On the enumeration of signatures of XOR formulas

Nadia Creignou, Oscar Defrain, Frédéric Olive, and Simon Vilmin LIS, Aix-Marseille Université, France

> WADS 2025 Toronto, Canada July 12th

Enumeration problems

Typical question:

Given input I, list all solutions in I

Examples:

Two perspectives about complexity

Input-sensitive: in terms of input size

Theorem (Moon & Moser, IJM 65)

There is an $O(3^{n/3})$ -time algorithm enumerating all the maximal cliques of a n-vertex graph.

ightarrow basically upper-bounds the number of objects

Output-sensitive: in terms of input + output size

Theorem (Tsukiyama et al., SICOMP 77)

There is a O(n + m + d)-time algorithm enumerating all the d maximal cliques of a n-vertex m-edge graph.

→ many techniques (reverse search, backtrack search, saturations algorithms, ordered generation, etc.)

Efficiency for the output-sensitive approach

Let n be input size, e.g., number of vertices of a graph Let d be the output size, e.g., number¹ of max. cliques

¹For simplicity as solutions are of poly size

Definitions (1)

- variable set $V = \{x_1, \dots, x_n\}$
- literal: variable x_i or its negation $\overline{x_i}$
- clause: disjunction $C = \ell_1 \vee \cdots \vee \ell_k$ of literals
- CNF: conjunction of clauses $\phi = C_1 \wedge \cdots \wedge C_m$

Example:

$$\phi := (x_1 \vee x_2)(x_2 \vee x_3)(\overline{x_1} \vee \overline{x_3})$$

Definitions (2)

- assignment: function **a**: $V \rightarrow \{0,1\}$
- we note $C_i(\mathbf{a}) = 1$ if \mathbf{a} evaluates C_i to 1, 0 otherwise
- signature produced by a: binary sequence

$$\sigma(\mathsf{a}) = (C_1(\mathsf{a}), \dots, C_m(\mathsf{a}))$$

• $\sigma \leq \sigma'$: if $\sigma[j] \leq \sigma'[j]$, $\forall 1 \leq j \leq m$

Example:

$$\phi:=(x_1\vee x_2)(x_2\vee x_3)(\overline{x_1}\vee \overline{x_3})$$

$$\mathbf{a}:=\{x_1\mapsto 1,\,x_2\mapsto 0,\,x_3\mapsto 0\}$$

$$\sigma(\mathbf{a})=101$$

$$\mathsf{SIG}(\phi)=\{001,011,101,110,111\}$$
all signatures
$$\min_{\mathbf{max}}$$

Observation

A formula admits one maximal signature iff it is satisfiable

Problems

```
Signatures Enumeration (Sig·Enum) input: a formula \phi
```

output: the set $SIG(\phi)$ of all signatures

Minimal Signatures Enumeration (MaxSig·Enum)

output: the set $\min_{\leq} SIG(\phi)$

Maximal Signatures Enumeration (MinSig·Enum)

output: the set $\max_{\leq} SIG(\phi)$

These problems were first stated and motivated during the Dagstuhl seminar 19211 on enumeration in data management which took place in 2019

Problems

Signatures Enumeration (Sig·Enum) input: a formula ϕ

output: the set $SIG(\phi)$ of all signatures

Minimal Signatures Enumeration (MaxSig·Enum)

output: the set $\min_{\leq} SIG(\phi)$

Maximal Signatures Enumeration (MinSig·Enum)

output: the set $\max_{\leq} SIG(\phi)$

Theorem (Berczi et al., TCS 2021)

- Sig·Enum can be solved in inc-poly time for O(1)-CNF's
- MinSig·Enum can be solved with poly delay for any CNF
- $MaxSig \cdot Enum$ cannot be solved in output-poly time if $P \neq NP$

Open question

Question (Berczi et al., TCS 2021)

What is the status of MaxSig·Enum for tractable² formulas?

