Dualization in lattices given by implicational bases

Oscar Defrain, Lhouari Nourine LIMOS, Université Clermont Auvergne, France

> WEPA 2019 Awaji Island October 28–31

Implicational bases

- implicational base (X, Σ): set Σ of implications A → b over a ground set X, i.e., A, {b} ⊆ X
- closed set of Σ: set C ⊆ X such that A ⊈ C or b ∈ C for every implication A → b ∈ Σ
- $\phi(T)$: the smallest closed set of Σ containing T

The set of closed sets of the implicational base $\Sigma = \{13 \rightarrow 2, 4 \rightarrow 3\}$ on ground set $X = \{1, 2, 3, 4\}$

Lattices and dual antichains

- lattice $\mathcal{L}(\Sigma)$: set of closed sets of Σ , ordered by inclusion.
- antichain of $\mathcal{L}(\Sigma)$: (inclusion-wise) incomparable closed sets of Σ
- two antichains A and B are dual if they partition the lattice into two parts: elements that are above A, denoted by ↑ A, and those that are below B, denoted ↓ B

The lattice $\mathcal{L}(\Sigma)$ of closed sets of the implicational base $\Sigma = \{13 \rightarrow 2, 4 \rightarrow 3\}$ on ground set $X = \{1, 2, 3, 4\}$

Lattice dualization (Dual):

input: an implicational base (X, Σ) , two antichains \mathcal{A} and \mathcal{B} of $\mathcal{L}(\Sigma)$. question: are \mathcal{A} and \mathcal{B} dual in $\mathcal{L}(\Sigma)$?

Lattice dualization, enumeration version (Dual-Enum): <u>input</u>: an implicational base (X, Σ) and an antichain \mathcal{B} of $\mathcal{L}(\Sigma)$. output: the dual antichain \mathcal{A} of \mathcal{B} in $\mathcal{L}(\Sigma)$. Lattice dualization (Dual): input: an implicational base (X, Σ) , two antichains \mathcal{A} and \mathcal{B} of $\mathcal{L}(\Sigma)$. question: are \mathcal{A} and \mathcal{B} dual in $\mathcal{L}(\Sigma)$?

Harder than Hypergraph Dualization: When Σ is empty (the lattice is Boolean)

Lattice dualization (Dual):

input: an implicational base (X, Σ) , two antichains \mathcal{A} and \mathcal{B} of $\mathcal{L}(\Sigma)$. question: are \mathcal{A} and \mathcal{B} dual in $\mathcal{L}(\Sigma)$?

Harder than Hypergraph Dualization: When Σ is empty (the lattice is Boolean)

CoNP-complete in general:

In the general case when the implicational base has no restriction on the size of the premises (Babin and Kuznetsov, 2017)

$$\{a_1,\ldots,a_m\} \to b$$

Open cases: implications bases with premises of size one (the lattice is distributive), two, or any fixed $k \in \mathbb{N}$

Theorem (D. and Nourine, 2019)

Dual is is coNP-complete for implicational bases with premises of size at most two.

- Polynomial certificate: a closed set $F \in \uparrow \mathcal{A} \cap \downarrow \mathcal{B}$, or a closed set F such that that both $F \notin \uparrow \mathcal{A}$ and $F \notin \downarrow \mathcal{B}$
- Reduction: from (positive) 1-in-3 3SAT In the fashion of Kavvadias et al., 2000.

Hardness: coNP-hard

Lattice dualization, enumeration version (Dual-Enum): input: an implicational base (X, Σ) and an antichain \mathcal{B} of $\mathcal{L}(\Sigma)$. output: the dual antichain \mathcal{A} of \mathcal{B} in $\mathcal{L}(\Sigma)$.

The lattice $\mathcal{L}(\Sigma)$ of closed sets of the implicational base $\Sigma = \{3 \rightarrow 1, 3 \rightarrow 2, 4 \rightarrow 2\}$ on ground set $X = \{1, 2, 3, 4\}$

Hypegraph Dualization on arbitrary lattices: general idea

General steps:

- dualize the lattice as if it was Boolean
- close the solutions in the true lattice
- only keep actual solutions

The lattice $\mathcal{L}(\Sigma)$ of closed sets of the implicational base $\Sigma = \{3 \rightarrow 1, 3 \rightarrow 2, 4 \rightarrow 2\}$ on ground set $X = \{1, 2, 3, 4\}$

Limitation:

There are instances with an **exponential gap** between Boolean solutions and actual solutions

An implicational base on ground set $X = \{u_1, v_1, \dots, u_n, v_n\}$

Independent-width of an implicational base

- independent implications: implications A₁ → b₁, ..., A_k → b_k
 s.t. b_i ∉ φ(A₁ ∪ ··· ∪ A_{i-1} ∪ A_{i+1} ∪ ··· ∪ A_k) for any i ∈ [k]
- independent-width: the size of a maximum set of independent implications in $\boldsymbol{\Sigma}$

Bounding the number of Boolean solutions

Lemma

The number of min. transversals of $\mathcal{H} = \{X \setminus B \mid B \in \mathcal{B}\}$ is bounded by $|X|^k \cdot \mathcal{A}$ where k is the independent-width of Σ

Theorem (D. and Nourine, 2019)

Dual can be solved in **quasi-polynomial time** in lattices coded by implicational bases of bounded independent-width.

