Translating between the representations of a ranked convex geometry

Oscar Defrain, Lhouari Nourine, Simon Vilmin LIMOS, Université Clermont Auvergne, France

RIMS Seminar

Kyoto University, Japan February 4, 2020

Hypergraph Dualization parenthesis

- hypergraph: family of subsets $\mathcal{H} \subseteq 2^X$ on ground set X
- transversal of \mathcal{H} : $T \subseteq X$ s.t. $T \cap E \neq \emptyset$ for any $E \in \mathcal{H}$
- Tr(H): set of (inclusion-wise) minimal transervals of H it is a hypergraph!
- two hypergraphs \mathcal{H} and \mathcal{G} are called dual if $\mathcal{G} = Tr(\mathcal{H})$

Hypergraph Dualization parenthesis

- hypergraph: family of subsets $\mathcal{H} \subseteq 2^X$ on ground set X
- independent set of \mathcal{H} : $S \subseteq X$ s.t. $E \not\subseteq S$ for any $E \in \mathcal{H}$
- MIS(H): set of (inclusion-wise) maximal independent sets of H it is a hypergraph!
- $\rightarrow \text{ two hypergraphs } \mathcal{H} \text{ and } \mathcal{G} \text{ are dual iff } \overline{\mathcal{G}} = MIS(\mathcal{H}) \\ \overline{\mathcal{G}} = \{X \setminus E \mid E \in \mathcal{G}\}$

Partially ordered sets (posets)

- poset P = (V, ≤): binary relation ≤ on V which is transitive, reflexive, and antisymmetric (a ≤ b and b ≤ a ⇒ a = b)
- meet $a \wedge b$: x s.t. $x \ge y$ for all y below both a and b, if it exists
- join $a \lor b$: x s.t. $x \le y$ for all y above both a and b, if it exists

Lattices: iconic definition

- lattice L = (V, ≤): poset in which a ∧ b and a ∨ b are defined for every single pair a, b ∈ V of elements
- meet $a \wedge b$: x s.t. $x \ge y$ for all y below both a and b, if it exists
- join $a \lor b$: x s.t. $x \le y$ for all y above both a and b, if it exists

To every lattice \mathcal{L} corresponds a family of sets $\mathcal{C} \subseteq 2^X$ closed by intersection such that $\mathcal{L} \cong (\mathcal{C}, \subseteq)$, with ground set X as the top.

 $\rightarrow~$ Compact representation?

Representations of a lattice: meet-irreducibles

- meet-irreducible elements: elements with a unique successor
- more formally: elements $M \in \mathcal{L}$ s.t.

 $\forall A, B \in \mathcal{L}, \ M = A \cap B \implies M = A \text{ or } M = B$

• $\mathcal{M}(\mathcal{L})$: set of meet-irreducible elements of \mathcal{L}

Every lattice \mathcal{L} can be reconstructed by intersection of the family $\mathcal{M}(\mathcal{L})$ of its meet-irreducible elements.

 $\rightarrow~$ Compact representation?

Every lattice \mathcal{L} can be reconstructed by intersection of the family $\mathcal{M}(\mathcal{L})$ of its meet-irreducible elements.

 $\rightarrow\,$ Compact representation? it depends

Representations of a lattice: implicational bases

- implicational base (X, Σ): set Σ of implications A → b over a ground set X, i.e., A, {b} ⊆ X
- closed set of Σ: set C ⊆ X that satisfies the implications of Σ,
 i.e., such that A ∉ C or b ∈ C for all A → b ∈ Σ
- \mathcal{C}_{Σ} : set of all closed sets of Σ

$$X = \{1, 2, 3, 4, 5\}$$

$$4 \rightarrow 1$$

$$5 \rightarrow 2$$

$$3 \rightarrow 1$$

$$3 \rightarrow 2$$

$$45 \rightarrow 3$$

Every lattice \mathcal{L} can be reconstructed as the closed sets of some implicational base (X, Σ) , and many such imp. bases exist.

 \rightarrow Compact representation?

Every lattice \mathcal{L} can be reconstructed as the closed sets of some implicational base (X, Σ) , and many such imp. bases exist.

 $\rightarrow\,$ Compact representation? it depends

Every lattice corresponds to the models of a Horn expression, defined as clauses with at most one positive litteral.

Example:

$$\varphi = (\neg 4 \lor 1) \land (\neg 5 \lor 2) \land (\neg 3 \lor 1) \land (\neg 3 \lor 2) \land (\neg 4 \lor \neg 5 \lor 3)$$

In Horn logic:

- implicational base: Horn clauses of φ
- closed sets: models of φ + ground set
- meet-irreducibles: known as the characteristic models

Question:

What is better? implicational bases/meet-irreducibles?

There are lattices \mathcal{L} for which the size of $\mathcal{M}(\mathcal{L})$ is exponential in that of Σ , hence exponential in |X|, and vice versa.

Theorem (Khardon, 1995)

Translating between the representations of a lattice is harder than hypergraph dualization.

Meet-irreducible and Implicational Base identifications input: an implicational base (X, Σ) and a family of sets $\mathcal{M} \subseteq 2^X$. question: is $\mathcal{M} = \mathcal{M}(\mathcal{L}_{\Sigma})$?

Meet-irreducible enumeration

input: an implicational base (X, Σ) . output: the set $\mathcal{M}(\mathcal{L}_{\Sigma})$.

