On the dualization problem in graphs, hypergraphs, and lattices

Oscar Defrain
Advisor: Lhouari Nourine

UNIVERSITÉ Clermont Auvergne

Committee: Nadia Creignou, Arnaud Durand, Sergei Kuznetsov, Aurélie Lagoutte, Kazuhisa Makino Université Clermont Auvergne, France September 2, 2020

Introduction \triangleright Optimisation problems

Typical question:

Given input I, find the best solution from all feasible solutions of I.

Examples:

- shortest path to Montpellier
- cheapest flight to Warsaw
- best answer to a query
- . . .

```
20:10-08:35 \({ }^{+1} \quad 12 \mathrm{~h} 25 \mathrm{~min} \quad 1\) escale
CSA Smartwings CDG-WAW 9 h 10 min PRG
```


https://www.maps.google.fr

Introduction \triangleright Classical complexity

Let n be input size, e.g., number of roads in the network Efficient algorithm: runs in poly(n)-time

*based on Daniel Ko's chart
https://medium.com/@dankomong/big-o-notation-using-ruby-a357d85bb9b1

Introduction \triangleright Enumeration problems

Typical question:

Given input I, list all solutions in I.

Examples:

- bike itineraries to a destination
- flights to Warsaw
- answers to a query

https://www.maps.google.fr

Introduction \triangleright Number of solutions

Typical question:

Given input I, list all solutions in I.

Examples:

- bike itineraries to a destination
- flights to Warsaw
- answers to a query

https://www.maps.google.fr

Introduction \triangleright Enumeration complexity

Let n be input size, e.g., number of roads in the network
Let d be output size, \approx number of solutions
execution time

output-polynomial algo. stops in poly $(n+d)$-time

incremental-polynomial outputs $i^{\text {th }}$ solution in poly $(n+i)$-time

polynomial-delay poly(n)-time between two cons. outputs
solution output

Introduction \triangleright A simple algorithm

Typical question:

Given input I, list all solutions in I.

Examples:

- bike itineraries to a destination
- flights to Warsaw
- answers to a query

https://www.maps.google.fr

Preliminaries \triangleright Hypergraph Dualization

Definitions:

- hypergraph: family of subsets $\mathcal{H} \subseteq 2^{X}$ on ground set X
- transversal of $\mathcal{H}: T \subseteq X$ s.t. $T \cap E \neq \emptyset$ for any $E \in \mathcal{H}$
- $\operatorname{Tr}(\mathcal{H})$: set of (inclusion-wise) minimal transervals of \mathcal{H} it is a hypergraph!
\rightarrow two hypergraphs \mathcal{H} and \mathcal{G} are called dual if $\mathcal{G}=\operatorname{Tr}(\mathcal{H})$

$$
\text { and } \operatorname{Tr}(\operatorname{Tr}(\mathcal{H}))=\mathcal{H}!
$$

Preliminaries \triangleright Hypergraph Dualization, an open problem

Hypergraph Dualization

input: two hypergraphs \mathcal{H} and \mathcal{G} on same ground set. question: are \mathcal{H} and \mathcal{G} dual?

Minimal Transversals Enumeration (Trans-Enum)

input: a hypergraph \mathcal{H}.
output: the set $\mathcal{G}=\operatorname{Tr}(\mathcal{H})$ of minimal transversals of \mathcal{H}.

Theorem (Fredman and Khachiyan, 1996)

There is a $N^{\circ}(\log N)$ quasi-polynomial time algorithm solving Hypergraph Dualization where $N=|\mathcal{H}|+|\mathcal{G}|$.
\rightarrow generation version is incremental

Preliminaries \triangleright Hypergraph Dualization, a ubiquitous problem

Minimal Transversals Enumeration (Trans-Enum)

input: a hypergraph \mathcal{H}.
output: the set $\mathcal{G}=\operatorname{Tr}(\mathcal{H})$ of minimal transversals of \mathcal{H}.

