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Introduction

Many algorithmic problems in discrete mathematics and computer science require to
find a best solution among all feasible ones. These problems, known as optimization
problems, are widely encountered in practice. A notable example is the problem of
finding a shortest path from a source to a destination in a given network. Another
example concerns the computation of a best answer to a given query in a database.
In everyday life, problems of that kind naturally arise when using GPS navigation, or
when booking flights to a destination; see Figure A for visual examples. In addition to
these practical aspects, optimization problems are well studied, and raise important
fundamental questions. Research has been focusing on characterizing their computa-
tional complexity, either by exhibiting algorithms that run in polynomial time in the
size of the input, or by showing that a problem is NP-complete, hence that it is most
certainly intractable.

Rather than finding one solution, it is sometimes more desirable to generate all of
them. This is for instance useful in certain applications to database search [YYH05],
network analysis [GK07], and bioinformatics [Dam06]. Problems of that kind are
also encountered in everyday life, typically when several solutions may be of inter-
est for a user, as in Figure A. In graph theory, enumeration problems seem to have
been first mentioned in the early 70’s with the pioneer works of Tiernen [Tie70] and
Tarjan [Tar73] on cycles in directed graphs, and of Akkoyunlu [Akk73] on maximal
cliques in undirected graphs. However, they already appeared in disguise in earlier
works [PU59, Mar64]. In hypergraph theory, the most notable enumeration problem
is the one of listing minimal transversals, which plays a fundamental role in many
areas [EG95, GMKT97]. In lattice theory, enumeration problems naturally arise when
building lattices [NR99, HMNS01], or when translating between their different repre-
sentations [Wil94, Kha95, BMN17, HN18]. It is maybe with the newly discovered tech-
niques for enumeration [RT75, TIAS77, AF96], and with the landmark paper of John-
son, Yannakakis and Papadimitriou [JYP88], that enumeration theory started to gain
interest. This last decade, several PhD theses were devoted to enumeration theory, e.g.
[Bag09, Str10, Mar13, Mar15], and the first edition of the Workshop on Enumeration
Problems and their Applications (WEPA) was launched in Clermont-Ferrand, France.
This, together with the surveys on enumeration complexity [CKP+19, Str19], the two
Dagstuhl Seminars 18421 and 19211 on algorithmic enumeration [FGS19, BKPS19],
and the creation of a Wikipedia page on enumeration algorithms [WIK], illustrate the
recent gain of interest for the field.

It has certainly come to the reader that the number of solutions to an enumeration
problem may grow exponentially in the size of the input. For example in Figure A.(a),
the biker is given two choices in order to reach Rue d’Apollon, and then two choices
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(a) Bike itineraries.

(b) Flights from CDG to WAW.

Figure A: Everyday expressions of optimization and enumeration problems. A short-
est bike itinerary is given in blue (a), and a cheapest flight in green (b). Alternative
solutions are proposed in both situations.

in order to reach the final destination. This leads to a total number of four possible
distinct routes, which clearly, when generalized, is exponential in the number of roads
in the network. Therefore when devising enumeration algorithms, and in stark con-
trast to decision or optimization problems, looking for a running time polynomially
bounded by the size of the input is not a reasonable—let alone meaningful—efficiency
criterion. Rather, we aim for so-called output-polynomial time algorithms whose run-
ning time is polynomially bounded by the sizes of both the input and output data.
An important research direction is then to bound, in addition, the delay between two
consecutive output solutions. Bounds may be expressed by a polynomial in the size of
the input, or by a polynomial in the sizes of the input plus already output solutions.
These different notions of complexity lead to a number of intriguing open questions
in the field [JYP88, CKP+19, Str19].

When dealing with the space used by an enumeration algorithm, only the working
space is considered: it is assumed that the solutions are flashed, and then immediately
discarded. However in order to avoid producing repetitions, some algorithms rely on
storing the already generated solutions. This inexorably requires space that is linear in
the number of solutions, thus potentially exponential in the size of the input. It is then
another important question whether an enumeration algorithm requiring exponential
space in order to avoid repetitions may be turned into one that uses only polynomial
space, without increasing “too much” its complexity. Recent papers raising the ques-
tion include [MS19, CU19, CMG+19].

This thesis focuses on graphs, hypergraphs, and lattices. It is mainly concerned
with the different shapes that takes a problem on these structures: the dualization of
monotone Boolean functions. In its most simple terms, this problem asks, given a pos-
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itive1 CNF ϕ, and a positive DNF ψ, whether ϕ = ψ. In its generation versions, only
one of the two formulas is provided, and the other (of minimum size) is to be com-
puted. It is easily conceived that such a fundamental question may be encountered in
practice. The problem plays in fact a crucial role in database theory, Boolean switch-
ing theory, logic, Artificial Intelligence (AI), machine learning, data mining, and many
other concrete fields [EG95, GMKT97, NP12]. Implementations are numerous [Uno],
but are not the object of this manuscript.

In addition to the important role the dualization plays in practice, the problem ap-
pears to be of great fundamental interest. Firstly, it is ubiquitous in many areas of
theoretical computer science, as we will see in a moment. It is for example equiva-
lent to the aforementioned problem of enumerating the minimal transversals of a hy-
pergraph, or to the problem of enumerating the minimal dominating sets of a graph
[EMG08, KLMN14]. Secondly, its precise complexity status remains open after more
than forty years of research, despite continuous attempts to solve it [EG95, EMG08].
To date, it is not known whether the problem can be solved in polynomial time (and
its generation version in output-polynomial time): this arguably constitutes one of the
most important open problems in enumeration theory. It has however been showed
in a landmark paper by Fredman and Khachiyan [FK96] that the problem admits a
quasi-polynomial N o(logN) time algorithm, where N = |ϕ| + |ψ|. In consequence, the
problem is probably not coNP-hard, and is believed to lie somewhere in the frontier
between P and coNP.

In this thesis, both positive and negative results are exhibited for the dualization,
under different restrictions, formulations, and generalizations. The manuscript is or-
ganized as follows. In Chapter 1 we give a brief introduction to enumeration prob-
lems, algorithms, and their complexity, and formally define the dualization of mono-
tone Boolean functions through different formulations. Chapter 2 is devoted to the
study of one equivalent formulation: the enumeration of minimal dominating sets in
graphs. We obtain new output-polynomial time algorithms in graph classes related to
Kt-free graphs and to posets of bounded dimension. Chapter 3 is devoted to the dual-
ization in lattices given by implicational bases, a first generalization of the dualization.
Both tractability and intractability results are obtained under various restrictions con-
cerning notions of width and premises’ size in the implicational base. Chapter 4 is de-
voted to the problem of translating between the representations of a lattice, a second
generalization of the dualization. Tractability and intractability results are obtained
under some restrictions concerning acyclicity. Each chapter ends with a list of open
issues that are summarized in the conclusion of this manuscript.

1Only containing non-negated literals, e.g. ϕ = 1 ∧ (2 ∨ 3) and ψ = 12 ∨ 23.
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Chapter 1

Enumeration problems and algorithms

This chapter contains a brief introduction to enumeration problems, algorithms, and their
complexity. Other sources of interest on this topic include the PhD thesis of Bagan [Bag09],
the ones of Strozecki [Str10], Mary [Mar13], Marino [Mar15] and the recent survey [Str19].

We saw in the introduction how enumeration problems gained interest these last
decades, with several questions on the topic remaining unsolved. We give here the
necessary background for the definition of the open problem that is at the heart of this
dissertation: the dualization of monotone Boolean functions.

The chapter is organized as follows. In Section 1.1 we give a rudimentary definition
of what an enumeration problem is, and state general assumptions on the enumeration
problems that are considered in this manuscript. Section 1.2 deals with the complex-
ity of enumeration algorithms. Monotone dualization is presented through different
formulations in Section 1.3.

1.1 Definitions and examples
Let Σ be a finite—say binary—alphabet and Σ∗ denote the set of words constructed on
alphabet Σ. Let R ⊆ Σ∗ × Σ∗ be a binary predicate. We shall note R(x, y) if (x, y) ∈ R,
and define R(x) = {y ∈ Σ∗ | R(x, y)}. In the following, we respectively call instance
and solution the elements x and y such thatR(x, y) holds; xwill also be called the input,
and each such y an output.

1.1.1 Problem definitions

Decision problems are maybe the most encountered problems in computer science.
They can be defined as follows.

Definition 1.1.1. The decision problem δR associated to a binary predicate R is the function
which maps to every instance x ∈ Σ∗ the bit 0 if R(x) = ∅, the bit 1 otherwise.

Decision problems basically ask whether a given instance admits a solution, and
are also referred to as “yes–no questions”. An algorithm solving a decision problem δR
is one that computes its associated function, i.e., it outputs given any instance x, the
bit 0 if R(x) = ∅, the bit 1 otherwise. We call algorithm for δR such an algorithm.
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For example in the SUBSET SUM problem, one is given a finite subset of negative
and non-negative integers X , and must decide whether there exists a subset Y ⊆ X
such that the sum of all the integers in Y is zero. This problem is easily seen to fall
within the formalism of Definition 1.1.1 by considering any binary encoding x of X ,
any binary encoding y of Y , and defining the binary predicate R accordingly: R(x, y)
holds if and only if x codes a set X and y a subset of Y ⊆ X such that the sum of all the
integers in Y is zero. Observe more generally that a suitable binary encoding allows to
consider complex objects as instances and solutions of a problem, e.g., words, graphs,
hypergraphs, posets, or the concatenation of several such objects.

Many decision problems require to detect a structure with prescribed properties.
On the other hand, rather that checking the existence of a solution, it is sometimes
more desirable to generate all of them. For example, in a generation version of SUBSET
SUM, one may be asked to output all subsets Y ⊆ X such that the sum of all integers in
Y is zero. Problems of that kind are called enumeration problems and may be defined
as follows.

Definition 1.1.2. The enumeration problem ΠR associated to a binary predicate R is the func-
tion which maps to every instance x ∈ Σ∗ the set R(x) of its solutions.

Enumeration problems are also known as listing algorithms, or generation algorithms.
An algorithm solving an enumeration problem ΠR is one that computes its associated
function, i.e., it outputs given any instance x, a sequence y1, . . . , y` of solutions such
that R(x) = {y1, . . . , y`}, and for all i 6= j, yi 6= yj . This last condition says that no
solution is repeated. We call enumeration algorithm for ΠR (or simply algorithm for ΠR)
such an algorithm.

1.1.2 Predicate assumptions

We state common assumptions on binary predicates that are shared by every enu-
meration problem considered in this manuscript. We chose not to elaborate on these
assumptions and refer to [Str19] for further details on these points.

If x is a word on alphabet Σ, then |x| denote its length. We say that predicate R is
polynomially balanced if |y| ≤ poly(|x|) for every two words x, y such that R(x, y), i.e.,
if every solution of R is of polynomial size in the size of the input. This is clearly the
case of SUBSET SUM as defined previously. Note that this does not prevent R(x) to be
of exponential size in the size of x, a key point that is developed in Section 1.2. We
furthermore assume that checking whether R(x, y) holds, given any couple (x, y) ∈
Σ∗ × Σ∗, can be done in polynomial time in the sizes of x and y. Again, note that
this holds for SUBSET SUM as the sum of integers can be computed in polynomial
time. Problems that satisfy these properties constitute a class analogous to NP for
enumeration problems; see [Str19].

1.1.3 Computational model

The computational model we consider is this manuscript is the random access ma-
chine model (RAM) equipped with comparison, addition, subtraction and multipli-
cation, together with an additional operation Output(i,j) which outputs the con-
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catenation of its registers Ri, Ri+1, . . . , Rj . This model has been considered in various
previous works [Bag09, Str10, Str19] and is useful to access an exponential amount
of memory only using polynomial time, as it is implicitely assumed in various works
such as [GHKV15, CU19] and used in Chapter 2.

1.2 Complexity of enumeration problems
We assume that the reader is familiar with classical complexity theory. We refer to the
book [GJ79] if not. If f is a function, we write f(n) = poly(n) when there is a constant
c ∈ N such that f(n) ∈ O(nc), and f(n) = polylog(n) when there is a constant c ∈ N
such that f(n) ∈ O((log n)c).

As pointed out earlier, while all predicates R considered in this manuscript are
polynomially balanced, the set R(x) of solutions to output may be of exponential size
in the size of x. Regarding this, two different approaches—input-sensitive and output-
sensitive—have been considered in the literature in order to measure the complexity of
an enumeration algorithm. While this thesis only deals with the second approach, we
overview here the first approach for completeness.

1.2.1 Input-sensitive approach

In the input-sensitive approach, one measures the complexity of an enumeration algo-
rithm in term of input size. For most problems ΠR—in which the size of R(x) may be
exponential in the size of x—, this approach aims to get the fastest exponential-time
algorithm, typically lowering the base of the exponent as much as possible. This leads
to results of the following kind.

Theorem 1.2.1 ([MM65]). There is an O(1.4423n) time algorithm enumerating maximal
cliques in n-vertex graphs.

In fact, Theorem 1.2.1 was not originally stated as an enumeration result. It was
initially stated as an upper bound of 3n/3 ≈ 1.4423 on the number of maximal indepen-
dent sets an n-vertex graph admits, which proof yields a straightforward enumeration
algorithm listing them within that time. Such an upper-bound is attained by con-
sidering the complementary graph of disjoint unions of triangles. Most of the time,
input-sensitive algorithms consist of showing upper bounds on the number of objects
to enumerate [FGPS08, CHvHK13]. Obtaining tight bounds like the one of 3n/3 for
maximal cliques remains however open for other combinatorial objects, such as the
minimal dominating sets [AKH16], the objects that are considered in Chapter 2.

1.2.2 Output-sensitive approach

In the output-sensitive approach, one measures the complexity of an enumeration al-
gorithm in term of input plus output sizes. The goal, here, is to achieve polynomial
time bounds. This leads to results of the following kind.

Theorem 1.2.2 ([TIAS77]). There is an O(nm · d) time algorithm enumerating the maximal
cliques in n-vertex m-edge graphs, with d the number of maximal cliques in the input graph.
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Additional output-sensitive algorithms for maximal cliques enumeration in graphs
may be found in [JYP88, MU04].

In fact, Theorem 1.2.2 is originally stated in a much more refined way, saying that
in addition to the set of solutions being output in O(nm · d) time, the time spent by the
algorithm between any two consecutive outputs is bounded by O(nm). These com-
plexity refinements constitute a significant proportion of the research that is dedicated
to enumeration problems and output-sensitive algorithms, and certainly contribute to
the appeal of ouput-sensitive enumeration for practical uses.

1.2.3 Three main notions of (output-sensitive) complexity

Many notions of complexity exist for output-sensitive algorithms, and are for example
surveyed in [CKP+19, Str19]. We only review here the three historical ones that will
be considered in this manuscript.

In the following if A is an enumeration algorithm for ΠR, we denote by TA(x) its
execution time on input x. Assume now that y1, . . . , y` are the elements of R(x) enu-
merated in the order in which they are output by A. We denote by TA(x, i) the time A
requires until it outputs yi, and put TA(x, 0) = 0 and TA(x, ` + 1) = TA(x). We simply
note T (x) and T (x, i) when A is clear from the context.

The next three important notions of complexity were first made explicit by Johnson,
Yannakakis and Papadimitriou in [JYP88].

Definition 1.2.3. An enumeration algorithm for ΠR is running in output-polynomial time if,
for any instance x, T (x) = poly(|x|+ |R(x)|).

Following this definition, we will also say that an algorithm is running in output
quasi-polynomial time if T (x) = 2polylog(N), and that it runs in output sub-exponential
time if T (x) = 2o(N), where N = |x|+ |R(x)|.

In the following, we call output-polynomial time algorithm for ΠR any algorithm solv-
ing ΠR in output-polynomial time, and say that an enumeration problem ΠR is tractable
if it admits one such algorithm. Observe here that the time T (x, i + 1) − T (x, i) spent
by an output-polynomial time algorithm before outputting a first solution may not be
bounded by a polynomial in the size of x, as long as |R(x)| is superpolynomial in |x|.
Intuitively, it could be in fact that all solutions are “retained” by an output-polynomial
time algorithm and output at the very last moment, just before halting. A more re-
stricted notion of tractability is then defined as follows.

Definition 1.2.4. An enumeration algorithm for ΠR is running in incremental-polynomial
time if, for any instance x and every 1 ≤ i ≤ |R(x)|+ 1, T (x, i) = poly(|x|+ i).

In the following, we call incremental-polynomial time algorithm any algorithm which
is running in incremental-polynomial time. Clearly by definition, any incremental-
polynomial time algorithm defines an output-polynomial time algorithm.

Observe that the time T (x, i) spent by an incremental-polynomial time algorithm
between two consecutive outputs yi, yi+1 ∈ R(x) may not be bounded by a polynomial
in the size of x, as long as i is superpolynomial in the size of x. This finally leads to the
next most restricted notion of tractability, and last complexity notion that we consider
in this manuscript.
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Definition 1.2.5. An enumeration algorithm for ΠR is running with polynomial delay if, for
any instance x and every 1 ≤ i ≤ |R(x)|+ 1, T (x, i)− T (x, i− 1) = poly(|x|).

This last complexity notion bounds the times spent by the algorithm before the
first output, between any two consecutive outputs, and after the last output. Clearly,
an algorithm running with polynomial delay is an incremental-polynomial time algo-
rithm, hence an output-polynomial time algorithm. Algorithms of that kind constitute
the more efficient algorithms one may seek in enumeration theory. The delay is some-
times lowered to linear time, or even constant time after polynomial preprocessing.
Such extreme cases, however, will not be encountered in this manuscript.

1.2.4 Exponential output size

Recall that free to disregard several objects as coded by a single word x ∈ Σ∗, enumer-
ation problems can contain complex inputs. The enumeration problems we consider
in this thesis are all combinatorial problems that require, given subsetsX1, . . . , Xp ⊆ X
where X is called ground set, to enumerate subsets Y1, . . . , Y` ⊆ X with desired prop-
erties. Recall also by the assumptions of Section 1.1.2 that checking whether a given
set Y ⊆ X is one of Y1, . . . , Y` can be done in polynomial time for these problems.
This leads to a trivial output-polynomial time algorithm solving these problems on in-
stances that are known to have exponentially many solutions. The algorithm proceeds
as follows. For every subset Y ⊆ X , it tests in polynomial time whether Y is one of
Y1, . . . , Y`, and discard it otherwise, in a time bounded by 2|X|. The difficulty then lies
in showing that non-trivial instances have an exponential lower bound on their num-
ber of solutions, or in the fact that some instances may have sub-exponentially—yet
not polynomially—many solutions.

Despite the fact that this basic observation will not be used in the upcoming chap-
ters, we felt that mentioning this aspect could enlighten the reader.

1.2.5 Memory

When considering the space complexity of an enumeration algorithm, the space of
solutions, or output space, is not counted. It is assumed that the solutions are only
flashed and then immediately discarded. We point out that it is still an option, e.g. for
practical reasons, to store or not to store the solutions when they are flashed.

1.2.6 Decision and enumeration

Observe that to any enumeration problem ΠR for R ⊆ Σ∗ × Σ∗ corresponds a decision
problem asking, given an instance x ∈ Σ and a set Y ⊆ Σ∗, whether R(x) = Y . Such a
decision problem is obtained by defining R′ ⊆ Σ∗×Σ∗ such that R′(x′) 6= ∅ if and only
if x′ codes {x}, Y ⊆ Σ∗ with R(x) = Y . Informally, problems of that kind ask whether
every solution to an enumeration problem is obtained. We call decision version of ΠR,
denoted πR, such a problem. Most of the enumeration problems considered in this
manuscript come along with their decision version. The following is folklore and is
proved by running an algorithm for ΠR for a number of steps that is proportional in x
and Y being the inputs of πR.
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Proposition 1.2.6. Let ΠR be an enumeration problem and πR be its decision version. Then
πR can be solved in polynomial time whenever ΠR can be solved in output-polynomial time.

Conversely, observe that to any decision problem πR of the form “given word x ∈ Σ
and set Y ⊆ Σ∗, decide whether Y = R(x) holds” for some arbitrary binary relation R,
corresponds an enumeration problem Π1

R asking, given x, to enumerate the set R(x),
and one Π2

R asking, given R(x), to compute x. Yet proven to hold for the dualization
of monotone Boolean functions introduced in Section 1.3, it is however not clear in
general whether the existence of a polynomial-time algorithm for πR yields an output-
polynomial time algorithm for Π1

R, and Π2
R. Additional conditions are usually added

to πR in order to get an equivalence, such as exhibiting a counter example to Y = R(x)
in case when Y 6= R(x). These variations will not be encountered in this manuscript.

1.2.7 Reductions and intractability

Several reductions between enumeration problems can be defined, depending on the
different complexities that they may preserve. They will naturally appear in this
manuscript, starting with the next section, and were formally defined in [Mar13] for
the complexities considered in this chapter. We chose here to only give the commonly
employed notions of hardness that will be used in the manuscript, and let the reader
encounter the reductions over the chapters through particular cases.

Definition 1.2.7. Let A,B be two binary predicates and ΠA,ΠB be their associated enumer-
ation problems. We say that ΠA is polynomially harder1 than ΠB (or that ΠA is ΠB-hard) if
there exists an output-polynomial time algorithm for ΠB whenever there is one for ΠA. Then,
ΠA and ΠB are polynomially equivalent if ΠA is polynomially harder than ΠB, and vice versa.

Note that the same notions can be defined for incremental-polynomial (resp. poly-
nomial-delay) time complexities. We will always mention explicitly the complexity
that is preserved in that case.

In enumeration theory, hardness of a problem ΠA is either shown by proving that
ΠA is harder than another tough (often open) problem ΠB, or by showing that getting
an output-polynomial time algorithm for ΠA would yield a polynomial-time algorithm
for some NP-hard problem. For example, the problems we consider in Chapters 2, 3,
and 4 are all known to be harder than the dualization of monotone Boolean functions.
As for some generalizations of this problem, considered in Chapter 3, it is known that
they cannot be solved in output-polynomial time unless P=NP. In that second frame-
work, we usually reduce the decision version πA of the enumeration problem ΠA to a
well-known NP-hard problem δ by means of classical reductions. By Proposition 1.2.6,
this is sufficient to show that the original enumeration problem ΠA cannot be solved
in output-polynomial time, unless P=NP. The next corollary follows.

Corollary 1.2.8. Let ΠR be an enumeration problem and πR be its decision version. Then ΠR

cannot be solved in output-polynomial time if πR is NP-hard, unless P=NP.
1The reader may be more confortable with the formulation “polynomially (at least) as hard as”.

14



1.3 Dualization of monotone Boolean functions and
hypergraph dualization

We end the preliminaries by defining the dualization of monotone Boolean functions,
and several equivalent formulations in hypergraphs. These problems are ubiquitous
in enumeration theory and are the starting point of this thesis. The original formula-
tion is presented for historicity, while the different hypergraph formulations will be
continuously referred to in the rest of this manuscript.

1.3.1 Dualization of monotone Boolean functions

A Boolean function is a mapping f : {0, 1}n ! {0, 1}. We call arity of f the integer n,
call Boolean vector a tuple v in {0, 1}n, and note vi the value of vector v on coordinate i.
We note u ≤ v if ui ≤ vi for all i, and call Boolean algebra of dimension n the set of
all vectors v ∈ {0, 1}n ordered by ≤. An example of a Boolean algebra is given in
Figure 1.1. A Boolean function f is said to be monotone if u ≤ v implies f(u) ≤ f(v) for
all u, v ∈ {0, 1}n. It is well known that a Boolean function f is monotone if and only if
it admits a conjunctive normal form (CNF)

ϕ =
∧
I∈F

∨
i∈I

xi

such that f = ϕ,2 and where no literal xi is negated. Such a formula is called prime if
in addition I1 6⊆ I2 for any two distinct clauses I1, I2 ∈ F . To every monotone Boolean
function corresponds a unique prime CNF. An example of a monotone Boolean func-
tion and its prime CNF is given in Figure 1.1. Another essential representation of a
monotone Boolean function f consists of its prime disjunctive normal form (DNF)

ψ =
∨
J∈G

∧
j∈J

xj

such that f = ψ, where no literal xj is negated, and where J1 6⊆ J2 for any two distinct
terms J1, J2 ∈ G; this representation is also unique.

The dual fd of a Boolean function f is defined by fd(v) = f(v), where f, v respec-
tively denote the complement of f and v, i.e., f(v) = 1−f(v) and v = (1−v1, . . . , 1−vn).
It is monotone as well, and by definition, it satisfies the equality (fd)d = f . The dual
of a monotone Boolean function is given in Figure 1.1. It is well known that if ϕ is a
prime CNF formula for f , then a prime DNF formula ψ for fd is obtained by exchang-
ing ∨ and ∧, as well as the constants 0 and 1. For example, the dual prime DNF of
ϕ = (1 ∨ 2) ∧ (1 ∨ 3) is ψ = 12 ∨ 13. Then, expanding ψ into a CNF using De Morgan’s
laws yields a prime CNF for the dual. Note that the size of the prime CNF of fd may be
exponential in that of f . A canonical example is the formula ϕ = (1∨2)∧(3∨4)∧(5∨6),
generalized to any arity. In that case, expanding the dual function is still reasonable,
a point that was discussed in Section 1.2.4. This is however not always the case, and
the expanding approach may result, unfortunately, into an exponential blowup in the
sizes of the two functions at hand. A canonical example of this phenomenon is the
formula ϕ = (1 ∨ 2) ∧ (2 ∨ 3) ∧ (3 ∨ 4) and its dual, generalized to any arity.

2We shall note f = ϕ if f(x1, . . . , xn) = 1 if and only if the assignment x1, . . . , xn satisfies ϕ.
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(1001) (0110) (0101) (0011)(1010)(1100)

(1101) (1011) (0111)(1110)

(0100) (0010) (0001)(1000)

(0000)

(1111)

Figure 1.1: The Boolean algebra of dimension four, the monotone Boolean function f
of prime CNF ϕ = (1 ∨ 2) ∧ (3 ∨ 4), and its dual. Vectors v such that f(v) = 1 are in the
gray area, vectors such that fd(v) = 1 are in bold. It is easily verified that f(v) = f(v).

The next problem naturally arises.3

Dualization of Monotone Conjunctive Normal Forms (DUALIZATION)
Input: A pair f, g of monotone Boolean functions given by their prime CNF.
Question: Are f and g dual?

Generation version of DUALIZATION
Input: A monotone Boolean function f given by its prime CNF.
Output: The prime CNF of the dual function fd.

Observe that the problem could have been equivalently stated as the dualization of
monotone disjunctive normal forms, by exchanging ∧ and ∨. This is the representation
considered in the landmark paper [FK96], while the one presented here can be found in
the important work [EGM03] and survey [EMG08]. Observe in fact that if fd has prime
CNF ϕ′ =

∧
I∈F

∨
i∈I xi, then f has for prime DNF ψ =

∨
I∈F

∧
i∈I xi. Hence, computing

the prime CNF of fd from the prime CNF of f amounts to computing the DNF of f
from its prime CNF. As (fd)d = f , computing the prime CNF of f from its prime DNF
is equivalent to computing the prime DNF of f from its prime CNF. This yields the
following alternative—and perhaps more easily defined—version of DUALIZATION,
and its two (equivalent) generation versions that we shall retain in the following.

Dualization of Monotone Boolean Functions (MONOTONE DUAL)
Input: A pair f, g of monotone Boolean functions—f given by

its prime CNF, and g by its prime DNF.
Question: Are f and g equal?

First generation version of MONOTONE DUAL
Input: A monotone Boolean function f given by its prime CNF.
Output: The prime DNF of f .
3In the remaining of the document, decision problems will be defined in “input–question” envi-

ronments, while enumeration problems will be defined in “input–output” environments. Here in the
enumeration version, the prime CNF of the dual function fd is seen as a family of clauses to be output.
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Second generation version of MONOTONE DUAL
Input: A monotone Boolean function f given by its prime DNF.
Output: The prime CNF of f .

As stated in the introduction, testing the duality of two monotone Boolean func-
tions is ubiquitous in many areas of computer science [EG95, GMKT97, DMP99]. The
problem has become so central in enumeration theory that it is now common, in order
to characterize the complexity of an enumeration problem, either to exhibit an output-
polynomial time algorithm, or to show that the problem is at least as hard as the du-
alization [MS19, CGK+19, CKMU19], a line of research that emerged from [KLMN14].
For harder problems, it is often desirable to obtain an output quasi-polynomial time
algorithm by reduction to the dualization [MR92, Wil00, NP14, AN17, BMN17, AN19].
Hence depending on the problem, the dualization of monotone Boolean functions ei-
ther plays a tractable, or an intractable frontier, concerning the complexity of a prob-
lem. Its precise complexity status is thereby one of the most challenging open question
in enumeration theory.

To date, the best known algorithm is due to Fredman and Khachiyan [FK96] and
runs in quasi-polynomial time N o(logN) where N = |ϕ| + |ψ|, with ϕ and ψ being the
prime CNF and DNF of two functions f and g, and where |ϕ| denotes the number of
clauses in ϕ. In consequence, the problem is unlikely to be NP-hard. Furthermore, it
is known from [BI95] that there is a polynomial time algorithm solving MONOTONE
DUAL if and only if there is an incremental-polynomial time algorithm solving its gen-
eration version. Such an incremental quasi-polynomial time algorithm for the genera-
tion version of MONOTONE DUAL is made explicit in [FK96].

Since the algorithm of Fredman and Khachiyan, progress has been made on vari-
ous subclasses of monotone functions. Most importantly, output-polynomial time al-
gorithms were obtained in degenerate CNFs, read-k CNFs, acyclic CNFs and formulas
of bounded treewidth [EGM03].

1.3.2 Hypergraph dualization

A hypergraph H is a couple (V (H), E(H)) where V (H) is called vertex set (or ground
set), and where E(H) ⊆ 2V (H) is a family of subsets called hyperedges. A hypergraph is
called Sperner if E1 6⊆ E2 for any two distinct hyperedges E1, E2 ∈ E(H). Examples of
Sperner hypergraphs are given in Figure 1.2. A transversal of H is a subset T ⊆ V (H)
of vertices that intersects every hyperedge E ∈ E(H). It is (inclusion-wise) minimal if
T \ {x} is no longer a transversal for any x ∈ T . The set of all minimal transversals of
H is denoted by Tr(H).

Note that if H is a hypergraph, then (V (H), T r(H)) also defines a hypergraph,
which is Sperner. In this manuscript, and as is custom, we will sometimes refer to
a hypergraph by its set of hyperedges only, when the ground set is clear from the con-
text, or more generally when it is obtained by union of the hyperedges (i.e., no vertex
is isolated). We shall for example refer to Tr(H) as the hypergraph (V (H), T r(H)).
Then, two hypergraphs H and G on same ground set V (H) = V (G) are called dual if
G = Tr(H). An example of two dual hypergraphs is given in Figure 1.2. It can be
observed that ifH is a Sperner hypergraph, then Tr(Tr(H)) = H. It was also observed
in [Ber84] that any hypergraph H that is not Sperner may always be reduced in poly-
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G

Figure 1.2: Two dual hypergraphsH and G, as well as the complementary hypergraph
G of G defined by V (G) = V (G) and E(G) = {V (G) \ E | E ∈ G}. Then G = Tr(H) and
G = MIS(H).

nomial time into a Sperner hypergraphH′, with no incidence on the set of its minimal
transversals, i.e., such that Tr(H) = Tr(H′).

