Translating between the representations of a ranked convex geometry

Oscar Defrain, Lhouari Nourine, Simon Vilmin LIMOS, Université Clermont Auvergne, France

RIMS Seminar
Kyoto University, Japan
February 4, 2020

Hypergraph Dualization parenthesis

- hypergraph: family of subsets $\mathcal{H} \subseteq 2^{X}$ on ground set X
- transversal of $\mathcal{H}: T \subseteq X$ s.t. $T \cap E \neq \emptyset$ for any $E \in \mathcal{H}$
- $\operatorname{Tr}(\mathcal{H})$: set of (inclusion-wise) minimal transervals of \mathcal{H} it is a hypergraph!
- two hypergraphs \mathcal{H} and \mathcal{G} are called dual if $\mathcal{G}=\operatorname{Tr}(\mathcal{H})$

Hypergraph Dualization parenthesis

- hypergraph: family of subsets $\mathcal{H} \subseteq 2^{X}$ on ground set X
- independent set of $\mathcal{H}: S \subseteq X$ s.t. $E \nsubseteq S$ for any $E \in \mathcal{H}$
- $\operatorname{MIS}(\mathcal{H})$: set of (inclusion-wise) maximal independent sets of \mathcal{H} it is a hypergraph!
\rightarrow two hypergraphs \mathcal{H} and \mathcal{G} are dual iff $\overline{\mathcal{G}}=\operatorname{MIS}(\mathcal{H})$

$$
\overline{\mathcal{G}}=\{X \backslash E \mid E \in \mathcal{G}\}
$$

Partially ordered sets (posets)

- poset $P=(V, \leq)$: binary relation \leq on V which is transitive, reflexive, and antisymmetric ($a \leq b$ and $b \leq a \Longrightarrow a=b$)
- meet $a \wedge b: x$ s.t. $x \geq y$ for all y below both a and b, if it exists
- join $a \vee b: x$ s.t. $x \leq y$ for all y above both a and b, if it exists

Lattices: iconic definition

- lattice $\mathcal{L}=(V, \leq)$: poset in which $a \wedge b$ and $a \vee b$ are defined for every single pair $a, b \in V$ of elements
- meet $a \wedge b: x$ s.t. $x \geq y$ for all y below both a and b, if it exists
- join $a \vee b: x$ s.t. $x \leq y$ for all y above both a and b, if it exists

Lattices: seen as families of sets

Folklore

To every lattice \mathcal{L} corresponds a family of sets $\mathcal{C} \subseteq 2^{X}$ closed by intersection such that $\mathcal{L} \cong(\mathcal{C}, \subseteq)$, with ground set X as the top.
\rightarrow Compact representation?

Representations of a lattice: meet-irreducibles

- meet-irreducible elements: elements with a unique successor
- more formally: elements $M \in \mathcal{L}$ s.t.
$\forall A, B \in \mathcal{L}, M=A \cap B \Longrightarrow M=A$ or $M=B$
- $\mathcal{M}(\mathcal{L})$: set of meet-irreducible elements of \mathcal{L}

Representations of a lattice: meet-irreducibles

Folklore

Every lattice \mathcal{L} can be reconstructed by intersection of the family $\mathcal{M}(\mathcal{L})$ of its meet-irreducible elements.
\rightarrow Compact representation?

Representations of a lattice: meet-irreducibles

Folklore

Every lattice \mathcal{L} can be reconstructed by intersection of the family $\mathcal{M}(\mathcal{L})$ of its meet-irreducible elements.
\rightarrow Compact representation? it depends

Representations of a lattice: implicational bases

- implicational base (X, Σ) : set Σ of implications $A \rightarrow b$ over a ground set X, i.e., $A,\{b\} \subseteq X$
- closed set of Σ : set $C \subseteq X$ that satisfies the implications of Σ, i.e., such that $A \nsubseteq C$ or $b \in C$ for all $A \rightarrow b \in \Sigma$
- \mathcal{C}_{Σ} : set of all closed sets of Σ

$$
\begin{aligned}
X & =\{1,2,3,4,5\} \\
4 & \rightarrow 1 \\
5 & \rightarrow 2 \\
3 & \rightarrow 1 \\
3 & \rightarrow 2 \\
45 & \rightarrow 3
\end{aligned}
$$

Representations of a lattice: implicational bases

Folklore

Every lattice \mathcal{L} can be reconstructed as the closed sets of some implicational base (X, Σ), and many such imp. bases exist.
\rightarrow Compact representation?

