Enumerating minimal dominating sets in K_t -free graphs and variants

Marthe Bonamy, Oscar Defrain, Michał Pilipczuk, Marc Heinrich and Jean-Florent Raymond LaBRI, CNRS, Université de Bordeaux, France LIMOS, Université Clermont Auvergne, France MIMUW, University of Warsaw, Poland LIRIS, Université Claude-Bernard, Lyon, France LaS team, TU Berlin, Germany

RIMS Seminar

Kyoto University, Japan February 4, 2020 Typical question:

Given input I, list all objects of type X in I.

Examples:

- cycles, cliques, stable sets, dominating sets of a graph
- transversals of a hypergraph
- antichains of a partial order
- variable assignments satisfying a formula
- answers to a query
- trains to Paris leaving tomorrow before 10:00
- . . .

Remark: possibly many objects! $3^{n/3} \approx 1.4422^n$

Input-sensitive: in terms of input size

Theorem (Fomin, Grandoni, Pyatkin, and Stepanov, 2008) There is an $O(1.7159^n)$ -time algorithm enumerating all minimal dominating sets in n-vertex graphs.

ightarrow basically upper-bounds the number of objects

Output-sensitive: in terms of input+output size

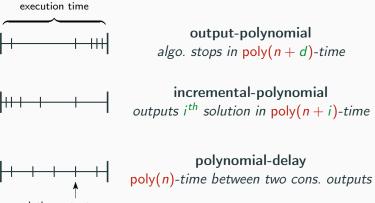
Theorem (Fredman and Khachiyan, 1996)

There is a $N^{o(\log N)}$ -time algorithm enumerating all minimal dominating sets in n-vertex graphs, where $N = n + |\mathcal{D}(G)|$.

→ many techniques (reverse search, backtrack search, ordered generation, proximity search, etc.)

"Fast" output-sensitive algorithms

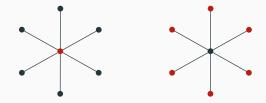
Let *n* be input size, e.g., number of vertices of a graph GLet *d* be output size, e.g., number of maximal cliques in G



solution output

Minimal dominating sets

- N(v): neighborhood of vertex v
- dominating set (DS): D ⊆ V(G) s.t. V(G) = D ∪ N(D)
 "D can see everybody else"
- minimal dominating set: inclusion-wise minimal DS



Private neighbors and irredundant sets

- N(v): neighborhood of vertex v
- dominating set (DS): $D \subseteq V(G)$ s.t. $V(G) = D \cup N(D)$ "*D* can see everybody else"
- minimal dominating set: inclusion-wise minimal DS
- private neighbor of $v \in D$:

- vertex that is $\begin{cases} \text{dominated by } v, \text{ and} \\ \text{not dominated by } D \setminus \{v\} \end{cases}$ (possibly v)
- irredundant set: $S \subseteq V(G)$ s.t. every $x \in S$ has a priv. neighbor

Observation

A DS is minimal if and only if it is irredundant. if all its vertices have a private neighbor. Minimal DS Enumeration (Dom-Enum) input: a *n*-vertex graph *G*. output: the set $\mathcal{D}(G)$ of minimal DS of *G*.

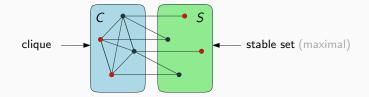
Dream goal: an output-poly. poly(N) algorithm, $N = n + |\mathcal{D}(G)|$

General case: open, best is quasi-polynomial No(log N)

Known cases:

- **output poly**.: log(*n*)-degenerate graphs
- incr. poly.: chordal bipartite graphs, bounded conformality graphs
- poly. delay: degenerate, line, and chordal graphs
- linear delay: permutation and interval graphs, graphs with bounded clique-width, split and *P*₇-free chordal graphs

Dom-Enum in split graphs (Kanté et al., 2014)



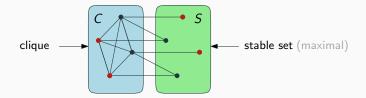
Proposition (Kanté, Limouzy, Mary, and Nourine, 2014) A set $D \subseteq V(G)$ is a minimal DS of G iff D dominates S and every $v \in D$ has a private neighbor in S.