The next problem follow.

Hypergraph Dualization (HYPERGRAPH DUAL)
Input: Two hypergraphsH and G.
Question: AreH and G dual?

Generation version of HYPERGRAPH DUAL (TRANS-ENUM)
Input: A hypergraphH.
Output: The set Tr(H) of all minimal transversals ofH.

It is well known that the prime DNF ψ of a monotone Boolean function f corre-
sponds to its minimal true vectors. Hence that each term ofψ minimally intersects each
clause of the prime CNF ϕ of f . Free to disregard CNFs and DNFs as hypergraphs, this
establishes the equivalence of HYPERGRAPH DUAL with MONOTONE DUAL, hence of
HYPERGRAPH DUAL with DUALIZATION. This equivalence has brought many new
results to the dualization problem. Most notably, the dualization was shown to be
solvable in polynomial time on hypergraphs of bounded conformality by Boros, El-
bassioni, Gurvich, and Khachiyan [BEGK04, KBEG07]. This class of hypergraph will
be defined in Chapter 2 and contains hypergraphs of bounded edge intersection, and
of bounded edge size. This algorithm will be used as a black box in three of the al-
gorithms presented in this manuscript. Other tractable cases that will not be used
in the following include degenerate hypergraphs [EGM03], α and β acyclic hyper-
graphs [EG95, EGM03], or hypergraphs without small holes [KKP18].

As for DUALIZATION, several forms of hypergraph dualization exist. We introduce
another generation version that will be used in Chapter 4. An independent set of H is a
subset I ⊆ V (H) of vertices such that E 6⊆ I for any E ∈ E(H). It is called (inclusion-
wise) maximal if I ∪ {x} is no longer an independent set for any x ∈ V (H) \ T . The set
of all maximal independent sets of H is denoted by MIS(H), and the corresponding
enumeration problem defined as follows.

Hypergraph Maximal Independent Sets Enumeration (MIS-ENUM)
Input: A hypergraphH.
Output: The set MIS(H) of all maximal independent sets ofH.

The maximal independent sets of a hypergraph are given in Figure 1.2. It is easily
seen that a subset I of V (H) is a maximal independent set of H if and only if its com-
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plementary T = V (H) \ I is a minimal transversal of H. We immediately deduce that
TRANS-ENUM and MIS-ENUM are equivalent. Other equivalent forms of hypergraph
dualization may be found in the survey [EMG08] and include the enumeration of all
minimal set coverings (minimal sets of hyperedges whose union is the ground set) of
a hypergraph. These other forms will not be encoutered in this manuscript.

The next three chapters are devoted to the study of monotone dualization through
the other shapes it takes on graphs and lattices: minimal dominating sets enumeration,
lattice dualization, and meet-irreducible enumeration.
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Chapter 2

Minimal dominating sets enumeration

In this chapter we present new algorithms for the problem of enumerating all minimal dominat-
ing sets in graphs. Parts of these results appeared in joint works with Marthe Bonamy, Marc
Heinrich, Michał Pilipczuk, and Jean-Florent Raymond [BDHR19, BDH+20]. Other parts
were obtained with Marthe Bonamy, Piotr Micek, and Lhouari Nourine, and may be found in
the preprint [BDMN20].

We saw in the previous chapter how the monotone dualization problem could be
formulated in term of transversality in hypergraphs. It has recently been proved by
Kanté, Limouzy, Nourine, and Mary [KLMN14] that the problem could also be formu-
lated as the enumeration of all (inclusion-wise) minimal dominating sets in graphs.
A dominating set in a graph G is a set D of vertices such that every vertex of G is ei-
ther inD, or adjacent to a vertex ofD. It is (inclusion-wise) minimal if no strict subset is
a dominating set. Since [KLMN14], this problem has gained lots of interest, and char-
acterizing its complexity in particular graph classes has become a fruitful line of re-
search. We review here the main contributions of the last ten years. Incremental-poly-
nomial time algorithms were found for chordal bipartite graphs [GHK+16], {C6, C8}-
free bipartite graphs [KKP18], and unit square graphs [GHK+18]. Polynomial-delay
algorithms were obtained in chordal and line graphs [KLM+15a, KLM+15b]. Linear-
delay algorithms were given for permutation and interval graphs [KLM+13], graphs
of bounded clique width [Cou09], LMIM-width [GHK+18], split and P6-free chordal
graphs [KLMN14].

In addition to these recent results, the problem inherited from previously known
algorithms on hypergraphs and CNFs. Most notably, the problem is known to be
solvable in output-polynomial time in log(n)-degenerate graphs [EGM03], and with
polynomial delay in planar and degenerate graphs [EGM03], as well as in graphs of
bounded conformality [BEGK04, KLMN12].

When starting this thesis, two important graph classes were notably open: bipar-
tite graphs, and co-bipartite graphs [KN14]. We show in this chapter that the first class
admits an output-polynomial time algorithm, by proving the case of graphs without
big cliques. Our result is based on a technique called ordered generation on reducing the
enumeration to smaller pieces of the initial instance. This result puts the light on a su-
per class of bipartite graphs that remains open: the class of comparability graphs. We
show this later class to be tractable whenever the underlying partial order (or poset) is
of bounded dimension. This result is based on a recent technique technique called flip-
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ping method on enumerating minimal dominating sets from (inclusion-wise) maximal
independent sets. Concerning co-bipartite graphs, it is known that the problem in that
class is as hard as the general case [KLMN14]. This therefore holds for super classes
of co-bipartite graphs such as incomparability graphs. For this later class, we never-
theless show the problem to be tractable whenever the underlying poset is, again, of
bounded dimension. This is based on flashlight search, a different technique, and relies
on the geometrical representation of incomparability graphs of bounded dimension,
which was given by Golumbic et al. in [GRU83].

The chapter is organized as follows. In Section 2.1 we introduce necessary con-
cepts and definitions, and recall a result from [KLMN14] on the equivalence of TRANS-
ENUM and the enumeration of minimal dominating sets. Output-polynomial, incre-
mental-polynomial, and polynomial-delay algorithms are respectively given for sev-
eral graph classes related to Kt-free graphs, and for the comparability and incompa-
rability graphs of posets of bounded dimension, in Sections 2.2, 2.3, and 2.4. Future
research directions are discussed in Section 2.5.

2.1 Preliminaries
We define here notions related to graphs, posets, and domination that will be used in
this chapter.

2.1.1 Graphs

A graph G is a pair (V (G), E(G)) with V (G) its set of vertices (or ground set) and
E(G) ⊆ {{u, v} | u, v ∈ V (G), u 6= v} its set of edges. An example of a graph is given
in Figure 2.1. Edges are denoted by uv (or vu) instead of {u, v}. Two vertices u, v of
G are called adjacent if uv ∈ E(G). In this chapter, and as is common, we will usually
denote |V (G)| by n, and |E(G)| by m. A clique (respectively an independent set) in a
graph G is a set of pairwise adjacent (respectively non-adjacent) vertices. A biclique
is a set of vertices that can be partitioned into two independent sets A,B such that
every vertex in A is adjacent to every vertex in B. We note Kt the clique on t elements,
and Kt,t the biclique on 2t elements of partition A,B such that |A| = |B| = t. We note
Kt − e the clique on t elements minus an edge, and Kt + K2 the disjoint union of Kt

and an edge. The subgraph of G induced by X ⊆ V (G), denoted by G[X], is the graph
(X,E(G)∩{{u, v} | u, v ∈ X, u 6= v}); G−X is the graphG[V (G)\X]. For every graph
H , we say that G is H-free if no induced subgraph of G is isomorphic to H .

If the vertex set of a graph G can be partitioned into one part inducing a clique and
one part inducing an independent set (respectively two independent sets, two cliques),
we say that G is a split (respectively bipartite, co-bipartite) graph. A complete multipartite
graph is a graph which vertex set can be partitionned into several independent sets
such that there is an edge between every pair of vertices from different independent
sets.

Some small graphs we consider in this manuscript are P3, which is the path on
three vertices (i.e., G = ), its complementary P3 (i.e., G = ), the paw, which is
the graph obtained by adding a vertex of degree one to K3 (i.e., G = ), and K4 − e,
also known as diamond graph (i.e., G = ).
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Figure 2.1: A graph G (left), its Sperner hypergraph N (G) of closed neighborhoods
(middle), and a poset P such that G is the comparability graph of P (right). On this
example, the set D = {x2, x4, x6} is both a minimal dominating set of G, and a minimal
transversal of N (G). In the poset, it satisfies "D ∪ #D = V (G).

2.1.2 Neighborhood and domination

We define notions related to domination. Let G be a graph and u be a vertex of G. The
neighborhood of u is the set N(u) = {v ∈ V (G) | uv ∈ E(G)}. The closed neighborhood of
u is the set N [u] = N(u) ∪ {u}. For example in Figure 2.1, the closed neighborhood of
x2 is the set N [x2] = {x1, x2, x3}. For a subset X ⊆ V (G) we define N [X] =

⋃
x∈X N [x]

and N(X) = N [X] \ X . Let D,X ⊆ V (G) be two subsets of vertices of G. We say
that D dominates X if X ⊆ N [D]. It is (inclusion-wise) minimal if X 6⊆ N [D \ {x}] for
any x ∈ D. A (minimal) dominating set of G is a (minimal) dominating set of V (G).
The set of all minimal dominating sets of G is denoted by D(G), and the problem of
enumerating D(G) given G defined as follows.

Minimal Dominating Sets Enumeration (DOM-ENUM)
Input: A graph G.
Output: The set D(G) of all minimal dominating sets of G.

Observe that a set D of vertices is a minimal dominating set of G if it minimally
intersects all the closed neighborhoods ofG. We immediately deduce that DOM-ENUM
is a particular case of TRANS-ENUM by considering the so-called hypergraph of closed
neighborhoods of G, usually denoted H = N (G), and defined by V (H) = V (G) and
E(H) = {N [x] | x ∈ V (G)}. Furthermore, this hypergraph can be considered Sperner
by defining E(H) = Min⊆{N [x] | x ∈ V (G)}, where Min⊆ denotes the inclusion-wise
minimal sets of the family. An example of one such hypergraph is given in Figure 2.1.

In [KLMN14] the authors in fact show that there is a polynomial delay algorithm
for DOM-ENUM if and only if there is one for TRANS-ENUM. Since DOM-ENUM is a
particular case of TRANS-ENUM, we only need to show how TRANS-ENUM reduces
to DOM-ENUM. We briefly review here the construction. For any hypergraph H
we denote by I(H) the bipartite incidence graph of H with bipartition X = V (H) and
Y = {yE | E ∈ E(H)}, and where there is an edge between x ∈ X and yE ∈ Y if x be-
longs to E in H. The construction of a bipartite incidence graph is given in Figure 2.2.
Consider now the co-bipartite graph B(H) obtained from I(H) by adding a special
vertex v to X , and by completing both X and Y into cliques. Then, it is easily seen that
minimal dominating sets of B(H) are either of size two, or consist of minimal subsets
of X being adjacent to every yE ∈ Y . Minimal dominating sets of the second type are
exactly the minimal transversals ofH. As they is a quadratic number in n = |V (G)| of
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Figure 2.2: The incidence graph I(H) (left) of the hypergraph H given in Figure 2.1
and defined by V (H) = {x1, . . . , x6} and E(H) = {E1, . . . , E4}, where E1 = {x1, x2, x5},
E2 = {x1, x2, x3}, E3 = {x3, x4, x5}, and E4 = {x5, x6}. A co-bipartite construction is
obtained from I(H) by completing the partitions into cliques and adding a new vertex
v adjacent to every xi (right).

minimal dominating sets of the first type, the next theorem follows.

Theorem 2.1.1 ([KLMN14]). DOM-ENUM restricted to co-bipartite graphs is polynomially
equivalent to TRANS-ENUM and DOM-ENUM.

2.1.3 Maximal independent sets

Recall that an independent set in a graph G is a set of pairwise non-adjacent vertices.
For a graph G, we denote by MIS(G) the set of all its (inclusion-wise) maximal in-
dependent sets, and by MIS-ENUM the problem of generating MIS(G) from G. It
is easily observed that every maximal independent set is a minimal dominating set,
hence that MIS(G) ⊆ D(G). However, MIS-ENUM appears to be much more tractable
than DOM-ENUM, as witnessed by the many efficient algorithms that are known for
the problem [TIAS77, JYP88, MU04]. These last two observations are the starting point
of the flipping method introduced in [GHKV15] and that is at the heart of Section 2.3.

2.1.4 Private neighbors

We define notions that are useful when dealing with domination. Let u ∈ D. We call
private neighbor of u with respect to D a vertex v ∈ V (G) that is only dominated by u in
D, i.e., that is such that N [v] ∩ D = {u}. Note that u can be its own private neighbor
(we say that u is self-private). The set of private neighbors of u ∈ D is denoted by
Priv(D, u). A set I ⊆ V (G) is called irredundant if Priv(I, x) 6= ∅ for all x ∈ I . The
following observation is folklore.

Observation 2.1.2. A set D ⊆ V (G) is a minimal dominating set of G if and only if it is both
a dominating set, and an irredundant set.

2.1.5 Red blue domination

We define a slightly different setting of domination that is of interest in Section 2.3.
A red-blue graph G(R,B) is a graph G together with two disjoint subsets R,B ⊆ V (G)
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Figure 2.3: The standard example of order four.

where vertices in R are called red and those in B are blue. For simplicity in the follow-
ing, we do not require R and B to partition V (G). A red dominating set of G(R,B) is a
red set D ⊆ R that dominates B, i.e., that is such that B ⊆ N [D]. It is (inclusion-wise)
minimal if B 6⊆ N [D \ {x}] for any x ∈ D. We note D(R,B) the set of all minimal red
dominating sets of G(R,B), and RED-BLUE-DOM-ENUM the problem of enumerating
D(R,B) given G, R and B. In the context of red-blue domination, dominating sets are
always assumed to be red, and private neighbors assumed to be blue.

It is easily seen in Figure 2.2 that the minimal transversals ofH are the red dominat-
ing sets ofG(R,B) whereG= I(H),R =X andB = Y , no matter the edges inX and Y .
In fact, as the edges induced by R and B may be ignored when considering red-blue
domination, and by definition of bipartite incidence graphs, RED-BLUE-DOM-ENUM
and TRANS-ENUM may be seen as two formulations of the same problem. We in par-
ticular deduce the following folklore theorem in the line of Theorem 2.1.1.

Theorem 2.1.3 (Folklore). RED-BLUE-DOM-ENUM restricted to bipartite and co-bipartite
graphs is polynomially equivalent to TRANS-ENUM (hence to DOM-ENUM).

2.1.6 Posets and (in)comparability graphs

We conclude the section with notions from posets that will be used in Section 2.3.
A partially ordered set (or poset) P = (V,≤) is a binary relation ≤ on a ground set V

which is reflexive, anti-symmetric and transitive. Two elements u and v of P are said to
be comparable if u≤ v or v ≤ u, otherwise they are said to be incomparable, denoted u ‖ v.
We note x < y if x≤ y and x 6= y. Posets are represented by their Hasse diagram in which
each element is a vertex in the plane, and where there is a line segment or curve that
goes upward from x to y whenever x < y and there is no z such that x < z < y. A chain
(respectively an antichain) in a poset P is a set of pairwise comparable (respectively
incomparable) vertices; P is called a total order (or linear order) if V is a chain.

The comparability graph of a poset P = (V,≤) is the graphG defined on same ground
set V (G) = V and where two vertices u and v are made adjacent if they are comparable
in P . An example of a poset and its comparability graph is given in Figure 2.1. The
incomparability graph (or co-comparability graph) of P is the complementary: u and v are
made adjacent if they are incomparable in P .

We now define notations from order theory that will be used in the context of a
poset and its comparability graph only. Let G be the comparability graph of a poset
P = (V,≤). The ideal of u is the set #u = {v ∈ V | v ≤ u}, and the filter of u is the
dual "u = {v ∈ V | u ≤ v}. Then N [u] = #u ∪ "u. These notions extend to subsets
S ⊆ V as follows: #S =

⋃
u∈S #u, "S =

⋃
u∈S "u. Then a (minimal) dominating set of
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G is a (minimal) set D ⊆ V such that "D ∪ #D = V , and a (maximal) independent set
of G is a (maximal) antichain of P . We note Min(S) and Max(S) the sets of minimal
and maximal elements in S with respect to ≤. Clearly, Min(S) and Max(S) define
antichains of P for every S ⊆ V .

We call poset induced by X ⊆ V , denoted P [X], the suborder restricted on the
elements of X only. A poset P = (V,≤) is bipartite if V can be partitioned into two sets
A,B such that a < b implies a ∈ A and b ∈ B. We note St the standard example with
bipartition A = {a1, . . . , at} andB = {b1, . . . , bt} such that ai < bj for all i, j ∈ {1, . . . , t},
i 6= j. See Figure 2.3 for an example of such a poset.

The dimension of a poset P = (V,≤) is the least t such that P is the intersection
of t linear orders <1, . . . , <t on V , i.e., x ≤ y if and only if x <1 y, . . . , x <t y. It is
well known that St has dimension t [DM41]. Note that dimension is monotone un-
der taking induced suborders. Therefore, posets containing a large standard example
as a suborder have large dimension. The converse is however not true, as there are
posets of unbounded dimension with no S2 as an induced suborder, see [Tro92] for a
comprehensive study and references.

2.2 Ordered generation in Kt-free graphs and variants
We are now ready to present the first contributions of this thesis, giving output-poly-
nomial time algorithms for DOM-ENUM in graph classes related to Kt-free graphs.

2.2.1 Ordered generation in bicolored graphs

We describe a general procedure that will be used throughout Section 2.2. This proce-
dure will construct minimal dominating sets one neighborhood at a time, in a variant
of what is known as the backtrack search technique in [RT75, FLM97, MS19], and referred
to as ordered generation in [EGM03].

In what follows, we find it more convenient to deal with the slightly more general
setting of domination in bicolored graphs. A bicolored graph is a graph together with a
subset of its vertex set. For a graph G and a subset A ⊆ V (G), we denote by G(A) the
bicolored graphGwith prescribed setA. We also say thatG has bicoloring (A, V (G)\A).
Then, a dominating set of G(A) is a set D ⊆ V (G) that dominates A, i.e., such that
A ⊆ N [D]. It is (inclusion-wise) minimal if it does not contain any dominating set
of G(A) as a proper subset. Intuitively, the vertices of G − A may be used in the
dominating set, but do not need to be dominated. For every graph G and subset
A ⊆ V (G), we denote by D(G,A) the set of minimal dominating sets of G(A). Then
D(G,A) = D(G) whenever A = V (G).

A peeling of a bicolored graph G(A) is a sequence of vertex sets (V0, . . . , Vp) such
that Vp = A, V0 = ∅, and for every i ∈ {1, . . . , p}, there is a vertex vi ∈ Vi such that

Vi−1 = Vi \N [vi].

We call (v1, . . . , vp) the vertex sequence of the peeling. It is straightforward to see that
given a bicolored graphG(A), any peeling ofG(A) can be computed inO(n2) time and
space: start with the whole set A, and as long as A remains non-empty, pick a vertex v
in it and remove N [v] from A. The representation of a peeling is given in Figure 2.4.
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AV (G) \ A

vp vi v1

. . . . . .

N(vp) ∩ Vp N(vi) ∩ Vi N(v1) ∩ V1

Vi−1

Vi

Figure 2.4: Representation of a peeling of a bicolored graph G(A) constructed by itera-
tively removing vi’s and their neighborhoods, for i from p to 1. Note that vertices that
are effectively removed at step i are those of N [vi] ∩ Vi, as vertices in N [vi] \ Vi have
already been removed at a previous step. A crucial property is that vi has no neighbor
in Vi−1.

In the remaining of this section, we consider a bicolored graph G(A), together with
a fixed peeling (V0, . . . , Vp) of G(A) with vertex sequence (v1, . . . , vp). Observe that
D(G, Vp) = D(G,A). We now define the relation that will be used by our algorithm
to enumerate the minimal dominating sets of G(A) without repetition. Recall that the
sets of D(G, Vi) may contain vertices of G− Vi, which is a crucial point.

Definition 2.2.1. Let i ∈ {0, . . . , p− 1} and D ∈ D(G, Vi+1). We define Parent(D, i+ 1) as
the pair (D∗, i) where D∗ is obtained from D by exhaustively applying the following operation:
as long as there exists a vertex x inD satisfying Priv(D, x)∩Vi = ∅, remove fromD the vertex
of smallest index with this property.

Clearly, there is a unique way to build Parent(D, i+ 1) given D and i. By construc-
tion, the obtained set D∗ is a minimal dominating set of G(Vi). Hence, every set in
D(G, Vi+1) can be obtained by completing some D∗ in D(G, Vi); we develop this point
below.

Proposition 2.2.2. Let i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, Vi). Then:

(i) if D∗ dominates Vi+1 then D∗ ∈ D(G, Vi+1) and Parent(D∗, i+ 1) = (D∗, i);

(ii) otherwise, D∗ ∪ {vi+1} ∈ D(G, Vi+1) and Parent(D∗ ∪ {vi+1}, i+ 1) = (D∗, i).

Proof. First note that since D∗ ∈ D(G, Vi), for all x ∈ D∗ we have Priv(D∗, x) ∩ Vi 6= ∅,
implying also Priv(D∗, x) ∩ Vi+1 6= ∅. Hence, if D∗ dominates Vi+1 then in fact D∗ is a
minimal dominating set ofG(Vi+1) and thusD∗ ∈ D(G, Vi+1). Since Priv(D∗, x)∩Vi 6= ∅
for all x ∈ D∗, we then have that Parent(D∗, i+1) = (D∗, i) directly from the definition.

Suppose now that D∗ does not dominate Vi+1, and observe that then D = D∗ ∪
{vi+1} does. Moreover, Priv(D, vi+1) ∩ Vi+1 6= ∅. Since vi+1, by the definition of the
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peeling, is not adjacent to any vertex in Vi, it cannot steal any private neighbor from
the elements of D∗, i.e., Priv(D∗, x) ∩ Vi 6= ∅ implies Priv(D∗ ∪ {vi+1}, x) ∩ Vi 6= ∅ for
any x ∈ D∗. Hence Priv(D, x) ∩ Vi+1 6= ∅ for all x ∈ D. Now, note that since vi+1 does
not steal private neighbors from the elements of D∗, it is indeed the only node in D
with no private neighbors in Vi, and it is removed when constructing Parent(D, i+ 1).
Hence Parent(D, i+ 1) = (D∗, i), as claimed.

The Parent function as introduced in Definition 2.2.1 defines a tree on vertex set

{(D, i) | i ∈ {0, . . . , p} , D ∈ D(G, Vi)},

with leaves {(D, p) | D ∈ D(G,A)} and root (∅, 0) (the empty set being the only min-
imal dominating set of the empty vertex set V0). Our algorithms will search this tree
in order to enumerate the minimal dominating sets of G(A). Proposition 2.2.2 guar-
antees that for every i < p and every D∗ ∈ D(G, Vi), the pair (D∗, i) is the parent of
some (D, i + 1) with D ∈ D(G, Vi+1) (possibly D = D∗). Consequently, every branch
of the tree leads to a different minimal dominating set of G(A). In particular, for every
i ∈ {0, . . . , p− 1}we have

|D(G, Vi)| ≤ |D(G, Vi+1)| ≤ |D(G,A)|. (2.1)

Given a set D∗ ∈ D(G, Vi), we now focus on the enumeration of all D ∈ D(G, Vi+1)
such that Parent(D, i+ 1) = (D∗, i). Any (inclusion-wise) minimal set X ⊆ V (G) such
that Vi+1 ⊆ N [D∗ ∪X] will be called a candidate extension of (D∗, i). In other words, X
is a candidate extension of (D∗, i) if and only if it is a minimal dominating set of the
bicolored graph G with prescribed set Vi+1 \ N [D∗]. Then, we denote by C(D∗, i) the
set of all candidate extensions of (D∗, i), i.e.,

C(D∗, i) def
= D(G, Vi+1 \N [D∗]). (2.2)

Observe that if (D, i+ 1) has (D∗, i) as its parent, then D \D∗ is candidate extension of
(D∗, i). From Proposition 2.2.2, we also know that one of (D∗, i+1) and (D∗∪{vi+1}, i+
1) has (D∗, i) as its parent, hence that either ∅ or {vi+1} is a candidate extension of
(D∗, i). Note that we have no guarantee that any other candidate extension forms a
minimal dominating set of Vi+1, together with D∗. We show that it is still reasonable
to test each of the candidate extensions even though D∗ might have a unique child.

Lemma 2.2.3. Let H(B) be a bicolored graph and D ⊆ V (H). Then

|D(H,B \N [D])| ≤ |D(H,B)|.

Proof. We argue that for every X ∈ D(H,B \ N [D]) we can find a set DX ∈ D(H,B)
so that the sets DX are pairwise different for different X ; this assertion immediately
implies the desired inequality. For this, we define DX as any minimal dominating set
ofH(B) that is a subset ofD∪X ; such a set exists asD∪X dominatesB. By definition,
every vertex of X has a private neighbor in B \N [D] so we have X ⊆ DX . Moreover,
since X is a minimal dominating set of B \ N [D], X is disjoint with D. We conclude
that X = DX \D, and hence that the sets DX are pairwise different for different X .
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As a consequence of Lemma 2.2.3 and Inequality (2.1), we have the following.

Corollary 2.2.4. Let i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, Vi). Then |C(D∗, i)| ≤ |D(G,A)|.

We conclude the ordered generation with the following statement, which reduces
the existence of an output-polynomial time algorithm enumerating D(G,A) to the ex-
istence of one enumerating C(D∗, i) for any i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, Vi).

Theorem 2.2.5. Let f : N2 ! N and s : N ! N be two functions. Assume that there is an
algorithm that, given a bicolored graph G(A) on n vertices, a peeling (V0, . . . , Vp) of G(A),
i ∈ {0, . . . , p− 1}, and D∗ ∈ D(G, Vi), enumerates C(D∗, i) in time at most f(n, |D(G,A)|)
and space at most s(n). Then there is an algorithm that, given a bicolored graph G(A) on n
vertices, enumerates the set D(G,A) in time

O(n4d2 + f(n, d) · nd)

and space O(n · s(n)), where d = |D(G,A)|.

Proof. Let us assume that there exists an algorithm B that, given a bicolored graph
G(A) on n vertices, a peeling (V0, . . . , Vp) of G(A), i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, Vi),
enumerates C(D∗, i) in time at most f(n, |D(G,A)|) and space at most s(n). Note that
we may assume that s(n) ∈ Ω(n), as B needs to store its input. We describe an algo-
rithm A that enumerates D(G,A) within the specified time and space complexities.

The algorithm first checks whether A = ∅ and, if so, returns {∅}. Otherwise, it
computes a peeling (V0, . . . , Vp) of G(A) in time O(n2) and using O(n2) space. Recall
that the Parent relation defines a tree T on vertex set

{(D, i) | i ∈ {0, . . . , p} , D ∈ D(G, Vi)},

with leaves {(D, p) | D ∈ D(G,A)} and root (∅, 0). Therefore, in order to enumer-
ate D(G,A), it is enough for A to enumerate the leaves of T . To do so, the algorithm
performs a depth-first search (DFS) of T outputting each visited leaf. For each node
(D∗, i), i ∈ {0, . . . , p− 1} of T , the algorithm runs B on input (G(A), (V0, . . . , Vp), i, D

∗)
to generate C(D∗, i) in time f(n, d) and space s(n). For every X ∈ C(D∗, i) generated
by B, the algorithm tests whether D∗ ∪ X is a minimal dominating set of Vi+1, and
whether Parent(D∗ ∪ X, i + 1) = (D∗, i). This requires O(n3) steps per candidate ex-
tension, and a total working space of O(n), disregarding the space needed to store the
(globally fixed) graph G. As by Corollary 2.2.4 we have |C(D∗, i)| ≤ |D(G,A)| = d,
the total time spent by A at each node of T is bounded by O(n3d + f(n, d)). By In-
equality (2.1) we have |V (T )| ≤ pd and clearly p ≤ n, so the total running time of A is
bounded by

O(n4d2 + f(n, d) · nd).

Regarding the space, we observe that whenever we visit a node of T , we do not
need to compute the whole set of its children. Instead, it is enough in order to continue
the DFS to compute the next unvisited child only, which can be done using B and
pausing it afterward. Therefore, when we visit some (D, i) ∈ V (T ), we only need to
store the data of the i − 1 (paused) executions of B enumerating the children of the
ancestors of (D, i), plus the data of the algorithm enumerating the children of D, i.e.,
i · (O(n) + s(n)) space. As s(n) ∈ Ω(n), the described algorithm uses O(n · s(n)) space,
as claimed.
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2.2.2 Candidate extensions in triangle-free graphs

We show that candidate extensions can be enumerated in output-polynomial time in
triangle-free graphs, which by Theorem 2.2.5 leads to an output-polynomial time algo-
rithm enumerating minimal dominating sets in this class of graphs. In fact, our result
holds in the more general context where only the graph induced by the set that needs
to be dominated is required to be triangle-free, and not necessarily the whole graph, a
point that is discussed in Section 2.2.5.

In the following, we consider a bicolored graph G(A) on n vertices. Moreover, we
have a fixed peeling (V0, . . . , Vp) of G(A) with vertex sequence (v1, . . . , vp). Then, we
consider

i ∈ {0, . . . , p− 1} , D∗ ∈ D(G, Vi),

and define C(D∗, i) as in Equality (2.2) in Section 2.2.1. We will show how to enumerate
C(D∗, i) in output-polynomial time whenever G[A] is triangle-free.

Kanté, Limouzy, Mary, and Nourine gave the following characterization of mini-
mal dominating sets in split graphs.

Proposition 2.2.6 ([KLMN14]). Let H be a split graph with vertices partitioned into an
independent set S and a clique C, where S is taken to be (inclusion-wise) maximal. Then, for
every D ∈ D(H) the following holds:

(i) D ∩ S = S \ N(D ∩ C), so in particular D is uniquely determined by its intersection
with the clique; and

(ii) for every x ∈ D, Priv(D, x) ∩ S 6= ∅.

Furthermore, D(H) can be enumerated with delay O(n2) and using O(n2) space.

We can now use Proposition 2.2.6 to establish the following understanding of can-
didate extensions in terms of minimal dominating sets of an auxiliary split graph. The
set S in the next lemma corresponds to the elements that, together with vi+1, must be
dominated by the candidate extensions of (D∗, i). This situation is depicted in Fig-
ure 2.5.