Equivalent to:

- translating from a positive CNF to a positive DNF
X - enumerating the minimal dominating sets of a graph
- enumerating the minimal set coverings of a hypergraph
- enumerating database repairs

Are harder than Trans-Enum:

- lattice dualization problems
- meet-irreducibles/implicational bases translations
- characteristic models/Horn clauses translations

Minimal dominating sets \triangleright Graphs

Definitions:

- graph G : a set of vertices $V(G)$, together with a set of edges $E(G) \subseteq\{\{x, y\} \mid x, y \in V(G), x \neq y\}$
- stable set: set of pairwise non-adjacent vertices
- clique: set of pairwise adjacent vertices
- triangle-free: does not contain a triangle (${ }^{\text {a }}$)

Minimal dominating sets \triangleright Dominating sets

- $N(v)$: neighborhood of vertex v
- dominating set (DS): $D \subseteq V(G)$ s.t. $V(G)=D \cup N(D)$ " D can see everybody else"
- minimal dominating set: inclusion-wise minimal DS

Minimal dominating sets \triangleright Private neighbors \& Irredundant sets

- $N(v)$: neighborhood of vertex v
- dominating set (DS): $D \subseteq V(G)$ s.t. $V(G)=D \cup N(D)$ " D can see everybody else"
- minimal dominating set: inclusion-wise minimal DS
- private neighbor of $v \in D$:
vertex that is $\left\{\begin{array}{l}\text { dominated by } v, \text { and } \\ \text { not dominated by } D \backslash\{v\}\end{array} \quad\right.$ (possibly v)
- irredundant set: $S \subseteq V(G)$ s.t. every $x \in S$ has a priv. neighbor

Observation

A DS is minimal if and only if it is irredundant.
if all its vertices have a private neighbor.

Minimal dominating sets \triangleright Enumeration \& Equivalence

Minimal DS Enumeration (Dom-Enum)

input: a n-vertex graph G.
output: the set $\mathcal{D}(G)$ of minimal $D S$ of G.
A particular case of Trans-Enum

Minimal dominating sets \triangleright Enumeration \& Equivalence

Minimal DS Enumeration (Dom-Enum)

input: a n-vertex graph G. output: the set $\mathcal{D}(G)$ of minimal $D S$ of G.

Equivalent to Trans-Enum [Kanté et al., 2014]

Minimal dominating sets \triangleright State of the art

Minimal DS Enumeration (Dom-Enum)

input: a n-vertex graph G.
output: the set $\mathcal{D}(G)$ of minimal $D S$ of G.
Dream goal: an output-poly. $\operatorname{poly}(N)$ algorithm, $N=n+|\mathcal{D}(G)|$
General case: open, best is quasi-polynomial $N^{o(\log N)}$

Known cases:

- output poly.: $\log (n)$-degenerate graphs
- incr. poly.: chordal bipartite graphs, bounded conformality graphs
- poly. delay: degenerate, line, and chordal graphs
- linear delay: permutation and interval graphs, graphs with bounded clique-width, split and P_{6}-free chordal graphs

Minimal dominating sets \triangleright Split graphs (Kanté et al., 2014)

Proposition (Kanté, Limouzy, Mary, and Nourine, 2014) A set $D \subseteq V(G)$ is a minimal $D S$ of G iff D dominates S and every $v \in D$ has a private neighbor in S.

Then: $D \cap S=\{$ all vertices not dominated by $D \cap C\}$
Enumeration: complete every irredundant set $X \subseteq C$ in S \rightarrow the family of such X 's is an independence set system \rightarrow can be enumerated with linear delay

Minimal dominating sets \triangleright Split graphs (Kanté et al., 2014)

Theorem (Kanté, Limouzy, Mary, and Nourine, 2014)
There is a linear-delay (and poly. space) algorithm enumerating minimal dominating sets in split graphs.

Then: $D \cap S=\{$ all vertices not dominated by $D \cap C\}$
Enumeration: complete every irredundant set $X \subseteq C$ in S \rightarrow the family of such X 's is an independence set system \rightarrow can be enumerated with linear delay

Minimal dominating sets \triangleright Peeling graphs

Goal: enumerating minimal DS one neighborhood at a time

Peeling: sequence $\left(V_{0}, \ldots, V_{p}\right)$ s.t.

