Dualization in lattices given by implicational bases

Oscar Defrain, Lhouari Nourine
LIMOS, Université Clermont Auvergne, France

WEPA 2019
Awaji Island
October 28-31

Implicational bases

- implicational base (X, Σ) : set Σ of implications $A \rightarrow b$ over a ground set X, i.e., $A,\{b\} \subseteq X$
- closed set of Σ : set $C \subseteq X$ such that $A \nsubseteq C$ or $b \in C$ for every implication $A \rightarrow b \in \Sigma$
- $\phi(T)$: the smallest closed set of Σ containing T 1234

The set of closed sets of the implicational base

$$
\Sigma=\{13 \rightarrow 2,4 \rightarrow 3\} \text { on ground set } X=\{1,2,3,4\}
$$

Lattices and dual antichains

- lattice $\mathcal{L}(\Sigma)$: set of closed sets of Σ, ordered by inclusion.
- antichain of $\mathcal{L}(\Sigma)$: (inclusion-wise) incomparable closed sets of Σ
- two antichains \mathcal{A} and \mathcal{B} are dual if they partition the lattice into two parts: elements that are above \mathcal{A}, denoted by $\uparrow \mathcal{A}$, and those that are below \mathcal{B}, denoted $\downarrow \mathcal{B}$

The lattice $\mathcal{L}(\Sigma)$ of closed sets of the implicational base
$\Sigma=\{13 \rightarrow 2,4 \rightarrow 3\}$ on ground set $X=\{1,2,3,4\}$

Dualization in lattices

Lattice dualization (Dual): input: an implicational base (X, Σ), two antichains \mathcal{A} and \mathcal{B} of $\mathcal{L}(\Sigma)$. question: are \mathcal{A} and \mathcal{B} dual in $\mathcal{L}(\Sigma)$?

Lattice dualization, enumeration version (Dual-Enum): input: an implicational base (X, Σ) and an antichain \mathcal{B} of $\mathcal{L}(\Sigma)$. output: the dual antichain \mathcal{A} of \mathcal{B} in $\mathcal{L}(\Sigma)$.

Dualization in lattices

Lattice dualization (Dual):
input: an implicational base (X, Σ), two antichains \mathcal{A} and \mathcal{B} of $\mathcal{L}(\Sigma)$. question: are \mathcal{A} and \mathcal{B} dual in $\mathcal{L}(\Sigma)$?

Harder than Hypergraph Dualization:
When Σ is empty (the lattice is Boolean)

Dualization in lattices

Lattice dualization (Dual):
input: an implicational base (X, Σ), two antichains \mathcal{A} and \mathcal{B} of $\mathcal{L}(\Sigma)$. question: are \mathcal{A} and \mathcal{B} dual in $\mathcal{L}(\Sigma)$?

Harder than Hypergraph Dualization:

When Σ is empty (the lattice is Boolean)
CoNP-complete in general:
In the general case when the implicational base has no restriction on the size of the premises (Babin and Kuznetsov, 2017)

$$
\left\{a_{1}, \ldots, a_{m}\right\} \rightarrow b
$$

Open cases: implications bases with premises of size one (the lattice is distributive), two, or any fixed $k \in \mathbb{N}$

Hardness: coNP

Theorem (D. and Nourine, 2019)

Dual is is coNP-complete for implicational bases with premises of size at most two.

- Polynomial certificate: a closed set $F \in \uparrow \mathcal{A} \cap \downarrow \mathcal{B}$, or a closed set F such that that both $F \notin \uparrow \mathcal{A}$ and $F \notin \downarrow \mathcal{B}$
- Reduction: from (positive) 1-in-3 3SAT

In the fashion of Kavvadias et al., 2000.

Hardness: coNP-hard

- Let φ be a n-variable m-clause instance of 1-in-3 3SAT:

$$
\begin{gathered}
\left(x_{1} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{2} \vee x_{3} \vee x_{4}\right) \wedge\left(x_{3} \vee x_{4} \vee x_{5}\right) \\
C_{1} \\
C_{2}
\end{gathered} C_{3}
$$

- Let $X=\left\{x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}, z\right\}$
- And the implicational base Σ where for each clause

$$
\begin{aligned}
C_{j}=\left(c_{j, 1} \vee c_{j, 2} \vee\right. & \left.c_{j, 3}\right): \\
c_{j, 1} c_{j, 2} & \rightarrow z \\
c_{j, 1} c_{j, 3} & \rightarrow z \\
c_{j, 2} c_{j, 3} & \rightarrow z \\
z c_{j, 1} & \rightarrow y_{j} \\
z c_{j, 2} & \rightarrow y_{j}
\end{aligned}
$$

$$
\mathcal{A}=\left\{\left\{y_{1}, \ldots, y_{m}, z\right\}\right\}
$$

$$
\mathcal{B}=\left\{X \backslash\left\{y_{j}, c_{j, 1}, c_{j, 2}, c_{j, 3}\right\}\right\}
$$

$$
z c_{j, 3} \rightarrow y_{j} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}
$$

$$
y_{j} \rightarrow z \quad \text { all 1-in-3 assign. }
$$

X

An instance of Dual-Enum

Lattice dualization, enumeration version (Dual-Enum): input: an implicational base (X, Σ) and an antichain \mathcal{B} of $\mathcal{L}(\Sigma)$. output: the dual antichain \mathcal{A} of \mathcal{B} in $\mathcal{L}(\Sigma)$.

The lattice $\mathcal{L}(\Sigma)$ of closed sets of the implicational base $\Sigma=\{3 \rightarrow 1,3 \rightarrow 2,4 \rightarrow 2\}$ on ground set $X=\{1,2,3,4\}$

Hypegraph Dualization on arbitrary lattices: general idea

General steps:

- dualize the lattice as if it was Boolean
- close the solutions in the true lattice
- only keep actual solutions

The lattice $\mathcal{L}(\Sigma)$ of closed sets of the implicational base

$$
\Sigma=\{3 \rightarrow 1,3 \rightarrow 2,4 \rightarrow 2\} \text { on ground set } X=\{1,2,3,4\}
$$

Boolean dualization on arbitrary lattices: limitations

Limitation:

There are instances with an exponential gap between Boolean solutions and actual solutions

An implicational base on ground set $X=\left\{u_{1}, v_{1}, \ldots, u_{n}, v_{n}\right\}$

Independent-width of an implicational base

- independent implications: implications $A_{1} \rightarrow b_{1}, \ldots, A_{k} \rightarrow b_{k}$ s.t. $b_{i} \notin \phi\left(A_{1} \cup \cdots \cup A_{i-1} \cup A_{i+1} \cup \cdots \cup A_{k}\right)$ for any $i \in[k]$
- independent-width: the size of a maximum set of independent implications in Σ

Bounding the number of Boolean solutions

Lemma

The number of min. transversals of $\mathcal{H}=\{X \backslash B \mid B \in \mathcal{B}\}$ is bounded by $|X|^{k}$. \mathcal{A} where k is the independent-width of Σ

Theorem (D. and Nourine, 2019)
Dual can be solved in quasi-polynomial time in lattices coded by implicational bases of bounded independent-width.

