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Enumeration problems

Typical question:
Given input |, list all solutions in |

Examples:

e paths to a destination
Rue du Dr Bousquet

e flights to a city
e answers to a query
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Two perspectives about complexity

Input-sensitive: in terms of input size

Theorem (Moon & Moser, 1JM 65)

There is an O(3"/3)-time algorithm enumerating all the maximal
cliques of a n-vertex graph.

— basically upper-bounds the number of objects

Output-sensitive: in terms of input 4+ output size

Theorem (Tsukiyama et al., SICOMP 77)
There is a O(n+ m + d)-time algorithm enumerating all the d

maximal cliques of a n-vertex m-edge graph.

— many techniques (reverse search, backtrack search,
saturations algorithms, ordered generation, etc.)



Efficiency for the output-sensitive approach

Let n be input size, e.g., number of vertices of a graph

Let d be the output size, e.g., number® of max. cliques

execution time

solution output

output-polynomial
stops in poly(n + d) time

incremental-polynomial
outputs it" solution in poly(n + i) time

polynomial delay
poly(n) time between consec. outputs

LFor simplicity as solutions are of poly size



Definitions (1)

variable set V = {x1,...,xp}

literal: variable x; or its negation X;

clause: disjunction C = ¢1 V --- V £, of literals
CNF: conjunction of clauses ¢ = C; A - A Cpy

Example:
o= (aVx)(xVx3)(xVx3)



Definitions (2)

e assignment: function a: V — {0,1}
e we note Cj(a) =1 if a evaluates ; to 1, 0 otherwise
e signature produced by a: binary sequence
o(a) = (Gf(a),..., Cn(a))
e o <oifo[j]<djl,VI<j<m

Example:
¢ :=(x1Vx)(xVx3)(aVx3)
a:={x3—1 x—0, x3— 0}
o(a) =101
SIG(¢) = {001,011, 101,110,111}
: NN
all signatures min max

Observation
A formula admits one maximal signature iff it is satisfiable



Problems

Signatures Enumeration (Sig-Enum)
input: a formula ¢
output: the set SIG(¢) of all signatures

Minimal Signatures Enumeration (MaxSig-Enum)
output: the set min<SIG(¢)

Maximal Signatures Enumeration (MinSig:Enum)
output: the set max<SIG(¢)

These problems were first stated and motivated during the
Dagstuhl seminar 19211 on enumeration in data management
which took place in 2019



Problems

Signatures Enumeration (Sig-Enum)
input: a formula ¢
output: the set SIG(¢) of all signatures

Minimal Signatures Enumeration (MaxSig-Enum)
output: the set min<SIG(¢)

Maximal Signatures Enumeration (MinSig-Enum)
output: the set max<SIG(¢)

Theorem (Berczi et al., TCS 2021)

e Sig-Enum can be solved in inc-poly time for O(1)-CNF's

e MinSig-Enum can be solved with poly delay for any CNF

e MaxSig-Enum cannot be solved in output-poly time if P # NP



Open question

Question (Berczi et al., TCS 2021)

What is the status of MaxSig-Enum for tractable® formulas?

Theorem (Schaefer’s dichotomy theorem, STOC 78)3

Non-trivial classes of tractable formulas are precisely
e 2-CNF's
e Horn-CNF's (and their dual)
e XOR formulas

Also posed as open problems in the WEPA 2022 workshop

This talk addresses the latter case

2Admitting a poly-time satisfiability check
3Rough reformulation



XOR formulas

XOR formulas differ from CNF's:

e eXclusive or operator: & which is associative
o XOR clause: ({1 @ --- @ £y) where {; = xj or {; =X, Vj
e XOR formula: conjunction of XOR clauses

Thus the results of Berczi et al. do not directly apply
Observation

A clause may be seen as aneq. x1 + -+ xx = ¢, ¢ € {0,1}
A XOR formula may be seen as a system of equations in
We consider this formulation form now on:

e variable are no longer negated
e clauses are of two types: even (¢ = 0) or odd (¢ = 1)



Contributions

Lemma*

On XOR formulas MinSig+-Enum is equivalent to MaxSig+Enum

Theorem (Creignou, D., Olive, and Vilmin)
On XOR formulas:
e Sig-Enum can be solved with poly delay
e Min/MaxSig+-Enum can be solved in inc-poly time
e Min/MaxSig-Enum can be solved with poly delay when
restricted to clauses of size at most two

#Crucial distinction with CNF'’s



Properties (1)

|fC,':(X1+-"+Xk:€,') |et?,'2:(X1+"'—|-Xk:1—€,')

For ¢ a m-clause formula, A,B C {1,..., m}:

For o is a signature:

e (o) = {j: olj] =1}
e 0(0) = {j: olj] = 0}

Lemma?®

o is a signature of ¢ iff p(1(c), 0(c)) is satisfiable

5True for CNF's as well

10



Flashlight search

General idea:

e determine the value of clauses one by one

e recursively call for each value

e at the bottom of the recursion: a signature is determined
e do not explore subtree if no solution lies in descendants

11



Extension problem

To guarantee the last condition, we want to solve:

input: a formula ¢, A,B C {Cy,...,Cn}
output: is there a signature o such that o[i] =1 if C; € A, and
oli]=0if C; € B?