Lemma 2.2.7. Suppose that N(vi+1) is an independent set. Let S = Vi+1 \ (N [D∗]∪ {vi+1}),
C = N(S) \ {vi+1}, and let H be the split graph obtained from G[S ∪ C] by completing C
into a clique. Then, every set X in C(D∗, i) either belongs to D(H), or belongs to D(H) after
removing one vertex (i.e., X \ {u} ∈ D(H) for some u ∈ X), or is such that X = {vi+1}.
Moreover, |D(H)| ≤ n · |C(D∗, i)|+ 1.

Proof. Consider any X ∈ C(D∗, i), X 6= {vi+1}. Then, by definition, X is a minimal
dominating set of Vi+1 \ N [D∗]. By assumption as Vi+1 \ N [D∗] ⊆ N [vi+1], we have
vi+1 /∈ X . Observe then that X ⊆ C ∪ S.

We first consider the case when vi+1 ∈ N [D∗]. Then Vi+1 \ N [D∗] = S and, as H
is a supergraph of G[S ∪ C] and S remains an independent set in H , it follows that
X minimally dominates S in H . Note that either X contains a vertex of C, and then
this vertex dominates C in H , or X = S, and then X dominates C in H as well. We
conclude that X is a minimal dominating set of H , i.e., that X ∈ D(H) in this case.
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We now consider the remaining case when vi+1 /∈ N [D∗]; then Vi+1 \ N [D∗] = S ∪
{vi+1}. Observe that now either X is a minimal dominating set of S, or there exists
u ∈ N(vi+1) ∩ X such that X \ {u} is a dominating set of S \ N [u], i.e., of S \ {u} as
N(vi+1) is an independent set. Denote D = X in the former case and D = X \ {u} in
the latter case; we now apply a reasoning similar to that from the previous paragraph.
Since vi+1 /∈ D and D is a minimal dominating set of S or S \ {u}, it follows that
D ⊆ C ∪ S. If D ⊆ S, then either D = S \ {u} (if u is defined and u ∈ S) or D = S
(otherwise), because N(vi+1) (hence in particular S) is an independent set. If D 6⊆ S,
then D ∩ C 6= ∅. In both cases, D dominates C in H , and we conclude that X (if
u is defined and u ∈ S) or D (otherwise) is a dominating set of H . Moreover, since
Priv(D, x) ∩ S 6= ∅ for each x ∈ D it follows that X or D is a minimal dominating set
of H . As X = D or X = D ∪ {u} for some vertex u, we conclude that either X belongs
to D(H), or it belongs to D(H) after removing one vertex, a vertex that was here only
to dominate vi+1.

Having considered both cases, the claimed property of elements of C(D∗, i) follows.
We are left with proving the claimed upper bound on |D(H)|. We first show that

|{D ∈ D(H) | D ∩ S = ∅}| ≤ (n− 1) · |{D ∈ D(H) | D ∩ S 6= ∅}|+ 1. (2.3)

Indeed, consider the map f that, given D ∈ {D ∈ D(H) | D ∩ S = ∅}, D 6= ∅, removes
one arbitrary vertex from D, and completes the dominating set by adding all the ver-
tices in the independent set which are no longer dominated. Then, f maps non-empty
elements of {D ∈ D(H) | D ∩ S = ∅} to the set {D ∈ D(H) | D ∩ S 6= ∅}. Moreover,
every element in this second set is the image of at most |C| ≤ n− 1 elements by f . This
implies the desired bound.

From Inequality (2.3) we immediately obtain that

|D(H)| ≤ n · |{D ∈ D(H) | D ∩ S 6= ∅}|+ 1,

so it suffices to prove that

|{D ∈ D(H) | D ∩ S 6= ∅}| ≤ |C(D∗, i)|.

To see this, we observe that in fact we have {D ∈ D(H) |D∩S 6= ∅} ⊆ C(D∗, i). Indeed,
by Proposition 2.2.6 we have that every D ∈ D(H) is a minimal dominating set of S in
G, and it moreover dominates vi+1 provided D ∩ S 6= ∅.

We now show how to efficiently enumerate the candidate extensions.

Lemma 2.2.8. There is an algorithm enumerating C(D∗, i) in total time O(n4 · |D(G,A)|)
and O(n2) space whenever N(vi+1) is an independent set.

Proof. First, observe that given any set B of vertices, we can test in O(n2) time and
space whether B ∈ C(D∗, i). Hence, it suffices to enumerate in time O(n4 · |D(G,A)|)
and O(n2) space a superset F of C(D∗, i) of size O(n2 · |D(G,A)|), and for each element
of F to test whether it belongs to C(D∗, i). By Lemma 2.2.7 we can use

F = {vi+1} ∪ D(H) ∪ {D ∪ {u} | D ∈ D(H), u ∈ V (G)},
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Vi+1 vi+1

N(vi+1) ∩ Vi+1

C

Figure 2.5: The situation of Lemma 2.2.7. The set N [D∗] ∩ Vi+1 is depicted in gray
(except vi+1, in the first case of the proof), and the set S = Vi+1 \ (N [D∗] ∪ {vi+1}) ⊆
N(vi+1) ∩ Vi+1 is in white. Note that C = N(S) \ {vi+1}may intersect V (G) \ Vi+1.

where H is the split graph defined in the statement of Lemma 2.2.7. Observe that

|F| ≤ (n+ 1) · |D(H)|+ 1

and, using Proposition 2.2.6, we can enumerateF in total timeO(n3 · |D(H)|) and space
O(n2). It now remains to observe that by Lemma 2.2.7 and Corollary 2.2.4 we have

|D(H)| ≤ n · |C(D∗, i)|+ 1 ≤ n · |D(G,A)|+ 1,

so the claimed time complexity follows.

We conclude with the following theorem which is a consequence of Theorem 2.2.5,
Lemma 2.2.8, and of the fact that when G[A] is triangle-free, the neighborhood of any
vertex is an independent set.

Theorem 2.2.9. There is an algorithm that, given a bicolored graph G(A) on n vertices such
that G[A] is triangle-free, enumerates the set D(G,A) in time

O(poly(n) · |D(G,A)|2)

and O(n3) space.

When A = V (G), we have D(G) = D(G,A). Hence, Theorem 2.2.9 implies the
existence of an algorithm enumerating the minimal dominating sets in triangle-free
graphs in output-polynomial time and polynomial space.

2.2.3 Minimal dominating sets in Kt-free graphs

In this section, we generalize the characterization of Lemma 2.2.7 and show how to use
it to enumerate minimal dominating sets in Kt-free graphs, at the cost of an increased
complexity (see Theorem 2.2.13).

We start with a general lemma that, roughly, implies that any output-polynomial
time algorithm that may repeat outputs can be turned into one without repetition,
without increasing space.
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Lemma 2.2.10. Let Σin,Σout be two sets and R ⊆ Σin ×Σout be a relation. Let f, s : Σin ! N
be two functions. Suppose that there is a deterministic algorithm enumerating, given any
x ∈ Σin, the set {y ∈ Σout | xRy} in time at most f(x) and space at most s(x), possibly with
repetition. Then there is an algorithm that, on the same input, returns the same output without
repetition, in time O(f(x)2) and space O(s(n)).

Proof. Let B’ be the algorithm that on input x ∈ Σin outputs {y ∈ Σout | xRy}, possibly
with repetition, in time at most f(x) and space at most s(x). Elements y ∈ Σout satisfy-
ing xRy will be called solutions. We now give an algorithm B that, on the same input x,
outputs all solutions without repetition. Algorithm B simulates B’ while counting its
number of output calls. Every time B’ outputs a solution y, B runs a new simulation
of B’ to verify whether y was not output by B’ before. This new simulation is termi-
nated at the first attempt of outputting y, and for the verification, B simply checks the
output solution counts in both simulations against each other. If y is indeed output
by B’ for the first time, then B also outputs y, and otherwise B’ ignores this output
and proceeds with the simulation. Thus, B outputs every solution exactly once: at the
first moment when B’ outputs it. The time complexity of B is O(f(x)2), because for
every step of B’ we run a second simulation of B’ that takes time at most f(x). The
space complexity of B is at most 2 · s(x) +O(1) = O(s(x)), because we need to store the
internal data of two simulations of B’ at any time.

By combining Lemma 2.2.10 and Theorem 2.2.5, we get the following corollary.

Corollary 2.2.11. Let f : N2 ! N and s : N ! N be two functions. Suppose that there
is an algorithm that, given a bicolored graph G(A) on n vertices, a peeling (V0, . . . , Vp) of
G(A), i ∈ {0, . . . , p− 1} and D∗ ∈ D(G, Vi), enumerates the set C(D∗, i) in time at most
f(n, |D(G,A)|) and space at most s(n), possibly with repetition. Then there is an algorithm
that, given a bicolored graph G(A) on n vertices, enumerates the set D(G,A) in time

O(n4d2 + f(n, d)2 · nd)

and space O(n · s(n)), where d = |D(G,A)|.

The aforementioned generalization of Lemma 2.2.7 is the following.

Lemma 2.2.12. Let G(A) be a bicolored graph and (V0, . . . , Vp) be a fixed peeling of G(A)
with vertex sequence (v1, . . . , vp). Let i ∈ {0, . . . , p− 1}, D∗ ∈ D(G, Vi) and S = Vi+1 \
(N [D∗] ∪ {vi+1}). Then:

• if vi+1 ∈ N [D∗] then C(D∗, i) = D(G,S);

• otherwise, every element of C(D∗, i) is of the form Q ∪ {w} for some w ∈ N [vi+1] and
Q ∈ D(G,S \N [w]). Furthermore, in this case |D(G,S \N [w])| ≤ |C(D∗, i)| for each
w ∈ N [vi+1].

Proof. By definition, C(D∗, i) = D(G, Vi+1 \ N [D∗]). Note that if vi+1 ∈ N [D∗] then
Vi+1 \ N [D∗] = S, so we immediately get C(D∗, i) = D(G,S). This resolves the first
case.

Suppose then that vi+1 /∈ N [D∗] and consider any X ∈ C(D∗, i). Since X minimally
dominates Vi+1 \N [D∗] = S ∪ {vi+1}, there exists some w ∈ N [vi+1] ∩X . Then X \ {w}
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dominates S \N [w] and for every element of X \{w}, its private neighbor in S ∪{vi+1}
has to actually belong to S \N [w]. We conclude thatX \{w} ∈ D(G,S \N [w]), proving
the characterization of the elements of C(D∗, i) in this case.

We are left with proving the claimed upper bound on |D(G,S \ N [w])|, for each
w ∈ N [vi+1]. Take any Q ∈ D(G,S \ N [w]); clearly w /∈ Q. If Q dominates S ∪ {vi+1},
then Q is also a minimal dominating set of S ∪ {vi+1}, because every vertex of Q has a
private neighbor in S \N [w] ⊆ S∪{vi+1}. Otherwise, Q∪{w} is a minimal dominating
set of S ∪ {vi+1}: vi+1 is the private neighbor of w, and w could not steal any private
neighbors in S \N [w] from any vertices from Q. We conclude that either Q or Q∪ {w}
belongs to C(D∗, i), which proves that |D(G,S \N [w])| ≤ |C(D∗, i)|.

Let us point out the key difference between the statements of Lemma 2.2.12 and of
Lemma 2.2.7. In Lemma 2.2.7, we reduced the enumeration of C(D∗, i) to the enumer-
ation of D(H) for a single split graph H . In Lemma 2.2.12, to obtain larger generality
we need to separately consider sets D(G,S \ N [w]) for each w ∈ N [vi+1]. When enu-
merating C(D∗, i) via enumerating these sets, we will unavoidably obtain repetitions
of elements of C(D∗, i). These will be handled using Lemma 2.2.10 at the cost of an
increased complexity.

Observe that by Lemma 2.2.12, to be able to enumerate the candidate extensions
in general (and thus the minimal dominating sets, using Theorem 2.2.5) in output-
polynomial time, it suffices to be able to enumerate the minimal dominating sets
of G(S) and of G(S \ N [w]) for every w ∈ N [vi+1]. For bicolored graphs G(A) such
that G[A] is Kt-free, this can be done by exploiting the fact that G[S] is Kt−1-free and
running the same algorithm on G(S), as we shall describe now. We recall that ω(G)
denotes the size of a largest clique in G.

Theorem 2.2.13. There is a function p : N! N and an algorithm that, given a bicolored graph
G(A) on n vertices, enumerates the set D(G,A) in time at most

p(t) · n2t+1 · |D(G,A)|2t

and space at most p(t) · nt+1, where t = ω(G[A]) + 1.

When A = V (G), we have D(G) = D(G,A). Hence, Theorem 2.2.13 implies the
existence of an algorithm enumerating, for every integer t ≥ 1, the minimal dominat-
ing sets in Kt-free graphs in output-polynomial time and polynomial space. We stress
that we provide a single algorithm for all values of t—note that as stated, the algorithm
does not require knowledge of t.

Proof of Theorem 2.2.13. In this proof we consider two algorithms A and B that recur-
sively call each other in order to enumerate the minimal dominating sets of a bicol-
ored graph. We first give their specifications, then describe them, and finally prove
that they perform as specified. Let f : N3 ! N be defined by f(n, d, t) = n2t+1−3 · d2t−1,
for every n, d, t ∈ N.

Specifications of A and B. We will show that the algorithms A and B have the fol-
lowing properties P and Q, for every t ≥ 1 in case of P (t) and every t ≥ 2 in case of
Q(t).
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P (t): There is a constant p(t) ∈ N such that given an n-vertex graph G and a set
A ⊆ V (G) such that G[A] is Kt-free, A outputs D(G,A) in time at most p(t) ·
f(n, |D(G,A)|, t) and space at most p(t) · nt+1.

Q(t): There is a constant q(t) ∈ N such that given a n-vertex graph G, a set A ⊆ V (G)
such that G[A] is Kt-free, a peeling (V0, . . . , Vp) of G(A) with vertex sequence
(v1, . . . , vp), i ∈ {0, . . . , p− 1}, and D∗ ∈ D(G, Vi), B outputs C(D∗, i) in time at
most q(t) · n2 · f(n, |D(G,A)|, t− 1)2 and space at most q(t) · nt.

The statement of Theorem 2.2.13 is implied by P (t) holding for all t ≥ 1. In order
to prove it, we will also show that Q(t) holds for every t ≥ 2. Let us first describe A.

Description of A. The algorithm A is the one given by Theorem 2.2.5 that takes as
input a bicolored graph G(A), using B as a routine to enumerate candidate extensions.
We will show below that B indeed does so.

Description of B. Recall that B takes as input a bicolored graph G(A), a peeling
(V0, . . . , Vp) of G(A) with vertex sequence (v1, . . . , vp), an integer i ∈ {0, . . . , p− 1}, and
a set D∗ ∈ D(G, Vi).

We first describe an auxiliary routine B’. Let S = Vi+1 \ (N [D∗] ∪ {vi+1}). Then,
Lemma 2.2.12 above allows us to consider two cases depending on whether D∗ domi-
nates vi+1 or not:

(i) if vi+1 ∈ N [D∗], we call algorithm A on G(S) to enumerate D(G,S) and we give
the same output;

(ii) otherwise, we iterate over all w ∈ N [vi+1] and Q ∈ D(G,S \ N [w]) (where the
latter is obtained via a call to A) and output Q∪{w} if and only if it is a candidate
extension of D∗.

We are now done with B’. As we will show later, B’ enumerates C(D∗, i), however
each element may be repeated, up to n times. Then B is obtained from B’ using
Lemma 2.2.10. This concludes the description of B.

Correctness of A and B. Now that we described the algorithms A and B, we show
that they conform to their specifications, i.e., we prove that P (t) holds for every t ≥ 1
and that Q(t) holds for every t ≥ 2. The proof by induction on t is split in lemmas.

Lemma 2.2.14. P (1) holds.

Proof. The statement P (1) deals with pairs (G,A) such thatG[A] isK1-free, soA = ∅. In
these cases we clearly have D(G,A) = {∅}. Notice that such inputs are correctly han-
dled by algorithm A. Checking whether A is empty and returning {∅} takes O(n) time
and O(n2) space. We define p(1) as an integer such that these steps take at most p(1) ·n
time and at most p(1) · n2 space on an input graph of order n. As f(n, |D(G,A)|, t) = n
in this case, P (1) holds.

Lemma 2.2.15. For every integer t ≥ 1, P (t)⇒ Q(t+ 1).
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Proof. Let t ≥ 1 and let us assume that the statement P (t) holds (in particular, p(t) is
defined). Let I = (G,A, V0, . . . , Vp, v1, . . . , vp, i, D

∗) be an input of B such that G[A] is
Kt+1-free. Let us define n = |G| and d = |D(G,A)|. We review the description of B to
show that Q(t+ 1) holds. We first consider the auxiliary routine B’.

Claim 1. Given I, the algorithm B’ enumerates C(D∗, i) with each output repeated up to
n times, in time at most k · n · f(n, d, t) and space at most k · nt+1, for some constant k.

Proof. Let S = Vi+1 \ ({vi+1} ∪ N [D∗]). Note that as D∗ dominates Vi, we have S ⊆
N(vi+1) ∩ Vi+1. Also, S can be computed in O(n2) time and space.

Since i < p, we have Vi+1 ⊆ A, from the definition of a peeling. In particular,
G[Vi+1] is Kt+1-free. As S ⊆ N(vi+1) ∩ Vi+1, we get that G[S] is Kt-free. Hence, when
applying the algorithm recursively to enumerate D(G,S ′) for any S ′ ⊆ S, we may use
the already established property P (t), yielding the following:
Remark 2.2.16. For any S ′ ⊆ S, a call to A on (G,S ′) returns D(G,S ′) in time at most
p(t) · f(n, |D(G,S ′)|, t) and space at most p(t) · nt+1.

If vi+1 ∈ N [D∗], then, by Lemma 2.2.12, we enumerate C(D∗, i) without repetitions
simply by enumerating D(G,S). By Remark 2.2.16, this takes time

p(t) · f(n, |D(G,S)|, t)
= p(t) · f(n, |C(D∗, i)|, t) (by Lemma 2.2.12)
≤ p(t) · f(n, d, t) (by Corollary 2.2.4)

and space at most p(t) · nt+1.
Now suppose that vi+1 /∈ N [D∗]. Then, by Lemma 2.2.12, we enumerate all ele-

ments of the set C(D∗, i), however each of them is enumerated once per every form
Q∪{w} it can take, where w ∈ N [vi+1] and Q ∈ D(G,S \N [w]). Every such occurrence
is characterized by the choice ofw, hence there are at most n of them and, consequently,
every member of C(D∗, i) is enumerated at most n times.

Regarding time and space complexity we perform at most n times (once for every
choice of w ∈ N [vi+1]) the following operations:

• constructing S \N [w], in O(n) time and space;

• calling A on (G,S \N [w]), in time at most p(t) · f(n, |D(G,S \N [w])|, t) and space
at most p(t) · nt+1, by Remark 2.2.16;

• checking, for each set Q among the outputs of A, whether Q ∪ {w} belongs to
C(D∗, i), in O(n2) time and space. There are at most d outputs.

By Lemma 2.2.12 and Corollary 2.2.4, we have

|D(G,S \N [w])| ≤ |C(D∗, i)| ≤ d.

Therefore, in total the time complexity of these steps adds up to:

n ·
[
O(n) + p(t) · f(n, d, t) +O

(
n2 · d

)]
= O (p(t) · n · f(n, d, t)) (as t ≥ 2 in this case). (2.4)
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Similarly, the space complexity can be upper-bounded by O(p(t) · nt+1). We conclude
by setting k as p(t) times the maximum of the constants hidden in the O(·) notation
above. y

As proved in Lemma 2.2.10, the algorithm of Claim 1 can be turned into an algo-
rithm B that does not repeat outputs. That is, there is a constant q(t + 1) (depending
on k) such that given I, B runs in time at most q(t+ 1) ·n2 · f(n, d, t)2 and space at most
q(t+ 1) · nt+1. Hence Q(t+ 1) holds, as desired.

Lemma 2.2.17. For every integer t ≥ 2, Q(t)⇒ P (t).

Proof. Let us assume that for some integer t ≥ 2, the statement Q(t) holds (and in
particular q(t) is defined). Let G be a graph and A ⊆ V (G) be such that G[A] is Kt-free.
We set n = |G| and d = |D(G,A)|. By Q(t), the enumeration of candidate extensions in
G(A) can be carried out by B in total time at most

q(t) · n2 · f(n, d, t− 1)2

and space at most q(t) · nt. According to Theorem 2.2.5, A then enumerates D(G,A) in
time

O(n4 · d2 + q(t) · n3 · f(n, d, t− 1)2 · d)

= O(n4 · d2 + q(t) · f(n, d, t)) (by the definition of f )
= O(q(t) · f(n, d, t)) (as t ≥ 2)

and space O(q(t) · nt+1). Therefore, there is a constant p(t) (depending on q(t)) such
that A runs on this input in time at most p(t) · f(n, d, t) and space at most p(t) · nt+1.
This proves P (t).

Concluding the proof. We proceed by induction on t. The base case P (1) follows
from Lemma 2.2.14. The induction step that, for every integer t ≥ 1, P (t) implies
P (t + 1), is obtained by combining Lemmas 2.2.15 and 2.2.17. We conclude that P (t)
holds for every integer t ≥ 1. That is, the algorithm A has the properties claimed in the
statement of the theorem.

We note that the complexity of the algorithm of Theorem 2.2.13 for Kt-free graphs
could be slightly improved when t ≥ 3, using Theorem 2.2.9 as a base case, however
that would not remove the exponential contribution of t to the degree of the poly-
nomial.

2.2.4 Variants of Kt-free graphs

We give output-polynomial time algorithms for classes related to Kt-free graphs re-
lying on the algorithms and characterizations of candidate extensions given in Sec-
tions 2.2.1, 2.2.2, and 2.2.3.
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Forbidding Kt +K2

In this section we show how the algorithm of Theorem 2.2.13 on Kt-free graphs can be
extended to the setting of (Kt +K2)-free graphs.

Theorem 2.2.18. There is an algorithm that, for every fixed t ∈ N, enumerates minimal dom-
inating sets in (Kt +K2)-free graphs in output-polynomial time and polynomial space.

Proof. Let t ∈ N and let G be a (Kt + K2)-free graph. It is well-known that the min-
imal dominating sets of G that induce edgeless subgraphs are exactly the maximal
independent sets of G. We can therefore enumerate these using the polynomial delay
algorithms of Tsukiyama et al. [TIAS77] for maximal independent sets. In the sequel
we may thus focus on those minimal dominating sets of G that induce at least one
edge.

We show how to enumerate, for every edge uv of G, the minimal dominating sets
of G that contain both u and v. Let Auv = V (G) \ N [{u, v}] and observe that G[Auv]
is Kt-free. First, we enumerate G(Auv) using the algorithm of Theorem 2.2.13, which
runs in output-polynomial time and polynomial space, as t is fixed. For every D ∈
D(G,Auv) obtained from the aforementioned call, we outputD∪{u, v} if it is a minimal
dominating set ofG, and discardD otherwise. By Lemma 2.2.3 (applied forH = G and
B = V (G)) we have |D(G,Auv)| ≤ |D(G)|. Hence, enumerating D(G,Auv) produces all
those minimal dominating sets of G that at least induce the edge uv in time poly(n ·
|D(G)|) and space poly(n), where the degrees of these polynomials depend on t (see
Theorem 2.2.13).

Now that we know how to enumerate minimal dominating sets that induce at least
one particular edge, we can run the above routine for every edge of G to enumerate
all minimal dominating sets of G, possibly with repetitions. Observe that the same
output can be repeated at most |E(G)| times. Then, repetitions are avoided using
Lemma 2.2.10 with Σin being the set of all graphs, Σout the set of all vertex sets, and R
the relation that associates every graph to its minimal dominating sets.

Forbidding Kt − e

Another interesting case is the one of (Kt−e)-free graphs. In this section we show how
the characterization of Lemma 2.2.12 can be used to enumerate candidate extensions
in diamond-free graphs (which are (Kt − e)-free for t = 4), which by Theorem 2.2.5
gives an output-polynomial time algorithm enumerating minimal dominating sets in
this class. We leave open the existence of such an algorithm in the case when t ≥ 5.

In what follows, we consider a bicolored graph G(A) on n vertices such that G is
diamond-free, together with a fixed peeling (V0, . . . , Vp) of G(A) with vertex sequence
(v1, . . . , vp). Then, we consider

i ∈ {0, . . . , p− 1} , D∗ ∈ D(G, Vi),

and define S = Vi+1 \ (N [D∗]∪ {vi+1}) and C(D∗, i) as in Sections 2.2.1, 2.2.2, and 2.2.3.
Note that contrarily to the triangle-free case and the Kt-free case, we here require the
whole graph G to be diamond-free and not only G[A]. We start with an easy observa-
tion.
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Observation 2.2.19. For every vertex u of G, G[N(u)] is P3-free. Then G[N(vi+1)], hence
also G[S], can be partitioned into a disjoint union of cliques (i.e., it is a cluster graph).

We will show how to minimally dominate one clique of S, then a disjoint union of
cliques of S, and will conclude with the enumeration of C(D∗, i).

Lemma 2.2.20. LetK be a clique ofG[S] and u be a vertex inG−S, u 6= vi+1, that is adjacent
to some vertex of K. If u is adjacent to vi+1, then it is complete to K. Otherwise u has exactly
one neighbor in K.

Proof. If u ∈ N(vi+1) then, as G[N(vi+1)] is P3-free and K ⊆ N(vi+1), u is complete
to K. If u is not adjacent to vi+1, then it has exactly one neighbor in K, as otherwise
{a, b, u, vi+1}would induce a diamond in G, for any two neighbors a, b ∈ K of u.

Lemma 2.2.21. Let K be a clique in G[S]. Then D(G,K) can be enumerated in total time
O(n2 + n · |D(G,K)|) and O(n2) space.

Proof. We describe an algorithm enumerating D(G,K) in the specified time and space
bounds. We first output {vi+1} as it is complete to K. We then output all vertices
u ∈ N(vi+1) such that u ∈ K or u is adjacent to some vertex of K. By Lemma 2.2.20,
these vertices are also complete to K. Then, for every x ∈ K, we compute the neigh-
borhood of x outside of N(vi+1) in total time O(n2). By Lemma 2.2.20, these neigh-
borhoods are disjoint. At last, we enumerate the unordered Cartesian products of
these neighborhoods. This can clearly be done in total time of O(n · |D(G,K)|) using
O(n) space as they are disjoint. Clearly, every element in such an unordered Carte-
sian product is a minimal dominating set of K, and the described algorithm performs
within the specified time and space bounds. The correctness of the algorithm follows
from Lemma 2.2.20.

Lemma 2.2.22. Let W be a subset of S. Then D(G,W ) can be enumerated in total time
O(n7 · |D(G,A)|3) and O(n3) space.

Proof. We use the ordered generation described in Section 2.2.1. The algorithm first
computes a peeling (U1, . . . , Uq) of G(W ) with vertex sequence (u1, . . . , uq), in O(n2)
time and space. Note that N [u1] ∩ W, . . . , N [uq] ∩ W is exactly the disjoint clique
partition of G[W ]; denote these sets by W1, . . . ,Wq. Given j ∈ {0, . . . , q − 1} and
D◦ ∈ D(G,Uj), we define C ′(D◦, j) as the set of candidate extensions of (D◦, j) with
respect to the chosen peeling of G(W ) and we show how to enumerate C ′(D◦, j) in
time O(n6 · |D(G,A)|2) and using O(n2) space.

We rely on the same characterization of candidate extensions that we use in the
proof of Theorem 2.2.13, i.e., Lemma 2.2.12. Recall that this lemma allows us to con-
sider two cases depending on whetherD◦ dominates uj+1 or not. Let Y = Wj+1\N [D◦].

IfD◦ dominates uj+1, then we can enumerate C ′(D◦, j) by just enumeratingD(G, Y )
as these sets coincide. As Y is a clique in G[S], by Lemma 2.2.21 we can enumer-
ate D(G, Y ) in time O(n2 + n · |D(G, Y )|) and space O(n2). By Lemma 2.2.3 we have
|D(G, Y )| ≤ |D(G,A)|, hence the procedure runs within the required time and space
complexity.

In the remaining case when D◦ does not dominate uj+1, we iterate over all w ∈
N [uj+1] and Q ∈ D(G, Y \N [w]) (obtained via a call to the algorithm of Lemma 2.2.21)
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and output Q ∪ {w} if and only if this set belongs to C ′(D◦, j), which can be checked
in O(n2) time and space. Again, by Lemma 2.2.3 we have |D(G, Y \N [w])| ≤ |D(G,A)|
for all w as above. Hence, in total, the described algorithm enumerates C ′(D◦, i), pos-
sibly with repetitions, in time O(n3 · |D(G,A)|) and using O(n2) space. Using Corol-
lary 2.2.11, we obtain an algorithm enumerating D(G,W ) in time O(n7 · |D(G,A)|3),
and using O(n3) space.

Lemma 2.2.23. There is an algorithm enumerating C(D∗, i), possibly with repetitions, in total
time O(n8 · |D(G,A)|3) and using O(n3) space.

Proof. We apply the same argument as in the previous lemma, and in the proof of
Theorem 2.2.13. Lemma 2.2.12 allows us to consider two cases depending on whether
D∗ dominates vi+1 or not. If D∗ dominates vi+1, we call the algorithm of Lemma 2.2.22
to enumerate D(G,S) without repetitions in total time O(n7 · |D(G,A)|3) and O(n3)
space. If D∗ does not dominate vi+1, we iterate over all w ∈ N [vi+1] and Q ∈ D(G,S \
N [w]) (obtained via a call to the algorithm of Lemma 2.2.22 as S \N [w] ⊆ S) and output
Q ∪ {w} if and only if this set belongs to C(D∗, i). An analogous complexity analysis
shows that this algorithm runs in time O(n8 · |D(G,A)|3) and uses O(n3) space, and it
enumerates C(D∗, i) possibly with repetitions.

As a consequence of Corollary 2.2.11 and Lemma 2.2.23, we get the following.

Theorem 2.2.24. There is an algorithm that, given a bicolored graph G(A) on n vertices such
that G is diamond-free, enumerates the set D(G,A) in time

O(poly(n) · |D(G,A)|7)

and O(n4) space.

Note that when A = V (G), we have D(G) = D(G,A). Hence, Theorem 2.2.24
implies the existence of an algorithm enumerating the minimal dominating sets in
diamond-free graphs in output-polynomial time and using polynomial space.

Paw-free graphs

We now consider the exclusion of a specific graph, the paw, and show that DOM-
ENUM admits an output-polynomial time algorithm in paw-free graphs.

In what follows, we consider a bicolored graph G(A) on n vertices such that G
is paw-free, together with a fixed peeling (V0, . . . , Vp) of G(A) with vertex sequence
(v1, . . . , vp). Then, we consider

i ∈ {0, . . . , p− 1} , D∗ ∈ D(G, Vi),

and define S = Vi+1 \ (N [D∗] ∪ {vi+1}) and C(D∗, i) as in Sections 2.2.1, 2.2.2 and 2.2.3.
As in the previous section we stress that we require the whole graph G to be paw-free,
and not only G[A]. We start with an easy observation.

