On the dualization problem in graphs, hypergraphs, and lattices

> Oscar Defrain Advisor : Lhouari Nourine

Committee : Nadia Creignou, Arnaud Durand, Sergei Kuznetsov, Aurélie Lagoutte, Kazuhisa Makino Université Clermont Auvergne, France September 2, 2020 Typical question:

Given input I, find the best solution from all feasible solutions of I.

Examples:

- shortest path to Montpellier
- cheapest flight to Warsaw
- best answer to a query

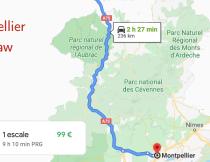
20.10 - 08.35+1

CSA · Smartwings

12 h 25 min

CDG-WAW

• . . .



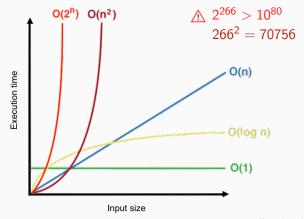
Sète

Saint-Flour

0

https://www.maps.google.fr

Let *n* be input size, e.g., number of roads in the network **Efficient algorithm** : runs in poly(n)-time

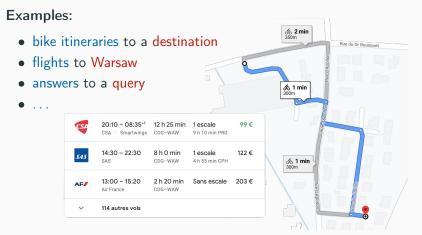


*based on Daniel Ko's chart https://medium.com/@dankomong/big-o-notation-using-rubv-a357d85bb9b1

Dualization in graphs, hypergraphs, and lattices

Typical question:

Given input I, list all solutions in I.



https://www.maps.google.fr

Typical question:

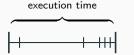
Given input I, list all solutions in I.

Examples: ిం 2 min bike itineraries to a destination Rue du Dr Bousquet flights to Warsaw answers to a query 50 1 min . . . 50 1 min 5 1 min 300m $2^{m/2}$ different paths with *m* the number of "edges"

https://www.maps.google.fr

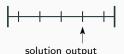
Introduction > Enumeration complexity

Let *n* be input size, e.g., number of roads in the network Let *d* be output size, \approx number of solutions



output-polynomial algo. stops in poly(n + d)-time

incremental-polynomial outputs i^{th} solution in poly(n + i)-time



polynomial-delay
poly(n)-time between two cons. outputs

Typical question:

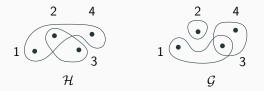
Given input I, list all solutions in I.

Examples: ిం 2 min bike itineraries to a destination Rue du Dr Bousquet • flights to Warsaw answers to a query 50 1 min . . . 0 0 0 0 50 1 min 5 1 min 300m 1 1 1

https://www.maps.google.fr

Preliminaries ▷ Hypergraph Dualization

- hypergraph: family of subsets $\mathcal{H} \subseteq 2^X$ on ground set X
- transversal of \mathcal{H} : $T \subseteq X$ s.t. $T \cap E \neq \emptyset$ for any $E \in \mathcal{H}$
- Tr(H): set of (inclusion-wise) minimal transervals of H it is a hypergraph!
- → two hypergraphs \mathcal{H} and \mathcal{G} are called dual if $\mathcal{G} = Tr(\mathcal{H})$ and $Tr(Tr(\mathcal{H})) = \mathcal{H}!$



Hypergraph Dualization

Minimal Transversals Enumeration (Trans-Enum) input: a hypergraph \mathcal{H} . output: the set $\mathcal{G} = Tr(\mathcal{H})$ of minimal transversals of \mathcal{H} .

Theorem (Fredman and Khachiyan, 1996) There is a $N^{o(\log N)}$ quasi-polynomial time algorithm solving Hypergraph Dualization where $N = |\mathcal{H}| + |\mathcal{G}|$.

 \rightarrow generation version is incremental

Minimal Transversals Enumeration (Trans-Enum) input: a hypergraph \mathcal{H} . output: the set $\mathcal{G} = Tr(\mathcal{H})$ of minimal transversals of \mathcal{H} .

