that v4 cannot be a predecessor of u1.

Now, let us prove that choosing u6 as predecessor of u1 also leads to a contradiction
(see Figure 4.21e). Since both u1 and u6 are in-neighbors of v1, it needs three
predecessors that can only be the cells u5, v10 = (i +2, j ) and v11 = (i +2, j +2). This
creates a new downwards crossing with arcs (u5, v1) and (u6,u1). Observe that the arc
(v11, v1) also leads to a contradiction since v11 cannot be a predecessor of v1, for the
same reason that cell u′ = (i +2, j +1) cannot be a predecessor of u0 (Figure 4.21b).
Therefore, cell u6 cannot be a predecessor of u1.

Given that none of v4 and u6 can be predecessor of u1, we are forced to assume
that u4 and u5 are the only two predecessors of u1. We now prove that a pattern is
repeated infinitely within the crossing gate, which is impossible (see Figure 4.21f).
Since both u4 and u5 are in-neighbors of v3, it needs three predecessors which can
only be cells v6, v12 = (i − 2, j + 1) and v13 = (i − 2, j + 2). Consequently, since v12

and v13 are in-neighbors of u4, it needs three predecessors which can only be cells
u9 = (i − 2, j + 3), u10 = (i − 1, j + 3) and u11 = (i , j + 3). This is the first occurrence
of the pattern, which is composed of the cells v6, v12, v13, u9, u10 and u11 (dashed
on Figure 4.21f). Following with the reasoning, note that cells u9 and u10 are both
in-neighbors of v13, which means that it needs three predecessors. These predecessors
can only be cells v14 = (i −3, j +1), v15 = (i −3, j +2) and v16 = (i −3, j +3). Both cells
v15 and v16 are in-neighbors of u9, i.e., it needs three predecessors which can only
be cells u12 = (i −3, j +4), u13 = (i −2, j +4) and u14 = (i −1, j +4). This creates the
second occurrence of the pattern which consists in the cells v14, v15, v16, u12, u13 and
u14. Inductively the pattern would repeat infinitely, which is absurd. We conclude that
u4 and u5 cannot be the predecessors of u1, which in turn implies that v3 cannot be
the predecessor of v0.

Case v4. This case is depicted in Figure 4.21g. Note that the cells v0 and v4 are
in-neighbors of u2, i.e., it needs three predecessors, which can only be cells v5, u7

and u8. On the other hand, cells u1 and u2 are in-neighbors of v4, hence it needs
three predecessors which can be selected among cells v3, v6, v7 and v12. There are
two important facts to note at this point : first that cells v0, v4, v6 and v7 are all in-
neighbors of v5, and second that since v4 needs three predecessors and there are four
options, at least one of v6 and v7 has to be chosen. It follows that cell v5 needs at least
four predecessors, which is not possible.

Case v5. Cells v0 and v5 are in-neighbors of u2, thus it needs three predecessors,
which can only be cells v4, u7 and u8. Since v4 is an in-neighbor of v0, cell v0 needs an
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extra predecessor, however we have already exhausted all the other possibilities in the
previous cases.

Righward crossing. This case is symmetric to the downward crossing. ■

4.2.7 Crossover impossibility : escape cells and timestamps
Neighborhood studied in this subsection :

95

01011111

For the proofs that crossover gates do not exist in neighborhoods 95 and 39, we
will strengthen the hypothesis on the crossing constraint given by Lemma 4.2 by
considering the first crossing constraint occuring in one of the two firing graphs. This
temporal minimality is formalized as follows.

Definition 4.5 (Escape cell). Given a crossover gate g with firing graphs G g
ns and

G g
we , let us call crossing edge of G g

ns (resp. G g
we ) an arc (u′,u) ∈ Ans (resp. ∈ Awe ) that

intersects an arc (v ′, v) ∈ Awe (resp. Ans). In this case u and v are called escape cells.

Definition 4.6 (Timestamp). Given a crossover gate g with firing graphs G g
ns and G g

we ,
we associate to each cell of Vns and Vwe a timestamp t ∈N defined as the one plus the
maximum timestamp among its predessors, starting with timestamp 1 for cells n and
w .

Timestamps exactly correspond to the temporality of topplings within a crossover
gate. Note that a firing graph G g

ns (resp. G g
we ) can have several escape cells with the

same timestamp, and we will consider any of the minimum ones. Intuitively, this extra
hypothesis of minimality will be helpful in reaching contradictions : in some cases a
predecessor of the minimum escape cell under consideration will be surrounded by
cells from the other firing graph, leaving no choice but to have another crossing edge
on the path from n (resp. w) to it, hence another escape cell with a strictly smaller
timestamp, contradicting the assumption on its minimality.

We formalize this intuition into the following lemma, but first define a notion of
path partitioning the crossover gate (joining the two extremities of a firing graph).

Definition 4.7 (Dividing path). In a firing graph, a dividing path is a directed path
from n to s (in Gns), or a directed path from w to e (in Gwe ). Such a path divides the
crossover gate into two parts.

Without loss of generality, we can assume that each cell (appart from the starting and
ending cells of the firing graph) from both firing graphs has at least one predecessor
and at least one successor, otherwise it can be removed from the firing graph (by
setting its sand content to 0) whilst the configuration is still a crossover gate. Observe
that with this assumption, any directed path can be extending into a dividing path.
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Lemma 4.3. Given the pair of firing graphs of a crossover gate, if cell u has two ancestors
u′,u′′, such that in the other firing graph there is a dividing path with u′ and u′′ lying
in different parts, then u has an ancestor distinct from itself which is an escape cell.

Proof. Cells u′ and u′′ must have an ancestor in common (the starting cell of their
firing graph), which implies that the corresponding path (linking u′ and u′′) intersects
the dividing path from the other firing graph. Since we consider only ancestors of u′

and u′′, cell u must have a strict ancestor (not itself) which is an escape cell. ■

We also derive the following corollary, because the intersection of the (directed)
dividing path with the ancestors of u (more precisely with some path from its starting
cell to u) must happen ahead of the predecessors of u.

Corollary 4.2. In Lemma 4.3, if the dividing path intersects an arc whose head is cell
u, then it has another intersection with the other firing graph, which happens strictly
earlier on the dividing path.

Theorem 4.21. Neighborhood 95 does not admit a crossover gate.

×
01011111 = 95

Proof. Let u1 = (i , j ) be a minimum escape cell of one of the two firing graphs. It is
important to mention that (u0,u1) is a crossing edge, i.e. it intersects an arc of the
opposite firing graph. The two endpoints of this latter, denoted v0 and v1, are fixed by
(u0,u1), but we will ignore its precise direction (which cell is the head or tail does not
matter).

According to Lemma 4.2, there are a four possible orientations for the arc (u0,u1).
However, they are all equivalent by symmetry. Therefore, without loss of generality,
we consider only the case with u0 = (i +1, j −1), v0 = (i , j −1) and v1 = (i +1, j ) (see
Figure 4.22).

Since v1 is an in-neighbor of u1, then u1 requires an extra predecessor. This
predecessor can be one of the following cells : w2 = (i − 1, j − 1), w4 = (i − 1, j ),
w6 = (i − 1, j + 1) or w8 = (i + 1, j + 1). We will prove that these four cases lead to
contradictions.

Case w4. If w4 is a predecessor of u1, then cells w4 and u0 are both predecessors of
u1. Furthermore, the edge between v0 and v1 can be extended into a dividing path,
with w4 and u0 on different sides. Lemma 4.3 applies, contradicting the temporal
minimality of escape cell u1.

Case w6. If w6 is a predessor of u1, then the situation is analogous to the previous
case with w6 playing the role of w4 (on the opposite side of u0).

Case w2. If the extra predecessor of u1 is w2, then v0 needs three predecessors, since
both u0 and w2 are its in-neighbors. Considering that v0 also needs a successor, then
the following cells are in its firing graph : v1, w4, w0 = (i −1, j −2) and w1 = (i +1, j −2).
For any choice of the successor among them, a directed path can be extended into a
dividing path with w2 and u0 on different sides. It follows again by Lemma 4.3 that
there is an escape cell with a strictly smaller timestamp than u1, a contradiction.

Case w8. Finally, if w8 is the extra predecessor of u1, then cell v1 has an in-neighbor
(u1) from the other firing graph hence it needs at least two predecessors, and still at
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FIGURE 4.22 : Proof of Theorem 4.21 for neighborhood 95.

least one successor. For any choice of these three relatives of v1 (cell v0 and two more,
chosen among cells w7 = (i , j +1), w3 = (i +2, j −1), w5 = (i +2, j ) or w9 = (i +2, j +1)),
it creates a directed path that can be extended into a dividing path with u0 and w8 on
different sides. By Lemma 4.3 we reach again a contradiction. ■

4.2.8 Crossover impossibility : almost crossing signals
Neighborhood studied in this subsection :

39

00100111

The study of neighborhood 39 requires much more developments, and the
impossibility of crossover consists in a much longer proof split in multiple
intermediate results. The intuitive reason for this is that neighborhood 39 almost
has a crossover gate. This behavior is illustrated on Figure 4.23, which presents a
situation where two disjoint firing graphs (none of the vertices from one firing graph
is toppled by the other firing graph) almost cross each other. They are intricated, and
this intrication can be continued up to an arbitrary length. We eventually prove that,
despite of this construction where the two firing graphs interact in a non trivial way, a
crossover gate is impossible in neighborhood 39 (Theorem 4.22).