Observation 2.2.25. For every vertex u of G, G[N(u)] is P3-free. Hence G[S] is a complete
multipartite graph (also called a co-cluster graph).
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Note that when enumerating C(D∗, i) (i.e., the minimal dominating sets of G(S)),
we may safely ignore the edges between two vertices of G − S. Therefore, if S is an
independent set, we can delete all edges of G−S (in O(n2) time) to obtain that N(vi+1)
is an independent set and then apply the algorithm enumerating C(D∗, i) in this setting
given by Lemma 2.2.8. In the next lemma, we consider the case where S contains at
least one edge.

Lemma 2.2.26. Assume that G[S] contains at least one edge, and let u be a vertex of G,
u 6= vi+1, that has a neighbor in S. If u is not adjacent to vi+1, then it is complete to S.
Otherwise, u is complete to S \ Ij , for some j ∈ {1, . . . , q} where I1, . . . , Iq is the complete
multipartition of G[S] (every Ij induces an independent set in G, while vertices from different
Ij’s are adjacent).

Proof. As by assumption G[S] contains an edge, we have q ≥ 2. Assume first that
u is not adjacent to vi+1, but has a neighbor in S; in particular u /∈ S. Suppose for
contradiction that u is not complete to S. Hence there are vertices x ∈ S ∩ N(u) and
y ∈ S \N(u). Note that xy 6∈ E(G) as otherwise {u, vi+1, x, y} induces a paw inG. Then
x, y ∈ Ij for some j ∈ {1, . . . , q}. Let z ∈ S \ Ij ; such a vertex exists as q ≥ 2 and it is
complete to {vi+1, x, y} by definition of the Ik’s. Then, either uz ∈ E(G) and {u, x, y, z}
induces a paw, or uz /∈ E(G) and {u, vi+1, y, z} does, a contradiction.

Assume now that u is adjacent to vi+1. If u belongs to S, then it belongs to some Ij ,
j ∈ {1, . . . , q} and is complete to S \ Ij , by definition of the Ik’s. We now assume u ∈
N(vi+1) \ S. If there is no j ∈ {1, . . . , q} such that u is complete to S \ Ij , then, as q ≥ 2,
u has at least two non-neighbors x ∈ Ij′ and y ∈ Ij′′ for two different j′, j′′ ∈ {1, . . . , q}.
Then {u, vi+1, x, y} induces a paw in G, a contradiction.

Lemma 2.2.27. There is an algorithm enumerating C(D∗, i) in total time O(n5 · |D(G,A)|)
and O(n2) space.

Proof. In the case where S induces an independent set, we use the algorithm of Lemma
2.2.8 to enumerate C(D∗, i) in time

O(n4 · |D(G,A)|)

and O(n2) space. Otherwise, we deduce from Lemma 2.2.26 that minimal dominating
sets of S are either of size at most two, or of the form Ij for some j ∈ {1, . . . , q}. If
vi+1 ∈ N [D∗], that is if S = Vi+1 \N [D∗], we try each of these sets and output those that
minimally dominate S; this can be done in total time O(n4). This enumerates C(D∗, i)
by definition. If vi+1 6∈ N [D∗], we first output Ij for every j ∈ {1, . . . , q}. Then, we
iterate over all vertex subsets of size at most three and output those that minimally
dominate S; this can be done in total time O(n5). This will enumerate C(D∗, i), for the
following reason implied by Lemma 2.2.26. IfX ∈ C(D∗, i), then eitherX = Ij for some
j ∈ {1, . . . , j}, or X contains at most three vertices: one with vi+1 as a private neighbor
and at most 2 with private neighbors in S.

As a consequence of Theorem 2.2.5 and Lemma 2.2.27, we get the following.
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Theorem 2.2.28. There is an algorithm that, given a bicolored graph G(A) on n vertices such
that G is paw-free, enumerates the set D(G,A) in time

O(poly(n) · |D(G,A)|2)

and O(n3) space.

Note that when A = V (G), we have D(G) = D(G,A). Hence, Theorem 2.2.28 im-
plies the existence of an algorithm enumerating the minimal dominating sets in paw-
free graphs in output-polynomial time and using polynomial space.

2.2.5 Technique limitations

In this section, we discuss various obstacles that we detected in our attempts to im-
prove our results or proofs.

A standard technique fails for bipartite graphs

A natural technique (referred to as flashlight search, investigated in Section 2.4) to enu-
merate valid solutions to a given problem such as, for instance, sets of vertices satisfy-
ing a given property, is to build them element by element. If during the construction
one detects that the current partial solution cannot be extended into a valid one, then it
can be discarded along with all the other partial solutions that contain it. Note that in
order to apply this technique, one should be able to decide whether a given partial so-
lution can be completed into a valid one. It turns out that for minimal dominating sets,
this problem (called the extension problem problem) is NP-complete [KLMN11], even
when restricted to split graphs [KLM+15a]. We show that it remains NP-complete in
bipartite graphs, so in particular on (Kt +K2)-free graphs for every t ≥ 3. This stands
in contrast with Theorem 2.2.13 and suggests that, indeed, a more involved technique
was needed to obtain our results.

The extension problem, denoted DCS, is formally defined as follows. Given a graph
G and a set A ⊆ V (G) of vertices, is there a minimal dominating set D ∈ D(G) such
that A ⊆ D.

Theorem 2.2.29. DCS restricted to bipartite graphs is NP-complete.

Proof. Since DCS is NP-complete in the general case, it is clear that DCS is in NP even
when restricted to bipartite graphs. Let us now present a hardness reduction from
SAT.

Given an instance ϕ of SAT with variables x1, . . . , xn and clauses C1, . . . , Cm, we
construct a bipartite graphG and a setA ⊆ V (G) such that there exists a minimal dom-
inating set containing A if and only if there exists a truth assignment to the variables
of ϕ that satisfies all the clauses. The graph G has vertex bipartition (X, Y ), defined as
follows.

The first part X contains two special vertices u and w, and for every variable xi,
one vertex for each of the literals xi and ¬xi. The second part Y contains one vertex
yCj

per clause Cj , one vertex negxi per variable xi, and two special vertices v and z.
For every i ∈ {1, . . . , n} we make negxi adjacent to the two literals xi and ¬xi and for
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Figure 2.6: A bipartite graph G and a set A ⊆ V (G) constructed from an instance of
SAT with variables x1, . . . , xn and clauses C1, . . . , Cm. Black vertices constitute the set
A. Then A can be extended into a minimal dominating set D of G if and only if there
is a truth assignment of the variable satisfying all the clauses.

every j ∈ {1, . . . ,m}we make yCj
adjacent to u and to every literal Cj contains. Finally,

we add edges to form the path uvwz and set A = {negx1 , . . . , negxn , v, w}. Clearly this
graph can be constructed in polynomial time from ϕ. The construction is illustrated in
Figure 2.6.

Let us show that A can be extended into a minimal dominating set of G if and
only if ϕ has a truth assignment that satisfies all the clauses. The proof is split into
two claims. A partial assignment of ϕ is a truth assignment of a subset of the variables
x1, . . . , xn. Observe that a partial assignment may satisfy all the clauses (i.e., the values
of the non-assigned variables do not matter). A partial assignment that satisfies all
the clauses is called a minimal assignment if none of its proper subsets satisfies all the
clauses.

Claim 2. Let S ⊆ {x1,¬x1, . . . , xn,¬xn} be a set containing at most one literal for each vari-
able. Then S minimally dominates {yC1 , . . . , yCm} if and only if its elements form a minimal
assignment of ϕ.

Proof. Suppose S is as above and S minimally dominates {yC1 , . . . , yCm}. Consider any
j ∈ {1, . . . ,m}. Since yCj

/∈ S, the set S contains a neighbor x of yCj
. By construction, x

is a literal appearing in Cj . Hence, the literals present in S form a partial assignment
of the variables of ϕ satisfying all its clauses. Moreover, this partial assignment is
minimal by the minimality of S. The proof in the other direction is analogous. y

Claim 3. If D is a minimal dominating set of G containing A, then D \ A ⊆ {x1,¬x1, . . . ,
xn,¬xn} and D contains at most one literal of each variable.

Proof. Notice that Priv(A, v) = {u}. If yCj
belongs to D for some j ∈ {1, . . . ,m}, then

Priv(D, v) = ∅, a contradiction to the minimality of D. For similar reasons u, z /∈ D.
HenceD∩{u, z, yC1 , . . . , yCm} = ∅. Besides, for every i ∈ {1, . . . ,m},D contains at most
one of xi and ¬xi, as otherwise Priv(D, negxi) would be empty, again contradicting the
minimality of D. This proves the claim. y
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If A can be extended into a minimal dominating set D of G, then by combining the
two claims above, we deduce that ϕ has a truth assignment that satisfies all clauses.
Conversely, if ϕ has a truth assignment satisfying all the clauses, then it also has a min-
imal truth assignment satisfying all the clauses, so there is a set S as in the statement
of Claim 2. In S ∪ A, every element of S has a private neighbor, as a consequence of
the minimality of S and the fact that no element of A has a neighbor among the clause
vertices. Besides, each of negx1 , . . . , negxn has a private neighbor (because S contains at
most one of the two literals for each variable) and it is easy to see that the same holds
for v and w. Hence S ∪ A is a minimal dominating set of G.

Given an instance ϕ of SAT, we constructed in polynomial time an instance (G,A)
of DCS that is equivalent to satisfiability of ϕ. This proves that DCS is NP-hard.

Limitations of the bicolored argument

Let us present a brief argument of why enumerating the minimal dominating sets in a
bicolored graph G(A) is DOM-ENUM-hard if A can contain an arbitrarily large clique
and no restriction is put on the structure of G− A nor its interactions with A. In other
words, we argue that DOM-ENUM can be reduced to the problem of enumerating the
minimal dominating sets in a bicolored graph G(A) where A is a clique.

Because of Theorem 2.1.1, we know that enumerating minimal dominating sets
of a co-bipartite graph G is DOM-ENUM-hard. However, note that free to disregard
the minimal dominating sets consisting of exactly one vertex in each clique of the
partition, every minimal dominating set is included in one of the two cliques. Let
A1 and A2 be the two sides of this partition. Observe that as both A1 and A2 induce
cliques, they satisfy any property that does not limit the size of the largest clique.
Combined with the fact that minimal dominating sets consisting of exactly one vertex
in each side of the partition are easy to enumerate, we obtain the desired conclusion.

Note however that this obstacle was circumvented in Theorems 2.2.24 and 2.2.28 by
keeping track of what the forbidden structures inG imply for the interactions between
G − A and A. Unfortunately, the arguments were quite ad hoc in nature and it is
unclear how far they can be generalized.

This obstacle was bypassed in a different way in Theorem 2.2.18, simply by first
enumerating all the minimal dominating sets without a given structure, then using
the fact that the structure appears in any remaining dominating set to guess where it
does, and finally arguing that the vertices that remain to be dominated cannot induce
an arbitrarily large clique. We now show that this technique is in fact very limited.

Limitations of enumerating all minimal dominating sets with a certain structure

We present now a brief argument on why enumerating allH-free minimal dominating
sets in a graph is DOM-ENUM-hard unless H is a clique of size at most 2. Here, a
minimal dominating setD isH-free ifG[D] does not containH as an induced subgraph.

The case whenH is not a clique is directly implied by the argument in Section 2.2.5.
We now focus on the case when H is a clique on at least 3 vertices; it suffices to handle
the case when H is a triangle. In other words, we argue that DOM-ENUM can be
reduced to the question of enumerating all triangle-free minimal dominating sets.

44



Consider a graph G. We build an auxiliary graph G′ by creating two copies A and
B of V (G), creating a vertex u, and setting V (G′) = A ∪ B ∪ {u}. We set A to be an
independent set, B to be a clique, and the vertex u to be adjacent to all of A and none
of B. We set the edges between A and B as follows: a vertex in A and a vertex in B
are adjacent if and only if the vertices of G they originate from are the same or are
adjacent.

Let us consider what the structure of a minimal dominating set D of G′ can be, and
how easy it is to generate all minimal dominating sets of a given type. We consider
three cases.

1. u 6∈ D. We generate all minimal dominating sets of the split graph G′[A ∪ B]:
this can be done in output-polynomial time according to Proposition 2.2.6. For
each such minimal dominating set, either the intersection with A is non-empty
and it is a minimal dominating set of G′, or it is empty and we can generate
in polynomial-time all additions of a vertex of A that would result in a mini-
mal dominating set of G′, if any. Since the number of minimal dominating sets
of G′[A ∪ B] with empty intersection with A is polynomially bounded by the
number of those with non-empty intersection (see Lemma 2.2.8, Inequality (2.3)),
we can generate all minimal dominating sets of G′ not containing u in output-
polynomial time.

2. u ∈ D and D ∩B 6= ∅. Then |D ∩ B| = 1, and for any v ∈ B, the set {u, v} is a
minimal dominating set of G′.

3. u ∈ D and D ∩B = ∅. All these minimal dominating sets are triangle-free. We
observe that there is a bijection between the minimal dominating sets of this
type and the minimal dominating sets of G.

Summarizing, the first two types of minimal dominating sets are easy to generate
in output-polynomial time. We note that, free again to disregard minimal dominating
sets that are easy to generate, enumerating all triangle-free minimal dominating sets
of G′ boils down to enumerating all minimal dominating sets of G′ that are included
in A ∪ {u} and contain u. This is equivalent to enumerating all minimal dominating
sets of G, hence the conclusion.

Note, however, that there is still hope for this technique when we assume some
structure on the whole graph.

2.3 Flipping method in comparability graphs
Golovach, Heggernes, Kratsch and Villanger introduced in [GHKV15] the so-called
flipping method to efficiently enumerate minimal dominating sets in line graphs. This
method was later used with much success [GHK+16, GHK+18, KKP18]. We recall it
below and in the process, we show that the flipping method can be improved to run
with polynomial space (in contrast to exponential space from the original version). We
then show how it yields an incremental-polynomial time algorithm for DOM-ENUM in
the comparability graphs of posets of bounded dimension.

45



u

w

v

Xuv

Zuv

Priv(D,u)

Figure 2.7: An illustration of the flipping operation on a dominating set D such that
G[D] contains at least one edge incident to some vertex u, here depicted by uw. Black
vertices are elements of D, white vertices are some elements of Priv(D, u). Dashed
discs represent closed neighborhoods, and plain disks represent private neighbor-
hoods.

2.3.1 Polynomial-space flipping method

A key step of the flipping method is the flipping operation, that we describe now.

The flipping operation Let G be an n-vertex graph and v1, . . . , vn be any ordering of
vertices in G. We note that this order induces a lexicographical order on the family
2V (G). Let D be a minimal dominating set of G such that G[D] contains at least one
edge incident to some vertex u. The following procedure is illustrated in Figure 2.7.
SinceD is a minimal dominating set, the set Priv(D, u) is not empty. Let v ∈ Priv(D, u).
Since u is adjacent with another vertex from D, we have u 6∈ Priv(D, u), so v 6= u. We
want to replace u with v (flip u, v) and obtain another minimal dominating set. Let
Xuv ⊆ Priv(D, u) \ N [v] be the lexicographically smallest maximal independent set in
G[Priv(D, u) \N [v]]. In other words, Xuv is obtained from the empty set by iteratively
adding a vertex of smallest index in Priv(D, u) \ N [{v} ∪ Xuv], until no such vertex
exists. Consider the set D′ = (D \ {u}) ∪Xuv ∪ {v}. Note that D′ is a (not necessarily
minimal) dominating set of G. Some vertices of D′ may have no private neighbors,
however every vertex of Xuv ∪ {v} is self-private. Let Zuv be the lexicographically
smallest set which has to be removed from D′ in order to make it minimal. In other
words, Zuv is obtained from the empty set by iteratively adding a vertex z of smallest
index in D′ \ Zuv such that z has no private neighbor with respect to D′ \ Zuv, until
no such vertex exists. Since the elements of Xuv ∪ {v} are self-private in D′, the sets
Xuv ∪ {v} and Zuv are disjoint, and non-adjacent. Let us finally set D∗ = ((D \ {u}) ∪
Xuv ∪ {v}) \ Zuv. Then D∗ is a minimal dominating set of G.

Observe that since Xuv and Zuv are selected greedily with respect to v1, . . . , vn, this
procedure is deterministic. Therefore, the procedure assigns to every minimal domi-
nating set D of G, and to every two vertices u, v such that u is in D and is not isolated
in G[D], and v ∈ Priv(D, u), a unique set D∗. We call D∗ the parent of D with respect to
flipping u and v, and denote it by Parentuv(D). Conversely, we denote by Children(D∗)
the set of all minimal dominating sets D such that D∗ = Parentuv(D) for some edge
uv, and call child of D∗ any element of Children(D∗). Note that, in the procedure, every
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edge in G[D∗] is also an edge in G[D], while there is at least one edge incident with
u that appears in G[D] and not in G[D∗]. This simple but important observation was
formalized as follows.

Proposition 2.3.1 ([GHKV15]). LetD,D∗ ∈ D(G) be such thatD∗ = Parentuv(D) for some
edge uv. Then E(G[D∗]) ( E(G[D]) and v is an isolated vertex of G[D∗].

The flipping operation is then defined to be the reverse of how D∗ = Parentuv(D)
was generated from D. This means, given D∗ with an isolated element v ∈ D∗ and u a
neighbor of v, the operation removes Xuv and adds back Zuv, to obtain a child D of D∗

with respect to flipping u and v. Obviously, the difficulty is to guess appropriate sets
for Xuv and Zuv when we are given only D∗, u, and v.

The flipping method We now describe the flipping method as originally introduced
in [GHKV15]. Assume that there exists an algorithm A that, givenD∗ ∈ D(G), enumer-
ates a family D of minimal dominating sets of G such that Children(D∗) ⊆ D ⊆ D(G).
We stress the fact that D may contain minimal dominating sets that are not actual
children of D∗. The flipping method, then, consists of a depth-first search (DFS) on a
directed supergraph1 G whose nodes are minimal dominating sets of G, with one ad-
ditional special node r, called the root, which has no in-neighbors. The out-neighbors
of the root are the maximal independent sets of G (which are minimal dominating
sets), and there is an arc from a minimal dominating set D∗ ∈ V (G) to another one
D ∈ V (G) if A generates D from D∗. At first, the DFS is initiated at the root. Its out-
neighbors are generated with polynomial delay using the algorithm of Tsukiyama et
al. [TIAS77]. The out-neighbors of the other nodes are generated using A. Since A out-
puts (in particular) every child of a given node, we can argue using Proposition 2.3.1
that every minimal dominating set is reachable from r. More solutions may however
be output by A, and all the difficulty lies in handling the inherent repetitions.

In [GHKV15] and later papers [GHK+16, GHK+18], a list of already visited nodes
of G is maintained in order to handle repetitions, inexorably requiring space that is lin-
ear in D(G), thus potentially exponential in n. The stack of an arbitrary DFS from the
root r to the current visited node D may also require exponential space. The achieved
time complexity, on the other hand, is incremental-polynomial.

Lemma 2.3.2 ([GHKV15]). Let G be a graph. Suppose that there is an algorithm A that,
given D∗ ∈ D(G), enumerates with polynomial delay a family D of minimal dominating sets
of G such that Children(D∗) ⊆ D ⊆ D(G). Then there is an algorithm that enumerates with
incremental delay the set D(G) of all minimal dominating sets of G.

We would like to mention that a similar proof allows for “incremental delay” in-
stead of “polynomial delay” in the hypothesis of this statement. We further strengthen
the statement in the following.

A polynomial-space flipping method We show here that guiding the DFS toward
the children, together with the trick of Lemma 2.2.10 on running the algorithm again

1While this is the standard term in this context, one may be more comfortable thinking of it as an
“auxiliary graph”.

47



at each output, allows us to handle repetitions with polynomial space at the cost of an
increased—but still incremental-polynomial—complexity.

The next lemma is central to the next section and may be regarded as a space im-
provement of Lemma 2.3.2. It is also of general interest as far as the flipping method
is concerned.

Lemma 2.3.3. Let G be an n-vertex graph, let p : N! N and s ∈ N. Suppose that there is an
algorithm A that, given D∗ ∈ D(G), enumerates a familyD with delay p(t) and space s, where
Children(D∗) ⊆ D ⊆ D(G), p is a non-decreasing function, and t is the number of elements of
D already generated. Then there is an algorithm that enumerates the set D(G) of all minimal
dominating sets of G with delay

O(n9) · i3 · p(i)2

and space O(n2) · s, where i is the number of already generated minimal dominating sets.

Proof. In the following, let G ′ be the directed graph2 on vertex set V (G ′) = D(G) ∪ {r}
and edge set E(G ′) = {(r,D) | D ∈ MIS(G)} ∪ {(D∗, D) | D ∈ Children(D∗)}, where r
is a special vertex referred to as the root.

Let us first argue that every minimal dominating set D is reachable from r in G ′,
by induction on the number of edges in it. If D contains no edge, it is a maximal
independent set, thus an out-neighbor of r. If D contains an edge uw, we can flip u
and one of its private neighbors v. Let D∗ = Parentuv(D). By Proposition 2.3.1, D∗ has
fewer edges than D and is thus reachable from r. There is an arc from D∗ to D in G ′,
hence the conclusion. Therefore, a DFS of G ′ initiated at r visits all minimal dominating
sets of G.

Furthermore, for every minimal dominating set D and every directed path from r
to D the length of the path is at most |E(G[D])| ≤ n2.

We now describe an algorithm B that enumerates, possibly with repetitions, the
set D(G) of all minimal dominating sets of G. When B outputs a set that was not
output before we call this output a first occurrence. The algorithm B will output first
occurrences with a delay

O(n7) · i · p(i)

and space O(n2) · s, where i is the number of first occurrences output so far. Algorithm
B proceeds as follows. First, it outputs every out-neighbor of r without duplication
using the algorithm of Tsukiyama et al. in [TIAS77]. Then, it proceeds with what boils
down to a DFS of G ′ initiated at r, as follows. When visiting a nodeD∗ ∈ V (G ′), B seeks
the children of D∗ by running A. Each set D returned by A is then output by B. Then
B checks if D is a child of D∗. If so, B “pauses” the execution of A on D∗, and launches
A on D. When the execution of A on D is complete, B “resumes” the execution of A on
the node D∗.

Before, we discuss the delays between consecutive first occurrences output by B,
we take a pause to determine the following: given D and D∗ in G ′, how fast can we
determine if D is a child of D∗? The brute force approach we choose goes as follows:
(1) guess the vertex u in D (such that there is an edge incident to u in G[D]); (2) guess
the vertex v in Priv(D, u); (3) perform the flipping operation along the uv edge; (4)

2This forms a subgraph of G as defined in Section 2.3.1: Informally, the directed graph G′ is what G
would be if A was reliable, i.e., only generated children of D∗.
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check if the resulting set is D∗. Note that the number of possible guesses in (1) and (2)
is at most n2. In order to make a flip when u and v are fixed, we need to compute the
sets Xuv and Zuv. The straightforward approach does it in O(n3) time. Therefore, we
can determine if D is a child of D∗ in O(n5) time and O(n2) space (as for convenience,
we work with the adjacency matrix).

We now examine the delay of B between two consecutive first occurrences. The
outputs generated by the algorithm of Tsukiyama et al., so the maximal independent
sets of G, are produced within O(n3) time and O(n2) space, see [TIAS77].

Let D be a first occurrence output by B that is produced by a call of A on a node
D∗ in G ′. Say that D is the i-th first occurrence in order output by B. Thus D is a child
of D∗. To obtain the next first occurrence output by B, we consider the path from r to
D in G ′. The algorithm B continues launching A on D and for each node of the path,
except r and D, B has on the stack a paused execution of A called on the node. In the
worst case scenario, all the executions will be resumed and each of them will output at
most i sets, all of them being already output by B before. Since the length of the path
from r to D∗ is bounded by n2 and since p is a non-decreasing function, there are at
most n2 · i · p(i) sets output by the executions of A. Each set is checked by B to see if
it is a child of the respective node of G ′. A single check takes O(n5) time, so in total in
O(n7) · i · p(i) time the algorithm B outputs the next first occurrence.

We note that since the time spent between the i-th and (i + 1)-th first occurrence
produced by B is O(n7) · i · p(i), and since the total number of first occurrences is
|D(G)| ≤ 2n, there is a small constant c such that B runs for at most poly(n + 2n) ≤ 2cn

time.
The space consumed by B is dominated by the space taken by at most n2 paused

executions of A and the adjacency matrix of G. Thus B runs in O(n2) · s space.
We are now ready to describe an algorithm C that enumerates D(G) without rep-

etitions and within the desired time and space constraints. Algorithm C proceeds as
follows. First, it launches a master instance of B. It also maintains a counter keeping
track of the number of steps (i.e., elementary steps counted by the time complexity)
of the master instance of B. Since B runs for at most 2cn steps, a cn-bits long counter
suffices. Whenever the master instance outputs a new set D, and the counter of steps
indicates i, the algorithm C launches a new instance of B, runs it for i − 1 steps, and
compares each of its output with D. The new instance of B is killed after exactly i− 1
steps. If D did not appear as the output of the new instance, then we conclude that it
is a first occurrence of the master instance, and the algorithm C outputs D. If D has
appeared as one of the outputs of the new instance, then C ignores it and continues
the simulation of the master instance. In that way, every set of D(G) is output by C
without repetitions.

We now examine the delay of C between the output of the i-th and (i+ 1)-th mini-
mal dominating sets. Consider the simulation of the master instance of B from the i-th
to the (i + 1)-th first appearance. During that time, recall that at most n2 · i · p(i) sets
are output by the executions of A. Thus, the number of new instances of B launched
by C between the two outputs is bounded by n2 · i · p(i). Every such instance runs for
at most i ·O(n7) · i · p(i) time (as p is non-decreasing). In total, C runs for at most

n2 · i · p(i) · i ·O(n7) · i · p(i) = O(n9) · i3 · p(i)2
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Figure 2.8: A minimal dominating set D (on the left) and its parent D∗ = Parentuv(D)
(on the right) represented by black vertices in the underlying poset of a comparability
graph. The edge induced by D and incident to u is depicted by uw.

time steps.
The space consumed by C is determined by the space required by at most two

independent instances of B running in the same time which is 2 ·O(n2) · s, and the size
of the counter which is O(n). Thus C runs in O(n2) · s space.

The algorithms given in [GHKV15, GHK+16, GHK+18] for line graphs, graphs of
girth at least 7, chordal bipartite graphs, and unit-square graphs rely on the flipping
method and run in incremental-polynomial time and exponential space. By directly
plugging in Lemma 2.3.3 instead of Lemma 2.3.2 in the procedure, we obtain the fol-
lowing.

Corollary 2.3.4. There is an incremental-polynomial time and polynomial-space algorithm
enumerating minimal dominating sets in line graphs, graphs of girth at least 7, chordal bipar-
tite graphs, and unit-square graphs.

2.3.2 Flipping method in comparability graphs

We now show how the flipping method, and more particularly the existence of an
algorithm as required in Lemma 2.3.3, can be reduced to red-blue domination in com-
parability graphs.

We point that Lemma 2.3.3 is stated for general graphs and that the family D to
be constructed can contain arbitrarily many solutions that are not actual children.
In[GHKV15], [GHK+16] and [GHK+18], the authors were able to provide such an
algorithm A in line graphs, graphs of girth seven, chordal bipartite graphs and unit
square graphs. In these last two cases, they proved that to obtain an efficient A, it suf-
fices to design an efficient algorithm that enumerates all the minimal red dominating
sets of an appropriate subgraph within the same class. We conduct a similar analysis
to show that, in comparability graphs, it suffices to design an efficient algorithm that
enumerates all the minimal red dominating sets of a subgraph in which blue vertices
are minimal with respect to the associated poset.

Lemma 2.3.5. Let G be the comparability graph of a poset P = (V,≤). Suppose that there
is an algorithm B that, given an antichain B of P and a set R ⊆ "B \B, enumerates with
polynomial delay and polynomial space the set D(R,B) of minimal red dominating sets of
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G(R,B). Then there is an algorithm A′ that, given D∗ ∈ D(G) and u, v ∈ V (G), enumerates
with polynomial delay a family D ⊆ D(G) of minimal dominating sets of G with the property
that D contains all minimal dominating sets D such that D∗ = Parentuv(D).

Proof. The proof is conducted in the fashion of [GHK+16]. We are given a minimal
dominating set D∗ of G, an isolated vertex v of G[D∗], and a neighbor u of v. Let us
assume in the following that u ≤ v in P . The dual situation is handled by flipping
upside-down the poset. This situation is depicted in Figure 2.8 (right). We aim to
compute using B a family of sets D such that {D ∈ D(G) | D∗ = Parentuv(D)} ⊆ D ⊆
D(G).

LetR1 ⊆ "u∩D∗ be the set of upper-neighbors x of u inD∗ such that x ∈ Priv(D∗, x),
i.e., these vertices are self-private in D∗. Note that in particular, R1 is an antichain of
P , and it contains v. Let B = V (G) \ N [(D∗ \ R1) ∪ {u}] be the set of all vertices that
are not dominated anymore when replacing R1 with u in D∗. Note that B ⊆ #R1 \ R1.
Finally, let R2 = "B \N [R1]. In particular, there are no edges between R1 and R2. Let
us finally set R = (R1 \ {v}) ∪ R2. Informally, R forms the set of vertices we can use
to dominate B. We exclude v from that set, since the whole point of the operation is to
delete v. We obtain R ⊆ "B \B, and in fact B ⊆ #R \R. Note that B is not necessarily
an antichain, so we restrict our attention to the maximal elements of B.

The notation D(R ∩ "Max(B),Max(B)) is blatantly cumbersome. To simplify the
upcoming arguments, we first prove that D(R ∩ "Max(B),Max(B)) is in fact equal to
the conceptually simpler D(R,B).

Claim 4. The sets D(R,B) and D(R ∩ "Max(B),Max(B)) are equal.

Proof. We recall that B ⊆ #R \ R. As a consequence, R ⊆ "Max(B), and it suffices to
argue that D(R,B) = D(R,Max(B)).

We first note that every dominating set of Max(B) in "Max(B) is a dominating set
ofB. Indeed, for any x ∈ B, y ∈Max(B), and z ∈ "Max(B), if xy and yz are both edges,
then x ≤ y and y ≤ z, so that xz is an edge. This guarantees D(R,Max(B)) ⊆ D(R,B).

The converse is straightforward in the sense that every dominating set of B is in
particular a dominating set of Max(B). As we argued above, any subset that dom-
inates Max(B) dominates B. Therefore, by minimality, no proper subset of a set in
D(R,B) dominates Max(B). Every minimal dominating set of B in R is a minimal
dominating of Max(B), hence D(R,B) ⊆ D(R,Max(B)) and the conclusion. y

Let us now describe A′. We enumerate all minimal red dominating sets in D(R,B)
using B with Claim 4. For each minimal red dominating set X ∈ D(R,B), we consider
the set D′ = (D∗ \R1) ∪ {u} ∪X of vertices of G. Note that X may be empty, in which
case B = ∅ and D(R,B) = {∅}; that is not an issue. We greedily reduce D′ into an
irredundant set D of G, and output D.