Representations of a lattice: implicational bases

Folklore

Every lattice \mathcal{L} can be reconstructed as the closed sets of some implicational base (X, Σ), and many such imp. bases exist.
\rightarrow Compact representation? it depends

Horn formulas and Characteristic Models

Folklore

Every lattice corresponds to the models of a Horn expression, defined as clauses with at most one positive litteral.

Example:

$$
\varphi=(\neg 4 \vee 1) \wedge(\neg 5 \vee 2) \wedge(\neg 3 \vee 1) \wedge(\neg 3 \vee 2) \wedge(\neg 4 \vee \neg 5 \vee 3)
$$

In Horn logic:

- implicational base: Horn clauses of φ
- closed sets: models of $\varphi+$ ground set
- meet-irreducibles: known as the characteristic models

Question:
What is better? implicational bases/meet-irreducibles?

Relation between the two representations

Folklore

There are lattices \mathcal{L} for which the size of $\mathcal{M}(\mathcal{L})$ is exponential in that of Σ, hence exponential in $|X|$, and vice versa.

Relation between the two representations

Theorem (Khardon, 1995)

Translating between the representations of a lattice is harder than hypergraph dualization.

Translating between the representations of a lattice

Meet-irreducible and Implicational Base identifications

 input: an implicational base (X, Σ) and a family of sets $\mathcal{M} \subseteq 2^{X}$. $\underline{\text { question: }}$ is $\mathcal{M}=\mathcal{M}\left(\mathcal{L}_{\Sigma}\right)$?Meet-irreducible enumeration input: an implicational base (X, Σ). output: the set $\mathcal{M}\left(\mathcal{L}_{\Sigma}\right)$.

Implicational base enumeration input: Two sets X and $\mathcal{M} \subseteq 2^{X}$. output: An implicational base ${ }^{*}(X, \Sigma)$ such that $\mathcal{M}=\mathcal{M}\left(\mathcal{L}_{\Sigma}\right)$.

Dream goal: an algorithm running in poly (N)-time,

$$
N=|X|+|\mathcal{M}|+|\Sigma|
$$

Hardness on a low class: acyclic convex geometries

- implication-graph $G(\Sigma)$: directed graph on vertex set X, with an $\operatorname{arc}(a, b)$ if there exists $A \rightarrow b \in \Sigma$ s.t. $a \in A$.
- acyclic implicational base: s.t. $G(\Sigma)$ is acyclic.
- acyclic convex geometry (ACG): lattice that admits an acyclic implicational base

Hardness on ACGs

Theorem (D., Nourine and Vilmin, 2019)

Translating between the representations of an acyclic convex geometry is harder than the dualization in distributive lattices.

Sublass: ranked convex geometries

- ranked implicational base: Σ that admits a rank function

$$
\rho: X \rightarrow \mathbb{N} \text { s.t. } A \rightarrow b \in \Sigma \Longrightarrow \rho(a)=\rho(b)+1, \forall a \in A
$$

- ranked convex geometry (RCG): lattice that admits a ranked implicational base

Enumerating meet-irreducible in convex geometries

Folklore

If \mathcal{L} is a convex geometry then the $\operatorname{set} \mathcal{M}(\mathcal{L})$ is partitioned by the family $\left\{j^{\nearrow}=\operatorname{Max} \subseteq\{C \in \mathcal{L} \mid j \notin C\}, j \in X\right\}$.

