Enumerating minimal dominating sets and variants in chordal bipartite graphs

Emanuel Castelo¹, Oscar Defrain¹, and Guilherme C. M. Gomes^{2,3}

¹LIS, Aix-Marseille Université, France

²Universidade Federal de Minas Gerais, Brazil

³LIRMM, Université de Montpellier, France

> WADS 2025 Toronto, Canada July 12th

Enumeration problems

Typical question:

Given input I, list all solutions in I.

Examples:

Two perspectives about complexity

Input-sensitive: in terms of input size

Theorem (Moon & Moser, IJM 65)

There is an $O(3^{n/3})$ -time algorithm enumerating all the maximal cliques of a n-vertex graph.

ightarrow basically upper-bounds the number of objects

Output-sensitive: in terms of input + output size

Theorem (Tsukiyama et al., SICOMP 77)

There is a O(n + m + d)-time algorithm enumerating all the d maximal cliques of a n-vertex m-edge graph.

→ many techniques (reverse search, backtrack search, saturations algorithms, ordered generation, etc.)

Efficiency for the output-sensitive approach

Let n be input size, e.g., number of vertices of a graph Let d be the output size, e.g., number¹ of max. cliques

¹For simplicity as solutions are of poly size

Neighborhoods

Let *D* be a subset of vertices and $u \in D$:

- N(u): neighborhood of u i.e., vertices adjacent to u
- N[u]: closed neighborhood of u i.e., vertices adjacent to u + u
- private neighborhood of u: $Priv(D, u) := N[u] \setminus N[D \setminus \{u\}]$
- connected: *G*[*D*] is connected

Chordal bipartite

A graph is chordal bipartite if it is bipartite and its cycles of length ≥ 6 have a chord i.e. induced cycles have length ≤ 4

Definition

A vertex $v \in V(G)$ is weak-simplicial if

- N(v) is an independent set
- for every $x, y \in N(v)$, either $N(x) \subseteq N(y)$ or $N(y) \subseteq N(x)^2$

²Which implies inclusions of the distance-2 neighborhood within N(v)

Elimination ordering

Definition

An ordering v_1, \ldots, v_n of V(G) is a weak-simplicial elimination ordering (wseo) if v_i is weak-simplicial in $G_i := G[v_1, \ldots, v_i]$, $\forall i$

Theorem (Kurita et al., IWOCA 19)3

A graph is chordal bipartite iff it admits a wseo

wseo: $(x_1, x_3, y_1, y_5, x_2, y_2, y_3, y_4, x_4)$

³Also follows from previously-known observations e.g. Uehara (ICALP 02)

Domination

A set D of vertices is

- dominating: $\forall v \in V(G)$, $N[v] \cap D \neq \emptyset$ i.e. N[D] = V(G)
- total dominating: $\forall v \in V(G), \ N(v) \cap D \neq \emptyset$
- connected dominating: dominating + connected
- minimal: inclusion-wise minimal

Observation

A connected dom. set of cardinal ≥ 2 is a total dom. set⁴

⁴So the combinaison total + connected makes little sense

Transversals

A hypergraph is a pair (V, \mathcal{H}) s.t. $\mathcal{H} \subseteq 2^V$

A set T of vertices is

- a transversal: $\forall E \in \mathcal{H}, E \cap T \neq \emptyset$
- minimal: inclusion-wise minimal

A private edge of $v \in T$ is an edge E s.t. $E \cap T = \{v\}$

Problems

Min Dom Enumeration (Dom·Enum)

input: a graph G

output: the set MDS(G) of all min. dom. sets of G

Min Total Dom Enumeration (TDom·Enum)

output: the set MTDS(G) of all min. tot. dom. sets of G

Min Connected Dom Enumeration (CDom·Enum)

output: the set MCDS(G) of all min. con. dom. sets of G

These problems are related to the following

Min Transversals Enumeration (Trans-Enum)

input: a hypergraph (V, \mathcal{H})

output: the set $MT(\mathcal{H})$ of min. transversals of \mathcal{H}

Link with transversals

It is easily observed that:

- Dom·Enum asks to hit closed neighborhoods
- TDom·Enum asks to hit open neighborhoods

These problems are in fact equivalent

Theorem (Kanté et al., SIDMA 14)

- Dom Enum ≡ Trans Enum
- TDom·Enum ≡ Trans·Enum

Moreover, if S(G) is the set of minimal separators of G, then for any graph G, we have MCDS(G) = MT(S(G))

However in general

- S(G) is exponential
- S(G) is hard to compute [BDK+24]

Status in general

Theorem (Kanté et al., SIDMA 14)

- Dom Enum ≡ Trans Enum
- TDom•Enum ≡ Trans•Enum

Moreover, if S(G) is the minimal separators of G, then for any graph G, we have MCDS(G) = MT(S(G))

Unfortunately the complexity status of Trans-Enum is open

Best-known algorithm is output-quasi-poly [FK96]

Decision version is among the few natural NP-intermediate problems

What about chordal bipartite graphs?