For the proof, we first identify two forbidden patterns (Lemma 4.4 ; even though the
forbidden pattern 2 will not be necessary, we still present it). Then the proof proceeds
again by contradiction (assuming a crossover gate exists), with a large case analysis
split into multiple lemmas. Each case is discard either (1) by encountering a forbidden
pattern, or (2) because the crossover gate would be of infinite size, or (3) when it
contradicts the temporal minimality of the escape cell under consideration.

Lemma 4.4 (Forbidden patterns). The firing graphs G g
ns and G g

we of a crossover
gate g for neighborhood 39 cannot have any of the two induced pairs of subgraphs
GFi = (VFi , AFi ) and G ′

Fi
= (V ′

Fi
, A′

Fi
) at any position p, q ∈ Z for i ∈ {1,2}, where (see

Figure 4.24) :
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FIGURE 4.23 : Almost crossover gate for 39. The pattern can be repeated up to an
arbitrary length, while preserving the fact that both firing graphs are
disjoint. However, the two graphs do not eventually cross each other, as
this is proven impossible in Theorem 4.22.

(p, q)

(a) Forbidden pattern
1.

(p, q)

(b) Forbidden pattern 2.

FIGURE 4.24 : Forbidden patterns for neighborhood 39 (Lemma 4.4).

Forbidden pattern 1.
VF1 = {(p, q), (p, q −2), (p +1, q −1)} and AF1 = {((p, q −2), (p +1, q −1))},
V ′

F1
= {(p, q −1), (p +1, q)} and A′

F1
= {((p, q −1), (p +1, q))}.

Forbidden pattern 2.
VF2 = {(p, q), (p−1, q−1), (p−2, q), (p−3, q−1)} and AF2 = {((p, q), (p−1, q−1)), ((p−

2, q), (p −1, q −1)), ((p −2, q), (p −3, q −1))},
V ′

F2
= {(p −1, q), (p −2, q −1)} and A′

F2
= {((p −1, q), (p −2, q −1))}.

×
00100111 = 39

Proof. We show that these subgraphs repeat, hence inductively require that g is
infinite.

Forbidden pattern 1. See Figure 4.25a. In such a case, cell (p, q − 2) needs two
predecessors which can only be the cells (p −1, q −1) and (p −1, q −3). Something
similar occurs to (p, q −1), it needs two predecessors and the only options are cells
(p −1, q) and (p −1, q −2). This repeats the original pattern shifted by (−1,−1).

Forbidden pattern 2. Cell (p, q) needs to “come” from somewhere, i.e., it needs a
predecessor. If cell (p −1, q +1) is its predecessor (Figure 4.25b), then cell (p −1, q)
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(p, q)

(a) Forbidden pattern 1.
Repetition.

(p
, q
)

(b) Forbidden pattern 2.
Repetition.

(p
, q
)

(c) Forbidden pattern 2.
Impossibility at (p, q).

FIGURE 4.25 : Proof of Lemma 4.4 for neighborhood 39.

needs two predecessors which can only be cells (p − 2, q + 1) and (p, q + 1). Since
(p, q +1) is an in-neighbor of (p, q), it needs an extra predecessor that can only be
the cell (p +1, q +1), which causes (p +1, q) to need two predecessors and the only
remaining options are (p, q +1) and (p +2, q +1). The latter generates a repetition of
the original pattern shifted by (1,1). The exact same pattern is obtained if (p +1, q +1)
is initially considered as the predecessor of (p, q).

On the other hand, if (p, q+1) is considered as the predecessor of (p, q) (Figure 4.25c),
then both cells (p−1, q) and (p+1, q) need two predecessors each. The only options for
cell (p−1, q) are cells (p−2, q+1) and (p−1, q+1), while for (p+1, q) the only options
are (p +1, q +1) and (p +2, q +1). Since both cells (p −1, q +1) and (p +1, q +1) are in-
neighbors of (p, q), cell (p, q) needs two extra predecessors, which is not possible. ■

We will consider a minimum escape cell, and number again the cells as given by
Lemma 4.2, that is with v0 = (i , j ), v1 = (i +1, j +1), u0 = (i +1, j ) and u1 = (i , j +1). For
neighborhood 39, up to symmetries there are four ways that a cell can be a minimum
escape cell, which correspond to the following scenarios :

1. rightward crossing where u0 is a minimum escape cell,

2. rightward crossing where v1 is a minimum escape cell,

3. downward crossing where u0 is a minimum escape cell,

4. downward crossing where v0 is a minimum escape cell.

Scenarios 1 and 4 are the most difficult to handle, and in Lemma 4.5 we prove that they
are actually equivalent, in the sense that the existence of one implies the existence of
the other. Then a succession of tedious studies will lead to Lemma 4.8, stating that
scenario 1 is impossible (and so is scenario 4). Lemma 4.9 proves that scenario 3 is
impossible, which is fairly straightforward. At this point, given that only scenario 2
is possible in both firing graphs, a case analysis on the orientation of the crossover
gate (regarding the cardinal directions north, east, south, west) will allow to conclude
that a crossover gate is impossible for neighborhood 39. This last step of the proof
(Theorem 4.22) exploits new arguments, using the fact that neighborhood 39 cannot
transmit grains in the north-west direction.
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Lemma 4.5. The existence of a crossover gate g for neighborhood 39 with a rightward
(resp. downward) crossing such that u0 (resp. v0) is a minimum escape cell, implies
that g also contains a downward (resp. rightward) crossing with arcs (v1, (i +2, j )) and
((i +2, j +1),u0) (resp. (u1, (i −1, j )) and ((i −1, j +1), v0)) (see Figure 4.26).

×
00100111 = 39

v0

v1u1

u0

(a) Rightward crossing
⇒ downward crossing.

v0

v1u1

u0

(b) Downward crossing
⇒ rightward crossing.

FIGURE 4.26 : Statement of Lemma 4.5 for neighborhood 39. Minimum escape cell is
dashed.

Proof. We prove the two respective implications of the statement one after the other.
Righward crossing =⇒ downward crossing. For the rightward crossing

(Figure 4.27a), cell u0 needs two predecessors, one of them is u1 by our hypothesis,
while the second one can be chose among u′ = (i , j −1) and u2 = (i +2, j +1). However,
choosing u′ creates a forbidden pattern 1 (Lemma 4.4), hence the second predecessor
of u0 must be cell u2. Now we want to prove that v1 can only have v2 = (i +2, j ) as
its successor. The other possibily is v3 = (i +2, j +2), but it would create a dividing
path with u1 and u2 on different parts (recall that any directed path can be extended
to a dividing path, and firing graphs are acyclic), contradicting by Lemma 4.3 the
minimality of u0.

Downward crossing =⇒ rightward crossing. For a downward crossing where v0 is
a minimum escape cell, cell u0 also needs an extra predecessor, which can be either be
cell u′ = (i +2, j +1) or cell u2 = (i , j −1) (Figure 4.27b). However, note that choosing u′

would let it be on the other side (compared to u1) of any dividing path going through
arc (v1, v0), hence contradicting the minimality of v0 (by Corollary 4.2 on the dividing
path). The latter means that u2 must be the extra predecessor of u0. Since v0 is an
in-neighbor of u2, u2 needs two predecessors that can only be the cells u3 = (i−1, j −2)
and u4 = (i −1, j ). The next step consists in choosing a predecessor for cell v0. The
possibilities are cells v ′ = (i −1, j −1) and v2 = (i −1, j +1). Nevertheless, choosing v ′

creates a forbidden pattern 1 (Lemma 4.4), hence v2 is the only option.
Now we prove that the arc (u4,u1) is mandatory. To do so, we analyse all cases over

the possible predecessors of cell u1. There are four possibilities : u4, u5 = (i −1, j +2),
u6 = (i , j +2) and u7 = (i +1, j +2).