Then: $D \cap S = \{ \text{all vertices not dominated by } D \cap C \}$

Enumeration: complete every irredundant set $X \subseteq C$ in S

- \rightarrow the family of such X's is an independence set system
- ightarrow can be enumerated with linear delay

Dom-Enum in split graphs (Kanté et al., 2014)



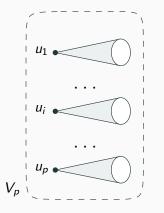
Theorem (Kanté, Limouzy, Mary, and Nourine, 2014) There is a linear-delay (and poly. space) algorithm enumerating minimal dominating sets in split graphs.

Then: $D \cap S = \{ \text{all vertices not dominated by } D \cap C \}$

Enumeration: complete every irredundant set $X \subseteq C$ in S

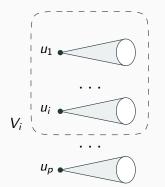
- \rightarrow the family of such X's is an independence set system
- ightarrow can be enumerated with linear delay

Goal: enumerating minimal DS one neighborhood at a time



Peeling: sequence
$$(V_0, ..., V_p)$$
 s.t
1. $V_p = V(G)$
2. for $i \in \{1, ..., p\}$:
 $V_{i-1} = V_i \setminus \{u_i\} \setminus N(u_i)$
3. $V_0 = \emptyset$

Goal: enumerating minimal DS one neighborhood at a time



Dominating set (DS) of V_i:

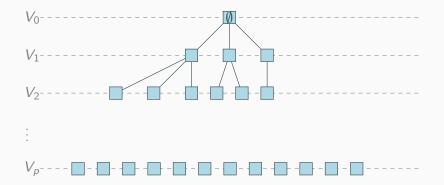
• $D \subseteq V(G)$ s.t. $V_i \subseteq D \cup N(D)$

"D can see everybody else in V_i "

Plan:

- 1. given minimal DS of V_i allowing vertices of $G - V_i$
- 2. enumerate those of V_{i+1} allowing vertices of $G - V_{i+1}$

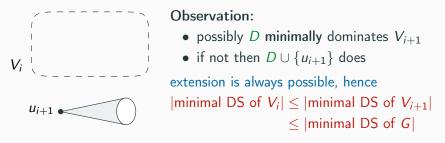
The algorithm



Important wanted properties:

- no cycle (using a *parent relation*: lexicographical order)
- no leaf before level *p* (no *exponential blowup*)

Goal: extend each minimal DS D of V_i to a minimal DS of V_{i+1}

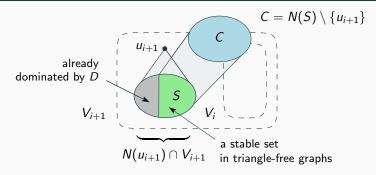


candidate extension of D: minimal set X s.t. $D \cup X$ dominates V_{i+1}

Lemma

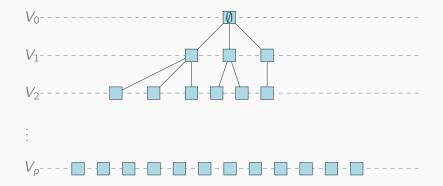
 $|candidate extensions of D| \leq |minimal DS of G|$

Which are the candidate extensions? The triangle-free case



- if u_{i+1} dom. by D: they only have to dominate S
 → exactly the minimal DS of Split(C, S)
- if u_{i+1} not dom. by D: they should also dom. u_{i+1} irredundant $\{t\} \cup Q$ s.t. $\begin{cases} t \in N(u_{i+1}) \\ Q \text{ minimal DS of Split}(C, S) \end{cases}$