Theorem (Schaefer's dichotomy theorem, STOC 78)³

Non-trivial classes of tractable formulas are precisely

- 2-CNF's
- Horn-CNF's (and their dual)
- XOR formulas

Also posed as open problems in the WEPA 2022 workshop

This talk addresses the latter case

²Admitting a poly-time satisfiability check

³Rough reformulation

XOR formulas

XOR formulas differ from CNF's:

- XOR clause: $(\ell_1 \oplus \cdots \oplus \ell_k)$ where $\ell_j = x_j$ or $\ell_j = \overline{x_j}$, $\forall j$
- XOR formula: conjunction of XOR clauses

Thus the results of Berczi et al. do not directly apply

Observation

A clause may be seen as an eq. $x_1 + \cdots + x_k = \varepsilon$, $\varepsilon \in \{0, 1\}$ A XOR formula may be seen as a system of equations in \mathbb{F}_2

We consider this formulation form now on:

- variable are no longer negated
- ullet clauses are of two types: even (arepsilon=0) or odd (arepsilon=1)

Contributions

Lemma⁴

On XOR formulas MinSig·Enum is equivalent to MaxSig·Enum

Theorem (Creignou, D., Olive, and Vilmin)

On XOR formulas:

- Sig·Enum can be solved with poly delay
- Min/MaxSig·Enum can be solved in inc-poly time
- Min/MaxSig·Enum can be solved with poly delay when restricted to clauses of size at most two

⁴Crucial distinction with CNF's

Properties (1)

If
$$C_i = (x_1 + \cdots + x_k = \varepsilon_i)$$
 let $\overline{C_i} := (x_1 + \cdots + x_k = 1 - \varepsilon_i)$

For ϕ a *m*-clause formula, $A, B \subseteq \{1, \dots, m\}$:

$$\phi(A,B) := \left(\bigwedge_{i \in A} C_i\right) \wedge \left(\bigwedge_{j \in B} \overline{C_j}\right)$$

For σ is a signature:

- $\mathbf{1}(\sigma) := \{j : \sigma[j] = 1\}$
- $\mathbf{0}(\sigma) := \{j : \sigma[j] = 0\}$

Lemma⁵

 σ is a signature of ϕ iff $\phi(\mathbf{1}(\sigma), \mathbf{0}(\sigma))$ is satisfiable

⁵True for CNF's as well

Flashlight search

General idea:

- determine the value of clauses one by one
- recursively call for each value
- at the bottom of the recursion: a signature is determined
- do not explore subtree if no solution lies in descendants

Extension problem

To guarantee the last condition, we want to solve:

```
Signature Extension (Sig·Ext)

input: a formula \phi, A, B \subseteq \{C_1, \ldots, C_m\}

output: is there a signature \sigma such that \sigma[i] = 1 if C_i \in A, and \sigma[i] = 0 if C_i \in B?
```


Solving the extension problem + limitations

Lemma

 σ is a signature of ϕ iff $\phi(\mathbf{1}(\sigma), \mathbf{0}(\sigma))$ is satisfiable

The problem Sig·Ext can be solved using this lemma, as XOR formulas are tractable by Schaefer's theorem

We derive the following

Theorem (Creignou, D., Olive, and Vilmin)

The problem Sig-Enum can be solved with poly delay

Theorem (Creignou, D., Olive, and Vilmin)

The problems Min/MaxSig·Enum are NP-complete even when restricted to XOR formulas

Properties (2)

For ϕ a XOR *m*-clause formula and σ a signature:

- $\overline{\sigma} := (1 \sigma[1], \ldots, 1 \sigma[m])$
- $\bullet \ \overline{\phi} := \bigwedge_{i=1}^m \overline{C_i}$

Lemma⁶

 σ is a signature of ϕ iff $\overline{\sigma}$ is a signature of $\overline{\phi}$

Corollary

On XOR formulas MinSig·Enum is equivalent to MaxSig·Enum

⁶Crucial distinct behavior compared to CNF's

Detour to matroid theory

Lemma

The maximal signatures of a XOR formula ϕ are in bijection with the maximal feasible subsystems of the system that ϕ describes

Theorem (Boros et al., ISAAC 03)

The maximal feasible subsystems can be listed in inc-poly time

This algorithm is based on one enumerating the circuits of a matroid within the same time bounds

Corollary

Min/MaxSig·Enum can be solved in inc-poly time

Reducing to poly delay is a long-standing open question

What about 2-XOR formulas?