Case u7 (Figure 4.27c). Since u7 is an in-neighbor of v1, cell v1 needs two
predecessors that can only be the cells v3 = (i +1, j +2) and u6. However, this turns v1

into an escape cell that topples strictly before v0.
Case u6 (Figure 4.27d). Considering that u6 is an in-neighbor of v1, then v1 needs

two predecessors that can only be the cells v3 and u7. Since u7 is also an in-neighbor
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FIGURE 4.27 : Proof of Lemma 4.5 for neighborhood 39.

of u1, then u1 needs an extra predecessor that can be selected among u4 and u5. If it is
u4, then we are done. Hence, let us consider u5. Since both u5 and u6 are in-neighbors
of v2, cell v2 needs three predecessors, which is not possible.

Case u5 (Figure 4.27e). Cell v2 is an in-neighbor of u4, therefore u4 needs two
predecessors that have to be chosen among u1, u8 = (i −2, j −1) and u9 = (i −2, j +1).
Since it needs two predecessors, we are forced to pick at least one of u8 and u9.
However, they both trap cell v2 into the hypothesis of Corollary 4.2, which means there
is another escape cell that topples before v0.

Case u4 (Figure 4.27f). It is the only possible option. This generates a rightward
crossing with arcs (u4,u1) and (v2, v0), as announced. ■
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Next is a technical result (Lemma 4.6) for proving the existence of one arc in a
precise situation. It will be an ingredient in the subsequent reasoning (Lemma 4.7),
which aims at giving a large setup for the firing graphs in the case of scenario 1. Then
Lemma 4.8 will conclude that scenario 1 is impossible.

Lemma 4.6. If there exist a crossover gate g for neighborhood 39 with firing graphs G g
ns

and Gg
we , such that the following arcs belong to G g

ns (resp. G g
we ) (see Figure 4.28a) :

((0,0), (1,−1)), ((2,0), (1,−1)),
and the following arcs belong to Gg

we (resp. G g
ns) :

((0,−1), (1,−2)), ((0,−3), (1,−2)), ((1,−2), (2,−1)), ((1,0), (2,−1)),
then the arc ((1,−1), (2,−2)) belongs to Gg

ns (resp. G g
we ).

Any translation of the statement holds as well.

×
00100111 = 39

Proof. If the first part of the statement holds, then it is obvious that it holds up to
translation by any vector (p, q) ∈ Z2, since we have no assumption peculiar to any
absolute position within the Z2 grid.

The hypothesis are depicted on Figure 4.28a, and our goal is to prove that the dashed
arc (1,−1), (2,−2) is enforced. Note that the cell (1,−1) needs a successor that can be
either (2,−2) or (0,−2). If it is (2,−2) we are done, so let us study the other case. If
(0,−2) is the successor of (1,−1), then the cell (0,−3) needs two predecessors that
can only be the cells (−1,−2) and (−1,−4). Also note that (0,−1) is an in-neighbor of
(0,−2), then cell (0,−2) needs an extra predecessor that has to be chosen among cells
(−1,−1) and (−1,−3). However, it cannot be the cell (−1,−3) because it generates the
forbidden pattern 1 (Lemma 4.4), then the only option is the cell (−1,−1). Observe
that the latter reasoning generates a repetition of the initial pattern, shifting by vector
(−1,−1) (Figure 4.28b).

There is now a choice on the successor of cell (0,−2), that can be either (1,−3) or
(−1,−3). If (1,−3) is chosen, then the reasoning generates another repetition of the
initial pattern, shifted by vector (−2,−2). This process can be repeated an arbitrary
number of times (but a finite number, because a crossover gate is finite), until the
successor of cell (−k+1,−k−1) for some k ∈N is chosen to be cell (−k+2,−k−2) (see
Figure 4.28c).

In that case, (−k+2,−k−2) needs an extra predecessor since the cell (−k+2,−k−1)
is its in-neighbor. There are two options : cell (1− k,−k − 3), which generates the
forbidden patern 1 (Lemma 4.4) hence we cannot chose it, and cell (−k +3,−k −1).
Now observe that cell (−k +3,−k −1) has cell (3−k,−k) as an in-neighbor, therefore it
needs two predecessors which can only be cells (−k+2,−k) and (−k+4,−k). Moreover,
the same reasoning applies inductively to all the cells :

(−k +3,−k −1), (−k +4,−k), (−k +5,−k +1), . . . , (1,−3), (2,−2).

This is depicted in Figure 4.28d. Eventually, cell (2,−2) needs two predecessors which
can only be cells (1,−1) and (3,−1), i.e., the arc ((1,−1), (2,−2)) is enforced. ■

The next lemma settles a large part of the architecture of firing graphs in scenario 1.
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(0, 0)

(a) Initial pattern with plain arcs,
and the enforced arc dashed.

(0, 0)

(-k,-k)

· · ·

(c) The pattern repeated k times.

(0, 0)

(b) Choosing (0,−2) as a
successor of (1,−1). The
dashed arc generates a
forbidden pattern.

(0, 0)

(-k,-k)

· · ·

(d) Cell (2,−2) requires (1,−1) as a predecessor.

FIGURE 4.28 : Proof of Lemma 4.6 for neighborhood 39.

Lemma 4.7. If there exists a crossover gate for neighborhood 39 with a rightwards
crossing such that u0 is a minimum escape cell (scenario 1), then the firing graphs for
this crossover gate has the following nodes (see Figure 4.29a) : u0, u1, u2 = (i +2, j +1),
u3 = (i+3, j+2), u4 = (i+2, j−1), v0, v1, v2 = (i−1, j+1), v3 = (i−1, j−1), v4 = (i , j−2),
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u0

u1

u2

u3

u4

v0

v1v2

v3

v4

v5

v6

(a) Arcs obtained by
Lemma 4.7.

u0

u1

u2

u3

v0

v1v2

v3

v6

c a bd

e

(b) Predecessors of u2.

u0

u1

u2

u3

v0

v1v2

v3 v5

v6

b

f

g

(c) f cannot be a predecessor of
v6.

FIGURE 4.29 : Proof of Lemma 4.7 for neighborhood 39.

v5 = (i +1, j −1), v6 = (i +2, j ), and arcs : (u1,u0), (u0,u4), (u2,u0), (u3,u2), (v2, v0),
(v3, v0), (v0, v1), (v0, v5), (v4, v5), (v1, v6), (v5, v6).

×
00100111 = 39

Proof. The goal of this proof are the firings graphs depicted in Figure 4.29a. Starting
from the hypothesis that u0 is a minimum escape cell within a rightward crossing, we
proced by proving that all the arcs stated in this Lemma are mandatory.

Arcs (u2,u0) and (v1, v6). They follow by Lemma 4.5.
Arcs (v2, v0) and (v3, v0). Cell v0 has u1 as an in-neighbor, hence it needs two

predecessors which can only be cells v2 and v3.
Arc (u3,u2). Let us check the possible predecessors of cell u2 (see Figure 4.29b),

which can be a = (i +1, j +2), b = (i +2, j +2) or u3. If a is chosen, considering that
it is an in-neighbor of v1, then v1 needs an extra predecessor which can be either
c = (i , j +2) or b. If b is chosen, then u2 would turn into an escape cell that topples
before u0, contradicting its temporal minimality as an escape cell. On the other han,
if c is chosen as the extra predecessor of v1, then u1 would need two predecessors
that have to be chosen among the cells a, d = (i −1, j +2) and e = (i −1, j ). However,
chosing e generates the forbidden pattern 1 (Lemma 4.4), consequently a and d have
to be the predecessors of u1. Nevertheless, since a is an in-neighbor of v1, cell v1

needs an extra predecessor that can only be the cell b, but we already proved this to
be contradictory.

In the case that b is chosen as the predecessor of u2, then v1 needs an extra
predecessor that can be chosen between a and c. I we chose a, since it is an in-
neighbor of u2, then u2 needs an extra predecessors, which can only be the cell u3,
and we are done. The remaining option is chosing c as predecessor of v1. In such a case,
u1 would need two predecessors among cells a, d and e. Choosing cell e generates
the forbidden pattern 1 (Lemma 4.4), then a and d have to be the predecessors of u1.
Nevertheless, since a is an in-neighbor of v1, cell v1 needs an extra predecessor, but
there are no more available in-neighbors.

Finally, the only remaining possible predecessor of u2 is u3.
Arc (v5, v6). Since u2 is an in-neighbor v6, then v6 needs an extra predecessor, that

can be either f = (i +3, j +1) or v5 (Figure 4.29c). If f is chosen then it would need two
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u0

u1

u2

u3

u4

u5

u′

v0

v1v2

v3

v4

v5

v6

(a) Arc (u5,u4)
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u1

u2

u3

u4

u5

v0
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v3

v4

v5

v6

v′

v′′ v′′′

(b) v ′ as successor of v6
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v4
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(c) The pattern is repeated.
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v1v2
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v6

v7

v8

v′′′′

(d) Chosing v ′′′′ as a predecessor of v7 “traps” u1.
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u2
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u5

u6
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v1v2

v3

v4

v5

v6

v7

v8

v9

(e) Predecessors of v8.