This may seem counter-intuitive in an enumeration context, as a greedy reduction
typically does not explore all options. However, we will argue later (see Claim 8) that
D′ is already irredundant in all relevant cases, so D = D′ and the greedy reduction
does not affect the pool of children.

Let D be the set of all generated sets; we prove in the following four claims that D
has the desired properties. Namely, the correctness of A′ follows from Claims 5 and 8.
We conclude the proof with the complexity analysis of A′.
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Claim 5. All elements of D are minimal dominating sets of G. Furthermore, there is no
repetitions in D, and |D| = |D(R,B)|.

Proof. There is a natural bijection between minimal red dominating sets D(R,B) and
outputs D (taken with multiplicity). We only need to argue two things: that every
output is a minimal dominating set, and that there is no repetitions.

There is nothing to argue in the case where D(R,B) = ∅, and we assume from
now on that D(R,B) is non-empty. Let X ∈ D(R,B). To argue that its corresponding
output is a minimal dominating set, it suffices to argue that (D∗ \ R1) ∪ {u} ∪ X is a
dominating set. Let w be a vertex not dominated by (D∗ \ R1) ∪ {u}. By definition, it
belongs to B, so w ∈ N [X]. Therefore, (D∗ \ R1) ∪ {u} ∪X is a dominating set. Since
we output an irredundant subset of (D∗ \R1) ∪ {u} ∪X , it follows that the output is a
minimal dominating set.

Finally, observe that when greedily reducing (D∗ \ R1) ∪ {u} ∪ X into a minimal
dominating set D, we maintain X ⊆ D as each element of X has a private neighbor in
B. In fact, we have D ∩ R = X , which guarantees that a different choice of X would
yield a different output D. y

Claim 6. For any set D ∈ D(G) such that D∗ = Parentuv(D), let Xuv and Zuv be the disjoint
sets defined in the Parent relation, so that D = (D∗ ∪ {u} ∪ Zuv) \ (Xuv ∪ {v}). We have
Xuv ⊆ R1 \ {v} and Zuv ⊆ R2. Additionally, for Yuv =

⋃
z∈Zuv

Priv(D, z), we have Yuv ⊆ B.

Proof. Recall that Zuv is defined as a set of vertices that lose their private neighbors
with respect to D when adding Xuv ∪ {v} to D \ {u}. These private neighbors are the
elements of the set Yuv.

By definition of the Parent relation, G[D] contains an edge uw, and v is selected in
the set Priv(D, u). Since uw is an edge, one of u ≤ w and w ≤ u holds. As v ∈ Priv(D, u)
and w ∈ D, the vertices v and w are incomparable. Since u ≤ v, the case w ≤ u would
lead to a contradiction, and we derive u ≤ w.

Let us first argue that Xuv ⊆ R1 \ {v}. We have v 6∈ Xuv, so we focus on proving
Xuv ⊆ R1. Recall that Xuv ⊆ Priv(D, u) \ N [v] by definition. Since u ≤ v, we derive
Xuv ⊆ "u ∩ D∗. It remains to argue that x ∈ Priv(D∗, x) for every x ∈ Xuv. Since Xuv

is an independent set by construction, we have x ∈ Priv(Xuv, x). Since Xuv ∩N [v] = ∅,
we have x ∈ Priv(Xuv ∪{v}, x). Since Xuv ⊆ Priv(D, u), we derive x ∈ Priv(Xuv ∪{v}∪
(D \ {u}), x), hence x ∈ R1. It follows that Xuv ⊆ R1.

Let us now argue that Zuv ⊆ R2 and Yuv ⊆ B. Consider z ∈ Zuv, and a private
neighbor y of z with respect to D. Note that y ∈ Yuv and that y is considered without
loss of generality since every element of Yuv is the private neighbor of some element
in Zuv with respect to D. Therefore, it suffices to argue that z ∈ R2 and y ∈ B. Recall
that z has no private neighbor with respect to (D \ {u}) ∪ Xuv ∪ {v}, though y is a
private neighbor of z with respect to D, which contains u. It follows that y is in the
neighborhood of Xuv ∪ {v}, but not in that of u. Since Xuv ∪ {v} ⊆ "u and y 6∈ "u,
we have y 6∈ "(Xuv ∪ {v}). We derive that y ∈ #(Xuv ∪ {v}) \ N [u]. If y ≥ z, then
z ∈ #(Xuv ∪ {v}), which contradicts the fact that the vertices in Xuv ∪ {v} are private
neighbors of u with respect to D. Consequently, y ≤ z. Note that z 6∈ N [R1]. Since
R2 = "B \N [R1], the fact that z ∈ R2 follows from y ∈ B, which we argue below.
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We haveN(y)∩D∗ ⊆Xuv∪{v}, as the only neighbor of y inD is z. As shown earlier,
Xuv ⊆ R1, hence N(y) ∩D∗ ⊆ R1. Since u 6∈ N(y) and B = V (G) \N [(D∗ \ R1) ∪ {u}],
we derive y ∈ B, as desired. It follows that Yuv ⊆ B and Zuv ⊆ R2. y

Claim 7. For any set D ∈ D(G) such that D∗ = Parentuv(D), let Xuv and Zuv be the disjoint
sets defined in the Parent relation, so that D = (D∗ ∪ {u} ∪ Zuv) \ (Xuv ∪ {v}). Then the set
R1 ∪ Zuv \ (Xuv ∪ {v}) is a minimal red dominating set of G(R,B).

Proof. LetX =R1∪Zuv\(Xuv∪{v}). By Claim 6, we obtain thatX ⊆ (R1\{v})∪R2 =R.
Therefore, it only remains to argue two things: that X dominates B, and that X is
minimal, i.e., that every vertex in X has a private neighbor in B with respect to X .

Let y ∈ B. By definition of B, we have N(y) ∩ D∗ ⊆ R1 ∪ {v} and y 6∈ N [u]. Since
D is a dominating set and given how D and D∗ relate, the vertex y has a neighbor
either in R1 \ (Xuv ∪ {v}) or in Zuv. In either case, the vertex y has a neighbor in X . We
conclude that X dominates B.

Let us now argue that every vertex x in X has a private neighbor in B with respect
to X . Note that x ∈ D and Priv(D, x) 6= ∅.

Let us first consider the case x ∈ R1 \ (Xuv∪{v}). Since u ∈D, we have Priv(D, x) ⊆
N [x] \N [u]. Since moreover x ∈ "u we have that Priv(D, x) ⊆ #x \N [u]. In particular
x 6∈ Priv(D, x). Let y ∈ Priv(D, x). Then N(y) ∩ D = {x} and so N(y) ∩ D∗ ⊆ {x} ∪
Xuv ∪ {v} ⊆ R1 ∪ {v}. Hence y ∈ B. Therefore, every vertex in X ∩ (R1 \ (Xuv ∪ {v}))
has a private neighbor in B with respect to X .

We now consider the case x ∈ Zuv. Let y ∈ Priv(D, x). Recall that Xuv ∪{v} and Zuv
are non-adjacent. Also y is dominated by D∗ but not by D∗ \ (Xuv ∪ {v}), and so y 6= x.
Hence y ∈ N(Xuv ∪ {v}) and so y ∈ N(R1 ∪ {v}). As N(y) ∩D = {x} and x 6∈ D∗, we
have N(y) ∩D∗ ⊆ Xuv ∪ {v} ⊆ R1 ∪ {v}. Hence y ∈ B. Consequently every x ∈ X has
a private neighbor in B, and so X ∈ D(R,B). y

The core statement now follows easily.

Claim 8. The set D contains every D ∈ D(G) such that D∗ = Parentuv(D).

Proof. LetD ∈ D(G) be such thatD∗ = Parentuv(D). ThenD∗ = ((D\{u})∪Xuv∪{v})\
Zuv, where Xuv and Zuv are the disjoint sets defined in the Parent relation. Consider
the set Yuv =

⋃
z∈Zuv

Priv(D, z).
From Claim 7, we obtain that R1 ∪Zuv \ (Xuv ∪ {v}) is a minimal dominating set of

G(R,B). Consequently, B outputs R1 ∪Zuv \ (Xuv ∪{v}), which prompts A′ to consider
the set (D∗ \R1) ∪ {u} ∪ (R1 ∪ Zuv \ (Xuv ∪ {v})) = (D∗ ∪ {u} ∪ Zuv) \ (Xuv ∪ {v}) = D
as a candidate to be output after being greedily reduced into an irredundant set. Note
that the set is already irredundant, so D is generated. In other words, we have D ∈ D
as desired. y

Each of the sets R1, R2, R and B can be constructed in polynomial time in n. The
same goes for computing and reducing D′ into a minimal dominating set given X ∈
D(R,B). In addition, R ∩ "Max(B) and Max(B) can be computed in polynomial time
in n, and by Claim 4 the set D(R,B) can be generated with polynomial delay using B.

This concludes the proof.
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We conclude this section with the following corollary of Lemmas 2.3.3 and 2.3.5,
observing that the antichain B of a poset P is minimal in P ["B]. Note that while the
algorithm A′ only computes the children for a fixed pair u, v, there are at most n2 such
pairs. By running A′ for every pair consecutively, we output all children, with each
child being repeated possibly n2 times. We repeat the trick of Section 2.3.1 and get
rid of repetitions, to the cost of squaring the time complexity. The obtained algorithm
now performs in incremental-polynomial time and polynomial space, as desired.

Theorem 2.3.6. Let G be a graph class where every graph is comparability. If there is an incre-
mental-polynomial time and polynomial-space algorithm enumerating minimal red dominat-
ing sets in red-blue graphs of G whose blue vertices are minimal with respect to the associated
poset, then there is one enumerating minimal dominating sets in graphs of G.

2.3.3 Red-blue domination in comparability graphs

We mentioned in the preliminaries of this chapter that RED-BLUE-DOM-ENUM is al-
ready as hard as TRANS-ENUM even restricted to bipartite graphs, hence to compara-
bility graphs. We show nevertheless that the problem can be solved in incremental-
polynomial time under various restrictions on the red and blue sets (satisfying those
of Lemma 2.3.5), as well as on the underlying poset. More precisely, we show that, for
any fixed integer t, RED-BLUE-DOM-ENUM is tractable in the comparability graph of
St-free posets, whenever the blue elements are minimal in the poset. Since posets of
bounded dimension do not contain any Sp for some large enough p, we can derive the
same for bounded dimension posets.

The key observation is that instances of red-blue domination in that case are of
bounded conformality. As a corollary, we can use the algorithm of Khachiyan et
al. in [KBEG07] to solve them in incremental-polynomial time. This yields by The-
orem 2.3.6 an incremental-polynomial time algorithm enumerating minimal dominat-
ing sets in the comparability graphs of these posets.

Let us recall the notion of conformality introduced by Berge in [Ber84]. Informally,
a hypergraph has small conformality when the property of not being contained in a
hyperedge is witnessed by small subsets, in the sense that if a set is not contained in
any hyperedge, then some small subset of it is not either. More formally, let c be an
integer andH be a hypergraph. We say thatH is of conformality c if the following prop-
erty holds for every subset X ⊆ V (H): X is contained in a hyperedge of H whenever
each subset of X of cardinality at most c is contained in a hyperedge of H. Remem-
ber from Section 2.1 that a hypergraph H is Sperner if E1 6⊆ E2 for any two distinct
hyperedges E1, E2 inH.

Khachiyan, Boros, Elbassioni, and Gurvich proved the following.

Theorem 2.3.7 ([KBEG07]). The minimal transversals can be enumerated in incremental-
polynomial time but using exponential space in Sperner hypergraphs of bounded conformality.

Our result is a corollary of the following, which basically says that in our setting,
hypergraphs with large conformality induce large St in the underlying poset.
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Lemma 2.3.8. Let P = (V,≤) be a poset and B = Min(P ). LetH be the Sperner hypergraph
defined by V (H) = P −B and E(H) = Min⊆{"x \ {x} | x ∈ B}. IfH is not of conformality
t− 1 for some integer t, then P contains St as a suborder.

Proof. Assume that H is not of conformality t− 1, i.e., there is a red subset X ⊆ V (H)
that is not contained in a hyperedge ofH, and such that every subset Y ⊆ X of size at
most t−1 is contained in a hyperedge ofH. We considerX = {x1, . . . , xp} of minimum
cardinality. Then p ≥ t and to every xi ∈ X corresponds a hyperedge Ei ofH such that
Ei∩X = {X \ {xi}}. Indeed, if no such Ei exists for some xi ∈ X , then X ′ = X \ {xi} is
not contained in a hyperedge of H, and still every subset Y ⊆ X ′ of size at most t− 1
is, contradicting the minimality of X .

Let us show that X is an antichain of P . Suppose toward a contradiction that X
is not an antichain and contains two elements xi, xj such that xi < xj . As R ⊆ "B \
B, every hyperedge of H that contains xi contains xj . We conclude that X ⊆ Ei, a
contradiction. Hence X is an antichain.

Consider now the antichain {e1, . . . , ep} ⊆ B corresponding to E1, . . . , Ep in the
poset P , i.e., such that Ei = "ei \ {ei} for i ∈ {1, . . . , p}. Then the set {e1, x1, . . . , ep, xp}
induces Sp as suborder, p ≥ t.

Lemmas 2.3.3, 2.3.5, and 2.3.8 together yield the following corollary.

Corollary 2.3.9. There is an algorithm enumerating, for every fixed integer t, the minimal
dominating sets in comparability graphs of St-free posets.

The next theorem follows from Corollary 2.3.9 and the observation that a poset
containing St has dimension at least t.

Theorem 2.3.10. For any fixed integer d, there is an output-polynomial time algorithm enu-
merating minimal dominating sets in the comparability graphs of posets with dimension at
most d.

Unfortunately, as the algorithm in [KBEG07] requires exponential space, Corol-
lary 2.3.9 does not yield a polynomial-space algorithm.

Finally, we note that while it is not clear whether the comparability graphs of
bounded dimension posets are of bounded LMIM-width (and hence covered by the
algorithm in [GHK+18] using similar methods), comparability graphs of St-free posets
are not.

2.4 Flashlight search in incomparability graphs
We give a polynomial-delay algorithm enumerating minimal dominating sets in the
incomparability graphs of bounded dimension posets, given with linear extensions
witnessing the dimension.

2.4.1 Geometrical representation

Let P = (V,≤) be a poset on n elements and of dimension at most d. Let ≤1, . . . ,≤d be
a sequence of linear orders witnessing it. Thus, we have x ≤ y in P if and only if x ≤i y
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for each i ∈ {1, . . . , d}. Consider d distinct vertical lines L1, . . . ,Ld in the plane, sorted
from left to right in that order. For each i ∈ {1, . . . , d}, we distinguish n points on Li
and label them bottom-up with elements of P sorted by ≤i. Now for each element v
in P , we define a piecewise linear curve v consisting of d− 1 segments and connecting
points labelled v on consecutive lines. It is a folklore observation, see e.g. [GRU83],
that the incomparability graph of P is the intersection graph of this family of curves.
An example for d = 4 is given in Figure 2.9.

In the remaining of this section, we assume that a poset P = (V,≤) of dimension
d is given and we are also given the total orders ≤1, . . . ,≤d witnessing the dimension
of P . As described above we fix the lines L1, . . . ,Ld, and the piecewise linear curves
representing each element of P . Let G be the incomparability graph of P .

For a non-empty subset S of elements of P and i ∈ {1, . . . , d}, we define Li(S) to be
the maximum element of S in ≤i. We call vertices upwards from S the elements of the
set

U(S) = {v ∈ V \ S | Li(S) <i v for some i ∈ {1, . . . , d}}.

A set D is an upward extension of S if S ⊆ D and D \ S ⊆ U(S).
Let S be a subset of elements of P of size at least 3d. We call the first layer of S the

tuple A(S) = (a1, . . . , ad) so that a1 = L1(S), and for every i ∈ {2, . . . , d},

ai = Li (S \ {a1, . . . , ai−1}) .

Note that by this definition it might happen that ai 6= Li(S). This is in particular the
case if Li(S) = Lj(S) for some i, j ∈ {1, . . . , d} with j < i. The second layer of S is the
set B(S) = A(S \ A(S)). The third layer of S is the set C(S) = A(S \ (A(S) ∪ B(S)).
Note that since |S| ≥ 3d, the three layers are well-defined. We call the border of S the
concatenation

T(I) = (a1, . . . , ad, b1, . . . , bd, c1, . . . , cd)

of these three layers.
We say that I can be extended upwards into a minimal dominating set whenever there

is an upward extension of I that is a minimal dominating set of G. In the following,
we aim to decide in polynomial time whether a given irredundant set I in G can be
extended upwards into a minimal dominating set. When the given set I is of size at
most 3d, say I = {x1, . . . , xp} and p ≤ 3d, then this can be done efficiently by checking
for all the tuples (y1, . . . , yp) ∈ Priv(I, x1)×· · ·×Priv(I, xp) whether U(I)\N [y1, . . . , yp]
dominates G − N [I] or not. A single tuple like that could be verified in O(n2) time.
Since the number of tuples is no more than np, the total time isO(n3d+2). If there is such
a tuple (y1, . . . , yp), then U(I) \N [y1, . . . , yp] can be greedily reduced into a minimal set
X so that I ∪X is a minimal dominating set of G. Otherwise, we know that I cannot
be extended as we explored all the possibilities for I to keep its private neighbors in an
upward extension. We show that the same technique can be applied for irredundant
sets of arbitrary size. The key insight is that it is enough to check whether we can
extend I into a dominating set so that all elements in the border T(I) keep a private
neighbor.

Theorem 2.4.1. Let I be an irredundant set ofG of size at least 3d and let T(I) = (t1, . . . , t3d).
Then I can be extended upwards into a minimal dominating set of G if and only if there exists
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Figure 2.9: A poset P and its incomparability graph G as an intersection graph of
curves induced by four linear extensions witnessing the dimension.

a tuple (w1, . . . , w3d) ∈ Priv(I, t1) × · · · × Priv(I, t3d) such that U(I) \ N [w1, . . . , w3d] is a
dominating set of G−N [I].

Proof. First, we prove the forward implication. Suppose that I can be extended up-
wards into a minimal dominating set of G and let X be an upward extension of I
such that D = I ∪ X is a minimal dominating set of G. Then X dominates G − N [I]
and Priv(D, u) 6= ∅ for every u ∈ D. Since D is a minimal dominating set there exists
(w1, . . . , w3d) in Priv(D, t1) × · · · × Priv(D, t3d). Note that Priv(D, ti) ⊆ Priv(I, ti) for
each i ∈ {1, . . . , 3d}. This completes the proof of the forward implication.

We turn to argue the backward implication. Suppose that there exists (w1, . . . , w3d)
in Priv(I, t1)×· · ·×Priv(I, t3d) such thatX := U(I)\N [w1, . . . , w3d] dominatesG−N [I].
Thus D = I ∪ X dominates G. In order to conclude that I extends upwards into a
minimal dominating set ofG, all we need to see is that each element u in I has a private
neighbor with respect toD, i.e., Priv(D, u) 6= ∅. SinceX avoidsN [w1, . . . , w3d], we have
that wi ∈ Priv(D, ti) for each i ∈ {1, . . . , 3d}. Consider any element u in I \T(I). Since
I is irredundant, we can fix v ∈ Priv(I, u). We shall show that v ∈ Priv(D, u).

For convenience, we split the sequence (t1, . . . , t3d) into (a1, . . . , ad), (b1, . . . , bd), and
(c1, . . . , cd), so it relates to the initial layers A(I), B(I), and C(I), respectively.

In order to get a contradiction, suppose that there is x ∈ X such that x and v are
adjacent in G, i.e., x and v intersect. In particular, there is some q ∈ {1, . . . , d} such that
x <q v.

We claim that
v < bk in P for every k ∈ {1, . . . , d}.

Since v ∈ Priv(I, u) and bk ∈ I , v and bk do not intersect. Therefore, either v < bk in P or
v > bk in P . Assume toward a contradiction that bk < v in P . Since u and v intersect, we
can fix p ∈ {1, . . . , d} such that v <p u. Recall that u ∈ I \T(I). Thus, by the definition
of the third layer C(I) we have u <p cp. Hence v <p u <p cp. Since v ∈ Priv(I, u) and
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c ∈ I , we have that cp and v stay disjoint. We deduce that v < cp in P . This contradicts
our assumption as bk < v < cp in P but no element of the second layer can be below
an element of the third layer. This completes the proof of the claim.

In particular, we have x <q v <q bk for every k ∈ {1, . . . , d}.
Consider the tuple (s1, . . . , sd) = (wd+1, . . . , w2d) of private neighbors of the ele-

ments of (b1, . . . , bd). We claim that there exist indices α, β ∈ {1, . . . , d} such that

bα <q sβ.

Towards the contradiction, assume that si <q bj for all i, j ∈ {1, . . . , d}. Since si stays
disjoint from bj for i 6= j, we conclude that si < bj in P for every i 6= j. Since si intersects
bi, there is an index t(i) so that bi <t(i) si, for each i ∈ {1, . . . , d}. Clearly, the values t(i)
must be all distinct for i ∈ {1, . . . , d}. This way, we need to take d distinct values for
ti’s and because of our assumption all of them are in {1, . . . , d} \ {q}, a contradiction.
This proves the claim.

We concluded so far that
x <q v <q bα <q sβ.

Now recall that x ∈ X ⊆ U(I). Thus, there must be some p ∈ {1, . . . , d}with

Lp(I) <p x.

Recall also that sβ intersects bβ , so we can fix t ∈ {1, . . . , d} such that sβ <t bβ . By
the definition of the first two layers, we have that bβ <t at. Thus, sβ <t at. Since
sβ ∈ Priv(I, bβ) and at ∈ I , we get that sβ and at are disjoint. Therefore, sβ < at in P .
In particular, we get sβ <p at and

sβ <p at ≤p Lp(I) <p x.

The two inequalities sβ >q x and sβ <p x imply that x intersects sβ . Thus x and sβ
are adjacent inG. This contradicts the assumption thatX ⊆U(I)\N [sβ] and completes
the proof of the backward implication.

We deduce the next corollary, by guessing a good tuple (w1, . . . , w3d) as in The-
orem 2.4.1 in case when |I| ≥ 3d, and checking for such a tuple whether the set
U(I) \N [w1, . . . , w3d] is a dominating set of G−N [I]. Space is polynomial as we only
iterate through neighborhoods.

Corollary 2.4.2. There is an algorithm that, given an irredundant set I of G, decides in
O(n3d+2) time and polynomial space whether I can be extended upwards into a minimal dom-
inating set.

2.4.2 Flashlight search

We are now ready to describe an algorithm based on flashlight search enumerating min-
imal dominating sets in the incomparability graphs of bounded dimension posets. We
refer the reader to [CS18, MS19] for more details on this classical technique. The fol-
lowing Parent relation will be used by the algorithm to construct the minimal domi-
nating sets one vertex at a time, starting from the emptyset.
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Definition 2.4.3. Let I be a non-empty irredundant set of G that can be extended upwards
into a minimal dominating set. We call parent of I the unique irredundant set I∗ = Parent(I)
obtained by removing vertex L1(I) from I , i.e., the greatest vertex v in I with respect to <1.

Observe that every minimal dominating set D of G is an irredundant set of G that
can be extended upwards into a minimal dominating set (the extension beingD itself),
with no children. Conversely, an irredundant set that can be extended upwards into a
minimal dominating set, with no children, is necessarily a minimal dominating set.

Consequently, the Parent relation as introduced in Definition 2.4.3 defines a tree T
whose nodes are irredundant sets of G that can be extended upwards into minimal
dominating sets, root is the empty set, leaves are minimal dominating sets of G, and
where there is an edge between two irredundant sets I∗ and I if I∗ = Parent(I). As
in Section 2.3, the enumeration proceeds with what boils down to a DFS of T initiated
at the empty set. When visiting a node I∗ ∈ V (T ), the algorithm seeks the children of
I as follows. It checks for every candidate vertex v ∈ U(I∗) whether I∗ ∪ {v} can be
extended upwards into a minimal dominating set, using Corollary 2.4.2, and whether
the obtained set is a child of I∗, using Definition 2.4.3. Whenever it is the case, the
algorithm “pauses” the generation of children of I∗, and generates children of I∗∪{v}.
When the generation on I∗ ∪ {v} is complete, the algorithm “resumes” the generation
on I∗. During this procedure, only the leaves of T , hence the minimal dominating
sets of G, are output by the algorithm. Duplications are implicitly avoided by the tree
structure of T .

The delay time complexity is bounded by twice the depth of the tree (the maximal
distance between two leaves in T ), times the time complexity of solving the extension
problem and checking the Parent relation for every candidate vertex v. This sums up
to

2n ·O(n3d+2 + n2) · n = O(n3d+4)

Space complexity is polynomial as we only need to store for each node W ∈ T from
the root to the current node I∗ ∈ T the data of the (paused) execution of the children
generation on node W .

We conclude to the following.

Theorem 2.4.4. There is an algorithm that, given the incomparability graphG of an n-element
poset P of dimension d, together with d linear orders witnessing the dimension of P , enumer-
ates all minimal dominating sets of G with delay O(n3d+4) and using polynomial space.

2.5 Further work and open problems
We conclude the chapter by stating open problems and reviewing some perspectives
for further research on DOM-ENUM.

2.5.1 Graphs with a forbidden induced subgraph

We recall that a graph is H-free if it does not contain H as an induced subgraph. In
Section 2.2 we investigated DOM-ENUM in graph classes forbidding an induced sub-
graph H . We gave algorithms that run in output-polynomial time and polynomial
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space when H is a clique, or more generally when H = Kt + K2, and when H is the
paw or the diamond. For simplicity, let us here denote by DOM-ENUM(H) the problem
DOM-ENUM restricted to H-free graphs.

The most natural continuation of our work is to seek output-polynomial time al-
gorithms for DOM-ENUM(H) for other choices of the graph H . We discuss a possi-
ble classification of the graphs H depending on whether DOM-ENUM(H) admits an
output-polynomial time algorithm, is DOM-ENUM-hard, or is not known to belong to
one of these two cases. We stress that the first two cases may not be disjoint as it is
currently open whether DOM-ENUM admits an output-polynomial time algorithm in
general. However, in the current state of the art, such a classification will highlight
specific graph classes where the problem could be attacked more easily than in the
general case.

Because of Theorem 2.1.1, if H is such that co-bipartite graphs form a subclass
of H-free graphs then DOM-ENUM(H) is DOM-ENUM-hard. This includes the cases
H = Ct orH = Pt with t ≥ 5. This is also true for any graphH that has an independent
set of size at least three, in particular all graphs H that have at least three connected
components and graphs with two connected components where one component has
one non-edge. Therefore, all the graphs H with more than one connected component
for which DOM-ENUM(H) is not known to be DOM-ENUM-hard are of the form H =
Kp + Kq (where by + we denote the disjoint union), for integers p, q ≥ 1. We gave an
output-polynomial time algorithm for the case where p ≤ 2 or q ≤ 2 in Theorem 2.2.18
and leave open the existence of such algorithms for p, q ≥ 3.

Let us now focus on connected choices of H . Besides the case where H is a clique,
which we addressed with Theorem 2.2.13, we settled the case whereH = Kt−e for t =
4 (Theorem 2.2.24). For t ∈ {2, 3}, DOM-ENUM(H) is output-polynomial time solvable
since (Kt− e)-free graphs then are, respectively, cliques and disjoint unions of cliques.
To the best of our knowledge, it is currently unknown whether DOM-ENUM(Kt−e) for
t ≥ 5 is DOM-ENUM-hard and whether it is output-polynomial time solvable. We also
considered graphs H of the form (Kt−{uv, vw}) for t ≥ 3, i.e., graphs obtained from a
clique on t vertices by removing two incident edges. When t = 3, (Kt − {uv, vw})-free
graphs are exactly the complete multipartite graphs, for which an output-polynomial
time algorithm can be obtained as in the proof of Lemma 2.2.27. We dealt with the case
t = 4 in Theorem 2.2.28 and leave open the cases of larger t.

Regarding the exclusion of specific graphs, note that the status of DOM-ENUM(Pt)
is completely explored: either t ≤ 4 and an output-polynomial time algorithm is
known, or t ≥ 5 and the problem is DOM-ENUM-hard, as noted above. Among graph
classes defined by forbidding an induced cycle, we proved that DOM-ENUM(C3) is
output-polynomial time solvable by Theorem 2.2.9 and noted that DOM-ENUM(Ct)
is DOM-ENUM-hard for t ≥ 5, so only DOM-ENUM(C4) remains to be classified. The
graphC4 is also the only graph on at most 4 vertices for which DOM-ENUM(H) has not
been classified yet. Other graph classes that are closed by taking induced subgraphs
and where no output-polynomial time algorithm for DOM-ENUM nor DOM-ENUM-
hardness proof are known to include unit-disk graphs [KN14, GHK+16].

Another natural research direction is to optimize the running times of our algo-
rithms or to prove that this is not possible. Theorem 2.2.29 suggests that no improve-
ment of our results can be obtained using flashlight search. We leave as an open prob-
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lem whether there are polynomial delay algorithms for DOM-ENUM in the cases that
we considered.

Finally, we note that the algorithm of Theorem 2.2.13 has been implemented in
python/SageMath [Ray19].

2.5.2 Comparability and incomparability graphs

We provided an incremental-polynomial (resp. polynomial-delay) algorithm enumer-
ating the minimal dominating sets in the comparability (resp. incomparability) graphs
of bounded dimension posets. As incomparability graphs include co-bipartite graphs,
dropping the dimension in Theorem 2.4.4 is one of the most important algorithmic
challenges in enumeration. On the other hand, dropping the dimension in Theo-
rem 2.3.10 seems a more tractable, though fascinating challenge.

Other natural parameters for the classes considered in this paper concern the height
and width of the poset. The height (resp. width) of a poset is the size of its maximum
chain (resp. antichain). Since those are related to the largest size of a clique, the al-
gorithm in Section 2.2 covers the comparability graphs of posets of bounded height
and the incomparability graphs of posets of bounded width. We can show easily that
DOM-ENUM is tractable in the comparability graphs of posets of bounded width.

Proposition 2.5.1. Let G be the comparability graph of a poset P = (V,≤) of width α, and D
be a minimal dominating set of G. Then |D| ≤ 2α.

Proof. Consider for a contradiction a minimal dominating set D of G with |D| > 2α.
Then D contains three elements x, y, z such that x < y < z. As a consequence, N [y] ⊆
N [x] ∪N [z], which contradicts Priv(D, y) 6= ∅.

Proposition 2.5.1 guarantees that a brute-force test of all small subsets yields a
polynomial-time algorithm enumerating minimal dominating sets in the comparabil-
ity graph of posets of bounded width.

As for incomparability graphs of posets of height 2, we consider the incompatibil-
ities of a bipartite order and observe that all co-bipartite graphs can be represented
as incomparability graphs of a poset of height at most 2. Therefore, bounded height
is not a helpful parameter for incomparability graphs. A more interesting question
is perhaps whether restricting posets to lattices yields efficient algorithms, both for
comparability and incomparability graphs.