Bicolored graph

We assume all clauses have size precisely 2.7

We define a (multi)graph $G(\phi)$ on the variables with

- a blue edge xy if there exists a clause x + y = 1 in ϕ
- a red edge xy if there exists a clause x + y = 0 in ϕ

Let B(G) be the blue edges, and R(G) be the red edges

 $^{^7\}mathrm{This}$ can be assumed by adding a dummy vertex adjacent to clauses of size 1

Bicolored partitions

- $\delta(X, Y)$: set of edges having an endpoint in X, the other in Y
- G red-blue bipartite: if there exists a partition (X, Y) of its vertex set s.t. $B(G) = \delta(X, Y)$

Bicolored partitions

Lemma

The maximal signatures of a XOR formula ϕ are in bijection with the maximal red-blue bipartite (edge) subgraphs of $G(\phi)$

Particular case

In particular, Min/MaxSig·Enum is harder than maximal bipartite subgraphs enumeration, a non-trivial problem

Theorem (Conte & Uno, STOC 19)

Maximal bipartite subgraphs can be enumerated with poly delay

Can it be extended to red-blue bipartitions? Yes

Theorem (Creignou, D., Olive, and Vilmin)

Max. red-blue bip. subgraphs can be enumerated with poly delay

The latter algorithm is based on the framework introduced by Conte & Uno known as *proximity search*: go from solutions to solutions and ensure that you get closer to any target solution

Algorithm outline

Let S denote the solution set

Key steps:

- show that a first solution can be computed in poly time
- define a reconfiguration function $\mathcal{N}: \mathbb{S} \to 2^{\mathbb{S}}$
- ullet show that $\mathcal N$ can be computed in poly time
- ullet show that ${\mathfrak N}$ defines a strongly connected digraph

Theorem (Folklore)

The family S can be enumerated with poly delay if these conditions are fulfilled by launching a traversal of the solutions graph

The approach of Conte & Uno is to define an asymmetric proximity measure to argue of the strong connectivity

Reconfiguration function

Given $H \in S$, let GC(H) be a maximal red-blue bipartite subgraph containing H obtained greedily by adding edges as long as possible

Given $H \in S$, for every edge $ab \in G(\phi) - H$:

- compute $H_a = H + ab \{av : av \in E(H)\}$
- compute $H_b = H + ab \{bv : vb \in E(H)\}$
- add $GC(H_a)$ and $GC(H_b)$ to $\mathcal{N}(H)$

Observation

The family N(H) can be computed in poly time

It remains to argue that $\mathcal{N}(H)$ defines a strongly connected digraph

Proximity search (1)

Given $H \in S$:

General ideal: introduce a measure of proximity between solutions

- ρ : BFS ordering of its vertices
- τ : increasing ordering of the edges of H with respect to their endpoint occurring later ρ

Proximity between two solutions H and H^* : size of the largest prefix of $\tau(H)$ which is a subset of H^*

Proximity search (2)

Key arguments:

- solutions are connected, and cover all the vertices
- solutions agree on their bipartition up to the prefix witnessing the proximity
- delete edges of H_a or H_b may not lie in such a prefix

Open questions

MaxSig·Enum stays open in other tractable cases

Question

Can MaxSig·Enum be solved in output-poly time in Horn-CNF's and 2-CNF's?

For *k*-XOR formulas, it remains open whether Min/MaxSig•Enum can be solved:

- with poly delay for fixed values of k
- with poly delay and poly space⁸ for k=2

⁸Indeed, solutions are stored in the current algorithm

References i

- Kristóf Bérczi, Endre Boros, Ondřej Čepek, Khaled Elbassioni, Petr Kučera, and Kazuhisa Makino. **Generating clause** sequences of a cnf formula. *Theoretical computer science*, 856:68–74, 2021.
- Eugene L. Lawler, Jan K. Lenstra, and Alexander H. G. Rinnooy Kan. Generating all maximal independent sets: NP-hardness and polynomial-time algorithms. *SIAM Journal on Computing*, 9(3):558–565, 1980.
- John W. Moon and Leo Moser. On cliques in graphs. *Israel journal of Mathematics*, 3(1):23–28, 1965.

References ii

Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A new algorithm for generating all the maximal independent sets. *SIAM Journal on Computing*, 6(3):505–517, 1977.