Status in chordal bipartite graphs

Theorem (Golovach et al., DAM 16)

In chordal bipartite graphs:

- Dom·Enum admits a inc-poly algorithm
- TDom·Enum admits an poly-delay algorithm

Two questions arise:

- can we improve to poly-delay for Dom·Enum?
- can we obtain output-poly for CDom·Enum?

Theorem (Castelo, D., and Gomes)

In chordal bipartite graphs:

- Dom·Enum admits a poly-delay algorithm
- TDom·Enum admits a poly-delay algorithm
- CDom·Enum admits an inc-poly algorithm

Techniques

Theorem (Castelo, D., and Gomes)

In chordal bipartite graphs:

- Dom·Enum admits a poly-delay algorithm
- TDom·Enum admits a poly-delay algorithm
- CDom·Enum admits an inc-poly algorithm

Techniques:

- sequential method + wseo for Dom·Enum + TDom·Enum
- conformality of min. sep. + [KBEG07] for CDom⋅Enum

This talk:

• sequential method + wseo for Dom·Enum via the enumeration of $MT(\mathcal{H})$ for \mathcal{H} the closed neighborhoods of G

Sequential method

Introduced⁵ by Eiter, Gottlob & Makino (STOC 2002)

Goal given $\mathcal{H} := \{N[v] : v \in V(G)\}$

- ullet define a peeling of ${\mathcal H}$ according to a vertex ordering
- ullet list min. transversals of increasing portions of ${\mathcal H}$

Sub-hypergraph induced by the *i* first vertices:

$$V_i := \{v_1, \dots, v_i\}$$

$$\mathcal{H}_i := \{E \in \mathcal{H} : E \subseteq V_i\}$$

Put $MT(\mathcal{H}_0) := \{\emptyset\}$

Goal: for all $0 \le i < n$ given $\mathsf{MT}(\mathcal{H}_i)$ enumerate $\mathsf{MT}(\mathcal{H}_{i+1})$

⁵As a generalization of an algorithm by Lawler et al. (SICOMP 80)

Sequential method

Wanted properties:

- (A) no cycle: to avoid repetitions
- (B) no leaf before level n: to avoid useless computation
- (C) efficient computation of children

(A) No cycle: parent relation

Let
$$(T, i)$$
 with $1 < i \le n$ and $T \in \mathsf{MT}(\mathfrak{H}_i)$

Parent of (T, i): set T^* obtained by repeating while there exists a vertex $v \in T$ with no private edge in \mathcal{H}_{i-1} remove one such vertex of smallest label

Properties:

- T* is uniquely defined
- T^* belongs to $MT(\mathcal{H}_{i-1})$

Put Children(T^* , i) as the set of minimal transversals of \mathcal{H}_{i+1} whose parent is T^*

(B) No stopping branch: extension

Let
$$(T^*, i)$$
 with $1 \le i < n$ and $T^* \in MT(\mathcal{H}_i)$

Properties: either

- T^* belongs to $MT(\mathcal{H}_{i+1})$; or
- $T^* \cup \{v_{i+1}\}$ does

Moreover this set is actually a child of (T^*, i) we may call trivial child

Proof sketch: edges of \mathcal{H}_{i+1} not in \mathcal{H}_i are those intersecting v_{i+1} ; moreover, private edges of T^* are included in V_i hence may not be lost by adding v_{i+1}

(C) Children generation

Goal: generate Children (T^*, i) given $T^* \in Tr(\mathcal{H}_i)$ and $1 \leq i < n$

What is the shape of non-trivial children?