FIGURE 4.30 : Base case for Lemma 4.8 for neighborhood 39.

predecessors, this is because u3 is an in-neighbor of f . The only possible predecessors
for f are the cells b and g = (i +4, j +2). However, this would turn u2 into an escape
cell that topples strictly before u0. Therefore, the extra predecessor of v6 has to be v5.

Arcs (v0, v5) and (v4, v5). Since u0 is an in-neighbor of v5, cell v5 needs two
predecessors which can only be the cells v0 and v4.

Arc (u0,u4). It is obtained by Lemma 4.6. ■

Eventually, scenario 1 is proven to be impossible.

Lemma 4.8. There does not exist a crossover gate g for neigborhood 39 with a rightward
crossing such that u0 is a minimum escape cell (scenario 1).

×
00100111 = 39

Proof. We proceed by contradiction, assuming that there exists a crossover gate g such
that u0 is a minimum escape cell within a rightward crossing. We use the firing graphs
obtained in Lemma 4.7 (Figure 4.29a) as a starting point. We prove by induction that
this pattern requires a crossover gate of infinite size, which is absurd. The induction
relies on shifting the pattern by vector (1,−1) (except the arc from u3 to u2). We
prove the first pattern repetition as a base case, and then prove that it would repeat
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indefinitely, because the reasoning used after this first repetition does not require the
presence of u3 anymore.

Base case. Cell v6 is an in-neighbor of u4, then u4 needs an extra predecessor. There
are two options : u′ = (i+1, j −2) which generates the forbidden pattern 1 (Lemma 4.4),
and u5 = (i +3, j ) which must therefore be chosen (see Figure 4.30a).

Now let us study the successor of v6. There are two possible out-neighbors to select.
One of them is v ′ = (i +3, j +1) and the other one is v7 = (i +3, j −1). We prove that
chosing v ′ is not possible (see Figure 4.30b). If v ′ is the successor of v6, since u3 is its
in-neighbor then it needs an extra predecessor than can be either v ′′ = (i +2, j +2)
or v ′′′ = (i +4, j +2). However, v ′′ cannot be chosen because it would turn u2 into an
escape cell that topples before u0. Cell v ′′′ cannot be selected either, since it traps
the cell u1, meaning there is another escape cell that topples before u0 (Corollary 4.2
applies, considering the ancestors v2 and v ′′′ of v ′, and the dividing path going through
u1,u0,u4). The latter means that the successor of v6 has to be v7 (Figure 4.30c).

Note that u5 is an in-neighbor of v7, then v7 needs an extra predecessor. This
predecessor can be either v ′′′′ = (i + 4, j ) or v8 = (i + 2, j − 1). Analogously to the
previous reasoning, choosing v ′′′′ traps the cell u1 (Figure 4.30d), therefore v8 has to
be selected.

The next step is to consider cell v8. It needs two predecessors, since u4 is its in-
neighbor. The only options are v5 and v9 = (i +1, j −3).

Finally, consider the cell u6 = (i +3, j −2), it can be added as the successor of u4 by
Lemma 4.6. The obtained situation is depicted on Figure 4.30e.

Induction step. Assume the pattern has already been repeated k ∈ N times, we
will prove that it must repeated once more. We got the cells (see Figure 4.31a) : ũ0 =
(i +k +1, j −k), ũ1 = (i +k +2, j −k +1), ũ2 = (i +k +2, j −k −1), ṽ0 = (i +k, j −k),
ṽ1 = (i+k+1, j −k+1), ṽ2 = (i+k, j −k−2), ṽ3 = (i+k+1, j −k−1), ṽ4 = (i+k+2, j −k),
and the arcs : (ũ0, ũ2), (ũ1, ũ0), (ṽ0, ṽ3), (ṽ2, ṽ3), (ṽ1, ṽ4), (ṽ3, ṽ4).

Note that cell ṽ4 is an in-neighbor of ũ2, then ũ2 needs an extra predecessor. There
are two options, however, one of them, the cell ũ′ = (i +k +1, j −k −2), generates
the forbidden pattern 1 (Lemma 4.4), consequently the only valid option is cell ũ3 =
(i +k +3, j −k) (Figure 4.31b).

Now let us analyse the possible successors of ṽ4. There are two possibilities : cells
ṽ5 = (i + k + 3, j − k − 1) and ṽ6 = (i + k + 3, j − k + 1). We prove that choosing ṽ6

implies that the arc (ṽ4, ṽ5) also exists (Figure 4.31c). If ṽ6 is the successor of ṽ4 we
can assume that ṽ4 is the only cell in the path p = (v1, v6, v7, . . . , ṽ1, ṽ4) that has its
north-east out-neighbor as a succesor. Also, if ṽ6 is the successor of ṽ4, then ũ3 needs
two predecessors (since ṽ6 is its in-neighbor). There are only two options : cells ũ1

and ũ4 = (i +k +4, j −k +1). Now, the same reasoning that was applied over ṽ4 can be
applied over ṽ6. Moreover, it can be applied inductively. Let assume it has been applied
k̃ ∈ N times. The latter means that we have the following cells (see Figure 4.31c) :
v̂0 = (k + k̃ + 2,−k + k̃), v̂1 = (k + k̃ + 1,−k + k̃ − 1), û0 = (k + k̃ + 2,−k + k̃ − 1), û1 =
(k + k̃ +1,−k + k̃), û2 = (k + k̃ +3,−k + k̃), and arcs : (v̂1, v̂0), (û1, û0), (û2, û0).

Now v̂0 needs a successor that can be either v̂ ′ = (k + k̃ +3,−k + k̃ +1), repeating the
pattern once again, or v̂2 = (k+k̃+3,−k+k̃−1). As choosing v̂ ′ just repeats the pattern,
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ṽ0

ṽ1
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ũ2

ũ3
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(b) ũ3 has to be the extra predecessor of ũ2.
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ṽ6

ũ0
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(c) ṽ6 as successor of ṽ4.

FIGURE 4.31 : Induction step for Lemma 4.8 for neighborhood 39.

let us focus on v̂2. Since û2 is an in-neighbor of v̂2, it needs an extra predecessor.
There are two options, the cells v̂ ′′ = (k + k̃ +4,−k + k̃) and v̂3 = (k + k̃ +2,−k + k̃ −2)
(Figure 4.31d). However, chosing cell v̂ ′′ traps cell u1 (as depicted in Figure 4.31d),
which would contradict the minimality of escape cell u0. One could think, in order
to avoid contradicting the minimality of u0, that one of the cell of the path p can be
an ancestor of v̂ ′′, however, as we mentioned before, we assume that v4 is the only
cell in p that has its north-east out-neighbor as a successor, and v4 is clearly not an
ancestor of v̂ ′′. In other words, v2 and v̂ ′′ have an ancestor in common that is above
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(d) Possible predecessors of v̂2.
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ṽ2

ṽ3
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(e) The arc (ṽ4, ṽ5) is mandatory.

FIGURE 4.31 : Induction step for Lemma 4.8 for neighborhood 39.

both of them, then, we can extend the arc (u1,u0) into a dividing path with v2 and v̂ ′′

on different sides, contradicting the minimality of escape cell u0. Therefore, chosing
v̂3 is the only remaining option. Since û0 is an in-neighbor of v̂3, cell v̂3 needs two
predecessors, that can only be the cells v̂1 and v̂4 = (k + k̃ +1,−k + k̃ −3). Moreover,
all the following cells need two predecessors and they only have the north-east and
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(f) Repetition of the pattern.

FIGURE 4.31 : Induction step for Lemma 4.8 for neighborhood 39.

south-east in-neighbors available (Figure 4.31e) :

v̂3 = (k + k̃ +2,−k + k̃ −2), (k + k̃ +1,−k + k̃ −3), (k + k̃,−k + k̃ −4),

(k + k̃ −1,−k + k̃ −5), . . . , (i +k +4, j −k), ṽ5 = (i +k +3, j −k −1).

In particular, the two predecessors of ṽ5 must be the cells ṽ4 and ṽ7 = (i+k+2, j−k−2),
i.e., the arc (ṽ4, ṽ5) is mandatory.

Now, note that ũ2 is an in-neighbor of ṽ7, then ṽ7 needs two predecessors that can
only be the cells ṽ3 and ṽ8 = (i +k +1, j −k −3) (Figure 4.31f). Finally, by Lemma 4.6,
cell ũ4 = (i +k +3, j −k −2) is a successor of cell ũ2, which completes the (k +1)-th
repetition of the pattern for the induction. ■

We deduce that scenario 4 is also impossible.

Corollary 4.3. There does not exist a crossover gate g for neigborhood 39 with a
downward crossing such that v0 is a minimum escape cell (scenario 4).

×
00100111 = 39

Proof. Direct consequence of Lemmas 4.5 (equivalence between scenarios 1 and 4)
and 4.8 (impossibility of scenario 1). ■

Let us now prove that scenario 3 is impossible, which is much simpler to establish.