Our algorithm for incomparability graphs of bounded dimension relies heavily on
their geometric representation. Geometric graphs seem to be understudied in this
context, and the smallest open case is presumably that of unit disk graphs.
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Chapter 3

Dualization in lattices given by
implicational bases

In this chapter we present new tractability and intractability results for the dualization in
lattices given by implicational bases. These results appeared in a joint work with Lhouari
Nourine [DN19a] and were extended in [DN20].

We saw in Chapter 2 how the monotone dualization problem could be formulated
in graphs in term of domination. We show here that the problem can also be formu-
lated in Boolean lattices—a special kind of poset—as deciding whether two antichains
B+ and B− of the lattice partition the elements into two parts: elements that are below
B+, and those that are above B−. The same problem formulated in arbitrary lattices
then appears as a natural generalization we consider in this chapter. Not only the
lattice dualization problem is of fundamental interest, it is also of practical interest in
lattice-oriented machine learning through hypothesis generation [Kuz04, BK17], and
in pattern mining [NP12].

The rest of the chapter is organized as follows. In Section 3.1 we introduce nec-
essary concepts and definitions. The intractability of the general problem is proved
in Section 3.2, and a quasi-polynomial time algorithm is given for a restricted case in
Section 3.3. Future research directions are pointed in Section 3.4.

3.1 Preliminaries
Recall that a partial order on a set X (or poset) is a binary relation ≤ on X which is
reflexive, anti-symmetric and transitive, denoted by P = (X,≤); see Section 2.1.6. If x
is an element of X then #x = {y ∈ X | y ≤ x} denotes the ideal of x, and "x = {y ∈ X |
x ≤ y} denotes its filter. For a subset S ⊆ X , we put #S =

⋃
x∈S #x and "S =

⋃
x∈S "x

as the ideal and filter of S. An antichain of P is a subset of elements of X in which no
two distinct elements are comparable.

The following notion is central in this chapter.

Definition 3.1.1. Let P = (X,≤) be a poset and B+, B− be two antichains of P . We say that
the antichains B+ and B− are dual in P if #B+ ∪ "B− = X and #B+ ∩ "B− = ∅.
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Figure 3.1: The Boolean lattice LX of power set ofX = {1, 2, 3}, and the border (curved
line) formed by the two dual antichains B+ = {{1}, {2, 3}} and B− = {{1, 2}, {1, 3}}
of LX . It can be easily verified that the two hypergraphs H = {X \ I | I ∈ B+} =
{{2, 3}, {1}} and G = B− on ground set X are dual. For better readability, closed sets
and premises are denoted without braces, i.e., 123 stands for {1, 2, 3}.

In other words, B+ and B− are dual in P if one of B+ = Max≤{x ∈ X | x 6∈ "B−}
or B− = Min≤{x ∈ X | x 6∈ #B+} holds. Hence the problem of deciding whether two
antichains B+ and B− of P are dual can be solved in polynomial time in the size of P .
One has to compute P − #B+, and to check whether the remaining poset has B− for
minimal elements. The task becomes difficult when the poset is not fully given, but
only an implicit coding—of possibly logarithmic size in the size of P—is given: this is
usually the case when considering dualization problems in lattices.

3.1.1 Dualization in (implicitly given) Boolean lattices

Somehow conveniently, Boolean lattices can be defined without defining what is a
lattice, as follows. A Boolean lattice (or hypercube) is a poset isomorphic to LX = (2X ,⊆)
for some arbitrary set X . An example of a Boolean lattice is given in Figure 3.1, and
should remind Figure 1.1. Note that only X is needed in order to reconstruct the
Boolean lattice, and, clearly, the size of LX is exponential in that of X . We call X an
implicit coding of LX .

Observe that elements of LX are subsets of X , and that antichains of LX are there-
fore sets of (inclusion-wise) incomparable subsets of X , i.e., Sperner hypergraphs.
Two antichains B+ and B− of LX are dual in LX if

#B+ ∩ "B− = ∅ and #B+ ∪ "B− = 2X .

The next problem naturally follows.

Dualization in (Implicitly Given) Boolean Lattices (BOOLEAN DUAL)
Input: A set X and two antichains B+,B− of LX .
Question: Are B+ and B− dual in LX?

Note that LX is not given as an input of BOOLEAN DUAL, only X is, which is a
crucial point. The following equivalence is now folklore and may be found in [NP16].
The intuition here is that if a set T intersects every hyperedge of a hypergraphH, then
it is not a subset of the complementary of any hyperedge ofH.
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Proposition 3.1.2. Let H and G be two Sperner hypergraphs on same ground set X . Then H
and G are dual if and only if B+ = {X \ E | E ∈ H} and B− = G are dual in the Boolean
lattice LX = (2X ,⊆).

Corollary 3.1.3. The two problems HYPERGRAPH DUAL and BOOLEAN DUAL are poly-
nomially equivalent.

Boolean lattices in fact constitute a very low class of lattices. It is then a natural
question to consider generalizations of BOOLEAN DUAL to arbitrary lattices. This is
the object of this chapter, starting with the next section.

3.1.2 Lattices

What follows is maybe the most iconic definition of a lattice. While these notions will
not be used in this chapter—only equivalent characterizations will—, they will be at
the core of Chapter 4.

Let P = (X,≤) be a poset and x, y be two elements of P . If an element u is such
that both x ≤ u and y ≤ u then it is called upper bound of x and y; it is called least upper
bound of x and y if moreover u ≤ v for every upper bound v of x and y. Note that two
elements x and y of a poset may or may not have a least upper bound. As an example,
the elements x1 and x3 do not have a least upper bound in Figure 2.1, while x3 and x6

do have one. The least upper bound (also known as supremum or join) of x and y, if it
exists, is denoted by x ∨ y. The greatest lower bound (also known as infimum or meet)
of x and y, if it exists, is denoted by x ∧ y and is defined dually.

A lattice is a poset in which every two elements have a least upper bound, and a
greatest lower bound. Reference books on the field of lattice theory include the ones
of Birkhoff [Bir40], Davey and Priestley [DP02], and Grätzer [Grä11]. A lattice is given
in Figure 3.2. It can be verified on this example that every two elements indeed have a
least upper bound and a greatest lower bound. In particular, every lattice has a unique
minimal element, referred to as the bot, and a unique maximal element, the top. We
say that a lattice is distributive if the operations of join and meet distribute over each
other, i.e., if for any three elements x, y, z of the lattice,

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Lattices, however, can be defined alternatively through their different implicit repre-
sentations—just as Boolean lattices can be defined as ordered power sets of an arbi-
trary set. Several such representations exist. One of interest in this chapter is, as the
title suggests, the implicational base.

3.1.3 Implicational bases

An implicational base (X,Σ) is a set Σ of implications of the formA! B whereA ⊆ X
and B ⊆ X ; A is called the premise of the implication, and B the conclusion. Implica-
tional bases have been widely studied in the literature: recent surveys on their role in
lattice theory include [Wil17, BDVG18]. In this chapter we only consider implicational
bases in their equivalent1 unit form where |B| = 1 for every implication, and denote by

1In term of their ability to define lattices.
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Figure 3.2: The lattice LΣ of closed sets of the implicational base Σ = {13! 2, 4! 3}
on ground set X = {1, 2, 3, 4}, and the border (curved line) formed by the two dual
antichains B+ = {{1}, {2, 3}} and B− = {{1, 2}, {3, 4}} of LΣ. For better readability,
closed sets and premises are denoted without braces, i.e., 123 stands for {1, 2, 3}.

A ! b such implications, where B = {b}. The size of Σ is the number of implications
in Σ. It is denoted by |Σ|. The dimension of Σ is the size of a largest premise in Σ.

Let (X,Σ) be an implicational base. We say that a set C ⊆ X is closed in Σ if for
every implication A ! b of Σ, at least one of b ∈ C or A 6⊆ C holds. In other words, a
closed set of Σ is a set satisfying all the implications in Σ. Then to Σ we associate the
closure operator φwhich maps every C ⊆ X to the smallest closed set of Σ containing C,
and that we denote by φ(C). A closed set φ(C) for C is obtained by iteratively adding
element b to C while there exists A ! b ∈ Σ such that A ⊆ C and b 6∈ C. Efficient
closure algorithms may be found in [BO14]. We note CΣ the set of all closed sets of Σ.
The following fact is folklore.

Fact 3.1.4 (Fact π). Every lattice can be represented as the set of all closed sets of some impli-
cational base, ordered by inclusion.

To an implicational base (X,Σ) we associate LΣ = (CΣ,⊆) the lattice of closed sets
of Σ. Observe that elements of LΣ are subsets of X . Then, antichains of LΣ are families
B ⊆ CΣ such that B1 6⊆ B2 for any two B1, B2 ∈ B. An example of a lattice of closed
sets of an implicational base is given in Figure 3.2. If Σ is empty, then LΣ = (2X ,⊆)
is Boolean; see Figure 3.1. If Σ only has premises of size one, then the lattice is dis-
tributive, and this is in fact a characterization [Bir37, DP02]. Furthermore in that case,
the implicational base can be seen as a poset P = (X,≤) where x ≤ y if and only if
y ! x, and φ(S) =#P S for all S ⊆ X , where φ(S) =#P S denotes the ideal of S in P
(and not in the lattice). We call underlying poset of Σ this poset. Note that in general LΣ

may be of exponential size in the size of (X,Σ): this is in particular the case when the
implicational base is empty.

3.1.4 Dualization in lattices given by implicational bases

In the remaining of the chapter, we are concerned with the following decision problem
and one of its two generation versions.
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Dualization in Lattices Given by Implicational Bases (DUAL)
Input: An implicational base (X,Σ) and two antichains B+,B− of LΣ.
Question: Are B+ and B− dual in LΣ?

Generation version of DUAL (DUAL-ENUM)
Input: An implicational base (X,Σ) and an antichain B+ of LΣ.
Output: The dual antichain B− of B+ in LΣ.

A positive instance of DUAL is given in Figure 3.2. As for BOOLEAN DUAL, the
lattice LΣ is not given in any of the two problems defined above. Only (X,Σ) is given,
which is a crucial point. Recently in [BK17] it was shown that DUAL is coNP-complete,
hence that DUAL-ENUM cannot be solved in output-polynomial time unless P=NP.
The constructed implicational base, however, has an implication with a premise of un-
bounded size, leaving open the tractability status of the dualization in the case of im-
plicational bases of bounded dimension. We already saw that when the implicational
base is empty—when the lattice is Boolean—the two problems BOOLEAN DUAL and
HYPERGRAPH DUAL are equivalent. Then they admit an algorithm running inN o(logN)

time where N = |B+|+ |B−| using the algorithm of Fredman and Khachiyan in [FK96].
In the case of premises of size one—when the lattice is distributive—the best known
algorithm is due to Babin and Kuznetsov [BK17] and runs in sub-exponential time
2O(n0,67 log3N) where N = |B+| + |B−| and n = |X|. Quasi-polynomial time algorithms
were given by Elbassioni for subclasses of distributive lattices, including products of
chains [Elb09].

It is to be noted that other generalizations of BOOLEAN DUAL exist. One concerns
the dualization in lattices given by their meet-irreducible elements2. The problem, in
this context, was also shown intractable by Babin and Kuznetsov in [BK17]. It is not
clear, however, whether this formulation is equivalent to the case where the lattice is
given by an implicational base, i.e., DUAL. This kind of issue is raised in Chapter 4.

3.1.5 A few more parameters on implicational bases

We conclude the preliminaries with notions of closure and width that we later consider
in this chapter. Let (X,Σ) be an implicational base and φ be its associated closure
operator. A set T ⊆ X is independent w.r.t. φ if x 6∈ φ(T \ {x}) for any x ∈ T . Given two
sets T, I ⊆ X we say that T is a covering set of I if I ⊆ φ(T ), and that it is a generating
set of I if in addition T ⊆ I . It is called minimal if I 6⊆ φ(T \ {x}) for any x ∈ T . Clearly,
every minimal covering set of I is independent, and a generating set of I is minimal
if and only if it is independent. We point out that these notions only rely on φ and
not on the implications in Σ. To every I ⊆ X we associate the set mingen(I) ⊆ 2I

of minimal generating sets of I . Note that several such subsets exist in general. We
distinguish a particular one that we denote by ex(I) and that is obtained from T = I
by the following procedure:

while there exists x ∈ T such that I ⊆ φ(T \ {x}) do T  T \ {x}
return T as ex(I)

2These elements cannot be obtained as the greatest lower bound (or meet) of other elements.
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In order for such a procedure to be deterministic we chose x of smallest index in T at
each step. The next notion now strongly relies on the choice of the implications in Σ.
A subset I of implications in Σ is called independent if every of its implications has a
conclusion that cannot be obtained using the other implications in I , by closure of the
premises in I . More formally, a set of k implications I = {A1 ! b1, . . . , Ak ! bk} ⊆ Σ
with A = A1 ∪ · · · ∪ Ak is independent if bi 6∈ φI\Ai!bi(A) for any i ∈ {1, . . . , k}, where
φI\Ai!bi denote the closure operator of the implicational base (X, I \Ai ! bi) obtained
from I after removing Ai! bi. In the following, we call independent-width of (X,Σ) the
size of a maximum independent set of implications in Σ.

3.2 Intractability for implicational bases
of dimension two

We show that it is coNP-complete to decide whether two antichains of a lattice given
by an implicational base of dimension two are dual. The reduction is based on the one
of Kavvadias et al. in [KSS00], pointed in [BK17], except that we manage to hide the
Horn clause of unbounded size in one of the two antichains.

Theorem 3.2.1. DUAL is coNP-complete for implicational bases of dimension two.

Proof. Membership in coNP follows from the fact that checking if # B+ ∩ " B− 6= ∅, or
whether a given set F ⊆ X , closed in Σ, is such that both F 6∈ #B+ and F 6∈ "B− can
be done in polynomial time in the sizes of (X,Σ), B+ and B−; such a set F constitutes
a certificate for a ‘no’ answer.

We show completeness by reducing ONE-IN-THREE 3SAT, restricted to positive
literals, to the complement of DUAL. This restricted case of ONE-IN-THREE 3SAT re-
mains NP-complete [KSS00, GJ79]. In this problem, one is given a n-variable, m-clause
positive Boolean formula

φ(x1, . . . , xn) =
m∧
j=1

Cj =
m∧
j=1

(cj,1 ∨ cj,2 ∨ cj,3)

where x1, . . . , xn and C1, . . . , Cm respectively denote the variables and the clauses of φ,
and where every variable appears in at least one clause (cj,i denotes the variable that
appears in clause j at position i). Then the task is of deciding whether there exists
an assignment of the variables such that every clause contains exactly one variable to
one. We call one-in-three truth assignment such an assignment. We construct an instance
of DUAL as follows. Let X = {x1, . . . , xn, y1, . . . , ym, z} be the ground set made of one
element x per variable of φ, one element y per clause of φ, and an additional special
element z. Let Σ be the implicational base defined by

Σ =



cj,1cj,2 ! z (1)
cj,1cj,3 ! z (2)
cj,2cj,3 ! z (3)
zcj,1 ! yj (4)
zcj,2 ! yj (5)
zcj,3 ! yj (6)
yj ! z (7)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
j ∈ {1, . . . ,m}


.
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Then we put

B+ = {Bj = X \ {yj, cj,1, cj,2, cj,3} | j ∈ {1, . . . ,m}},
B− = {F = {y1, . . . , ym, z}}.

Clearly, (X,Σ), B+ and B− are constructed in polynomial time in the size of φ. More-
over, every Bj ∈ B+ is closed in Σ (observe that no literal in {cj,1, cj,2, cj,3} is the con-
clusion of an implication of Σ, and that yj cannot be implied without any literal in
{cj,1, cj,2, cj,3}). As Bj is the only set of B+ containing yj for every j ∈ {1, . . . ,m}, no
two sets in B+ are inclusion-wise comparable. Hence B+ is an antichain of LΣ. Also,
B− is an antichain of LΣ as it is a singleton and its unique element F is closed in Σ. At
last, Σ is of dimension two. Are B+ and B− dual in LΣ? We show that the answer is
‘no’ if and only if there is a one-in-three truth assignment of φ.

We prove the first implication. Let us assume that B+ and B− are not dual in LΣ.
Since # B+∩ " B− = ∅, there must be some closed set F ′ ⊆ X such that both F ′ 6∈ #B+

and F ′ 6∈ " B−. We consider an inclusion-wise minimal such set F ′. Since F \ {z} is
not closed in Σ, and F \ {yj} ⊆ Bj for every j ∈ {1, . . . ,m}, we conclude that F ′ 6⊆
F . Then F ′ ∩ {x1, . . . , xn} 6= ∅. Let x ∈ F ′ ∩ {x1, . . . , xn}. We show that z 6∈ F ′ by
contradiction. Suppose that z ∈ F ′. Then by Implications (4) to (6), yj ∈ F ′ for all
j ∈ {1, . . . ,m} such that x ∈ Cj . Hence for every clause Cj containing x, we have that
|F ′ ∩ {yj, cj,1, cj,2, cj,3}| ≥ 2. Hence F ′ \ {x} 6⊆ Bj for any j ∈ {1, . . . ,m}. Since F ′ \ {x}
is closed, this contradicts the fact that F ′ is chosen minimal such that F ′ 6∈ #B+. Hence
F ′ does not contain z. Clearly F ′ ∩ {y1, . . . , ym} = ∅ as otherwise by Implication (7),
F ′ would contain z. As F ′ 6⊆ Bj for any j ∈ {1, . . . ,m}, |F ′ ∩ Cj| ≥ 1 for every such
j. Furthermore |F ′ ∩ Cj| ≤ 1 for every j ∈ {1, . . . ,m} as otherwise by Implications (1)
to (3), F ′ would contain z. Consequently F ′ is a one-in-three truth assignment of φ,
concluding the first implication.

We prove the other implication. Let T be a one-in-three truth assignment of φ. As
T ⊆ {x1, . . . , xn} and |T ∩ Cj| = 1 for all j ∈ {1, . . . ,m}, T is closed in Σ. Furthermore
it is not a subset of any Bj ∈ B+. Since at last T 6⊇ F , we obtain that both T 6∈ #B+ and
T 6∈ "B−. Consequently B+ and B− are not dual in LΣ, concluding the proof.

Consequently by Corollary 1.2.8, there is no algorithm solving DUAL-ENUM in
output-polynomial time unless P=NP, even in the case of implicational bases of di-
mension two.

3.3 Boolean embedding for implicational bases of
bounded independent-width

We show that the dualization in lattices given by implicational bases can be achieved
in output quasi-polynomial time whenever the implicational base has bounded inde-
pendent-width. The approach is similar to the one in [NP14] as we show that the prob-
lem can be reduced to hypergraph dualization in that case (the antichains embedded
into a Boolean lattice), which allows us to use the quasi-polynomial time algorithm of
Fredman and Khachiyan [FK96].
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In what follows, let (X,Σ,B+) be an instance of DUAL-ENUM. Let B− be the dual
antichain of B+ that we wish to compute, andH be the complementary hypergraph of B+

on ground set X defined by

H = {X \B | B ∈ B+}.

Recall that Tr(H) = B− whenever LΣ is Boolean, that is when the implicational base Σ
is empty. We will show how B− can be computed from Tr(H) in the general case.

Lemma 3.3.1. To every transversal T of H corresponds some I ∈ B− such that I ⊆ φ(T ).
This is in particular the case for every minimal transversal ofH.

Proof. Let T be a transversal ofH. As T ∩E 6= ∅ for all E ∈ H, T satisfies T 6⊆ B for any
B ∈ B+. As T ⊆ φ(T ) this is also the case of φ(T ). Hence φ(T ) 6∈# B+. Now if there is no
I ∈ B− such that I ⊆ φ(T ) then φ(T ) 6∈" B−, contradicting the duality of B+ and B− in
LΣ. We conclude that one such I must exist. The last remark follows by inclusion.

Lemma 3.3.2. If T is a transversal of H, then every set T ∗ in mingen(T ) is. In particular,
every minimal transversal ofH is independent w.r.t. φ.

Proof. We proceed by contradiction. Let T be a transversal ofH and T ∗ ∈mingen(T ).
Suppose that T ∗ is not a transversal. Then T ∗ ⊆ B for some B ∈ B+. As B is closed,
φ(T ∗) ⊆ φ(B) = B. Since T ∗ is a generating set of T , T ⊆ φ(T ∗). Hence T ⊆ B and
thus T is not a transversal ofH, a contradiction. Consequently every T ∗ ∈mingen(T )
is a transversal of H. In particular, every minimal transversal T of H is independent
w.r.t. φ, as otherwise it can be reduced into an arbitrary independent generating set of
T which is smaller, contradicting the minimality of T .

Lemma 3.3.3. To every I ∈ B− corresponds T ∈ Tr(H) such that T = ex(I).

Proof. Let I ∈ B−. Since I 6⊆ B for any B ∈ B+, I is a transversal of H. Let T = ex(I).
By Lemma 3.3.2 as ex(I) ∈ mingen(I), T is a transversal of H and since I is closed,
I = φ(T ). We show that T is minimal. Let x ∈ T and I ′ = φ(T \ {x}). As T is a
minimal generating set of I , I ′ ⊂ I . By minimality of I it must be that I ′ ⊆ B for some
B ∈ B+. Consequently I ′ does not intersect the hyperedge E = X \B for such a B. As
T \ {x} ⊆ I ′, T \ {x} is not a transversal ofH. We conclude that T ∈ Tr(H).

Algorithm 3.1: An algorithm enumerating the dual antichain B− of B+ in LΣ

given an implicational base (X,Σ) of closure operator φ and an antichain B+

of the lattice LΣ.
1 H {X \B | B ∈ B+};
2 for every T ∈ Tr(H) do
3 I  φ(T );
4 if I ∈ B− and T = ex(I) then
5 output I ;
6 end
7 end
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Figure 3.3: An implicational base (X,Σ) on ground set X = {u1, v1, . . . , un, vn} where
Σ = {ui ! vi | i ∈ {1, . . . , n}}. By taking B+ = {X \ {ui, vi} | i ∈ {1, . . . , n}}, we
get H = {{ui, vi} | i ∈ {1, . . . , n}}, B− = {{v1, . . . , vn}} and Tr(H) = {{z1, . . . , zn} |
(z1, . . . , zn) ∈ {u1, v1} × · · · × {un, vn}}.

A consequence of Lemma 3.3.3 is that one can enumerate B− from Tr(H) by check-
ing for every T ∈ Tr(H) whether its closure I = φ(T ) belongs to B−, whether we
have T = ex(I), and discarding the solution if not. Computing the set I = φ(T )
can be done in O(|X| · |Σ|) time. Testing whether I belongs to B− can be done in
O(|X|2 · (|Σ|+ |B+|)) time by checking for every x ∈ I whether I \ {x} is not closed, or
whether I \{x} ⊆ B for someB ∈ B+ otherwise. This holds since I is a transversal and
if I \ {x} ⊆ B, then I \ {x} is not a transversal, which establishes that I ∈ B−. As for
the computation of ex(I) it can be done in O(|X|2 · |Σ|) time following the definition
in Section 3.1. Henceforth, enumerating B− can be done in total time

M o(logM) + |Tr(H)| ·O(|X|2 · (|Σ|+ |B+|))

where M = |H| + |Tr(H)|, by constructing H in O(|X| · |B+|) time, using the algo-
rithm in [FK96] for the enumeration of Tr(H) in time M o(logM), and discarding at
most |Tr(H)| solutions with a cost of O(|X|2 · (|Σ| + |B+|)) per solution. Repetitions
are avoided by discarding T whenever T 6= ex(I). This procedure is given in Algo-
rithm 3.1. Its correctness follows from Lemmas 3.3.1 and 3.3.3. The limitation of such
a procedure is that the size of Tr(H) may be exponentially larger than that of X , Σ, B+

and B−, hence that the described algorithm may run in output-exponential time. An
example of one such instance is given in Figure 3.3. However, we will show that it is
not the case whenever the implicational base has bounded independent-width.

Our argument relies on the following observation.

Lemma 3.3.4. Let I ∈ B− and T be a minimal transversal of H such that I ⊆ φ(T ). Then T
is a minimal covering set of I .

Proof. First recall that by Lemma 3.3.2, T is independent. It may intersect I . Let x ∈ T .
By minimality of T , T \ {x} is not a transversal. By Lemma 3.3.2, neither is φ(T \ {x})
as otherwise since T is independent then T \{x} ∈mingen(φ(T \{x})) is a transversal,
which contradicts the hypothesis that T is minimal. Since I is a transversal of H we
have that I 6⊆ φ(T \ {x}) for any x ∈ T and the lemma follows.

In the following given two subsets T, I ⊆X such that T is an independent covering
set of I , we note min(Σ, T, I) an arbitrary minimal subset of implications of Σ having
their premise included in T as a subset and that are needed in Σ in order to derive I
from T . In other words, min(Σ, T, I) is obtained from the implications of Σ having
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their premise in T by greedily removing an implication of Σ having its premise in T
while the inclusion I ⊆ φ(T ) holds. Observe that in consequence no implication in
min(Σ, T, I) has a conclusion that is obtained from T by closure of the other implica-
tions in min(Σ, T, I), i.e., min(Σ, T, I) is an independent set of implications of Σ.

We now express a bound on the number of minimal covering sets a set admits de-
pending on the number of implications in Σ, and its independent-width. This yields,
by Lemma 3.3.4, a bound on the number of minimal transversals of H depending on
the sizes of B−, Σ, and the independent-width of Σ.

Theorem 3.3.5. Let I be a subset of X . Then the number of minimal covering sets of I is
bounded by |Σ|k where k is the independent-width of Σ.

Proof. Let I ⊆ X and T ⊆ X be a minimal covering set of I . Consider the implica-
tions in min(Σ, T, I). As min(Σ, T, I) is an independent set of implications, we have
|min(Σ, T, I)| ≤ k. Observe in addition that every x ∈ T \ I belongs to at least one
premise of an implication in min(Σ, T, I), as otherwise T is not a minimal covering set
of I . Furthermore by definition, every x that belongs to the premise of an implication
in min(Σ, T, I) is in T . Hence, every such x is either in I or in T \ I . We conclude that
T \I =

⋃
{A | A! b ∈min(Σ, T, I)}\I . Now, observe that T is uniquely characterized

by T \ I as T is independent: the elements of T ∩ I are exactly those of I \ φ(T \ I).
Since T \ I is obtained by union of at most k implications in Σ, the number of minimal
covering sets of I is bounded by

k∑
i=1

(
|Σ|
i

)
hence by |Σ|k, as desired.

A corollary of Lemma 3.3.4 and Theorem 3.3.5 is the following, observing that ev-
ery solution I ∈ B− admits at most |Σ|k minimal covering sets, hence that at most |Σ|k
minimal transversals ofH have their closure containing I .

Corollary 3.3.6. If Σ is of independent-width k then |Tr(H)| ≤ |Σ|k · |B−|.

As a consequence, the size of Tr(H) is bounded by a polynomial in |X| + |Σ| +
|B+|+ |B−|whenever the implicational base is of bounded independent-width. Hence
under such a condition, it is still reasonable to test each of the minimal transversals
generated by Algorithm 3.1 even though many may not lead to a solution of B−. We
conclude with the following theorem.

Theorem 3.3.7. There is an algorithm that, for every integer k, given an implicational base
(X,Σ) such that Σ is of independent-width k, and an antichain B+ of LΣ, enumerates the dual
antichain B− of B+ in LΣ in output quasi-polynomial time N o(logN) where N = |X| + |Σ| +
|B+|+ |B−|.

Proof. Let k be an integer and (X,Σ) be an implicational base of independent-width
k. Let B+ be an antichain of LΣ, and H = {X \ B | B ∈ B+} be the complementary
hypergraph of B+. Let B− be the dual antichain of B+ in LΣ that we wish to compute.
By Corollary 3.3.6, the size of Tr(H) is bounded by |X|k · |B−|. Let M = |H|+ |Tr(H)|
and N = |X| + |Σ| + |B+| + |B−|. Since |H| ≤ |B+|, there exists a constant c ∈ N
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depending in k such that M ≤ N c. As a consequence, using the algorithm of Fredman
and Khachiyan, the running time of Algorithm 3.1 on instance (X,Σ,B+) is bounded
by

M o(logM) + |Tr(H)| ·O(|X|2 · (|B+|+ |Σ|))

hence by
N c · o(logNc) + poly(N) = N o(logN).

As a corollary, there is a quasi-polynomial time algorithm solving DUAL in lattices
given by implicational bases of bounded independent-width. If the dimension and the
independent-width of Σ equal one, Theorem 3.3.7 yields an output quasi-polynomial
time algorithm solving DUAL-ENUM in distributive lattices coded by the ideals of an
interval order. A poset is an interval order if it corresponds to an ordered collection of
intervals on the real line such that [x1, x2] < [x3, x4] if and only if x2 < x3. Indeed, if
Σ is of dimension and independent-width one, then it has no implications a ! b and
c ! d such that d 6∈ φ(a) and b 6∈ φ(c). The underlying poset in that case is 2+2-free,
i.e., it does not contain the union of two disjoint 2-elements chains, which is known to
characterize interval orders [Fis70].

3.4 Further work and open problems
We state open problems for future research. To an implicational base (X,Σ) we asso-
ciate its implication-graph G(Σ) as the directed graph on vertex set X and where there
is an arc from x to y if there exists A ! b ∈ Σ such that x ∈ A and y = b. An implica-
tional base (X,Σ) is called acyclic if G(Σ) has no directed cycle. Acyclic implicational
bases have been widely studied in the literature [HK95, BČKK09, Wil17], and are the
object of the next chapter. Observe that the negative result of Section 3.2 involves an
implicational base which is (highly) cyclic. The next question naturally follows.

Question 3.4.1. Can DUAL-ENUM be solved in output quasi-polynomial time in lattices
given by acyclic implicational bases?

Subclasses of interest include distributive lattices as we recall that the best known
algorithm for the dualization in that case is output sub-exponential [BK17]. Super-
classes of interest that are not covered by Theorem 3.2.1 include convex geometries
that are defined in the next chapter.
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Chapter 4

Translating between the
representations of a lattice

In this chapter we present new tractability and intractability results on the problem of trans-
lating between the representations of a lattice. These results were obtained in a joint work with
Lhouari Nourine and Simon Vilmin and may be found in the preprint [DNV19].

We saw in Chapter 3 that any lattice could be considered as the family of closed
sets of an implicational base, ordered by inclusion. In fact, finite closure systems arise
in various other fields of discrete mathematics and computer science including Horn
logic [KKS93, CH11], and relational databases [Mai83, MR92]. They appear in various
fields related to lattice theory such as Formal Concept Analysis (FCA) [GW12] and
knowledge spaces [DF12]. The study of their representations and how to translate
from one to another has gathered increasing attention these last decades, as witnessed
by [Wil94, Kha95, BMN17, HN18], the surveys [Wil17, BDVG18], and the Dagstuhl
Seminar 14201 [AIBT14].

