Avoidable paths in graphs

Marthe Bonamy, Oscar Defrain
Meike Hatzel, Jocelyn Thiebaut
CNRS, LaBRI, Université de Bordeaux
LIMOS, Université Clermont Auvergne
LaS, Technische Universität Berlin
LIRMM, Université de Montpellier

JGA 2019
Brussels, Belgium
November 13-15

Chordal graphs and simplicial vertices: Dirac's result

- A graph G is chordal if every induced cycle in G is a triangle.
- A vertex $v \in V(G)$ is simplicial if its neighborhood is a clique.

Theorem (Dirac, 1961)

Every chordal graph has a simplicial vertex.

A chordal graph and a simplicial vertex v.
Vertex u is not simplicial.

Generalization: avoidable vertices

- A vertex $v \in V(G)$ is avoidable if every induced path on three vertices with middle vertex v is contained in an induced cycle in G.

Theorem (Ohtsuki, Cheung, and Fujisawa, 1976)

Every graph has an avoidable vertex.

A (non-chordal) graph and an avoidable vertex v.
Vertex u is not avoidable (xuw is not in an induced cycle).

Generalization: avoidable vertices

- A vertex $v \in V(G)$ is avoidable if every induced path on three vertices with middle vertex v is contained in an induced cycle in G.

Theorem (Ohtsuki, Cheung, and Fujisawa, 1976)

Every graph has an avoidable vertex.

> simplicial \Longrightarrow avoidable in chordal graphs:
> simplicial \Longleftrightarrow avoidable

A (non-chordal) graph and an avoidable vertex v.
Vertex u is not avoidable (xuw is not in an induced cycle).

Generalization: avoidable paths

- An extension of an induced path P in G is an induced path $x P y$ in G for some vertices $x, y \in V(G)$.
- A path is failing if it is not contained in an induced cycle of G.
- A path is avoidable if it is induced and has no failing extension.

avoidable

Generalization: avoidable paths

- An extension of an induced path P in G is an induced path $x P y$ in G for some vertices $x, y \in V(G)$.
- A path is failing if it is not contained in an induced cycle of G.
- A path is avoidable if it is induced and has no failing extension.

Conjecture A (Beisegel et al., 2019)

For every positive integer k, every graph either is P_{k}-free or contains an avoidable P_{k}.

Generalization: avoidable paths

- An extension of an induced path P in G is an induced path $x P y$ in G for some vertices $x, y \in V(G)$.
- A path is failing if it is not contained in an induced cycle of G.
- A path is avoidable if it is induced and has no failing extension.

Conjecture A (Beisegel et al., 2019)

For every positive integer k, every graph either is P_{k}-free or contains an avoidable P_{k}.

Theorem (Chvátal et al., 2002)
For every positive integer k, every $C_{\geq k+3}$-free graph either is
P_{k}-free or contains an avoidable P_{k}.

Avoidable paths in subgraphs

- An extension of an induced path P in G is an induced path $x P y$ in G for some vertices $x, y \in V(G)$.
- A path is failing if it is not contained in an induced cycle of G.
- A path is avoidable if it is induced and has no failing extension.
\rightarrow Given a subgraph G^{\prime} of G, we say that P is an avoidable path of G in G^{\prime} if it is avoidable in G and $V(P) \subseteq V\left(G^{\prime}\right)$.

G

$G^{\prime}=G-w$

A stronger induction hypothesis

Basic property H_{B}

Given a positive integer k and a graph G, the property $H_{B}(G, k)$ holds if either G is P_{k}-free or there is an avoidable P_{k} in G.

Refined property H_{R}

Given a positive integer k, a graph G and a vertex $u \in V(G)$, the property $H_{R}(G, k, u)$ holds if either $G-N[u]$ is P_{k}-free or there is an avoidable P_{k} of G in $G-N[u]$.

Given a positive integer k and a graph G, the property $H_{R}(G, k)$ holds if $H_{R}(G, k, u)$ holds for every $u \in V(G)$.

- The conjecture reads as: $H_{B}(G, k)$ holds for every G and k. \triangle Property $H_{R}(G, k)$ does not directly imply property $H_{B}(G, k)$.

Some kind of heredity in H_{R}

Lemma B

Let k be a positive integer, G a graph and $u_{1} u_{2}$ an edge of G. Let G^{\prime} be the graph obtained from G by merging the two vertices u_{1} and u_{2} into one vertex u. If $G^{\prime}-N[u]$ contains a P_{k}, then $H_{R}\left(G^{\prime}, k, u\right)$ implies $H_{R}\left(G, k, u_{1}\right)$.

G

Some kind of heredity in H_{R}

Lemma B

Let k be a positive integer, G a graph and $u_{1} u_{2}$ an edge of G.
Let G^{\prime} be the graph obtained from G by merging the two vertices u_{1} and u_{2} into one vertex u.