Equivalent to:

- translating from a positive CNF to a positive DNF
- $\pmb{\mathsf{X}}$ enumerating the minimal dominating sets of a graph
 - enumerating the minimal set coverings of a hypergraph
 - enumerating database repairs

Are harder than Trans-Enum:

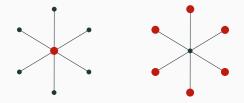
- lattice dualization problems
- meet-irreducibles/implicational bases translations
- characteristic models/Horn clauses translations

Minimal dominating sets ▷ Graphs

- graph G: a set of vertices V(G), together with
 a set of edges E(G) ⊆ {{x, y} | x, y ∈ V(G), x ≠ y}
- stable set: set of pairwise non-adjacent vertices
- clique: set of pairwise adjacent vertices
- triangle-free: does not contain a triangle (/)

Minimal dominating sets ▷ Dominating sets

- N(v): neighborhood of vertex v
- dominating set (DS): D ⊆ V(G) s.t. V(G) = D ∪ N(D)
 "D can see everybody else"
- minimal dominating set: inclusion-wise minimal DS



Minimal dominating sets ▷ Private neighbors & Irredundant sets

- N(v): neighborhood of vertex v
- dominating set (DS): $D \subseteq V(G)$ s.t. $V(G) = D \cup N(D)$ "*D* can see everybody else"
- minimal dominating set: inclusion-wise minimal DS
- private neighbor of $v \in D$:

- vertex that is $\begin{cases} \text{dominated by } v, \text{ and} \\ \text{not dominated by } D \setminus \{v\} \end{cases}$ (possibly v)
- irredundant set: $S \subseteq V(G)$ s.t. every $x \in S$ has a priv. neighbor

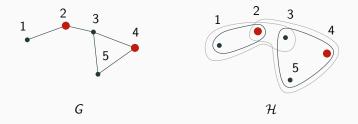
Observation

A DS is minimal if and only if it is irredundant. if all its vertices have a private neighbor.

Minimal dominating sets ▷ Enumeration & Equivalence

Minimal DS Enumeration (Dom-Enum) input: a *n*-vertex graph G. output: the set $\mathcal{D}(G)$ of minimal DS of G.

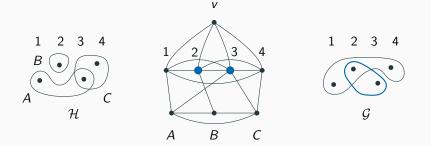
A particular case of Trans-Enum



Minimal dominating sets ▷ Enumeration & Equivalence

Minimal DS Enumeration (Dom-Enum) input: a *n*-vertex graph G. output: the set $\mathcal{D}(G)$ of minimal DS of G.

Equivalent to Trans-Enum [Kanté et al., 2014]



Minimal DS Enumeration (Dom-Enum) input: a *n*-vertex graph G. output: the set $\mathcal{D}(G)$ of minimal DS of G.

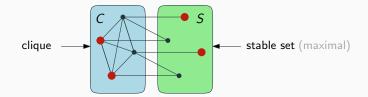
Dream goal: an output-poly. poly(N) algorithm, $N = n + |\mathcal{D}(G)|$

General case: open, best is quasi-polynomial No(log N)

Known cases:

- **output poly.**: log(*n*)-degenerate graphs
- incr. poly.: chordal bipartite graphs, bounded conformality graphs
- poly. delay: degenerate, line, and chordal graphs
- linear delay: permutation and interval graphs, graphs with bounded clique-width, split and *P*₆-free chordal graphs

Minimal dominating sets ▷ Split graphs (Kanté et al., 2014)



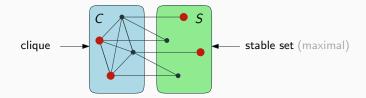
Proposition (Kanté, Limouzy, Mary, and Nourine, 2014) A set $D \subseteq V(G)$ is a minimal DS of G iff D dominates S and every $v \in D$ has a private neighbor in S.

Then: $D \cap S = \{ \text{all vertices not dominated by } D \cap C \}$

Enumeration: complete every irredundant set $X \subseteq C$ in S

- \rightarrow the family of such X's is an independence set system
- ightarrow can be enumerated with linear delay

Minimal dominating sets ▷ Split graphs (Kanté et al., 2014)



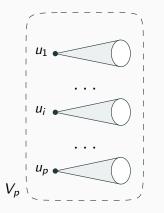
Theorem (Kanté, Limouzy, Mary, and Nourine, 2014) *There is a linear-delay (and poly. space) algorithm enumerating minimal dominating sets in split graphs.*

Then: $D \cap S = \{ \text{all vertices not dominated by } D \cap C \}$

Enumeration: complete every irredundant set $X \subseteq C$ in S

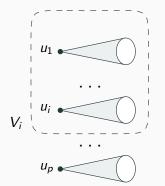
- \rightarrow the family of such X's is an independence set system
- ightarrow can be enumerated with linear delay