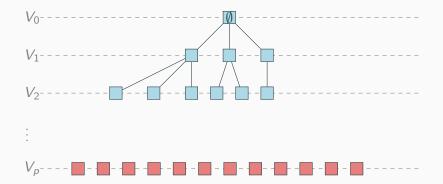
Complexity: the triangle-free case



For each minimal DS of V_i :

- compute all candidate extensions; in time $O(\text{poly}(n) \cdot |\mathcal{D}(G)|)$
- only keep the $X \cup D$'s that are minimal and children of D

Complexity: the triangle-free case

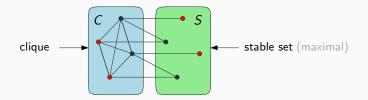


Theorem (Bonamy, D., Heinrich, and Raymond, 2019) The set $\mathcal{D}(G)$ of minimal DS of any triangle-free graph G can be enumerated in time $O(\text{poly}(n) \cdot |\mathcal{D}(G)|^2)$ and polynomial space.

Bicolored graph

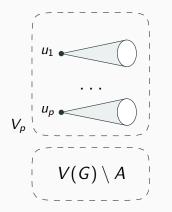
Bicolored graph: graph G with a bipartition A, B of V(G)

- G(A): bicolored graph of bipartition $(A, V(G) \setminus A)$
- dominating set (DS) of G(A): D ⊆ V(G) s.t. A ⊆ D ∪ N(D)
 "D can see everybody else in A"
- $\mathcal{D}(G, A)$: inclusion-wise minimal DS of G(A)



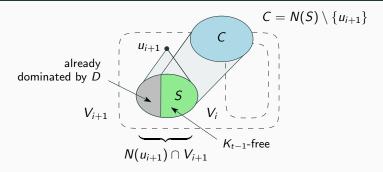
On split graphs of (maximal) stable set S, $\mathcal{D}(G) = \mathcal{D}(G, S)$

Goal: enum. minimal DS of G(A) one neighborhood at a time



Peeling: sequence $(V_0, ..., V_{p+1})$ s.t. 1. $V_{p+1} = V(G)$ 2. $V_p = A$ 3. for $i \in \{1, ..., p\}$: $V_{i-1} = V_i \setminus \{u_i\} \setminus N(u_i)$ 4. $V_0 = \emptyset$

Which are the candidate extensions? The K_t -free case



- if u_{i+1} dom. by D: they only have to dominate S
 → exactly the minimal DS of G(A)
- if u_{i+1} not dom. by D: they should also dom. u_{i+1} irredundant $\underbrace{\{t\} \cup Q}_{A}$ s.t. $\begin{cases} t \in N(u_{i+1}) \\ Q \text{ minimal DS of } G(S \setminus \{t\} \setminus N(t)) \end{cases}$

Theorem (Bonamy, D., Heinrich, Pilipczuk, and Raymond) The set $\mathcal{D}(G)$ of minimal DS of any graph G can be enumerated in time $O(n^{2^{t+1}} \cdot |\mathcal{D}(G)|^{2^t})$ and poly. space where $t = \omega(G) + 1$.

Future work:

• complexity improvements? delay is still open for bipartite graphs

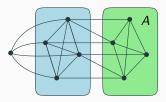
Theorem (Bonamy, D., Heinrich, and Raymond, 2019) Deciding if a vertex set S can be extended into a minimal DS is NP-complete in bipartite graphs.

• extensions to other classes?

 $K_t + K_2$ -free, paw-free, diamond-free \checkmark C_4 -free ? \bigstar comparability and unit disk ? \bigstar

Observation

Enumerating the minimal DS of G(S) is harder than Dom-Enum whenever A can contain an arbitrary large clique.



Dom-Enum is as hard in co-bipartite graphs as in general graphs (Kanté et al., 2014)