G

$$
G^{\prime}=G_{\mid u_{1} u_{2} \rightsquigarrow u}
$$

Some kind of heredity in H_{R}

Lemma B

Let k be a positive integer, G a graph and $u_{1} u_{2}$ an edge of G.
Let G^{\prime} be the graph obtained from G by merging the two vertices u_{1} and u_{2} into one vertex u. If $G^{\prime}-N[u]$ contains a P_{k}, then $H_{R}\left(G^{\prime}, k, u\right)$ implies $H_{R}\left(G, k, u_{1}\right)$.

G

$G^{\prime}=G_{\mid u, u_{2} \times u}$

Some kind of heredity in H_{R}

Lemma B

Let k be a positive integer, G a graph and $u_{1} u_{2}$ an edge of G.
Let G^{\prime} be the graph obtained from G by merging the two vertices u_{1} and u_{2} into one vertex u. If $G^{\prime}-N[u]$ contains a P_{k}, then $H_{R}\left(G^{\prime}, k, u\right)$ implies $H_{R}\left(G, k, u_{1}\right)$.

G

$G^{\prime}=G_{u_{1} u_{2} \rightsquigarrow u}$

Some kind of heredity in H_{R}

Lemma B

Let k be a positive integer, G a graph and $u_{1} u_{2}$ an edge of G.
Let G^{\prime} be the graph obtained from G by merging the two vertices u_{1} and u_{2} into one vertex u. If $G^{\prime}-N[u]$ contains a P_{k}, then $H_{R}\left(G^{\prime}, k, u\right)$ implies $H_{R}\left(G, k, u_{1}\right)$.

Some kind of heredity in H_{R}

Lemma B

Let k be a positive integer, G a graph and $u_{1} u_{2}$ an edge of G.
Let G^{\prime} be the graph obtained from G by merging the two vertices u_{1} and u_{2} into one vertex u. If $G^{\prime}-N[u]$ contains a P_{k}, then $H_{R}\left(G^{\prime}, k, u\right)$ implies $H_{R}\left(G, k, u_{1}\right)$.

Some kind of heredity in H_{R}

Lemma B

Let k be a positive integer, G a graph and $u_{1} u_{2}$ an edge of G.
Let G^{\prime} be the graph obtained from G by merging the two vertices u_{1} and u_{2} into one vertex u. If $G^{\prime}-N[u]$ contains a P_{k}, then $H_{R}\left(G^{\prime}, k, u\right)$ implies $H_{R}\left(G, k, u_{1}\right)$.

Proof of Conjecture A

Theorem (Bonamy, D., Hatzel, and Thiebaut, 2019)
For every positive integer k and every graph G, both properties $\mathcal{H}_{B}(G, k)$ and $\mathcal{H}_{R}(G, k)$ hold.

Proof of Conjecture A

Theorem (Bonamy, D., Hatzel, and Thiebaut, 2019)
For every positive integer k and every graph G, both properties $\mathcal{H}_{B}(G, k)$ and $\mathcal{H}_{R}(G, k)$ hold.

Corollary

For every positive integer k, every graph either is P_{k}-free or contains an avoidable P_{k}.

Proof of Conjecture A

Theorem (Bonamy, D., Hatzel, and Thiebaut, 2019)

For every positive integer k and every graph G, both properties $\mathcal{H}_{B}(G, k)$ and $\mathcal{H}_{R}(G, k)$ hold.

Corollary

For every positive integer k, every graph either is P_{k}-free or contains an avoidable P_{k}.

- Consider a counterexample G minimum with respect to $|V(G)|$.
\rightarrow We show that $H_{R}(G, k)$ and $H_{B}(G, k)$ hold for every k to obtain a contradiction.

Proof of Conjecture A: H_{R} property

Lemma

The property $H_{R}(G, k)$ holds for every k.

- By contradiction: suppose there exists u and a P_{k} in $G-N[u]$, and every P_{k} in $G-N[u]$ has a failing extension in G.

G

Proof of Conjecture A: H_{R} property

Lemma

The property $H_{R}(G, k)$ holds for every k.

- By contradiction: suppose there exists u and a P_{k} in $G-N[u]$, and every P_{k} in $G-N[u]$ has a failing extension in G.
\rightarrow Every P_{k} in $G-N[u]$ dominates $N(u)$.

G

$G^{\prime}=G_{u v \leadsto u^{\prime}}$

Proof of Conjecture A: H_{R} property

Lemma

The property $H_{R}(G, k)$ holds for every k.

- By contradiction: suppose there exists u and a P_{k} in $G-N[u]$, and every P_{k} in $G-N[u]$ has a failing extension in G.
\rightarrow Every P_{k} in $G-N[u]$ dominates $N(u)$.
- Consider an induced path P and a failing extension $x P y$ in G :

Proof of Conjecture A: H_{R} property

Lemma

The property $H_{R}(G, k)$ holds for every k.

- By contradiction: suppose there exists u and a P_{k} in $G-N[u]$, and every P_{k} in $G-N[u]$ has a failing extension in G.
\rightarrow Every P_{k} in $G-N[u]$ dominates $N(u)$.
- Consider an induced path P and a failing extension $x P y$ in G :
$\rightarrow x P-z$ does not dominate y !
not avoidable

Proof of Conjecture A: H_{B} property

Lemma

The property $H_{B}(G, k)$ holds for every k.