Implicational base enumeration

input: Two sets X and $\mathcal{M} \subseteq 2^X$. output: An implicational base^{*} (X, Σ) such that $\mathcal{M} = \mathcal{M}(\mathcal{L}_{\Sigma})$.

Dream goal: an algorithm running in poly(N)-time,

 $N = |X| + |\mathcal{M}| + |\Sigma|$

Hardness on a low class: acyclic convex geometries

- implication-graph G(Σ): directed graph on vertex set X, with an arc (a, b) if there exists A → b ∈ Σ s.t. a ∈ A.
- acyclic implicational base: s.t. $G(\Sigma)$ is acyclic.
- acyclic convex geometry (ACG): lattice that admits

an acyclic implicational base

Theorem (D., Nourine and Vilmin, 2019)

Translating between the representations of an acyclic convex geometry is harder than the dualization in distributive lattices.

Sublass: ranked convex geometries

• ranked implicational base: Σ that admits a rank function

 $\rho: X \to \mathbb{N} \text{ s.t. } A \to b \in \Sigma \implies \rho(a) = \rho(b) + 1, \ \forall a \in A$

• ranked convex geometry (RCG): lattice that admits

a ranked implicational base

If \mathcal{L} is a convex geometry then the set $\mathcal{M}(\mathcal{L})$ is partitioned by the family $\{j^{\nearrow} = Max_{\subseteq} \{C \in \mathcal{L} \mid j \notin C\}, j \in X\}.$

If \mathcal{L} is a convex geometry then the set $\mathcal{M}(\mathcal{L})$ is partitioned by the family $\{j^{\nearrow} = Max_{\subseteq} \{C \in \mathcal{L} \mid j \notin C\}, j \in X\}.$

Theorem (D., Nourine and Vilmin, 2019) Let \mathcal{L} be an acyclic convex geometry, and $j \in X$. Then enumerating $j^{\nearrow} = \text{Max}_{\subseteq} \{C \in \mathcal{L} \mid j \notin C\}$ is harder than the dualization in lattices given by acyclic implicational bases.

Theorem (D., Nourine and Vilmin, 2019) The meet-irreducible elements of a ranked convex geometry given by (X, Σ) can be enumerated in output quasi-polynomial time using hypergraph dualization.

Algorithm outline:

- partition the solutions
- $\rightarrow\,$ using hypergraph dualization, rank by rank
 - explore recursively
- \rightarrow height of the tree $\leq |X|$

Х

At first:

• $B = \{j\}$: set of elements that should not be implied

Then:

- $\mathcal{H}_B = \{ A \mid A \rightarrow b \in \Sigma, \ b \in B \}$ on ground set rank $\rho(B) + 1$
- for each $S \in MIS(\mathcal{H}_B)$, $\hat{S} = \{x \in X \mid \rho(x) = \rho(S), x \notin S\}$

• recursively call on \hat{S}

Constructing the ranked implicational base of a RCG

- $\phi(C)$: smallest set in \mathcal{L} containing C
 - obtained by intersecting $\{M \in \mathcal{M}(\mathcal{L}), C \subseteq M\}$
- minimal generator of j: minimal set $A \subseteq X \setminus \{j\}$ s.t. $j \in \phi(A)$

Folklore

The min. transversals of the hypergraph $\mathcal{H}_j = \{X \setminus M_j \mid M_j \in j^{\nearrow}\}$ on ground set $V = X \setminus \bigcap_{M_i \in j^{\nearrow}} M_j$ are the min. generators of j.

• $\operatorname{pred}(j) = \{a \in X \mid \exists A \to j \in \Sigma, a \in A\}$

 \wedge how to compute from $\mathcal{M}(\mathcal{L})$?

Theorem (D., Nourine and Vilmin, 2019) Let (X, Σ) be the critical base we want to compute, and $j \in X$. Then $A \rightarrow j \in \Sigma$ iff $A \in Tr(\mathcal{H}_j[pred(j)])$.

Constructing the ranked implicational base of a RCG

- $\phi(C)$: smallest set in \mathcal{L} containing C
 - obtained by intersecting $\{M \in \mathcal{M}(\mathcal{L}), C \subseteq M\}$
- minimal generator of j: minimal set $A \subseteq X \setminus \{j\}$ s.t. $j \in \phi(A)$

Lemma

Let $j \in X$, $M_j \in j^{\nearrow}$ and $a \notin M_j$. Then $a \in pred(j)$ iff $M_j \cup \{a, j\} = \phi(M_j \cup \{a, j\})$.

 \rightarrow can be solved in polynomial time in $|X| + |\mathcal{M}(\mathcal{L})|!$

Theorem (D., Nourine and Vilmin, 2019) The ranked implicational base of a ranked convex geometry can be constructed in output quasi-polynomial time from $\mathcal{M}(\mathcal{L})$ using hypergraph dualization.

Extending the algorithm:

• for meet-irreducible enumeration: how can implications out-of-rank be integrated?

it appears that implications $a \rightarrow b$ are not harmful

• for implicational base construction: how to generalize the characterization of pred(*j*) to other classes?

Recognizing RCG:

- easy from (X, Σ)
- in coNP from $\mathcal{M}(\mathcal{L})$, non trivial !
- \rightarrow is it in P?