Among the different ways of representing a closure system, the implicational bases
play a central role. We saw that they consist of rulesA! B describing a causality rela-
tion within the closure system: a set containing A must contain B. Yet a fundamental
aspect that was not raised in the previous chapter is the following observation: several
implicational bases can lead to a same closure system (or lattice). Some may be very
concise, some huge and redundant. In fact, implicational bases were only considered
as an input of the dualization problem in Chapter 3; in that case, being given a very bad
implicational base is not a problem as it just increases the size of the input. Moreover,
it can always be reduced into a more concise one in polynomial time, if useful, using
the algorithms in [Sho86, Wil95]. In consequence to the fact that several implicational
bases can code a same closure system, numerous bases were defined and studied in
the literature. To cite a few, one can find the Duquenne-Guigues basis having a mini-
mum number of implications [GD86], the unit-minimum having a minimum number
of implications among unit implicational bases, or the canonical direct basis having all
minimal generators [GW86, BM10]. Refinements of the canonical direct basis include
the E-basis and D-basis [FJN95, AN17]. In this chapter, and as in Chapter 3, only unit
implicational bases—with conclusions of size one—will be considered, a point that is
discussed in the next section.
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Another possible representation for a closure system results from a minimum sub-
set of elements from which it can be reconstructed. In Horn logic, these elements are
known as the characteristic models [Kha95, HK95]. In lattice theory and closure sys-
tems, they are known as the meet-irreducible elements [DP02]. Graphically on the
Hasse diagram of a lattice, they correspond to the elements having a unique succes-
sor: they cannot be obtained by meet (or intersection) of other elements. We add that
these elements are also found in the poset of irreducibles [BM70, Mar75, HN18], or
in the reduced context representing the concept lattice in FCA [GW12]. These objects,
however, will not be studied in this chapter.

As pointed out by Khardon in [Kha95], the utility of these two representations is
not comparable. More notably, there are cases of (unit) minimum implicational bases
of exponential size in the number of meet-irreducible elements, and vice versa. Fur-
thermore, different complexities can arise for a same problem when considering one
representation, and the other. This is most notably the case for reasoning and abduc-
tion [SL90, KKS93], but also when considering dualization in lattices [BK17]. Indeed,
we saw in Chapter 3 that the dualization was intractable in lattices given by implica-
tional bases, and pointed that the same result holds when the lattice is given by its
meet-irreducible elements [BK17]. The corresponding classes of lattice, however, are
not comparable.

Consequently, the problem of translating between implicational bases and meet-
irreducible elements is critical in order to reap the benefits of both representations. In
Horn logic, the problem of computing the meet-irreducible elements from an impli-
cational base is known as CCM (for Computing Characteristic Models). The problem
of computing an implicational base from the meet-irreducible elements is denoted by
SID (for Structure Identification). We now give, for completeness, an overview of the
progress that has been made on these problems. Their formal definition is postponed
to the next section. For the canonical direct and D-basis, output quasi-polynomial
time algorithms based on hypergraph dualization were given for both translations
in [MR92, AN17]. For the minimum implicational base, output-polynomial time al-
gorithms were obtained in k-meet-semidistributive lattices in [BMN17], as well as in
modular lattices in [Wil00]. In [BK13], it is shown that it is coNP-complete in general
to decide whether an implication belongs to a minimum implicational base. The exis-
tence of an output-polynomial time algorithm constructing a minimum implicational
base, however, remains open [BK13, BMN17, Wil17]. In [Kha95], the author is most in-
terested in unit implicational bases as they represent Horn expressions. Indeed, every
Horn clause, say (¬a1 ∨ · · · ∨ ¬ak ∨ b), can be seen as an implication {a1, . . . , ak} ! b.
In that context, the translation problems SID and CCM are shown to be equivalent,
and to be at least as hard as hypergraph dualization. This, on its own, justifies the
importance of the problem and its place in this manuscript.

The results that are presented in this chapter focus on a particular class of closure
systems called acyclic convex geometries, defined as closure systems satisfying the anti-
exchange property [EJ85], and having an acyclic implication-graph [Wil94], notions
that are defined in Section 4.1. We show in Section 4.2 that even when restricted to this
class, the problem of translating between one representation and the other is at least
as hard as the dualization in distributive lattices, a problem that we already encoun-
tered in the previous chapter. Not only this generalizes the observation of Khardon
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in [Kha95], but it surprisingly holds in a very low class of closure spaces. In light of
this result, we then consider in Section 4.3 a proper subclass of acyclic convex geome-
tries, namely ranked convex geometries, as those that admit a ranked implicational base
analogous to that of ranked posets. For this class, we provide in Sections 4.4 and 4.5
output quasi-polynomial time algorithms based on hypergraph dualization for trans-
lating between the two representations. The first algorithm is based on ordered gen-
eration, while the second relies on structural properties of acyclic convex geometries.
Future research directions are discussed in Section 4.6.

4.1 Preliminaries
We define general notions related to closure systems. These notions were already en-
countered in Chapter 3 through implicational bases.

LetX be any set, denoted ground set in the following. A map φ : 2X ! 2X is a closure
operator on X if for all A,B ⊆ X :

1. A ⊆ φ(A);

2. A ⊆ B implies φ(A) ⊆ φ(B); and

3. φ(A) = φ(φ(A)).

A closed set of X w.r.t. φ is a set C ⊆ X such that φ(C) = C. The set of all closed sets of
X w.r.t. φ is denoted by Cφ. A pair (X,φ) where φ is a closure operator on X is called
closure space. It is called standard if moreover

1. φ(∅) = ∅; and

2. φ(x) \ {x} is closed for all x ∈ X .

In the following, all closure spaces are considered standard, a common assumption
[AN16]. A closure system is a pair (X, C) where C ⊆ 2X , X ∈ C and C1 ∩ C2 ∈ C for
all C1, C2 ∈ C. In other words, a closure system is a family of sets, closed under inter-
section, and containing the ground set as an element. It is well known that to every
closure space (X,φ) corresponds a closure system (X, Cφ), and that to every closure
system (X, C) corresponds a closure space (X,φ) where C = Cφ. We refer to Section 3.1.2
for the definition of a lattice. The following observation is folklore.

Fact 4.1.1. To any closure space (X,φ) corresponds a lattice Lφ = (Cφ,⊆).

We furthermore have the following equivalences between the meet, join, union,
and intersection operators: C1 ∧ C2 = C1 ∩ C2 and C1 ∨ C2 = φ(C1 ∪ C2) for every two
elements C1, C2 in L. An example of a lattice of a closure space is given in Figure 4.1.

4.1.1 Meet-irreducible elements

We define meet-irreducible elements. Let (X, C = Cφ) be a closure system with closure
operator φ. A set M ⊆ X is a meet-irreducible element of C if M ∈ C, M 6= X , and for
all C1, C2 ∈ C such that M = C1 ∩ C2 it follows that C1 = M or C2 = M . Similarly,
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Figure 4.1: The closure lattice LΣ = (CΣ,⊆) of the implicational base Σ = {4! 1, 5! 2,
3! 1, 3 ! 2, 45 ! 3} on ground set X = {1, 2, 3, 4, 5}. Meet-irreducible elements are
represented by black vertices. For better readability, closed sets are denoted without
braces in the lattice, i.e., 123 stands for {1, 2, 3}.

a set J ⊆ X is a join-irreducible element of C if J ∈ C, J 6= ∅ and for all C1, C2 ∈ C
such that J = φ(C1 ∪ C2) it follows that J = C1 or J = C2 . We denote by J (C) and
M(C) the sets of join-irreducible and meet-irreducible elements of C. Put simplier,
meet-irreducible (resp. join-irreducible) elements are those that cannot be obtained
by intersection (resp. union and closure) of other elements. In the lattice L = (C,⊆),
these elements respectively correspond to those that have a unique predecessor, and
a unique successor; see Figure 4.1 for an example. In particular, every atom (i.e., suc-
cessor of the bottom element) of a lattice is join-irreducible, and every co-atom (i.e.,
predecessor of the top element) is meet-irreducible. In the following, we will inter-
changeably noteM(L) andM(C) whenever L = (C,⊆).

Let J,M ∈ C. We define useful notations from [GW12] for closure systems using
underlying lattice structure. We note J ↗ M whenever M is maximal in L−"J , and
J ↙M whenever J is minimal in L−#M . If J ↗M and J ↙M then we note J↙↗M .
We point out here that M and J are element of L, and subsets of X . On the example
of Figure 4.1, observe that J ↗ M for J = {2} and M = {1, 4}. Also, J ↙ M for
M = {1, 4} and J = {2}. Hence, J↙↗M in that case. In the following, we extend the
↗ notation to any subset B ⊆ X by defining B↗ = Max⊆{M ∈ C | B 6⊆ M}. Then
M ∈ J↗ whenever J ↗ M for any two M,J ∈ C. We put j↗ = {j}↗ for any j ∈ X .
The following fact is folklore; see for instance [MR92, Wil95, Wil17].

Fact 4.1.2. The family {J↗ | J ∈ J (C)} is a (possibly overlapping) set covering ofM(C).

Since C is considered standard, another well-known property is that to every set
J ∈ J (C) corresponds a unique element j ∈ X such that J = φ(j). Accordingly, J (C)
coincides with {φ(j) | j ∈ X}, and J↗ with j↗ for j such that φ(j) = J .

4.1.2 Links with the implicational bases

Recall that an implicational base (X,Σ) is a set Σ of implications of the form A ! B
where A,B ⊆ X , and it is called unit if |B| = 1 for every such implication. A set S is
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closed in Σ if for every implication A! B of Σ, at least one of B ⊆ S and A 6⊆ S holds.
You might remember as well from Chapter 3 that to every implicational base (X,Σ)
corresponds a closure operator φ which maps every subset S ⊆ X to the smallest closed
set φ(S) of Σ containing S. We say that S implies (or generates) x ∈ X if x ∈ φ(S). A
set S ⊆ X is a minimal generator of b if b ∈ φ(S) and b 6∈ φ(S \ {x}) for any x ∈ S. In the
following, we will interchangeably denote by CΣ and Cφ the set of all closed sets of Σ.
Observe then that (X,Σ) defines a closure space, hence that (X, CΣ) defines a closure
system and LΣ = (CΣ,⊆) defines a lattice.

As pointed in the introduction of this chapter, to a single closure system can corre-
spond several implicational bases. We say that two implicational bases Σ and Σ′ are
equivalent, denoted by Σ ≡ Σ′, if CΣ = CΣ′ . An implicational base Σ is called irredun-
dant if Σ \ {A ! B} 6≡ Σ for all A ! B ∈ Σ. We say that an implicational base is
minimum if it is of minimum size among all equivalent implicational bases. It is called
unit-minimum if it is of minimum size among all equivalent unit implicational bases.

4.1.3 Implication-graph

The implication-graph of (X,Σ) is the directed graph G(Σ) defined on vertex set X and
where there is an arc between x and y if there exists A ! B ∈ Σ such that x ∈ A and
y ∈ B. An implicational base is called acyclic if its implication-graph has no directed
cycle. A closure space is called acyclic if it admits an acyclic implicational base. We
recall from Chapter 3 that if moreover the premises in Σ are of size one, then the
closure lattice LΣ = (CΣ,⊆) is distributive. For a vertex j of G(Σ) we shall note j−

the set of all predecessors of j in G(Σ), and j+ all its successors.

4.1.4 Translating between the representations

As mentioned earlier, a closure system (X, Cφ) can always be represented and recon-
structed from a well-chosen implicational base, or from its meet-irreducible elements.
For the latter case, one has to closeM(Cφ) under intersection to recover the whole fam-
ily Cφ. For the former one, we have to consider Σ such that CΣ = Cφ. Such a Σ always
exists: Σ = {A ! φ(A) | A ⊆ X} is an expensive but sufficient representation of φ.
It can furthermore be turned into a unit implicational base. An example of a closure
system represented by its corresponding lattice, a unit-minimum implicational base,
and the set of its meet-irreducible elements is given in Figure 4.1.

We are now ready to include the definitions of the problems we consider in this
chapter. The names CMI, CCM and SID below originally come from the problems
of translating between Horn representations and their characteristic models [Kha95].
Their equivalence with the problems of translating between implicational bases and
meet-irreducible elements is well established; see for instance [Wil17]. We point out
that the last problem, as put by Khardon, calls for constructing a unit-minimum im-
plicational base. This problem is at least as hard as the one of computing a minimum
implicational base, as one can compute a minimum implicational base in polynomial
time from a unit-minimum one using the algorithms in [Sho86, Wil95], and that the
size of these two implicational bases only differ by a factor |X| being part of the input.
It is not clear whether the opposite direction holds, as it was shown in [HK93] that
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deciding whether a unit implicational base can be reduced is NP-hard. The problem
we consider in this chapter is the hardest one, as in [Kha95].

Meet-irreducible Elements Identification (CMI)
Input: An implicational base (X,Σ) and a family of setsM⊆ 2X .
Question: IsM =M(CΣ)?

Meet-irreducible Elements Enumeration (CCM)
Input: An implicational base (X,Σ).
Output: The setM(CΣ).

Implicational Base Identification (SID)
Input: Two sets X andM⊆ 2X .
Output: A unit-minimum implicational base (X,Σ) such thatM =M(CΣ).

In [Kha95], the author shows that CCM and SID are equivalent, and that they are
at least as hard as TRANS-ENUM. The same result will be observed from a lattice point
of view in Section 4.2.

Recall by Fact 4.1.2 that {j↗ | j ∈ X} is a set covering ofM(C). It follows that the
existence of an output-polynomial time algorithm for CCM amounts to the existence
of one enumerating j↗ for all j ∈ X ; see [Wil95, Wil17]. Repetitions are either avoided
using exponential memory, or by running the algorithm again on each output to check
whether the solution has already been outputted before, as in Lemma 2.2.10, and at
the cost of an increasing complexity. In the general case, it can be seen using a result of
Babin and Kuznetsov, and of Kavvadias et al. in [KSS00, BK17] on the intractability of
generating the co-atoms of a lattice that the computation of j↗ is impossible in output-
polynomial time unless P=NP. It is however a long-standing open problem whether
such a result can be inferred for CCM [Kha95, BMN17, Wil17].

4.1.5 Convex geometries

Let us end the preliminaries by presenting the particular closure system that we con-
sider in the following. A closure space (X,φ) satisfies the anti-exchange property if for
all x 6= y and all closed sets A ⊆ X ,

x ∈ φ(A ∪ {y}) and x 6∈ A imply y 6∈ φ(A ∪ {x}).

A standard closure space that satisfies the anti-exchange property is called a convex ge-
ometry. Convex geometries are known to include acyclic closure spaces [Wil94, Wil17].
Sometimes during the paper, we will refer to acyclic closure spaces as acyclic con-
vex geometries. It is known from [AGT03] that lattices of convex geometries are both
join-semidistributive and lower-semimodular. Whatever that means, it has for conse-
quence that if (X,φ) is a convex geometry and (X, Cφ) is its associated closure system,
then J ↗M implies J↙↗M for all J ∈ J (Cφ) and M ∈ M(Cφ) [Ste99, Corollary 4.6.3].
More importantly—and that is the only property that will be used in the following—
this has for consequence that the set {j↗ | j ∈ X} defines a partition (and not only a
set covering) ofM(Cφ). Consequently, meet-irreducible elements can be enumerated
from join-irreducible elements with no need of handling repetitions in that case. This
yields the next proposition (the factor two comes from the delay between the output
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of the last element in j↗, j ∈ X and the first element in j′↗ for a consecutive element
j′ ∈ X , j′ 6= j).

Proposition 4.1.3. Let f : N! N be a function and (X, CΣ) be the closure system of a given
acyclic implicational base (X,Σ). Then there is an algorithm enumerating the setM(CΣ) of
meet-irreducible elements of CΣ with delay at most 2 · f(|X| + |Σ|) whenever there is one
enumerating j↗ with delay f(|X|+ |Σ|) given any j ∈ X .

With all these notions from closure systems we are now armed to show new results
on the tractability and intractability of CMI.

4.2 Intractability in acyclic convex geometries
We show that translating between acyclic implicational bases and meet-irreducible
elements is at least as hard as the dualization in distributive lattices. For this problem,
we recall that the existence of a quasi-polynomial time algorithm is open [BK17].

We briefly recall the dualization problem in lattices given by implicational bases,
and refer to Chapter 3 for a more details. Let LΣ = (CΣ,⊆) be the lattice of closed sets
of an implicational base (X,Σ), and B+ and B− be two antichains of LΣ. Then B+ and
B− are called dual in LΣ if

#B+ ∩ "B− = ∅ and #B+ ∪ "B− = CΣ. (4.1)

Then, the dualization problem in lattices given by implicational bases is defined as
follows.

Dualization in Lattices given by Implicational Bases (DUAL)
Input: An implicational base (X,Σ) and two antichains B+,B− of LΣ.
Question: Are B+ and B− dual in LΣ?

The next theorem suggests that translating between implicational bases and meet-
irreducible elements is a tough problem, even when restricted to acyclic convex ge-
ometries.

Theorem 4.2.1. There is a polynomial-time algorithm solving DUAL in distributive lattices
if there is one solving CMI in acyclic convex geometries.

Proof. Let I1 = (X,Σ,B+,B−) be an instance of DUAL where the lattice LΣ = (CΣ,⊆) is
assumed to be distributive. Without loss of generality, Σ can be considered acyclic in
that case; see [BK17]. We construct an instance I2 = (X∪{z},Ω,M) of CMI as follows:
Ω is the implicational base on ground set X ∪ {z} constructed from Σ by adding an
implication A! z for every A ∈ B−. Clearly the obtained implicational base is acyclic.
Then, we put

M = {M ∪ {z} |M ∈M(LΣ)} ∪ B+. (4.2)

Observe that the left and right sides of the union in Equality (4.2) are disjoint. A
representation of the lattice LΩ = (CΩ,⊆) is given in Figure 4.2. We shall show that I1

is a positive instance of DUAL if and only if I2 is one of CMI, and that it can be decided
in polynomial time in the size of I1 given a polynomial-time algorithm for CMI.
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Figure 4.2: The construction of Theorem 4.2.1.

Consider the elements of LΩ[" {z}], i.e., the right part of Figure 4.2. Observe that
LΣ and LΩ[" {z}] are isomorphic. Consequently, there is a bijection from M(LΣ) to
M(LΩ["{z}]) given by f : M 7!M ∪ {z} and f−1 : M ′ 7!M ′ \ {z}. Hence

{M ∪ {z} |M ∈M(LΣ)} =M(LΩ["{z}]). (4.3)

Consider now the elements of LΩ− " {z}, i.e., the left part of Figure 4.2. Observe that
the only way for an element N in such a part to be meet-irreducible is to belong to z↗,
as otherwise N has at least one successor in LΩ− " {z}, and another one in LΩ[" {z}].
HenceM(LΩ)\ "{z} = z↗. Consequently by Equalities (4.2) and (4.3),M =M(LΩ) if
and only if B+ = z↗. As by construction,

z↗ = Max⊆{F ∈ CΣ | A 6⊆ F for any A ∈ B−}, (4.4)

we conclude that B+ = z↗ if and only if B+ and B− are dual in LΣ. Hence that I1 is a
positive instance of DUAL if and only if I2 is one of CMI. Concerning the observation
that I1 can be decided in polynomial time in |I1| using a polynomial-time algorithm
for CMI, it is a consequence of the fact that LΣ being distributive, the size ofM(LΣ) is
bounded by |X|, hence that |X ∪ {z}| + |Ω| + |M| is bounded by a polynomial in |I1|.
This concludes the proof.

As a consequence, there is no output quasi-polynomial time algorithm for CCM,
nor SID, unless there is one solving the dualization in distributive lattices in quasi-
polynomial time, a long-standing open problem [BK17]. This generalizes the obser-
vation of Khardon in [Kha95] (which is obtained replacing “distributive lattice” by
“Boolean lattice” in Theorem 4.2.1).

As for the computation of j↗ given an acyclic implicational base (X,Σ) and some
element j ∈ X , a corollary of Equality (4.4) in the proof of Theorem 4.2.1 is that the
task is even harder than the dualization in lattices given by acyclic implicational bases
(a proper superclass of distributive lattices), whenever Σ is acyclic. To the best of
our knowledge, no better algorithms than exponential naive ones are known on such
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Figure 4.3: A ranked implicational base (left) and an acyclic implicational base that
does not admit a rank function (right). Ranks are depicted by dashed lines.

class. This suggests that the technique employed in [BMN17] and pointed by Propo-
sition 4.1.3 for the enumeration of meet-irreducible elements from join-irreducible el-
ements may not be efficient in acyclic convex geometries. However, we will show in
Section 4.4 that it can work in a subclass of acyclic convex geometries.

4.3 Ranked convex geometries
Let (X,Σ) be an implicational base. A rank function on (X,Σ) is a function ρ : X ! N
such that if A ! b ∈ Σ and a ∈ A, then ρ(a) = ρ(b) + 1. We say that (X,Σ) is ranked
if it admits a rank function. See Figure 4.3 for an illustration. It is not hard to see
that ranked implicational bases are acyclic, hence that they define a subclass of acyclic
convex geometries. We say that a convex geometry is ranked if it admits a ranked
implicational base. Observe that the construction of Theorem 4.2.1 is not ranked, as not
all distributive lattices admit a ranked implicational base, and in addition the premises
of the constructed implications may not contain elements of a same rank.

In this section, we prove structural properties on acyclic and ranked convex geome-
tries. Let us first recall a result from [HK95] (see also [Wil17]) which plays a central
role in the remaining of the section. Remind that a set A ⊆ X is a minimal generator
of b if it is minimal satisfying b ∈ φ(A).

Proposition 4.3.1 ([HK95]). Let (X,φ) be an acyclic convex geometry. Then (X,φ) admits
a unique irredundant implicational base of minimal generators which is unit-minimum. Fur-
thermore, it can be computed in quadratic time from any unit implicational base.

In the following, we call critical base the irredundant implicational base of minimal
generators of an acyclic convex geometry given by Proposition 4.3.1. Accordingly,
we call critical1 a minimal generator that belongs to this base, and redundant one that
does not. The next two propositions can be inferred from other results in matroid
and antimatroid theory [Die87, KLS12, NK13]. We nevertheless reprove them here for
self-containment.

1The terminology coincides with the notion of critical from [Die87] (the second part of Proposi-
tion 4.3.2) and essential from [HK95] (minimal generators that belong to every implicational bases of
minimal generators) in acyclic convex geometries. See also [Wil17].
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Proposition 4.3.2. Let (X,φ) be an acyclic convex geometry and A ⊆ X be a minimal gen-
erator of b ∈ X . Then A is redundant if and only if its closure φ(A) contains another minimal
generator of b.

Proof. Let A be a redundant minimal generator of b and Σ be the critical base of (X,φ)
given by Proposition 4.3.1. Since A! b does not belong to Σ and b ∈ φ(A), there exists
an implication C ! b ∈ Σ, A 6= C such that C ⊆ φ(A).

Let A be a minimal generator of b and suppose that there exists another minimal
generator C of b such that C ⊆ φ(A). Consider the critical base Σ of (X,φ) given
by Proposition 4.3.1. Since A and C are minimal generators, C \ A is not empty. Since
C ⊆ φ(A) for each c ∈ C \A there are implications in Σ leading to c fromA. Since C is a
minimal generator of b, there are implications in Σ leading to b from C. Consequently,
there exists a sequence of implications in Σ that does not contain A ! b and that
nevertheless produces b from A. We conclude that A! b, if in Σ, is redundant. Hence
A is redundant.

Remark 4.3.3. By the choice of Σ in the proof of Proposition 4.3.2, the minimal generator
of b can be required to be critical.

A corollary of this proposition is the next characterization.

Corollary 4.3.4. Let (X,φ) be an acyclic convex geometry and A ⊆ X be a minimal generator
of b ∈ X . Then A is redundant if and only if there exists an element a ∈ A such that the set
φ(A) \ {a, b} implies b.

Proposition 4.3.5. Let (X,φ) be an acyclic convex geometry, A ⊆ X be a critical minimal
generator of b ∈ X , and Σ be any ranked implicational base of (X,φ). Then there exists
C ! b ∈ Σ such that A ⊆ C.

Proof. Let A be a critical minimal generator of b and assume for contradiction that
there is no implication C ! b ∈ Σ such that A ⊆ C. In particular since b 6∈ A and
b ∈ φ(A) there exists at least one implication D ! b in Σ such that D ⊆ φ(A). By
hypothesis A 6⊆ D. Hence by acyclicity of (X,φ) we deduce D ⊂ φ(A). Then there
exists D′ ⊆ D ⊂ φ(A) such that D′ is a minimal generator of b. By Proposition 4.3.2, it
contradicts A being critical.

We are now ready to state the main result of this section, which is of interest as far
as the computation of a unit-minimum ranked implicational base is concerned (SID).

Theorem 4.3.6. Let (X,φ) be an acyclic convex geometry. Then (X,φ) is ranked if and only
if its critical base is ranked.

Proof. The if part follows from the definition. We prove the other direction. Let us
assume that (X,φ) is ranked and consider its critical base Σ∗ given by Proposition 4.3.1.
Consider now any other implicational base Σ of (X,φ). Then by Proposition 4.3.5 for
every implication A ! b ∈ Σ∗ there exists A′ ! b ∈ Σ such that A ⊆ A′. Hence if Σ∗

is not ranked it must be that the elements in such A’s together with their conclusion b
do not admit a rank function in Σ∗. As all such elements appear as is in Σ, they cannot
admit a rank function in Σ neither. Consequently Σ∗ must be ranked.
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We now consider the problem of deciding whether an acyclic convex geometry is
ranked, from an implicational base and from its meet-irreducible elements. We show
that the first problem lies in P while the second is in coNP. Whether the second prob-
lem is in P or is coNP-complete is left as an open problem. As a preliminary remark,
observe that the implicational base obtained by disjoint union of ranked implicational
bases is ranked. A corollary is that every closure system obtained by product of chains
is ranked, a class of interest in [Elb09].

Proposition 4.3.7. Checking whether an implicational base (X,Σ) admits a rank function ρ,
and computing ρ if it does, can be done in polynomial time in the size of (X,Σ).

Proof. Let G(Σ) be the implication-graph of Σ that can be computed in polynomial
time in the size of (X,Σ). Observe that we can restrict ourselves to the case where
G(Σ) is connected, as otherwise we handle each connected component independently.
The algorithm proceeds as follows. At first it picks a vertex x of G(Σ) and set ρ(x) = n
(n is chosen to ensure that we cannot attribute a negative rank to a vertex in the next
steps, hence that ρ : X ! N). Then, for every unmarked vertex x with a rank, the
algorithm marks x and extend ρ to every y ∈ x− ∪ x+, until no such vertex exists. Note
that extending ρ is deterministic by definition. Hence if a conflict is detected during
the procedure, then we can certificate that Σ is not ranked. Otherwise, a rank function
is computed.

Proposition 4.3.8. Deciding whether an acyclic convex geometry is ranked from its meet-
irreducible elements belongs in coNP.

Proof. We describe a polynomial-size certificate that can be checked in polynomial
time in order to answer negatively. Such a certificate is a set {A1 ! b1, . . . , Ak ! bk}
of critical implications that do not admit a rank function. Recall that by Theorem 4.3.6
the convex geometry is not ranked if and only if these implications exist. Furthermore,
they must induce an undirected cycle in G(Σ), and only one such cycle is needed to
answer negatively. Hence k is bounded by |X|. One has to check first that each of these
implications is indeed a critical minimal generator, following the next three steps. To
decide whether Ai ! bi is valid, we compute the closure of Ai using meet-irreducible
elements, as described in the preliminaries. To check that Ai is a minimal generator of
bi, we test whether bi 6∈ φ(Ai \ {a}) for all a ∈ Ai. As for the critical property, we check
according to Corollary 4.3.4 whether there exists a ∈ Ai such that φ(Ai)\{a, bi} implies
bi. Then we launch the polynomial-time procedure given in Proposition 4.3.7 to check
whether these implications admit a rank function.

4.4 Ordered generation in ranked convex geometries
We give an output quasi-polynomial time algorithm, based on ordered generation and
hypergraph dualization, for the enumeration of meet-irreducible elements (CMI) in
closure systems given by a ranked implicational base. If in addition the implicational
base is of bounded dimension, then the algorithm is shown to perform in output-
polynomial time.
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Let CΣ be a closure system given by a ranked implicational base (X,Σ) with rank
function ρ and closure operator φ. Note that by Proposition 4.3.1 and Theorem 4.3.6
we can assume Σ to be the critical base of (X,φ). In the following and for every B ⊆ X
we put

B ⇒= Max⊆{C ∈ CΣ | C ∩B = ∅}.

Observe that this definition generalizes the↗ relation for singletons, as the following
remark states.

Remark 4.4.1. Let B ⊆ X . Then B ⇒ = B↗ if |B| = 1. Hence the elements in B ⇒ are
meet-irreducible in that case.

In the following, we say that a setB ⊆ X is ranked with respect to ρ if every element
in B shares the same rank according to ρ, that is, if ρ(a) = ρ(b) for all a, b ∈ B. Then to
every ranked set B we associate ρ(B) the rank of one of its elements (or an arbitrary
rank if B is empty), and HB the hypergraph defined on vertex set V (HB) = {x ∈ X |
ρ(x) = ρ(B) + 1} and edge set

E(HB) = {A | A! b ∈ Σ for some b ∈ B}.

Note that every vertex of HB has the same rank. In general, V (HB) may be a proper
superset of

⋃
E(HB): the elements that do not belong to any hyperedge of HB are of

interest in the following. We will show that the maximal independent sets ofHB allow
to define a partition of B ⇒. For any C ⊆ X we denote by Ci the elements of C with
rank i.

Proposition 4.4.2. Let B ⊆ X be a ranked set of maximum rank in Σ. Then B ⇒ = {C}
where C = {x ∈ X | ρ(x) ≤ ρ(B), x 6∈ B}.

Proof. As B is of maximal rank, no implication in Σ has b ∈ B for conclusion. Since
Σ is acyclic, no element x ∈ X such that ρ(x) ≤ ρ(B), x 6∈ B can imply b ∈ B. The
proposition follows.

In the following, let us put k = Max{ρ(x) | x ∈ X} to be the maximum rank of Σ.
The aforementioned partition is the following.

Theorem 4.4.3. LetB ⊆ X be a ranked set of rank i < k, andHB be its associated hypergraph.
Then there is a partition of B ⇒ given by{

{C ∈ B ⇒, Ci+1 = S} | S ∈MIS(HB)
}
.

The proof of Theorem 4.4.3 is decomposed into Lemmas 4.4.4 and 4.4.5. The parti-
tion is illustrated in Figure 4.4.

Lemma 4.4.4. Let B ⊆ X be a ranked set of rank i < k, andHB be its associated hypergraph.
Then to every C ∈ B ⇒ corresponds S ∈MIS(HB) such that Ci+1 = S.