Goal: enumerating minimal DS one neighborhood at a time



Peeling: sequence
$$(V_0, ..., V_p)$$
 s.t
1. $V_p = V(G)$
2. for $i \in \{1, ..., p\}$:
 $V_{i-1} = V_i \setminus \{u_i\} \setminus N(u_i)$
3. $V_0 = \emptyset$

Goal: enumerating minimal DS one neighborhood at a time



Dominating set (DS) of V_i :

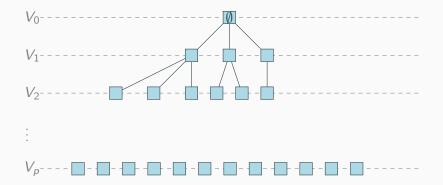
• $D \subseteq V(G)$ s.t. $V_i \subseteq D \cup N(D)$

"D can see everybody else in V_i "

Plan:

- 1. given minimal DS of V_i allowing vertices of $G - V_i$
- 2. enumerate those of V_{i+1} allowing vertices of $G - V_{i+1}$

Minimal dominating sets ▷ The algorithm

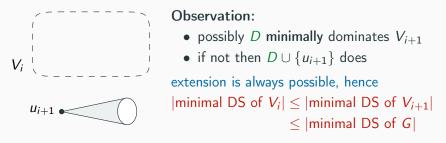


Important wanted properties:

- no cycle (no *repetition*, using a parent relation: lex. order)
- no leaf before level *p* (no *exponential blowup*)

Minimal dominating sets \triangleright Minimal DS of V_{i+1} from those of V_i

Goal: extend each minimal DS D of V_i to a minimal DS of V_{i+1}

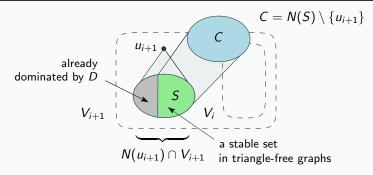


candidate extension of D: minimal set X s.t. $D \cup X$ dominates V_{i+1}

Lemma

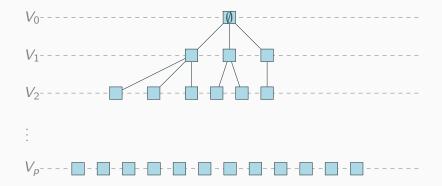
 $|candidate extensions of D| \leq |minimal DS of G|$

Minimal dominating sets ▷ Candidate extensions, triangle-free case



- if u_{i+1} dom. by D: they only have to dominate S
 → exactly the minimal DS of Split(C, S)
- if u_{i+1} not dom. by D: they should also dom. u_{i+1}
 irredundant {t} ∪ Q s.t. { t ∈ N(u_{i+1}) Q minimal DS of Split(C, S)

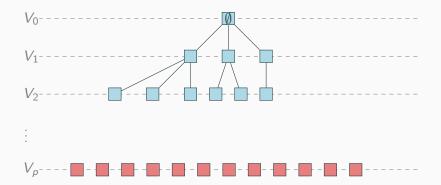
Minimal dominating sets > Complexity, triangle-free case



For each minimal DS of V_i :

- compute all candidate extensions; in time $O(poly(n) \cdot |\mathcal{D}(G)|)$
- only keep the $X \cup D$'s that are minimal and children of D

Minimal dominating sets ▷ Complexity, triangle-free case



Theorem (Bonamy, D., Heinrich, and Raymond, 2019) The set $\mathcal{D}(G)$ of minimal DS of any triangle-free graph G can be enumerated in time $O(\text{poly}(n) \cdot |\mathcal{D}(G)|^2)$ and polynomial space. Theorem (Bonamy, D., Heinrich, Pilipczuk, and Raymond) The set $\mathcal{D}(G)$ of minimal DS of any graph G can be enumerated in time $O(n^{2^{t+1}} \cdot |\mathcal{D}(G)|^{2^t})$ and poly. space where $t = \omega(G) + 1$.

Future work:

• complexity improvements? delay is still open for bipartite graphs

Theorem (Bonamy, D., Heinrich, and Raymond, 2019) Deciding if a vertex set S can be extended into a minimal DS is NP-complete in bipartite graphs.

• extensions to other classes?

 $K_t + K_2$ -free, paw-free, diamond-free \checkmark C_4 -free? \bigstar (in)comparability and unit disk? \bigstar

Minimal dominating sets > Perspectives

• extensions to other classes?