Lemma 4.9. There does not exist a crossover gate g for neigborhood 39 with a downward
crossing such that u0 is a minimum escape cell (scenario 3).

×
00100111 = 39

96



4 The Sandpile Cellular Automata – 4.2 Crossover among subsets of Moore

Proof. Note that u1 is an in-neighbor of v0, then v0 needs an extra predecessor. The
only two options are cells v2 = (i −1, j +1) and v3 = (i −1, j −1). However, both of them
trap the arc (u1,u0) into a dividing path where v1 and v2 (or v3) are on opposite sides
(see Figure 4.32). By Corollary 4.2, there is an escape cell that topples strictly before u0

and contradicts its minimality. ■

v0

v1v2

v3

u0

u1

FIGURE 4.32 : Proof of Lemma 4.9.

We now turn to the final reasoning for the impossibility of a crossover gate in
neighborhood 39. According to the previous results, minimum escape cells from
both firing graphs must be in scenario 2 (rightward crossing where v1 is a minimum
escape cell. The following lemma expresses the fact that the descendant relationship
in neighborhood 39 cannot go in the north-west direction.

Lemma 4.10. For neighborhood 39, if cell (i ′, j ′) is a descendant of cell (i , j ), then :

j − i ≥ j ′− i ′.

Proof. Considering that the neighborhood 39 is defined as :

N39 = {(1,1), (1,−1), (0,−1), (−1,−1)}

the out-neighbors (potential descendants) of a cell (i , j ) are (i +1, j +1), (i +1, j −1),
(i , j −1) and (i −1, j −1). All of them fulfil the condition, and the lemma follows by
transitivity of the order ≥ on integers (recall that the descendent relationship is the
transitive closure of the successor relationship). ■

Theorem 4.22. Neighborhood 39 does not admit a crossover gate.

×
00100111 = 39

Proof. Considering Corollary 4.3, Lemma 4.8 and Lemma 4.9, if there exists a crossover
gate g with firing graphs G g

a = (Va , Aa) and G g
b = (Vb , Ab) for the neighborhood 39, then

any minimum escape cell (ia , ja) of G g
a (resp. (ib , jb) of G g

b ) must appear in a rightward
crossing and be toppled by the predecessor (ia −1, ja −1) (resp. (ib −1, jb −1)). This
corresponds to scenario 2, which is the situation in both firing graphs, since scenarios
1, 3 and 4 in any of the two firing graphs has been proven to be impossible.
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Notice that the rightward crossing having minimum escape cell (ia , ja) consists in
the arcs :

((ia −1, ja −1), (ia , ja)) ∈ Aa and ((ia −1, ja), (ia , ja −1)) ∈ Ab ,

while the rightward crossing having minimum escape cell (ib , jb) consists in the arcs :

((ib −1, jb −1), (ib , jb)) ∈ Ab and ((ib −1, jb), (ib , jb −1)) ∈ Aa .

The orientation of the crossing with a minimum escape cell has been fixed
(rightward in scenario 2), therefore it is necessary to consider all global orientations
of the crossover gate (in terms of its cardinal endpoints). We study the following four
scenarios, which exhaust all possibilities (up to exchange of the two firing graphs).

2.1. G g
a goes from north to south and G g

b goes from west to east,

2.2. G g
a goes from north to south and G g

b goes from east to west,

2.3. G g
a goes from south to north and G g

b goes from west to east,

2.4. G g
a goes from south to north and G g

b goes from east to west.

Scenario 2.1 (Figure 4.33a). Consider the rightward crossing with minimum escape
cell (ia , ja) in G g

a . Firing graph G g
a must have a path pa from the north border to the

cell (ia −1, ja), and firing graph G g
b must have a path pb from the west border to the

cell (ia −1, ja −1). In this case, either the path pb intersects the path pa (contradicting
the minimality of escape cell (ia , ja) in G g

a ), or the path pb contains a cell (i , j ) such
that j − i < ja − ia (under the dotted diagonal), which cannot reach cell (ia −1, ja −1)
by Lemma 4.10 (another contradiction). Consequently this scenario is impossible.
Scenario 2.2 (Figure 4.33b). Consider the rightward crossing with minimum escape
cell (ib , jb) in G g

b . Firing graph G g
a must have a path pa from the north border to the

cell (ib −1, jb), and firing graph G g
b must have a path pb from the east border to the

cell (ib −1, jb −1). In this case, either the path pb intersects the path pa (contradicting
the minimality of escape cell (ib , jb) in G g

b ), or the path pb contains a cell (i , j ) such
that j − i < jb − ib (under the dotted diagonal), which cannot reach cell (ib −1, jb −1)
by Lemma 4.10 (another contradiction). Consequently this scenario is impossible.
Scenario 2.3 (Figure 4.33c). Consider the rightward crossing with minimum escape
cell (ib , jb) in G g

b . Firing graph G g
a must have a path pa from the south border to the

cell (ib −1, jb), and firing graph G g
b must have a path pb from the west border to the

cell (ib −1, jb −1). In this case, either the path pb intersects the path pa (contradicting
the minimality of escape cell (ib , jb) in G g

b ), or the path pb contains a cell (i , j ) such
that j − i < jb − ib (under the dotted diagonal), which cannot reach cell (ib −1, jb −1)
by Lemma 4.10 (another contradiction). Consequently this scenario is impossible.
Scenario 2.4 (Figure 4.33d). Consider the rightward crossing with minimum escape
cell (ia , ja) in G g

a . Firing graph G g
a must have a path pa from the south border to the

cell (ia −1, ja −1), and firing graph G g
b must have a path pb from the east border to the
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FIGURE 4.33 : Proof of Theorem 4.22 for neighborhood 39. Thin lines represent G g
a ,

and thick lines represent G g
b . Cells on or under the dotted diagonals

cannot have descendants over it by Lemma 4.10.

cell (ia −1, ja). We procced by case analysis on the position of cell (ia −1, ja −1). Let m
be the size of g , and assume without loss of generality that its support is the square of
cells (i , j ) verifying 0 ≤ i ≤ m −1 and 0 ≤ j ≤ m −1.

If cell (ia −1, ja −1) is such that ja −1 > ia −1 (it is above the diagonal going from
(0,0) to (m −1,m −1)), then the starting cell s = (is ,0) of G g

a has to fulfil that is < 0 in
order to have (ia −1, ja −1) as a descendant (by Lemma 4.10), which is a contradiction
because it means that it is outside of the crossover gate g .

On the other hand, if (ia −1, ja −1) is such that ja −1 < ia −1, then the ending cell
n = (in ,m −1) of G g

a has to fulfil that in > m −1 in order to have (ia , ja) as an ancestor
(by Lemma 4.10), which is a contradiction because it means that it is outside of g .
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Finally, if (ia −1, ja −1) is such that ja −1 = ia −1, then the starting cell e = (m−1, ie )
of Gb

g has to fulfil that ie > m − 1 in order to have (ia − 1, ja) as a descendant (by
Lemma 4.10), which is a contradiction because it means that it is outside of g . ■

4.3 Timed crossover among subsets of Moore
In this section we go further in the study of the computational complexity of sandpile
dynamics, by considering timed prediction problems (N -TIMED-PRED) and timed
crossover gates. An example of timed crossover gate is presented on Figure 4.34. We
will see that some neighborhoods which do not admit a crossover gate, however admit
a timed crossover gate and have a P-complete timed prediction problem. This hints
at the fact that predicting the dyanmics at a precise time step may be harder than
asymptotic prediction of the dynamics (the final stable configuration).
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FIGURE 4.34 : Example of timed crossover gate of size 10×10 for neighborhood 131
(left). The delay of the gate is 14. We picture the timestamps of each
cell, following a grain addition at n (center), and a grain addition at w
(right).

Section outline. We start this section by defining timed firing graphs
(Subsection 4.3.1), and prove that timed crossover gate are impossible when the
neighborhood is planar (Subsection 4.3.2). Then we exhibit timed crossover gates
for many neighborhoods. For some of them we prove that N -TIMED-PRED is P-
complete (Subsection 4.3.3), and for others we are faced with a delay issue when
trying to connect the different gates (Subsection 4.3.4). The results of this section are
summarized in Table 4.3.

4.3.1 Timed firing graphs
The pair of firing graphs of a timed crossover gate may intersect (have vertices in
common), because the wire in the perpendicular direction can be toppled (provided
that it does so some steps behind compared to the 1 signal traversing the gate). We
introduce the notion of timed firing graphs, which are subsets of the firing graphs.
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Section 4.3.3 4.3.4 4.3.5

Type P-complete Delay issue
Timed crossover impossibility

(conjecture)

N
ei

gb
o

rh
o

o
d

s

111

01101111

127

01111111

135

10000111

143

10001111

151

10010111

195

11000011

199

11000111

211

11010011

215

11010111

39

00100111

67

01000011

83

01010011

87

01010111

95

01011111

131

10000011

35

00100011

99

01100011

103

01100111

115

01110011

119

01110111

163

10100011

227

11100011

243

11110011

247

11110111

255

11111111

TABLE 4.3 : Summary of results exposed in Section 4.3.