Enumerating meet-irreducible in convex geometries

Folklore

If \mathcal{L} is a convex geometry then the $\operatorname{set} \mathcal{M}(\mathcal{L})$ is partitioned by the family $\left\{j^{\nearrow}=\operatorname{Max} \subseteq\{C \in \mathcal{L} \mid j \notin C\}, j \in X\right\}$.

Theorem (D., Nourine and Vilmin, 2019)
Let \mathcal{L} be an acyclic convex geometry, and $j \in X$. Then enumerating $j^{\nearrow}=\operatorname{Max}_{\subseteq}\{C \in \mathcal{L} \mid j \notin C\}$ is harder than the dualization in lattices given by acyclic implicational bases.

Theorem (D., Nourine and Vilmin, 2019)

The meet-irreducible elements of a ranked convex geometry given by (X, Σ) can be enumerated in output quasi-polynomial time using hypergraph dualization.

Enumerating meet-irreducible in convex geometries

Algorithm outline:

- partition the solutions
\rightarrow using hypergraph dualization, rank by rank
- explore recursively
\rightarrow height of the tree $\leq|X|$

Enumerating meet-irreducible in convex geometries

At first:

- $B=\{j\}$: set of elements that should not be implied

Then:

- $\mathcal{H}_{B}=\{A \mid A \rightarrow b \in \Sigma, b \in B\}$ on ground set rank $\rho(B)+1$
- for each $S \in \operatorname{MIS}\left(\mathcal{H}_{B}\right), \hat{S}=\{x \in X \mid \rho(x)=\rho(S), x \notin S\}$
- recursively call on \hat{S}

Constructing the ranked implicational base of a RCG

- $\phi(C)$: smallest set in \mathcal{L} containing C obtained by intersecting $\{M \in \mathcal{M}(\mathcal{L}), C \subseteq M\}$
- minimal generator of j : minimal set $A \subseteq X \backslash\{j\}$ s.t. $j \in \phi(A)$

Folklore

The min. transversals of the hypergraph $\mathcal{H}_{j}=\left\{X \backslash M_{j} \mid M_{j} \in j^{\nearrow}\right\}$ on ground set $V=X \backslash \bigcap_{M_{j} \in j} \nearrow M_{j}$ are the min. generators of j.

- $\operatorname{pred}(j)=\{a \in X \mid \exists A \rightarrow j \in \Sigma, a \in A\}$ © how to compute from $\mathcal{M}(\mathcal{L})$?

Theorem (D., Nourine and Vilmin, 2019)
Let (X, Σ) be the critical base we want to compute, and $j \in X$. Then $A \rightarrow j \in \Sigma$ iff $A \in \operatorname{Tr}\left(\mathcal{H}_{j}[\operatorname{pred}(j)]\right)$.

Constructing the ranked implicational base of a RCG

- $\phi(C)$: smallest set in \mathcal{L} containing C obtained by intersecting $\{M \in \mathcal{M}(\mathcal{L}), C \subseteq M\}$
- minimal generator of j : minimal set $A \subseteq X \backslash\{j\}$ s.t. $j \in \phi(A)$

Lemma

Let $j \in X, M_{j} \in j^{\nearrow}$ and $a \notin M_{j}$.
Then $a \in \operatorname{pred}(j)$ iff $M_{j} \cup\{a, j\}=\phi\left(M_{j} \cup\{a, j\}\right)$.
\rightarrow can be solved in polynomial time in $|X|+|\mathcal{M}(\mathcal{L})|$!

Theorem (D., Nourine and Vilmin, 2019)

The ranked implicational base of a ranked convex geometry can be constructed in output quasi-polynomial time from $\mathcal{M}(\mathcal{L})$ using hypergraph dualization.

Further work

Extending the algorithm:

- for meet-irreducible enumeration: how can implications out-of-rank be integrated?
it appears that implications $a \rightarrow b$ are not harmful
- for implicational base construction: how to generalize the characterization of $\operatorname{pred}(j)$ to other classes?

Recognizing RCG:

- easy from (X, Σ)
- in coNP from $\mathcal{M}(\mathcal{L})$, non trivial !
\rightarrow is it in P ?