 $K_t + K_2$ -free, paw-free, diamond-free \checkmark C_4 -free? \checkmark chordal graphs \checkmark split graphs \checkmark (in)comparability graphs? \checkmark

Theorem (D. and Nourine, 2019)

The set $\mathcal{D}(G)$ of minimal DS of any P_7 -free chordal graph G can be enumerated with linear delay and poly. space.

Theorem (Bonamy, D., Micek, and Nourine, 2020) The set $\mathcal{D}(G)$ of minimal DS can be enumerated with incremental and polynomial delay (and poly. space) in the comparability and incomparability graphs of posets of bounded dimension.

unit disk graphs? X

Minimal Transversals Enumeration (Trans-Enum) input: a hypergraph \mathcal{H} . output: the set $\mathcal{G} = Tr(\mathcal{H})$ of minimal transversals of \mathcal{H} .

Equivalent to:

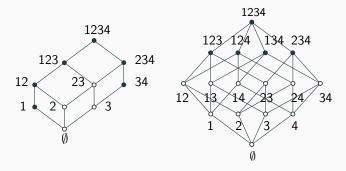
- translating from a positive CNF to a positive DNF
- enumerating the minimal dominating sets of a graph
 - enumerating the minimal set coverings of a hypergraph
 - enumerating database repairs

Are harder than Trans-Enum:

- X lattice dualization problems
- meet-irreducibles/implicational bases translations
 - characteristic models/Horn clauses translations

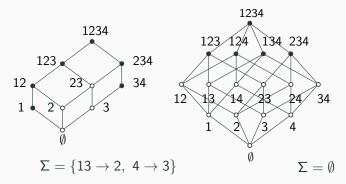
Dualization in lattices > Lattices as ordered families of sets

- lattice L = (X, ⊆): order obtained by inclusions of a family X ⊆ 2^X over a ground set X that is
 - containing $X: X \in \mathcal{X}$
 - closed by intersection: $A, B \in \mathcal{X} \implies A \cap B \in \mathcal{X}$



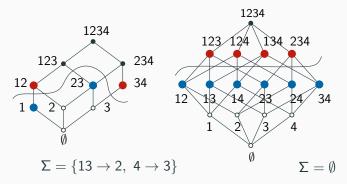
Dualization in lattices > Meet & Implicational bases

- lattice L = (X, ⊆): order obtained by inclusions
 of a family X ⊂ 2^X over a ground set X that is
 - containing $X: X \in \mathcal{X}$
 - closed by intersection: $A, B \in \mathcal{X} \implies A \cap B \in \mathcal{X}$



Dualization in lattices > Dualization

- lattice L = (X, ⊆): order obtained by inclusions
 of a family X ⊂ 2^X over a ground set X that is
 - containing $X: X \in \mathcal{X}$
 - closed by intersection: $A, B \in \mathcal{X} \implies A \cap B \in \mathcal{X}$



Theorem (D. and Nourine, 2019)

The dualization in lattices given by implicational bases of dimension two cannot be solved in output-polynomial time unless P=NP.

→ output quasi-polynomial time algorithms in subclasses of distributive lattices (lately improved by Khaled Elbassioni) with Lhouari Nourine, and Takeaki Uno

Theorem (D., Nourine, and Vilmin, 2019)

Translating between meet-irreducible elements and implicational bases can be done in output quasi-polynomial time algorithm for ranked convex geometries. Minimal Transversals Enumeration (Trans-Enum) input: a hypergraph \mathcal{H} . output: the set $\mathcal{G} = Tr(\mathcal{H})$ of minimal transversals of \mathcal{H} .

Are harder than Trans-Enum:

lattice dualization problems

 Dim. 2 IB lattices ✗ imp. in poly. time unless P=NP
 Acyclic IB lattices? ✗ Distributive lattices ✓

 meet-irreducibles/implicational bases translations

 Acyclic IB lattices? ✗ Distributive lattices ✓

 meet-irreducibles/implicational bases translations

 Acyclic IB lattices? ✗ Distributive lattices ✓
 Ranked IB lattices ✓

Is meet enumeration possible in output quasi-polynomial time? Are lattice dualization & meet enumeration **equivalent**? Big question: can Hypergraph Dualization be solved in poly. time?

Equivalent to:

- translating from a positive CNF to a positive DNF
- enumerating the minimal dominating sets of a graph C₄-free? X

 (in)comparability and unit disk? X

Are harder than Trans-Enum:

• lattice dualization problems

Thank you!

- \equiv ? Acyclic IB lattices? X
 - meet-irreducibles/implicational basestranslations
 Acyclic IB lattices? X
 - characteristic models/Horn clauses translations