Given that the arcs of the firing graphs represent the causal relationship among toppled
cells, it would be enough to discard the part not necessary to topple one exit cell, by
restricting the corresponding firing graph to its ancestors. However, this inductive
definition from the exit cell backwards, is not convenient for proofs by induction on
the number of steps. We prefer the following definition, based on timestamps, which
are now denoted tns : Vns →N and twe : Vwe →N in order to differenciate the two firing
graphs. In each firing graph, it takes into account only cells toppling sufficiently early
to belong to 1 signals. Recall that the timestamps of the two exit cells are equal to the
delay T ∈N+ of the gate. We consider tns(v) =+∞ when tns is not defined for v . The
same applies to twe .

Definition 4.8 (Timed firing graphs). Given a timed crossover gate g of delay T ∈N+
on cells n, s, w,e,JmK2, its two timed firing graphs are the subsets of its firing graphs,
restricted to vertex sets :

V T
ns = {v ∈Vns | tns(v) ≤ twe (v)} and V T

we = {v ∈Vwe | twe (v) ≤ tne (v)}.

It is necessary that in a timed crossover gate, each of the two exit cells belongs only
to its corresponding timed firing graph. The ≤ comparison among timestamps aims at
discarding cells that have some retard. We generalize Lemma 4.1 from NGUYEN et al.
2018, to the context of timed firing graphs.

Lemma 4.11. If a sandpile CA N admits a timed crossover gate, then it also admits a
timed crossover gate g with timed firing graphs GT

ns = (V T
ns , AT

ns) and GT
we = (V T

we , AT
we ),

such that V T
ns ∩V T

we =;.
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Proof. The proof is constructive : given a timed crossover gate g ′ with timed firing
graphs G ′T

ns = (V ′T
ns , A′T

ns) and G ′T
we = (V ′T

we , A′T
we ), we :

1. remove all grains from vertices in the intersection V ′T
ns ∩V ′T

we (which are intuitively
useless), so that they do not topple anymore,

2. compensate for the missing predecessors in each timed firing graph : for each
vertex in V ′T

ns exclusive or V ′T
we , add as many grains to it as it had predecessors in

V ′T
ns ∩V ′T

we .

We now argue that it gives another timed crossover gate with distinct timed firing
graphs. By induction on successive time steps, we have the following three simple
facts. First, the vertices in V ′T

ns ∩V ′T
we do not topple anymore (this uses the fact that

sandpile graphs are Eulerian). Second, the vertices not in the intersection are still
in their timed firing graph (thanks to the sand grains added at step 2, there is no
retard in the topplings). Third, no new vertex appears in each timed firing graph,
i.e. V T

ns ⊆V ′T
ns and V T

we ⊆V ′T
we (because the sand grains added at step 2 do not create

successor relationships in the timed firing graph). Given that n, s ∈ V ′T
ns \ V ′T

we and
w,e ∈V ′T

we ∩V ′T
ns , this still holds and the constructed configuration is indeed a timed

crossover gate (it still performs a timed crossover of two signals), with sets of vertices
V T

ns =V ′T
ns \V ′T

we and V T
we =V ′T

we \V ′T
ns . ■

4.3.2 Timed crossover impossibility : planar neighborhoods
As a corollary of Lemma 4.11, it is impossible to have a timed crossover gate when the
neighborhood is planar.

Corollary 4.4. If neighborhood N has a planar sandpile graph, then it does not admit
a timed crossover gate.

This proves that neighborhoods 66, 74, 82, 98, 90, 106, 130, 146, 192, 200, 202, 208,
210, 226, 234, 240, 242 and 250 do not admit a timed crossover gate.

4.3.3 Timed crossover possibility : P-complete
neighborhoods

Neighborhoods studied in this subsection :

111

01101111

127

01111111

135

10000111

143

10001111

151

10010111

195

11000011

199

11000111

211

11010011

215

11010111

We now prove that some subsets of Moore neighborhood have a P-complete N -
TIMED-PRED problem. The proof is analogous to Theorem 4.2, taking into account
the delay of the gates.
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Theorem 4.23. N -TIMED-PRED is P-complete for neighborhoods 111, 127, 135, 143,
151, 195, 199, 211, 215.
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FIGURE 4.35 : Timed crossover gates (top left), and gates (top right, with δ= θN −2),
or gates (top right, with δ = θN − 1), horizontal diode (bottom left)
and vertical diode (bottom right) for neighborhoods 111 and 127 with
γ= θN −1. The gates have size 10×10 and delay 12.

Proof. For neighborhoods 135 and 143, this is a direct consequence of Theorem 4.2.

For the other neighborhoods, we reduce from MCVP. For each of them, we present
a set of gates having a uniform delay (it takes the same number of steps for a signal
to traverse each gate). Let us denote d ∈N+ this delay, and z the peculiar delay of the
starting constant 1 gate (time necessary for the single grain addition at p to reach the
borders of the constant 1 gate). Following Banks approach, a signal 1 is an avalanche
(chain of topplings) reaching the edges of gates at time steps (z +d ·T )T∈N, and a
signal 0 is a steady state or an avalanche reaching the edges of gates on time steps
z +d ·T + i with i > 0 (retards may accumulate). One can check on the layout of the
MCVP instance on the grid (Figure 4.3), that following a single grain addition, all the
variable signals start synchronized (with avalanches for 1 signals, and steady wires
for 0 signals). The uniform delay on all gates ensures that signals keep synchronized,
because gates are placed on the diagonal : the two input signals are at the same
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FIGURE 4.36 : Timed crossover gate (top left), and gate (top right, with δ= 3), or gate
(top right, with δ = 4), horizontal diode (bottom left) and horizontal
diode (bottom right) for neighborhood 151. The gates have size 10×10
and delay 13.

distance from the origin. Every wire follows a shortest path in the grid toward the
questioned cell. The latter therefore topples at time step z +d ·U + y , with U the
distance in the grid from the origin (top left cell) to the questioned cell and y for its
inner mechanism (precise distance to q), if and ony if the MCVP outputs a signal 1.

The set of gates are presented as follows :

• on Figure 4.35 for neighborhoods 111 and 127,

• on Figure 4.36 for neighborhood 151,

• on Figure 4.37 for neighborhoods 195, 211, 215 and 199.

For each neighborhood we present a crossover gate, an and gates, an or gate, and
diodes. The constant 1 gate, turns and signal-duplication are derived from the or gate.
The constant 0 gate is again empty. ■

104



4 The Sandpile Cellular Automata – 4.3 Timed crossover among subsets of Moore

γ

γ-1

γγγ-1

γ′-1

γγ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ γ γ

γ′

γ-1

γ

γ

γ γ γ

γ′ γ′
γ′ γ′

γ′

γ

γ′-1

γ-1

γ-1

γ′-1

γγ-1γγ

γ

γ

γ

γ γ γ

γ′

γ

γ

γ

γ

γ′-1

γ

γ

γ

δγγγγ

γ

γ

γ

γ

γ γ γ γ γ

γ

γ

γ γ γ γ

γ′

γ

γ γ′ γ γ

γ

γ

γ

γ

γ

γ

γ

γ

γ

γ γ

γ′

γ γ-1 γ

γ-1

γ

FIGURE 4.37 : Timed crossover gates (top left), and gates (top right, with δ= θN −2),
or gates (top right, with δ= θN −1), horizontal diode (bottom left) and
vertical diode (bottom right) for neighborhoods 195 (with γ′ = θN −1),
199 (with γ′ = θN −2), 211 (with γ′ = θN −1) and 215 (with γ′ = θN −2),
with γ= θN −1. The gates have size 12×12 and delay 17.

4.3.4 Timed crossover possibility : delay issue
Neighborhoods studied in this subsection :

39

00100111

67

01000011

83

01010011

87

01010111

95

01011111

131

10000011

For multiple neighborhoods, we are able to construct a timed crossover gate, and
even and and or gates, but we are faced with an issue when trying to plug these gates
together. Timed crossover gates for neighborhoods 39, 67, 83, 87 and 95 are presented
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FIGURE 4.38 : Neighborhoods next to their timed crossover gate. Each non-empty cell
contains γ= θN −1 grains. The triangles indicate the direction in which
the cells are toppled.

on Figure 4.38, and a timed crossover gate for neighborhood 131 is presented on
Figure 4.34.