- By contradiction: suppose G contains a P_{k} but no avoidable P_{k}.

Proof of Conjecture $A: H_{B}$ property

Lemma

The property $H_{B}(G, k)$ holds for every k.

- By contradiction: suppose G contains a P_{k} but no avoidable P_{k}.
\rightarrow By previous Lemma, $H_{R}(G, k)$ holds: for every $u \in V$, either $G-N[u]$ is P_{k}-free or there is an avoidable P_{k} of G in $G-N[u]$.

Proof of Conjecture $A: H_{B}$ property

Lemma

The property $H_{B}(G, k)$ holds for every k.

- By contradiction: suppose G contains a P_{k} but no avoidable P_{k}.
\rightarrow By previous Lemma, $H_{R}(G, k)$ holds: for every $u \in V$, either $G-N[u]$ is P_{k}-free or there is an avoidable P_{k} of G in $G-N[u]$.

Proof of Conjecture $A: H_{B}$ property

Lemma

The property $H_{B}(G, k)$ holds for every k.

- By contradiction: suppose G contains a P_{k} but no avoidable P_{k}.
\rightarrow By previous Lemma, $H_{R}(G, k)$ holds: for every $u \in V$, either $G-N[u]$ is P_{k}-free or there is an avoidable P_{k} of G in $G-N[u]$. \rightarrow Every P_{k} in G dominates $V(G)$.

Proof of Conjecture A: H_{B} property

Lemma

The property $H_{B}(G, k)$ holds for every k.

- By contradiction: suppose G contains a P_{k} but no avoidable P_{k}.
\rightarrow By previous Lemma, $H_{R}(G, k)$ holds: for every $u \in V$, either $G-N[u]$ is P_{k}-free or there is an avoidable P_{k} of G in $G-N[u]$.
\rightarrow Every P_{k} in G dominates $V(G)$.
- Consider an induced path P and a failing extension $x P y$ in G :

G

Proof of Conjecture A: H_{B} property

Lemma

The property $H_{B}(G, k)$ holds for every k.

- By contradiction: suppose G contains a P_{k} but no avoidable P_{k}.
\rightarrow By previous Lemma, $H_{R}(G, k)$ holds: for every $u \in V$, either $G-N[u]$ is P_{k}-free or there is an avoidable P_{k} of G in $G-N[u]$.
\rightarrow Every P_{k} in G dominates $V(G)$.
- Consider an induced path P and a failing extension $x P y$ in G :
$\rightarrow x P-z$ does not dominate y !

G

An algorithmic proof

Theorem (Bonamy, D., Hatzel, Thiebaut, 2019)

For every positive integer k, every graph either is P_{k}-free or contains an avoidable P_{k}.

```
Algorithm 1 finds an avoidable path of given length in a given graph, if any.
    procedure FINDAVOIDABLEPATHREFINED \((G, k, u)\)
        for all \(v \in N(u)\) do
            if \(\operatorname{InducedPath}(G-N[\{u, v\}], k) \neq\) null then
                    \(G^{\prime} \leftarrow G\) with \(u\) and \(v\) merged into \(u^{\prime}\)
                    return FindAvoidablePathRefined \(\left(G^{\prime}, k, u^{\prime}\right)\)
        return FindAvoidablePath \((G-N[u], k)\)
    procedure FindAvoIDABLEPATH \((G, k)\)
        for all \(u \in V(G)\) do
            if \(\operatorname{InducedPath~}(G-N[u], k) \neq\) null then
                return FindAvoidablePathRefined \((G, k, u)\)
            return \(\operatorname{IndUCEDPATH}(G, k)\)
```


Further (1)

Corollary 1

For every positive integer k, graph G and subset $X \subseteq V(G)$ such that $G[X]$ is connected, either $G-N[X]$ is P_{k}-free or there is an avoidable P_{k} of G in $G-N[X]$.

Further (1)

Corollary 1

For every positive integer k, graph G and subset $X \subseteq V(G)$ such that $G[X]$ is connected, either $G-N[X]$ is P_{k}-free or there is an avoidable P_{k} of G in $G-N[X]$.

Corollary 2

For every positive integer k and graph G, either G does not contain two non-adjacent P_{k}, or it contains two non-adjacent avoidable P_{k}.

Further (2)

Question

For every positive integer k, does every graph G either not contain two disjoint P_{k}, or contain two disjoint avoidable P_{k} ?

- Yes for $k=1,2$ [Beisegel et al. 2019].

Further (2)

Question

For every positive integer k, does every graph G either not contain two disjoint P_{k}, or contain two disjoint avoidable P_{k} ?

- Yes for $k=1,2$ [Beisegel et al. 2019].
- No for $k \geq 3$.

Further (2)

Question

For every positive integer k, does every graph G either not contain two disjoint P_{k}, or contain two disjoint avoidable P_{k} ?

- Yes for $k=1,2$ [Beisegel et al. 2019].
- No for $k \geq 3$.

Thank you!