12



Solving the extension problem + limitations

Lemma
o is a signature of ¢ iff $(1(c), 0(c)) is satisfiable

The problem Sig-Ext can be solved using this lemma,
as XOR formulas are tractable by Schaefer’s theorem

We derive the following

Theorem (Creignou, D., Olive, and Vilmin)
The problem Sig-Enum can be solved with poly delay

Theorem (Creignou, D., Olive, and Vilmin)

The problems Min/MaxSig-Enum are NP-complete even when
restricted to XOR formulas

13



Properties (2)

For ¢ a XOR m-clause formula and o a signature:

g:=(1-0[1],...,1—0[m])
o ¢ = m?

Lemma®

o is a signature of ¢ iff @ is a signature of ¢

Corollary
On XOR formulas MinSig+-Enum is equivalent to MaxSig+Enum

®Crucial distinct behavior compared to CNF's

14



Detour to matroid theory

Lemma
The maximal signatures of a XOR formula ¢ are in bijection with
the maximal feasible subsystems of the system that ¢ describes

Theorem (Boros et al., ISAAC 03)

The maximal feasible subsystems can be listed in inc-poly time

This algorithm is based on one enumerating the circuits of a

matroid within the same time bounds

Corollary
Min/MaxSig-Enum can be solved in inc-poly time
Reducing to poly delay is a long-standing open question

What about 2-XOR formulas ?
15



Bicolored graph
We assume all clauses have size precisely 2.7

We define a (multi)graph G(¢) on the variables with

e a blue edge xy if there exists a clause x +y =1in ¢
e a red edge xy if there exists a clause x + y =0 in ¢

Let B(G) be the blue edges, and R(G) be the red edges

"This can be assumed by adding a dummy vertex adjacent to clauses of size 1

16



Bicolored partitions

e §(X,Y): set of edges having an endpoint in X, the other in Y
e G red-blue bipartite: if there exists a partition (X, Y)
of its vertex set s.t. B(G) = 4d(X,Y)

17



Bicolored partitions

Lemma
The maximal signatures of a XOR formula ¢ are in bijection with
the maximal red-blue bipartite (edge) subgraphs of G(¢)

17



Particular case
In particular, Min/MaxSig-Enum is harder than maximal bipartite
subgraphs enumeration, a non-trivial problem

Theorem (Conte & Uno, STOC 19)
Maximal bipartite subgraphs can be enumerated with poly delay

Can it be extended to red-blue bipartitions? Yes

Theorem (Creignou, D., Olive, and Vilmin)
Max. red-blue bip. subgraphs can be enumerated with poly delay

The latter algorithm is based on the framework introduced by
Conte & Uno known as proximity search: go from solutions to
solutions and ensure that you get closer to any target solution

18



Algorithm outline

Let S denote the solution set
Key steps:

e show that a first solution can be computed in poly time
e define a reconfiguration function N : § — 23

e show that N can be computed in poly time

e show that N defines a strongly connected digraph

Theorem (Folklore)
The family 8 can be enumerated with poly delay if these conditions
are fulfilled by launching a traversal of the solutions graph

The approach of Conte & Uno is to define an asymmetric proximity
measure to argue of the strong connectivity

19



Reconfiguration function

Given H € 8, let GC(H) be a maximal red-blue bipartite subgraph
containing H obtained greedily by adding edges as long as possible

Given H € 8, for every edge ab € G(¢) — H:

e compute H, = H+ ab— {av : av € E(H)}
e compute H, = H+ab— {bv: vb e E(H)}
e add GC(H,) and GC(Hj) to N(H)

Observation
The family N(H) can be computed in poly time

It remains to argue that N(H) defines a strongly connected digraph

20



Proximity search (1)

General ideal: introduce a measure of proximity between solutions

Given H € 8:

e p: BFS ordering of its vertices
e 7: increasing ordering of the edges of H
with respect to their endpoint occurring later p

Proximity between two solutions H and H*: size of the largest
prefix of 7(H) which is a subset of H*

21



Proximity search (2)

Key arguments:

e solutions are connected, and cover all the vertices

e solutions agree on their bipartition up to the prefix
witnessing the proximity

e delete edges of H, or H, may not lie in such a prefix

22



Open questions

MaxSig-Enum stays open in other tractable cases

Question
Can MaxSig-Enum be solved in output-poly time in Horn-CNF's
and 2-CNF's?

For k-XOR formulas, it remains open whether Min/MaxSig-Enum
can be solved:

e with poly delay for fixed values of k
e with poly delay and poly space® for k =2

8Indeed, solutions are stored in the current algorithm

23
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