Let us focus on neighborhood 39 as an example. On Figure 4.39 we present an almost
complete set of gates, of size 11×11 with delay 11. Inputs are located on the west and
north borders, and outputs on the east and south borders. The north input and south
output are identicaly located in every gate, and there are two possibles locations of
the west input and east output (size 11 is odd) : either exactly in the middle of their
respective borders (label A on Figure 4.39), or one cell above (label B). They are meant
to be plugged alternatively to each other horizontaly (adapting the construction from
Figure 4.3), following a pattern of mono-labeled columns of gates. There are :

• wires (also diodes) labeled A and B ,

• a crossover gate labeled A,

• an or gate labeled B ,

• an and gate labeled B ,

• a constant 1 gate labeled B is derived from the or gate,

• a signal-duplication gate labeled B is derived from the or gate,

• turn gates labeled B are derived from the or gate,

• a constant 0 gate is empty (labeled A and B).

Only a pair of gates is missing : turn gates labeled A. If turn gates labeled A exist, then
we can connect all these gates together following this mono-labled column approach
(using zipzags to switch label) and prove the P-completeness of N -TIMED-PRED.
However, we show below that turn gates labeled A do not exist : the distance from
the west input corresponding to label A to the south output is incompatible with the
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movements possible under a delay of 11. We do not know how to proceed with this
reduction without turn gates labeled A.
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FIGURE 4.39 : An almost complete set of timed gates of size 11×11 and delay 11 for
neighborhood 39. Timed crossover gate (top left, labeled A), or gate
(top right, with δ= 3, labeled B), and gate (top right, with δ= 2, labeled
B), horizontal diodes (bottom left and center, resp. labeled A and B)
and vertical diode (bottom right, labeled both A and B).

The synchronization issue is explained by the fact that neighborhoods 39, 67, 83, 87,
95 and 131 are all in one of the two following cases :

• not having cell north nor south in the neighborhood,

• not having cell west nor east in the neighborhood.

Consequently, at each step of the avalanche process (chain of reaction of topplings), a
signal must move along the perpendicular direction. For simplicity let us assume that
neither cell west nor east are in the neighborhood, so that a signal must move along
the y axis at each step. This induces a parity for the timestamps of signals : they have
even timestamps on the cells X2 = {(x, y) ∈Z2 | x is even} and odd timestamps on the
other cells Z2 \ X2, or odd timestamps on X2 and even timestamps on Z2 \ X2.

It turns out that the or/and and crossover gates presented on Figure 4.39 use a
different combination of parities for the two input signals, because :
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• or/and gates require the two signals to meet at synchronized timestamps,

• crossover gates require the two signals to be adjacent along the y axis at
synchronized timestamps.

This leads to an incompatiblity in the synchronization between those gates for
neighborhood 39. Neighborhoods 67, 83, 87 and 95 face a symmetric issue.

The case of 131 is different. It does not have the cell west nor east in the
neighborhood, therefore it has a parity along the y axis, but the crossover gate requires
the two signals to be adjacent along the x axis (in order to be in the situation of
Figure 4.5). So there is no apparent incompatibility. Nonetheless, we were not able to
solve the synchronization issue for neighborhood 131.

4.3.5 Timed crossover impossibility : conjectured
We conjecture that the following neighborhoods do not admit a timed crossover gate :

35

00100011

99

01100011

103

01100111

115

01110011

119

01110111

163

10100011

227

11100011

243

11110011

247

11110111

255

11111111

The difficulty to design a timed crossover gate for these neighborhoods lies in the
fact that, when one uses the crossing constraint illustrated on Figure 4.5, it is not
possible to take advantage of the diagonal neighbors (in terms of delay) because the
cell in-between the two diagonals is also an out-neighbor. We conjecture that this
prevents to construct timed crossover gates for these neighborhoods.

4.4 Chapter Conclusions and Future Work
Crossover gate and prediction problem. We have performed a systematic
study of crossover possibilities for sandpiles on two-dimenstional grids Z2 within
Moore neighborhood, and have encoutered cases with is a P-complete prediction
problem. The correspondance between the existence of a crossover gate and the P-
completeness of N -PRED is sharp. In Section 4.2 we have established that, among
the 255 subsets of Moore neighborhood (the results are summarized on Table 4.2) :

• 22 do not span Z2 and are therefore not relevant to our study,

• 12 admit a crossover gate and have a P-complete prediction problem N -PRED,

• 99 have a planar sandpile structure and therefore do not admit a crossover gate,
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• the 123 remaining neighborhoods (including Moore) do not admit a crossover
gate.

We can observe that crossover impossibility is not inherited when considering the
subsets of a given neighborhood. The conditions for the possibility or impossibility
of crossover may be hard to establish (e.g. neighborhood 39 occupies 16 pages). This
sheds some more light on the subtelty of embedding computation within sandpiles.

Let us recall that the crossover impossibility is also subject to the radius of the
neighborhood. For example it is known by GAJARDO et al. 2006 that von Neumann of
any radius r ≥ 2 admits a crossover gate and therefore has a P-complete N -PRED
problem. It is also known by NGUYEN et al. 2018 that there exists a radius r0 ∈N+ such
that Moore of any radius r ≥ r0 admits a crossover gate.

In a broader perspective, given a neighborhood, it is not known yet whether an
algorithmic procedure exists to decide the existence of a crossover gate (the problem is
semi-decidable). It is also not known whether there are infinitely many neighborhoods
(among those spanning Z2) that do not admit a crossover gate. Indeed, it may be the
case that a bound B ∈N exists such that every neighborhood N of size |N | ≥ B admit
a crossover gate.

The impossibility of a crossover gate means that Banks approach fails at proving
P-completeness by reduction from monotone circuit value problem (MCVP).
Nevertheless, it leave open the possibility of a completely different approach of
signal encoding in sandpile dynamics, which is still to be discovered DELORME et
al. 2002. Neither does it hints at an obvious NC algorithm. Indeed, a naive reduction to
monotone planar circuit value problem (MPCVP) fails because it requires to encode
the integer value of the sand content at each cell on multiple bits (at least 3 of them
for values 0,1,2,3 and toppling state), so each undirected edge of the sandpile graph
would induce a non-planar K3,3 (complete bipartite graph of two times 3 vertices).
There is no straitghforward way of guessing the direction of these edges (in order to
make it acyclic and reduce the number of arcs), which would itself require to predict
the effective causality among neighboring cells during the dynamics of sandpiles.

We also leave open the graals on von Neumann and Moore. Are Nvn-PRED
and Nm-PRED in NC? P-complete? Neither? The first alternative requires a finer
understanding of the fractal structure of sandpile dynamics, which is roughly
characterized in PEGDEN et al. 2013; LEVINE et al. 2016 in terms of Apolonian circle
packing. The second alternative would be a great advance in the understanding
of how complex two-dimensional von Neumann and Moore neighborhoods are,
in an algorithmically effective sense. The third alternative could correspond to an
intermediate class, whose existence is proven in VOLLMER 1991. Let us also remark
the two problems may not have the same complexity.

Timed crossover gate and timed prediction problem. In Section 4.3 we have
considered the timed version of the sandpile prediction problem, asking whether,
following a single grain addition on a stable configuration, a questionned cell will
topple or not at a precise time step t ∈ N which is part of the input (problem N -
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TIMED-PRED). To study this problem, we have introduced the notion of timed firing
graph, and timed crossover gate. The timed crossover gate allows for each of the two
input cells to trigger an avalanche eventually toppling both output cells, provided
there is a strictly positive retard in the output signal in the incorrect direction (not
correspond to a crossing of two signal, e.g. from north to south the avalanche is allowed
to topple the east cell if the delay of the signal from north to south is striclty smaller
than the delay of the signal from north to east). This difference of delay aims at being
embedded in a reduction from MCVP to N -TIMED-PRED problem, according to the
construction depicted on Figure 4.3 (which has been designed with this purpose). It
requires to have wire, turns, and and or gates with adequate delays, and with input
and output cells that plug well to each other in order to keep the signals synchronized.
Our results are partial ; among the 255 subsets of Moore neighborhood (the results are
summarized on Table 4.3) :

• 22 do not span Z2 and are therefore not relevant to our study,

• 52 admit a complete timed gates toolkit (including a timed crossover gate) and
therefore have a P-complete timed prediction problem N -TIMED-PRED,

• 99 have a planar sandpile structure and therefore do not admit a timed crossover
gate,

• 34 admit a timed crossover gate, but one is faced with an issue in the delays
when connecting the gates together,

• the 49 remaining neighborhoods (including Moore) are conjectured to do not
admit a timed crossover gate.