Observations:

- parts of \mathcal{H}_{i+1} are already hit by T^*
- those that remain are precisely edges in

$$\Delta_{i+1} := \{ E \in \mathcal{H}_{i+1} : E \cap T^* = \varnothing, \ \mathbf{v}_{i+1} \in E \}$$

Lemma

childrens of T^* are of the form $T^* \cup X$ for $X \in \mathsf{MT}(\Delta_{i+1})$

Not every such X gives rise to a child⁶

But this approach is enough if $MT(\Delta_{i+1})$ is of poly size

⁶As X may steal private edges

Consider the underlying structure of $G + \mathbf{weso} \ v_1, \dots, v_n$ Sets in Δ_{i+1} are either $N[v_{i+1}]$, or N[u] for $u \in N[v_{i+1}]$ called blue They can be hit with v_{i+1} , blue u's, or other $w \in N[u]$ called red

Let B be the blue vertices, R the red ones

Lemma

Let $X \in MT(\Delta_{i+1})$. Then

- $|X \cap R \cap N(v_{i+1})| \leq 1$
- $|X \cap R \cap N^2(v_{i+1})| \le 1$ with N^2 the distance-2 neighborhood

20

Lemma

Let $X \in MT(\Delta_{i+1})$. Then exactly one of the following holds

- $X = \{v_{i+1}\}$
- $X \subseteq B$, in which case X = B
- $X \subseteq \mathbb{R}$, in which case $|X| \le 2$
- $X = \{r\} \cup (B \setminus N(r))$ for some $r \in N^2(v_{i+1})$

Lemma

Let $X \in MT(\Delta_{i+1})$. Then exactly one of the following holds

- $X = \{v_{i+1}\}$
- $X \subseteq B$, in which case X = B
- $X \subseteq \mathbb{R}$, in which case $|X| \le 2$
- $X = \{r\} \cup (B \setminus N(r))$ for some $r \in N^2(v_{i+1})$

The number of such X is poly in n

They can be enumerated in poly time

Theorem (Castelo, D., and Gomes)

Dom·Enum can be solved with poly delay in chordal bip. graphs

Adapting ${\mathcal H}$ to open neighb. yields the same for ${\sf TDom \cdot Enum}$

Open questions

Theorem (Castelo, D., and Gomes)

In chordal bipartite graphs:

- Dom·Enum admits a poly-delay algorithm
- TDom·Enum admits a poly-delay algorithm
- CDom·Enum admits an inc-poly algorithm

A natural question is whether these extend to bipartite graphs:

- poly delay for Dom·Enum?
- poly delay for TDom·Enum?
- output-poly for CDom·Enum?

Inc-poly is known for the first one [BDH⁺20] an can most probably be adapted for the second one; nothing is known for CDom·Enum

References i

- Marthe Bonamy, Oscar Defrain, Marc Heinrich, Michał Pilipczuk, and Jean-Florent Raymond. Enumerating minimal dominating sets in K_t -free graphs and variants. ACM Transactions on Algorithms (TALG), 16(3):1–23, 2020.
- Caroline Brosse, Oscar Defrain, Kazuhiro Kurita, Vincent Limouzy, Takeaki Uno, and Kunihiro Wasa. On the hardness of inclusion-wise minimal separators enumeration.

 Information Processing Letters, 185:106469, 2024.
- Michael L. Fredman and Leonid Khachiyan. On the complexity of dualization of monotone disjunctive normal forms. *Journal of Algorithms*, 21(3):618–628, 1996.

References ii

- Petr A. Golovach, Pinar Heggernes, Mamadou M. Kanté, Dieter Kratsch, and Yngve Villanger. **Enumerating minimal dominating sets in chordal bipartite graphs.** *Discrete Applied Mathematics*, 199:30–36, 2016.
- Leonid Khachiyan, Endre Boros, Khaled Elbassioni, and Vladimir Gurvich. On the dualization of hypergraphs with bounded edge-intersections and other related classes of hypergraphs. Theoretical Computer Science, 382(2):139–150, 2007.
- Mamadou M. Kanté, Vincent Limouzy, Arnaud Mary, and Lhouari Nourine. On the enumeration of minimal dominating sets and related notions. SIAM Journal on Discrete Mathematics, 28(4):1916–1929, 2014.

References iii

- E. L. Lawler, Jan K. Lenstra, and Alexander H. G. Rinnooy Kan. **Generating all maximal independent sets:** NP-hardness and polynomial-time algorithms. *SIAM Journal on Computing*, 9(3):558–565, 1980.
- John W. Moon and Leo Moser. On cliques in graphs. *Israel journal of Mathematics*, 3(1):23–28, 1965.
- Shuji Tsukiyama, Mikio Ide, Hiromu Ariyoshi, and Isao Shirakawa. A new algorithm for generating all the maximal independent sets. SIAM Journal on Computing, 6(3):505–517, 1977.

References iv

Ryuhei Uehara. Linear time algorithms on chordal bipartite and strongly chordal graphs. In Automata, Languages and Programming: 29th International Colloquium, ICALP 2002 Málaga, Spain, July 8–13, 2002 Proceedings 29, pages 993–1004. Springer, 2002.