1. $V_{p}=V(G)$
2. for $i \in\{1, \ldots, p\}$:
$V_{i-1}=V_{i} \backslash\left\{u_{i}\right\} \backslash N\left(u_{i}\right)$
3. $V_{0}=\emptyset$

Minimal dominating sets \triangleright Extending partial solutions

Goal: enumerating minimal DS one neighborhood at a time

Dominating set (DS) of V_{i} :

- $D \subseteq V(G)$ s.t. $V_{i} \subseteq D \cup N(D)$
" D can see everybody else in V_{i} "
Plan:

1. given minimal DS of V_{i} allowing vertices of $G-V_{i}$
2. enumerate those of V_{i+1} allowing vertices of $G-V_{i+1}$

Minimal dominating sets \triangleright The algorithm

Important wanted properties:

- no cycle (no repetition, using a parent relation: lex. order)
- no leaf before level p (no exponential blowup)

Minimal dominating sets \triangleright Minimal DS of V_{i+1} from those of V_{i}

Goal: extend each minimal DS D of V_{i} to a minimal DS of V_{i+1}

Observation:

- possibly D minimally dominates V_{i+1}
- if not then $D \cup\left\{u_{i+1}\right\}$ does extension is always possible, hence \mid minimal DS of $V_{i}|\leq|$ minimal DS of $V_{i+1} \mid$ $\leq \mid$ minimal $D S$ of $G \mid$
candidate extension of D : minimal set X s.t. $D \cup X$ dominates V_{i+1}

Lemma

\mid candidate extensions of $D|\leq|$ minimal $D S$ of $G \mid$

Minimal dominating sets \triangleright Candidate extensions, triangle-free case

- if u_{i+1} dom. by D : they only have to dominate S \rightarrow exactly the minimal DS of Split(C, S)
- if u_{i+1} not dom. by D : they should also dom. u_{i+1} irredundant $\{t\} \cup Q$ s.t. $\left\{\begin{array}{l}t \in N\left(u_{i+1}\right) \\ Q \text { minimal } D S \text { of } \operatorname{Split}(C, S)\end{array}\right.$

Minimal dominating sets \triangleright Complexity, triangle-free case

For each minimal DS of V_{i} :

- compute all candidate extensions; in time $O($ poly $(n) \cdot|\mathcal{D}(G)|)$
- only keep the $X \cup D$'s that are minimal and children of D

Minimal dominating sets \triangleright Complexity, triangle-free case

Theorem (Bonamy, D., Heinrich, and Raymond, 2019)
The set $\mathcal{D}(G)$ of minimal $D S$ of any triangle-free graph G can be enumerated in time $O\left(\operatorname{poly}(n) \cdot|\mathcal{D}(G)|^{2}\right)$ and polynomial space.

Minimal dominating sets \triangleright Perspectives

Theorem (Bonamy, D., Heinrich, Pilipczuk, and Raymond)
The set $\mathcal{D}(G)$ of minimal $D S$ of any graph G can be enumerated in time $O\left(n^{2^{t+1}} \cdot|\mathcal{D}(G)|^{2^{t}}\right)$ and poly. space where $t=\omega(G)+1$.

Future work:

- complexity improvements? delay is still open for bipartite graphs

Theorem (Bonamy, D., Heinrich, and Raymond, 2019)
Deciding if a vertex set S can be extended into a minimal DS is NP-complete in bipartite graphs.

- extensions to other classes?
$K_{t}+K_{2}$-free, paw-free, diamond-free \checkmark
C_{4}-free? X
(in)comparability and unit disk? X

Minimal dominating sets \triangleright Perspectives

- extensions to other classes?
$K_{t}+K_{2}$-free, paw-free, diamond-free
C_{4}-free? \boldsymbol{X} chordal graphs $\boldsymbol{\checkmark}$ split graphs \checkmark
(in)comparability graphs? X
Theorem (D. and Nourine, 2019)
The set $\mathcal{D}(G)$ of minimal $D S$ of any P_{7}-free chordal graph G can be enumerated with linear delay and poly. space.