Proof. Let C ∈ B ⇒ and S = Ci+1. Observe that since C is closed and as it does not
intersect B, S is an independent set ofHB. We show that it is maximal. Let x ∈ V (HB)
such that x 6∈ S. Then x 6∈ C and by maximality of C, C ∪ {x} implies an element
of B. Since ρ(x) = i + 1 and as Σ is ranked, every implication A! y ∈ Σ with x in its
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Figure 4.4: The situation of Theorem 4.4.3. On the left a ranked implicational base
(X,Σ) and its rank function (dashed). On the right the set of closed sets of Σ not
containing j, ordered by inclusion. Maximal independent sets of E(Hj) = {{4, 5}} are
{4} and {5}. They partition j ⇒ = j↗ = {{1, 2, 4}} ] {{1, 3, 5}, {2, 3, 5}}.

premise has A of rank ρ(S) = i + 1 and y of rank ρ(B) = i. As ρ(y) = ρ(B) no such
y belongs to the premise of an implication having b ∈ B for conclusion. Hence there
must be A! b ∈ Σ such that x ∈ A, b ∈ B and consequently such that both A ∈ E(HB)
and A ⊆ S ∪ {x}. Therefore S ∪ {x} is no longer an independent set ofHB.

Lemma 4.4.5. Let B ⊆ X be a ranked set of rank i < k, andHB be its associated hypergraph.
Then to every S ∈MIS(HB) corresponds some C ∈ B ⇒ such that Ci+1 = S.

Proof. Consider S ∈MIS(HB). Recall that every implication having an element b ∈ B
for conclusion has its premise in E(HB). Furthermore since Σ is ranked, the closure of
S does not contain any other elements than those of S at rank i + 1. Consequently as
S is an independent set of HB it does not imply any element of B. Hence there exists
C ∈ B ⇒ such that S ⊆ C. Now since S is maximal, adding any x ∈ V (HB) \ S to S
results into implying some b ∈ B. We conclude that Ci+1 = S.

The next lemma offers a recursive characterization of B ⇒ based on the partition
defined in Theorem 4.4.3. Recall that since Σ is acyclic, no element x ∈ X such that
ρ(x) ≤ ρ(B), x 6∈ B takes part in a minimal generator of an element of B. In particular,
every such x belongs to all C ∈ B ⇒. For any ranked set S we put Ŝ to be the elements
of rank ρ(S) not in S, i.e., Ŝ = {x ∈ X | ρ(x) = ρ(S), x 6∈ S}.

Lemma 4.4.6. Let B ⊆ X be a ranked set of rank i < k, andHB be its associated hypergraph.
Let S ∈MIS(HB). Then

{C ∈ B ⇒, Ci+1 = S} = {I \B | I ∈ Ŝ ⇒}. (4.5)

Proof. We show the first inclusion. Let C ∈ B ⇒ such that Ci+1 = S. Then Ŝ ∩ C = ∅.
Since Σ is acyclic, C contains every x ∈ X such that ρ(x) ≤ i and x 6∈ B. Consequently,
I = C ∪ B is closed. Since ρ(B) = i and ρ(Ŝ) = i + 1, I does not imply any element
of Ŝ. We show that I is maximal with this property. Let x 6∈ I . Because C ∈ B ⇒, there
exists b ∈ B such that C ∪ {x} implies b. Hence φ(C ∪ {x}) must contain an edge of
HB (i.e., the premise of an implication A ! b, b ∈ B) and so does φ(I ∪ {x}). Since
Ci+1 = S and as by hypothesis S is a maximal independent set of HB, either x ∈ Ŝ or
I ∪ {x} implies s for some s ∈ Ŝ, proving the first inclusion.
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We show the other inclusion. Let I ∈ Ŝ ⇒. Then Ŝ ∩ I = ∅. Since Σ is ranked, I
contains every x ∈ X such that ρ(x) ≤ i + 1 and x /∈ Ŝ. In particular B, S ⊆ I . Since
S is an independent set of HB, C = I \ B does not imply b, for any b ∈ B. Hence it is
closed and Ci+1 = S. We show that it is maximal with this property. Let x 6∈ C. Either
x ∈ I (and then x ∈ B) or x /∈ I . Obviously, x cannot be added to C in the first case
without intersecting B. Let us assume that x 6∈ I . Then ρ(x) ≥ ρ(Ŝ). Since I ∈ Ŝ ⇒ and
by maximality of I , either x ∈ Ŝ or there exists s ∈ Ŝ such that I ∪ {x} implies s, hence
such that C ∪ {x} implies s. As by assumption S is a maximal independent set of HB,
C ∪ {x} implies some b ∈ B in both cases, concluding the proof.

In what follows given C ⊆ X we put C>i = {x ∈ C | ρ(x) > i}. Since the elements
of the left and right parts of Equation (4.5) only differ onB, and as ρ(B) = i, a corollary
of Lemma 4.4.6 is the following. It is of interest as far as the proof of our algorithm is
concerned.

Corollary 4.4.7. Let B ⊆ X be a ranked set of rank i < k, and HB be its associated hyper-
graph. Let S ∈MIS(HB). Then

{C>i | C ∈ B ⇒, Ci+1 = S} = {I>i | I ∈ Ŝ ⇒}.

We now describe an algorithm which enumerates the meet-irreducible elements of
CΣ given (X,Σ) whenever it is ranked. The algorithm proceeds as follows. For every
j ∈ X , it computes j ⇒ = j↗ recursively rank by rank relying on the partition and
the characterizations of Theorem 4.4.3, Lemma 4.4.6 and Corollary 4.4.7. Recall that
since CΣ is a convex geometry, {j↗ | j ∈ X} is a partition ofM(CΣ), hence that every
solution is obtained by such a procedure, without duplication. The computation of
j ⇒ is described in Algorithm 4.1. The correctness of the whole procedure is proved in
Theorem 4.4.8.

Algorithm 4.1: A recursive algorithm enumerating the set B ⇒ given a ranked
implicational base (X,Σ) and a ranked set B ⊆ X .
1 k  Max{ρ(x) | x ∈ X};
2 C  {x ∈ X | ρ(x) ≤ ρ(B), x 6∈ B};
3 RecENUM(Σ, B, C);

4 Procedure RecENUM(Σ, B, C)
5 if ρ(B) = k then output C and return;
6 for all S ∈MIS(HB) do
7 Ŝ  {x ∈ X | ρ(x) = ρ(S), x 6∈ S};
8 RecENUM(Σ, Ŝ, C ∪ S);
9 end

Theorem 4.4.8. Let f, g : N ! N be two functions and CΣ be the closure system of a given
ranked implicational base (X,Σ). Then there is an algorithm enumerating the setM(CΣ) of
meet-irreducible elements of CΣ with delay

O(|X| · f(|X|+ |Σ|)),
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O(|X| · g(|X| + |Σ|)) space, and after O(|X| · |Σ|) preprocessing time whenever there is one
enumerating MIS(H) with delay f(|H|) and space g(|H|) given any hypergraphH.

Proof. Recall that by Proposition 4.1.3, there is an algorithm enumeratingM(CΣ) with
delay at most 2 ·f(|X|+ |Σ|) whenever there is one enumerating j↗ with delay f(|X|+
|Σ|) for any j ∈ X . Hence, it is sufficient to show that there is an algorithm enumer-
ating j ⇒ = j↗ with O(|X| · f(|X| + |Σ|)) delay, O(|X| · g(|X| + |Σ|)) space and after
O(|X| · |Σ|) preprocessing time to prove the theorem. We shall show that Algorithm 4.1
correctly outputs this set and that it performs within these time and space bounds.

We show correctness. Assume without loss of generality that Min{ρ(x) | x ∈X} = 0
and let us put k = Max{ρ(x) | x ∈ X}. Let T [B,C] denote the recursive execution-tree
of RecENUM(Σ, B, C) for Σ, a ranked set B and C ⊆ X . We show by induction on
the rank i of B and for every C ⊆ X that the set {C ∪ C∗>i | C∗ ∈ B ⇒} is output at
the leaves of T [B,C]. Note that we aim here to prove both implications at the same
time. Let us first consider the case i = k. By Proposition 4.4.2, B ⇒ = {C∗} where
C∗ = {x ∈ X | ρ(x) ≤ ρ(B), x 6∈ B} and C∗>i = ∅ in that case. Also C is output Line 5 of
the algorithm. Hence the property holds for i = k, the tree T [B,C] being reduced to a
leaf. Let us assume that the property holds for every rank greater than i. We show that
it holds for i. Consider B of rank i. Recall that by Theorem 4.4.3, {{C∗ ∈ B ⇒, C∗i+1 =
S} | S ∈MIS(HB)} is a partition of B ⇒, and furthermore by Corollary 4.4.7,

{C∗>i | C∗ ∈ B ⇒, C∗i+1 = S} = { I>i | I ∈ Ŝ ⇒}.

By inductive hypothesis since ρ(Ŝ) = i+ 1, the set {C ∪ I>i+1 | I ∈ Ŝ ⇒} is output by a
call to RecENUM(Σ, Ŝ, C) for every C ⊆ X . Since Ii+1 = S whenever I ∈ Ŝ ⇒,

{C ∪ C∗>i | C∗ ∈ B ⇒, C∗i+1 = S} = {C ∪ S ∪ I>i+1 | I ∈ Ŝ ⇒}
= { C ∪ I>i | I ∈ Ŝ ⇒}

for every C ⊆ X . Hence by Theorem 4.4.3 the set {C ∪ C∗>i | C∗ ∈ B ⇒} is output by a
call to RecENUM(Σ, Ŝ, C ∪ S) for every S ∈ MIS(HB) Lines 6, 7 and 8. Consequently
it is obtained at the leaves of T [B,C]. This concludes the induction. Now since every
C∗ ∈ B ⇒ intersects the ρ(B) first ranks on C = {x ∈ X | ρ(x) ≤ ρ(B), x 6∈ B}, the set
B ⇒ is output by an initial call to RecENUM(Σ, B, C).

Let us now consider the complexity of the algorithm. Observe that a rank function
of (X,Σ) and an ordered sequence of the elements of X according to their rank can be
computed in O(|X| · |Σ|) preprocessing time and O(|X|2) space, so that the computa-
tions of C and Ŝ Lines 2 and 7 can be achieved in O(|X|) time. As for the computation
of HB, it can be achieved in O(|X| + |Σ|) time and space by indexing implications of
Σ. By assumption since |H| ≤ |X|+ |Σ|, every S ∈MIS(HB) can be enumerated with
f(|X|+ |Σ|) delay and using g(|X|+ |Σ|) total space. Assuming that f, g ∈ Ω(|X|+ |Σ|),
the computation ofHB Line 6, Ŝ Line 7 is meaningless in term of time and space com-
pared to that of S ∈ MIS(HB). This also holds for the space needed by the prepro-
cessing steps. Now, since the depth of the recursive tree is bounded by |X|, the time
and space complexities follow.
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A trivial bound of f(|H| + |MIS(H)|) on the delay of an output-polynomial time
algorithm enumerating MIS(H) within the same time yields an output quasi-poly-
nomial time algorithm enumerating the meet-irreducible elements in closure systems
given by ranked implicational bases, using the algorithm of Fredman and Khachiyan
[FK96] as a subroutine for the enumeration of MIS(H). If moreover Σ is of bounded
dimension then the described algorithm runs in output-polynomial time using the
algorithm of Eiter and Gottlob [EG95]. It performs with polynomial delay whenever
Σ is of dimension two using the algorithm of Tsukiyama [TIAS77] on the enumeration
of maximal independent sets in graphs.

4.5 Constructing a ranked implicational base
In this section, we give an output quasi-polynomial time algorithm constructing the
critical base of a ranked convex geometry given by the set of its meet-irreducible ele-
ments (SID). Recall by Theorem 4.3.6 that such an implicational base is unit-minimum,
hence that it corresponds to the output expected by SID.

In what follows, let (X,φ) be a ranked convex geometry, (X, Cφ) be its closure sys-
tem andM =M(Cφ) be the set of its meet-irreducible elements. Let (X,Σ) denote the
critical base we are willing to compute. Then for every j ∈ X we put

pred(j) = {a ∈ X | ∃A! j ∈ Σ, a ∈ A}.

In other words, pred(j) is the set of elements of X belonging to some critical minimal
generator of j. Recall that since Σ is ranked, there is no minimal generator A of b such
that a ∈ A and a, b ∈ pred(j). Then, to j ∈ X we associate the hypergraph Hj defined
on vertex set V (Hj) = X \

⋂
Mj∈j↗ Mj and edge set

E(Hj) = {X \Mj |Mj ∈ j↗}.

It is well known that the minimal transversals of this hypergraph are exactly the min-
imal generators of j. See for instance [MR92, Wil94, BDVG18, HN18]. In the following
we show that we can restrict this hypergraph so that its minimal transversals are ex-
actly the critical minimal generators of j. The next lemma provides a characterization
of pred(j) that depends onM.

Lemma 4.5.1. Let j ∈ X , Mj ∈ j↗ and a /∈ Mj . Then a ∈ pred(j) if and only if the set
Mj ∪ {a, j} is closed.

Proof. We prove the first implication. Consider j ∈ X , Mj ∈ j↗ and a /∈Mj . Note that
one suchMj exists as by previous remarks a belongs to at least one minimal transversal
ofHj . Let us assume that a ∈ pred(j). Since Σ is ranked, for any x such that ρ(x) ≤ ρ(j),
x 6= j we have x ∈ Mj . This holds in particular for every element y ∈ X , y 6= j such
that there is a minimal generator A of y with a ∈ A as ρ(y) < ρ(a) and ρ(a) = ρ(j) + 1
in that case. Consequently, Mj ∪ {a, j} is closed.

We prove the other implication. Let j ∈X ,Mj ∈ j↗ and a /∈Mj such thatMj∪{a, j}
is closed. By definition Mj is closed, it does not contain j, and it is maximal with this
property. In particular Mj ∪{a} implies j, that is, j ∈ φ(Mj ∪{a}). By Proposition 4.3.2
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and Remark 4.3.3, there exists a critical minimal generator E of j such that E * Mj

and E ⊆ φ(Mj ∪ {a}) = Mj ∪ {a, j} as Mj ∪ {a, j} is closed by assumption. Then a ∈ E
and consequently a ∈ pred(j).

Observe that the second part of the proof holds in the more general context of
acyclic convex geometries. We are now ready to characterize the critical base of a
ranked convex geometry. Given a hypergraph H and S ⊆ V (H) we note H[S] the
hypergraph induced by S defined by V (H[S]) = S and E(H[S]) = {E ∩ S | E ∈ H}.

Theorem 4.5.2. Let (X,Σ) be the critical base of a ranked convex geometry. Let j ∈ X . Then
A is a critical minimal generator of j if and only if A ∈ Tr(Hj[pred(j)]).

Proof. We prove the first implication. Since A is a critical minimal generator of j, it is
a minimal transversal ofHj , hence ofHj[pred(j)] as A ⊆ pred(j) by definition.

We prove the other implication. Let A be a minimal transversal of Hj[pred(j)].
Note that E ∩ pred(j) 6= ∅ for all E ∈ E(Hj), as pred(j) is a transversal of Hj . Hence
A is a minimal transversal of Hj . Assume for contradiction that A is a redundant
minimal generator of j. Then by Corollary 4.3.4 there exists a ∈ A such that φ(A)\{a, j}
implies j. That is, there is at least one critical minimal generator E of j, a /∈ E and
E ⊆ φ(A) \ {a} ⊆ φ(A). In particular ρ(E) = ρ(j) + 1. Furthermore since A is minimal
generator of j, E * φ(A \ {a}). Consequently, there is an element e ∈ E which is
implied by some A′ ⊂ A such that a ∈ A′. Hence a and e must have two different
ranks. However since a belongs to pred(j), it belongs to a critical minimal generator
of j and has rank ρ(j) + 1. This contradicts ρ(a) 6= ρ(e), and the theorem follows.

We are now ready to describe an algorithm which enumerates the critical base of a
ranked convex geometry given by the set of its meet-irreducible elements. For every
j ∈ X , it computes the set pred(j) of elements belonging to some critical minimal
generator of j, and the complementary hypergraph Hj of meet-irreducible elements
in ↗ relation with j. Then according to Theorem 4.5.2 it enumerates every minimal
transversal of Hj[pred(j)]. A trace of this algorithm is given in Example 4.5.3. Its
complexity analysis is given in Theorem 4.5.4.

Example 4.5.3. Consider the implicational base Σ of Figure 4.4. Then j↗ = {{1, 2, 4},
{1, 3, 5}, {2, 3, 5}}. We aim to compute the critical minimal generators of j. Here,
E(Hj) = {{3, 5}, {2, 4}, {1, 4}}. Minimal generators of j are {1, 2, 3}, {1, 2, 5}, {3, 4}
and {3, 5}. Observe that for 1, {2, 3, 5} ∪ {1, j} is not closed. The same goes for 2 with
{1, 3, 5}, and 3 with {1, 2, 4}. On the other hand, {1, 2, 4}∪{5, j} is closed and {2, 3, 5}∪
{4, j} too. Hence by Lemma 4.5.1, one has pred(j) = {4, 5}, and E(Hj[pred(j)]) =
{{4}, {5}}. It has a unique minimal transversal which is {4, 5}. By Theorem 4.5.2,
{4, 5} is a critical minimal generator of j. Hence 45 ! j belongs to Σ. This indeed
coincides with Σ.

Theorem 4.5.4. Let f, g : N! N be two functions and (X,φ) be a ranked convex geometry of
closure system Cφ given by the setM =M(Cφ) of its meet-irreducible elements. Then there is
an algorithm enumerating the ranked implicational base (X,Σ) of critical minimal generators
of (X,φ) with delay

O(f(|X|+ |M|)),
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O(|X| · |M| + g(|X| + |M|)) space, and after O(|X|3 · |M|2) preprocessing time if there is
one enumerating Tr(H) with delay f(|H|) and space g(|H|) given any hypergraphH.

Proof. By Theorem 4.5.2, A ⊆ X is a critical minimal generator of j ∈ X if and only if it
is a minimal transversal of the hypergraphHj[pred(j)]. Note that the closure φ(S) of a
set S ⊆X can be computed inO(|X| · |M|) time by intersecting everyM ∈M such that
S ⊆M . GivenM ∈M, computing j ∈X such thatM ∈ j↗ can be done inO(|M|·|X|2)
time by checking whether M ∪ {j} is closed for every j ∈ X \M . Hence, computing
the partition {j↗ | j ∈ X} ofM can be done in O(|M|2 · |X|2) time and O(|X| · |M|)
space. Using Lemma 4.5.1, the sets pred(j), j ∈ X can be computed in O(|X|3 · |M|2)
time and O(|X|2) space by checking for every j ∈ X and a ∈ X whether there exists
Mj ∈ j↗ such that a 6∈ Mj and Mj ∪ {a, j} is closed. Note that O(|X|2) is bounded
by O(|X| · |M|) as {j↗ | j ∈ X} is a partition of M. In addition, the hypergraphs
Hj[pred(j)], j ∈ X can be computed in O(|X|2 · |M|) time and O(|X| · |M|) space as∑

j∈X

|E(Hj)| = |M|.

Ultimately, this computation can be achieved in O(|X|3 · |M|2) preprocessing time and
using O(|X| · |M|) space.

Now by assumption and since |Hj[pred(j)]| ≤ |X| + |M|, the critical minimal gen-
erators of j ∈ X can be enumerated with f(|X| + |M|) delay and using g(|X| + |M|)
space. The theorem follows.

A trivial bound of f(|H| + |Tr(H)|) on the delay of an output-polynomial time al-
gorithm enumerating Tr(H) within the same time yields an output quasi-polynomial
time algorithm constructing the ranked implicational base of a ranked convex geom-
etry given by the set of its meet-irreducible elements, using the algorithm of Fredman
and Khachiyan [FK96] as a subroutine for the enumeration of Tr(H). If furthermore
every meet-irreducible element M ∈ M(Cφ) is such that |M | ≥ |X| − k for some fixed
integer k ∈ N, then the described algorithm performs in output-polynomial time using
the algorithm of Eiter and Gottlob in [EG95].

4.6 Further work and open problems
Several questions arise for future research. First, we would like to point that the parti-
tion given by Theorem 4.4.3 holds for more general closure spaces than ranked convex
geometries. One such convex geometry is given in Example 4.6.1 and leads to the
question that follows.

Example 4.6.1. We consider the implicational base Σ = {1 ! 2, 1 ! 3, 2! 4, 34 ! 5}.
Despite the fact that Σ is not ranked, Theorem 4.4.3 holds. Hence, an algorithm in the
fashion of Algorithm 4.1 correctly outputs the meet-irreducible elements in that case.

Question 4.6.2. For which closure spaces does Theorem 4.4.3 hold?

We recall however that by Theorem 4.2.1 and Equality (4.1) the enumeration of
j↗ for some j ∈ X in acyclic convex geometries is harder than the dualization in lat-
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tices given by acyclic implicational bases. Hence the existence of an output quasi-
polynomial time algorithm for acyclic convex geometries using the techniques pre-
sented in this chapter is a challenging question.

The same question holds concerning the characterization of Lemma 4.5.1. Indeed,
it is easily seen that the algorithm of Theorem 4.5.4 will correctly output the critical
base of the convex geometry given in Example 4.6.1. This yields the next question.

Question 4.6.3. For which closure spaces does Theorem 4.5.2 hold?

At last, another intriguing question, raised by Section 4.3, is the following.

Question 4.6.4. Can ranked convex geometries be identified in polynomial time from their
meet-irreducible elements?

As shown in Proposition 4.3.8, this problem lies in coNP. We believe that the an-
swer to this question is positive for acyclic convex geometries, using an elimination
scheme in the colored poset introduced by Habib and Nourine in [Nou00, HN18] as a
variant of the poset of irreducibles. Identifying the ranks in such a poset, however,
seems to be more intricate.
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Conclusion

In this thesis, we investigated the complexity of the dualization of monotone Boolean
functions, and its generalizations, through the many shapes the problem takes on
graphs, hypergraphs, and lattice: minimal dominating sets enumeration, minimal
transversals enumeration, lattice dualization, and meet-irreducible enumeration. Sev-
eral techniques—among them the flipping method, flashlight search, and ordered
generation—were confronted to the problem, and new output polynomial-time algo-
rithms were obtained under various restrictions (among them, most notably, Theo-
rems 2.2.13, 2.3.10, 2.4.4, Theorem 3.3.7, and Theorems 4.5.4 and 4.4.8). In addition
to these positive results, we exhibited some intractability results when the problem
is generalized to the dualization of any lattice (Theorem 3.2.1), or to the translation
between the representations of an acyclic convex geometry (Theorem 4.2.1).

Several open problems were stated in the conclusions of Chapters 2, 3 and 4. We
reformulate here one question that seems to be of greatest importance, for each of these
three chapters.

Question 4.6.5. Can DOM-ENUM be solved in output polynomial-time in C4-free, compara-
bility, and unit-disk graphs?

Question 4.6.6. Can DUAL-ENUM be solved in output quasi-polynomial time in distributive
lattices2, and more generally, in acyclic convex geometries?

Question 4.6.7. Can CCM and SID be solved in output quasi-polynomial time in acyclic
convex geometries, and more generally, in any convex geometry?

In addition, we recall that Question 4.6.5 is part of a more general, and much harder
question, which is now open for more that forty years [EG95, EMG08].

Question 4.6.8. Can HYPERGRAPH DUAL (or equivalently, DUALIZATION) be solved in
polynomial time?

As for Question 4.6.7, we point that while proved for DUAL-ENUM, it is not known
whether the general case of CCM (or SID) is intractable, i.e., cannot be solved in
output-polynomial time unless P=NP. This, also, constitutes a long-standing open
question in the field [Kha95, Wil17].

2We would like to mention that the special case of distributive lattices has lately been positively
answered by Elbassioni during the rewiewing process of this manuscript [Elb20].
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Publications
The results presented in this thesis led to several submissions, and to publications in
international journals and conferences. The algorithms for Kt-free graphs and other
related graph classes, given in the first part of Chapter 2, were presented at the STACS
2019 conference [BDHR19], and appeared in the journal ACM Transactions on Algo-
rithms [BDH+20]. The algorithms for comparability and incomparability graphs pre-
sented in the second part of Chapter 2 were recently submitted, and are available—as
every result presented in this manuscript—on arXiv [BDMN20]. The results of Chap-
ter 3 on the dualization in lattices given by implicational bases were presented at the
ICFCA 2019 conference [DN19a], and appeared in the journal Theoretical Computer
Science [DN20]. Finally, the results presented in Chapter 3 on translating between the
representations of a ranked convex geometry were recently submitted, and may be
accessed in [DNV19].

In addition to these publications, two contributions related to the dualization are
to be indexed:

• In a first contribution, we investigated how known techniques based on neigh-
borhood inclusions for DOM-ENUM (such as used in [KLMN14] for split graphs)
could be pushed for more general graphs. We in particular obtained linear and
polynomial-delay algorithms in P7-free and P8-free chordal graphs, and showed
the technique to be inefficient in Pk-free graphs, k ≥ 9. These results were pre-
sented at the ISAAC 2019 conference [DN19b].

• In a second contribution, we considered the dualization problem in distributive
lattices, and gave equivalent formulations of the problem in term of graphs, hy-
pergraphs, and posets. In the new framework, a poset on vertices is given to-
gether with the input (hyper)graph, and minimal “ideal solutions” are to be gen-
erated. These formulations allowed us to study the complexity of the problem
under various combined restrictions on graph classes and poset types, including
bipartite, split, and co-bipartite graphs, and variants of neighborhood inclusion
posets. We for example show that while the enumeration of minimal dominating
sets is possible with linear delay in split graphs, the problem, within the same
class, gets as hard as for general graphs when generalized to this framework.
Same behaviors are observed for bipartite and co-bipartite graphs, even under
high restrictions—related to neighborhood inclusions—on the poset. These re-
sults may be found in [DNU19] and are to appear in the journal Discrete Applied
Mathematics.

At last, two other results were obtained, thanks to different collaborations. These
results fall in combinatorics and do not concern enumeration.

• In a first contribution, we revisited a theorem by Folkman on graph coloring,
stating that the chromatic number of any graph is at most 2 plus the maximum
over all subgraphs of the difference between the number of vertices, and twice
the independence number. This appeared in the Electronic Journal of Combina-
torics [BCD+20].
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• In a second contribution, we considered generalizations of simplicial vertices
in graphs, known as avoidable vertices and paths. We answered a question of
Beisegel et al. on the existence of an avoidable path of size k in every graph
containing a path on k elements, implying a result of Chvátal et al. from 2002.
This may be accessed in [BDHT19] and is to appear in the Electronic Journal of
Combinatorics.

97





Bibliography

[AF96] David Avis and Komei Fukuda. Reverse search for enumeration. Discrete
Applied Mathematics, 65(1-3):21–46, 1996. Introduction

[AGT03] Kira V. Adaricheva, Viktor A. Gorbunov, and V. I. Tumanov. Join-
semidistributive lattices and convex geometries. Advances in Mathematics,
173(1):1–49, 2003. 4.1.5

[AIBT14] Kira V. Adaricheva, Giuseppe F. Italiano, Hans Kleine Büning, and
György Turán. Horn formulas, directed hypergraphs, lattices and closure
systems: related formalisms and applications (Dagstuhl Seminar 14201).
Dagstuhl Reports, 4(5):1–26, 2014. 4

[AKH16] Faisal N. Abu-Khzam and Pinar Heggernes. Enumerating minimal dom-
inating sets in chordal graphs. Information Processing Letters, 116(12):739–
743, 2016. 1.2.1

[Akk73] Eralp Abdurrahim Akkoyunlu. The enumeration of maximal cliques of
large graphs. SIAM Journal on Computing, 2(1):1–6, 1973. Introduction

[AN16] Kira V. Adaricheva and James B. Nation. Bases of Closure Systems, pages
181–213. Springer International Publishing, Cham, 2016. 4.1

[AN17] Kira V. Adaricheva and James B. Nation. Discovery of the D-basis in bi-
nary tables based on hypergraph dualization. Theoretical Computer Science,
658:307–315, 2017. 1.3.1, 4, 4

[AN19] Kira V. Adaricheva and Taylor Ninesling. Direct and binary direct bases
for one-set updates of a closure system. In International Conference on For-
mal Concept Analysis, pages 55–72. Springer, 2019. 1.3.1

[Bag09] Guillaume Bagan. Algorithms and complexity of enumeration problems for the
evaluation of logical queries. PhD thesis, Université de Caen Normandie,
2009. Introduction, 1, 1.1.3

[BCD+20] Marthe Bonamy, Pierre Charbit, Oscar Defrain, Gwénaël Joret, Aurélie
Lagoutte, Vincent Limouzy, Lucas Pastor, and Jean-Sébastien Sereni. Re-
visiting a theorem by Folkman on graph colouring. The Electronic Journal
of Combinatorics, 27(P1.56), 2020. Conclusion

99
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Abstract

This thesis focuses on graphs, hypergraphs, and lattices. We study the complexity
of the dualization of monotone Boolean functions, and its generalizations, through the
many shapes it takes on these structures: minimal dominating sets enumeration, min-
imal transversals enumeration, lattice dualization, and meet-irreducible enumeration.
Both tractable and intractable results are obtained, and future research directions are
proposed. The thesis is organized as follows. A first part is devoted to the enumeration
of minimal dominating sets in graphs. We obtain new output-polynomial time algo-
rithms in graph classes related to Kt-free graphs and to posets of bounded dimension.
A second part is devoted to generalizations of this problem in lattices. One generaliza-
tion concerns the dualization in lattices given by implicational bases, the other deals
with the enumeration of meet-irreducible elements. Both tractability and intractabil-
ity results are obtained under various restrictions concerning width, acyclicity, and
premises’ size in the implicational base. The two parts are sprinkled with hypergraph
transversals enumeration and related notions.

Keywords: algorithmic enumeration, lattice dualization, minimal dominating sets, minimal
transversals, maximal independent sets, meet-irreducibles, implicational bases.

Résumé

Cette thèse porte sur la théorie des graphes, des hypergraphes, et des treillis. Nous
nous intéressons à la complexité du problème de dualisation des fonctions monotones
Booléennes, ainsi qu’à ses généralisations, à travers les différentes formes qu’il prend
dans ces structures: énumération des dominants minimaux, des transversaux mini-
maux, dualisation dans les treillis, et énumération des éléments meet-irréductibles.
De nouveaux résultats positifs et négatifs sont obtenus, et des directions de recherche
futures sont proposées. La thèse se découpe comme suit. Dans une première par-
tie, nous nous intéressons à l’énumération des dominants minimaux dans les graphes.
Nous obtenons de nouveaux algorithmes output-polynomiaux dans les graphes sans
grande clique, et dans d’autres classes de graphes liées aux ordres partiels de dimen-
sion bornée. Dans une seconde partie, nous nous intéressons aux généralisations de
ce problème dans les treillis. Une première généralisation concerne la dualisation
dans les treillis donnés par une base d’implications, l’autre concerne l’énumération
des éléments meet-irréductibles. Des résultats positifs et négatifs sont obtenus sous
plusieurs contraintes concernant la largeur, l’acyclicité, et la taille des prémisses dans
la base d’implication. Les deux parties de la thèse sont parsemées d’énumération des
transversaux minimaux d’un hypergraphe, et de notions liées.

Mots-clés: énumération algorithmique, dualisation dans les treillis, dominants minimaux,
transversaux minimaux, stables maximaux, meet-irréductibles, bases d’implications.
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