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Implicational bases

• implicational base (X ,Σ): set Σ of implications A→ b over a
ground set X , i.e., A, {b} ⊆ X

• closed set of Σ: set C ⊆ X such that A 6⊆ C or b ∈ C

for every implication A→ b ∈ Σ

• φ(T ): the smallest closed set of Σ containing T
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The set of closed sets of the implicational base
Σ = {13→ 2, 4→ 3} on ground set X = {1, 2, 3, 4}
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Lattices and dual antichains

• lattice L(Σ): set of closed sets of Σ, ordered by inclusion.
• antichain of L(Σ): (inclusion-wise) incomparable closed sets of Σ

• two antichains A and B are dual if they partition the lattice into
two parts: elements that are above A, denoted by ↑ A, and those
that are below B, denoted ↓ B
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The lattice L(Σ) of closed sets of the implicational base
Σ = {13→ 2, 4→ 3} on ground set X = {1, 2, 3, 4}
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Dualization in lattices

Lattice dualization (Dual):
input: an implicational base (X ,Σ), two antichains A and B of L(Σ).
question: are A and B dual in L(Σ)?

Lattice dualization, enumeration version (Dual-Enum):
input: an implicational base (X ,Σ) and an antichain B of L(Σ).
output: the dual antichain A of B in L(Σ).
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Dualization in lattices

Lattice dualization (Dual):
input: an implicational base (X ,Σ), two antichains A and B of L(Σ).
question: are A and B dual in L(Σ)?

Harder than Hypergraph Dualization:
When Σ is empty (the lattice is Boolean)
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Dualization in lattices

Lattice dualization (Dual):
input: an implicational base (X ,Σ), two antichains A and B of L(Σ).
question: are A and B dual in L(Σ)?

Harder than Hypergraph Dualization:
When Σ is empty (the lattice is Boolean)

CoNP-complete in general:
In the general case when the implicational base has no restriction
on the size of the premises (Babin and Kuznetsov, 2017)

{a1, . . . , am} → b

Open cases: implications bases with premises of size one (the
lattice is distributive), two, or any fixed k ∈ N
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Hardness: coNP

Theorem (D. and Nourine, 2019)
Dual is is coNP-complete for implicational bases with premises of
size at most two.

• Polynomial certificate: a closed set F ∈ ↑ A ∩ ↓ B, or
a closed set F such that that both F 6∈ ↑ A and F 6∈ ↓ B
• Reduction: from (positive) 1-in-3 3SAT

In the fashion of Kavvadias et al., 2000.
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Hardness: coNP-hard

• Let ϕ be a n-variable m-clause instance of 1-in-3 3SAT:
(x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4) ∧ (x3 ∨ x4 ∨ x5)

C1 C2 C3

• Let X = {x1, . . . , xn, y1, . . . , ym, z}
• And the implicational base Σ where for each clause

Cj = (cj ,1 ∨ cj ,2 ∨ cj ,3):

cj ,1cj ,2 → z

cj ,1cj ,3 → z

cj ,2cj ,3 → z

zcj ,1 → yj

zcj ,2 → yj

zcj ,3 → yj

yj → z

{z}

B = {X \ {yj, cj,1, cj,2, cj,3}}
A = {{y1, . . . , ym, z}}

⊆ {x1, . . . , xn}
∅all 1-in-3 assign.

X
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An instance of Dual-Enum

Lattice dualization, enumeration version (Dual-Enum):
input: an implicational base (X ,Σ) and an antichain B of L(Σ).
output: the dual antichain A of B in L(Σ).
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The lattice L(Σ) of closed sets of the implicational base
Σ = {3→ 1, 3→ 2, 4→ 2} on ground set X = {1, 2, 3, 4}
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Hypegraph Dualization on arbitrary lattices: general idea

General steps:
• dualize the lattice as if it was Boolean
• close the solutions in the true lattice
• only keep actual solutions
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min. transversals of
H = {X \ B | B ∈ B}

The lattice L(Σ) of closed sets of the implicational base
Σ = {3→ 1, 3→ 2, 4→ 2} on ground set X = {1, 2, 3, 4}
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Boolean dualization on arbitrary lattices: limitations

Limitation:
There are instances with an exponential gap between Boolean
solutions and actual solutions
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B = {Bi = X \ {ui , vi}}
A = {{u1, . . . , un}}

C = {u1, v1} × . . .× {un, vn}

B3

An implicational base on ground set X = {u1, v1, . . . , un, vn}
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Independent-width of an implicational base

• independent implications: implications A1 → b1, . . . ,Ak → bk

s.t. bi 6∈ φ(A1 ∪ · · · ∪ Ai−1 ∪ Ai+1 ∪ · · · ∪ Ak) for any i ∈ [k]

• independent-width: the size of a maximum set of independent
implications in Σ
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Bounding the number of Boolean solutions

Lemma

The number of min. transversals of H = {X \ B | B ∈ B} is
bounded by |X |k · A where k is the independent-width of Σ

Theorem (D. and Nourine, 2019)
Dual can be solved in quasi-polynomial time in lattices coded by
implicational bases of bounded independent-width.
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Thank you!
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