Theorem (Bonamy, D., Micek, and Nourine, 2020)
The set $\mathcal{D}(G)$ of minimal $D S$ can be enumerated with incremental and polynomial delay (and poly. space) in the comparability and incomparability graphs of posets of bounded dimension. unit disk graphs?

Minimal Transversals Enumeration (Trans-Enum)

 input: a hypergraph \mathcal{H}. output: the set $\mathcal{G}=\operatorname{Tr}(\mathcal{H})$ of minimal transversals of \mathcal{H}.
Equivalent to:

- translating from a positive CNF to a positive DNF
X - enumerating the minimal dominating sets of a graph
- enumerating the minimal set coverings of a hypergraph
- enumerating database repairs

Are harder than Trans-Enum:

X - lattice dualization problems
X - meet-irreducibles/implicational bases translations

- characteristic models/Horn clauses translations

Dualization in lattices \triangleright Lattices as ordered families of sets

Definitions:

- lattice $\mathcal{L}=(\mathcal{X}, \subseteq)$: order obtained by inclusions of a family $\mathcal{X} \subseteq 2^{X}$ over a ground set X that is
- containing $X: X \in \mathcal{X}$
- closed by intersection: $A, B \in \mathcal{X} \Longrightarrow A \cap B \in \mathcal{X}$

Dualization in lattices \triangleright Meet \& Implicational bases

Definitions:

- lattice $\mathcal{L}=(\mathcal{X}, \subseteq)$: order obtained by inclusions of a family $\mathcal{X} \subseteq 2^{X}$ over a ground set X that is
- containing $X: X \in \mathcal{X}$
- closed by intersection: $A, B \in \mathcal{X} \Longrightarrow A \cap B \in \mathcal{X}$

Dualization in lattices \triangleright Dualization

Definitions:

- lattice $\mathcal{L}=(\mathcal{X}, \subseteq)$: order obtained by inclusions of a family $\mathcal{X} \subseteq 2^{X}$ over a ground set X that is
- containing $X: X \in \mathcal{X}$
- closed by intersection: $A, B \in \mathcal{X} \Longrightarrow A \cap B \in \mathcal{X}$

Dualization in lattices \triangleright Main contributions

Theorem (D. and Nourine, 2019)

The dualization in lattices given by implicational bases of dimension two cannot be solved in output-polynomial time unless $\mathrm{P}=\mathrm{NP}$.
\rightarrow output quasi-polynomial time algorithms in subclasses of distributive lattices (lately improved by Khaled Elbassioni) with Lhouari Nourine, and Takeaki Uno

Theorem (D., Nourine, and Vilmin, 2019)

Translating between meet-irreducible elements and implicational bases can be done in output quasi-polynomial time algorithm for ranked convex geometries.

Dualization in lattices \triangleright Perspectives

Minimal Transversals Enumeration (Trans-Enum)

input: a hypergraph \mathcal{H}.
output: the set $\mathcal{G}=\operatorname{Tr}(\mathcal{H})$ of minimal transversals of \mathcal{H}.
Are harder than Trans-Enum:

- lattice dualization problems

Dim. 2 IB lattices \boldsymbol{X} imp. in poly, time unless $P=N P$
Acyclic IB lattices? X Distributive lattices \checkmark

- meet-irreducibles/implicational bases translations

Acyclic IB lattices? X Distributive lattices \checkmark
Ranked IB lattices \checkmark
Is meet enumeration possible in output quasi-polynomial time?
Are lattice dualization \& meet enumeration equivalent?

Conclusion \triangleright Hypergraph Dualization, an open \& ubiquitous problem

Big question: can Hypergraph Dualization be solved in poly. time?

Equivalent to:

- translating from a positive CNF to a positive DNF
- enumerating the minimal dominating sets of a graph

$$
\begin{aligned}
& C_{4} \text {-free? } X \\
& \text { (in)comparability and unit disk? }
\end{aligned}
$$

Are harder than Trans-Enum:

- lattice dualization problems

Thank you!

\equiv ? Acyclic IB lattices? X

- meet-irreducibles/implicational basestranslations

Acyclic IB lattices? X

- characteristic models/Horn clauses translations