Remark that a crossover gate is also a timed crossover gate, hence the 12
neighborhoods having a P-complete N -PRED problem are part of the 52
neighborhoods having a P-complete N -TIMED-PRED problem. It is notable that 40
neighborhoods (from 7 equivalence classes) do not admit a crossover gate, but do
admit a complete timed gates toolkit allowing to prove the P-completeness of timed
prediction problem. Intuitively, following Banks approach, for these neighborhoods
the embedding of the circuit evaluation in the sandpile dynamics is possible when
one follows precisely the time steps, but asymptotically the sandpile will not stay in a
configuration where the result of the circuit can be read out.

The precise characterization of the neighborhoods for which it is impossible to
follow Banks approach in proving the P-completeness of N -TIMED-PRED is still
open, and does not seem to be captured by the existence of timed crossover gate as
defined in Section 4.1. Proving that timed crossover gate do not exist for von Neumann
and Moore neighborhoods would reveal more obstacles to the embedding of efficient
computation within them.
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Non-uniform sandpiles. Alternative approaches can be explored by relaxing the
definition of the conventional sandpile CA. We propose two potential directions,
depicted in Figure 4.40, for which we present the respective crossover gates. On the left
hand side, we show an example of a neighborhood of size 3 (neighborhood 67 following
our encoding) with a non-uniform distribution of sand grains. Upon reaching 5 sand
grains, a cell topples and distributes 1 grain to its east neighbor, 2 grains to its south-
east neighbor and 2 grains to its south-west neighbor. Defining all the necessary
circuitry for applying the Banks approach for this neighborhood is not particularly
challenging, therefore one can prove that this setup has a P-complete prediction
problem. On the other side, the illustration on the right introduces a sandpile CA
where cells may have one of three different neighborhoods. Here the neighborhoods
are of size 1 (neighborhoods 1, 2 and 64) then the toppling threshold is also 1. Although
the combination of these three neighborhoods allows to design a crossover gate, we
conjecture that it is not possible to conceive an and gate, leading to the failure of
Banks approach.

It is worth noting that the neighborhoods 1, 2, and 64 can be considered as a
decomposition of neighborhood 67 or, similarly, one can say that neighborhood
67 can be composed with neighborhoods 1, 2, and 64. This observation, coupled with
the existance of a crossover gate for both previous examples, may prompt to exploring
how this notion of composition and decomposition could give insights into whether a
sandpile CA admits a crossover gate.

3

3

3

3

3

3

3

3

4 4 4

3

3

3 4 4

2 2

1

FIGURE 4.40 : Left : Example of a crossover gate using a non-uniform distribution of
grains. Note that in this case the threshold is θ = 5. Right : Example of a
crossover for a non-uniform distribution of neighborhood using three
neighborhoods of size 1. Here the threshold is θ = 1 and the arrows
point at the out-neighbor of the cell. The blank cells can have any of the
three neighborhoods. All the cells have 0 grains.
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Throughout this thesis work, we gave insights on how difficult it is to predict the
majority rule and the sandpile CA under several settings. The main idea of studying
the prediction problem, in addition to its theoretical interest, is that it gives a notion
of how expensive it is to simulate these cellular automata in terms of space and time.

To achieve this task, Chapter 1 serves as the theoretical ground for the entire thesis.
We lay out all the necessary definitions, establishing a framework for understanding
the subsequent results. This includes the general framework for cellular automata and
computational complexity theory, providing a clear and concise basis for the rest of
this work. Primordially, this Chapter introduces the central components of the thesis,
the Majority Cellular Automata (MCA) and the sandpile CA. By comprehensively
defining these models, the chapter sets the stage for a thorough examination of their
computational complexities.

Then, in Chapter 2 a review of the existing literature is presented, offering a
panoramic view of the current state of the art. The focus is on the classification
of the prediction problem for various MCA and sandpile CA variants, as well as the
exploration of their intricate relationships. This chapter not only consolidates the
foundational knowledge within the field but also provides a crucial backdrop for
understanding the gaps and opportunities that drive the subsequent research.

Consequently, in Chapter 3 we show our contributions on the matter of the majority
cellular automata by studying two novel variants. Firstly, we introduce the concept of
heterogeneous majority cellular automata, revealing an NL prediction problem when
the dimensionality is equal to 1. However, as the dimensionality escalates, it becomes
P-complete. These results is related with what appears to be one of the most impactful
variables in the realm of prediction problems : dimensionality. There is a clear pattern :
as the dimensionality increases, embedding computation can be done more efficiently.
Furthermore, within the same chapter, we delve into the freezing dynamics of L-
shaped majority cellular automata, establishing a distinct dichotomy based on the
neighborhood size. Specifically, the smallest L-shaped neighborhood exhibits an
associated NC prediction problem, while any larger neighborhood corresponds to a
P-complete prediction problem. This dichotomy holds in this case; however there
is no clear correlation between the size of the neighborhood and the computational
complexity of the prediction problem. For example, in the context of sandpiles,
neighborhood 135 of size 4 has a P-complete prediction problem while neighborhood
255 of size 8 does not admit a crossover gate. Perhaps the dichotomy holds true in
more general settings after a certain threshold size, in the fashion of NGUYEN et al.
2018.

In Chapter 4, our contribution to the examination of sandpile prediction involves an
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exhaustive exploration of both prediction and timed prediction problems, spanning
all possible subsets within the Moore neighborhood. Notably, considering the well-
established constraints of the Moore and von Neumann neighborhoods, which do
not permit a crossover gate, it is remarkable to discover that a dozen of 2-dimensional
subsets within the Moore neighborhood exhibit a P-complete prediction problem. We
not only establish the P-complete nature of these subsets but also present evidence
indicating lower prediction complexities for all other sub-neighborhoods within Nm,
as none of them admit a crossover gate. This exhaustive analysis extends to the timed
prediction problem, where we demonstrate that 52 neighborhoods are associated
with a P-complete problem. Intriguingly, 34 neighborhoods permit a timed crossover
but face challenges related to signal coordination. The remaining neighborhoods are
either planar or do not permit a crossover gate. These results suggest an intuition
that prediction problems are computationally easier than their timed counterpart.
However there is a lack of evidence for ensuring such a strong statement. Considering
the latter, it would be surprising to find a CA whose prediction problem is harder than
its timed counterpart.

Perspectives
Drawing from the specific inquiries presented in each chapter, this section serves
to provide a broader perspective on our work. During this thesis, our exploration
of majority cellular automata and the sandpile CA has been conducted separately.
However, it is crucial to emphasize that the selection of these two classes of cellular
automata was not arbitrary. Instead, it was guided by an seemingly hidden connection
between them : their prediction problems exhibit similar patterns. Specifically, for
dimensions equal to 1, both majority cellular automata and the sandpile CA feature
prediction problems classified within NC. As the dimensionality surpasses 2, these
problems escalate to P-complete complexities. Intriguingly, the prediction problems
for both become open questions in the bi-dimensional case. Additionaly, as previously
mentioned, it is known that for both models, the time required for reaching an
attractor is upper-bounded by a polynomial. Consequently, the prediction problems
can be solved in polynomial time for the 2-dimensional grid. This observation
prompts a question : is the complexity of prediction problem for 2-dimensional
MCA and sandpiles somewhere between NC and P-complete, suggesting a form
of P-intermediate problem? Perhaps the prediction problem can offer us very deep
insights into complexity theory.

Another factor to consider, as mentioned in Chapter 2, is the capability of the 2-
dimensional MCA to simulate the freezing version of the 2-dimensional sandpile.
Then one can ask, is there a more precise sense of equivalence between these two
models (the MCA and the sandpile CA) such that solving the prediction problem
for one model concurrently resolves the prediction problem for the other? Perhaps
the already known simulation, i.e. MCA simulating freezing sandpiles, provides a
reduction between the prediction problems of these two variants.
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The questions presented above in this section are undeniably very general,
demanding considerable scientific effort and likely years of study (if provable).
Nevertheless, within the scope of this thesis, there are also short/mid-term directions
to pursue. One of them is to determine what is the impact on complexity, measured
through the complexity of the prediction problem or with some alternative metrics,
when mixing rules. It is quite surprising that we can determine the complexity of the
prediction problem for the 2-dimensional heterogeneous majority cellular automata,
a task that has remained an open problem for decades in the case of the majority rule.

Additonaly, there are several ways in which this topic can be further extended,
like classifying families of CA, such as we did with the L-shaped freezing majority
cellular automata, where we narrow down the study of the prediction problem to a
restricted yet infinite subset of freezing MCA. It is worth noting that apparently as the
generality of the family increases, the difficulty of substantiating any claims or proofs
typically intensifies. As an example, solely considering the non-freezing L-shaped
MCA, classifying the complexity of the associated prediction problem becomes a
challenging task. The latter, nevertheless, is a potential research direction.

Finally, another interesting topic to be explored is the difference between prediction
problem and its timed counterpart. Direct questions arise : Do they share the same
computational complexity? Does their complexity hinge on the specific cellular
automaton under examination, and if so, what are the underlying reasons ?
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