Hypergraph dualization with FPT-delay parameterized by the degeneracy and dimension

Valentin Bartier, Oscar Defrain, Fionn Mc Inerney LIRIS, Université Claude-Bernard, Lyon, France LIS, Aix-Marseille Université, France TU Wien, Austria

> IWOCA 2024 Ischia island, Italy Monday, July 1st

Typical question:

Given input I, list all objects of type X in I.

Examples:

- cycles, cliques, stable sets, dominating sets of a graph
- transversals/min. transversals of a hypergraph
- antichains of a partial order
- variable assignments satisfying a formula
- answers to a query
- trains to Paris leaving tomorrow before 10:00
- ...

Remark: possibly many objects! $3^{n/3} \approx 1.4422^n$

Two perspectives about complexity

Input-sensitive: in terms of input size

Theorem (Moon & Moser, 65)

There is an $O(3^{n/3})$ -time algorithm enumerating all the maximal cliques of a n-vertex graph.

ightarrow basically upper-bounds the number of objects

Output-sensitive: in terms of input+output size

Theorem (Tsukiyama et al., 77) There is a O(n + m + d)-time algorithm enumerating all the *d* maximal cliques of a n-vertex m-edge graph.

→ many techniques (reverse search, backtrack search, saturations algorithms, ordered generation, etc.) Efficiency for the output-sensitive approach

Let *n* be input size, e.g., number of vertices of a graph Let *d* be the # of solutions, e.g., number of max. cliques

Hypergraph dualization: definitions

Definitions:

• hypergraph: family of subsets $\mathcal{H} \subseteq 2^V$ on vertex set V

called Sperner if $A \not\subset B$ for any two $A,B \in \mathcal{H}$

- transversal of \mathcal{H} : $T \subseteq V$ s.t. $T \cap E \neq \emptyset$ for every $E \in \mathcal{H}$
- Tr(H): set of (inclusion-wise) minimal transervals of H it is a Sperner hypergraph!
- two Sperner hypergraphs \mathcal{H} and \mathcal{G} are dual if $\mathcal{G} = Tr(\mathcal{H})$

and we have $Tr(Tr(\mathcal{H})) = \mathcal{H}$

Hypergraph dualization: definitions

Definitions:

• hypergraph: family of subsets $\mathcal{H} \subseteq 2^V$ on vertex set V

called Sperner if $A \not\subset B$ for any two $A, B \in \mathcal{H}$

- transversal of \mathcal{H} : $T \subseteq V$ s.t. $T \cap E \neq \emptyset$ for every $E \in \mathcal{H}$
- Tr(H): set of (inclusion-wise) minimal transervals of H it is a Sperner hypergraph!
- two Sperner hypergraphs ${\cal H}$ and ${\cal G}$ are dual if ${\cal G}={\it Tr}({\cal H})$

and we have $Tr(Tr(\mathcal{H})) = \mathcal{H}$

Observation

A transversal T of \mathcal{H} is minimal **iff** for each vertex $v \in T$ there is a (so-called private for v) edge $E \in \mathcal{H}$ such that $E \cap T = \{v\}$.

Hypergraph dualization: the problem

Hypergraph Dualization

input: two (Sperner) hypergraphs \mathcal{H} , \mathcal{G} on a same vertex set. question: are \mathcal{H} and \mathcal{G} dual?

Minimal Transversals Enumeration (Trans-Enum) <u>input:</u> a (Sperner) hypergraph \mathcal{H} . output: the set $\mathcal{G} = Tr(\mathcal{H})$ of its minimal transversals.

Hypergraph dualization: best known algorithm

Hypergraph Dualization

input: two (Sperner) hypergraphs \mathcal{H} , \mathcal{G} on a same vertex set. question: are \mathcal{H} and \mathcal{G} dual?

Theorem (Fredman & Khachiyan, 1996)

There is an $N^{o(\log N)}$ quasi-polynomial time algorithm solving Hypergraph Dualization where $N = |\mathcal{H}| + |\mathcal{G}|$.

Rough idea: pick an element x_i with high frequency in \mathcal{H} or \mathcal{G} , and reduce the problem to the dualization of two separate instances not containing x_i

Yields a quasi-polynomial incremental delay algorithm

Hypergraph dualization: tractable parameters

Can we do better?

Yes, when some parameters are bounded¹:

- maximum degree² & degeneracy³: n^{O(k)} delay
- dimension⁴: $(n + m + i)^{O(k)}$ incremental delay
- clique number⁵: $(n + m + d)^{2^{O(k)}}$ total time

Question: can we improve to FPT times $f(k) \cdot N^{O(1)}$?

Known: FPT incremental for max. degree (delay is open)

This talk: FPT delay parameterized by degeneracy + dimension

¹these are polynomial for fixed value of k, called XP/slice-wise polynomial ²maximum number of edges a vertex intersects

³the minimum over all vertex left-to-right orderings of max. left degree

⁴maximum size of an edge

⁵of the underlying graph for hypergraphs of neighbourhoods

Ordered generation: peeling and definition

Introduced by Eiter, Gottlob & Makino (STOC 2002) **Goal:** augment min. tr. one (edge) neighborhood at a time Consider a vertex ordering v_1, \ldots, v_n of a hypergraph \mathcal{H}

Sub-hypergraph induced by the *i* first vertices: $V_i := \{v_1, \dots, v_i\}$ $\mathcal{H}_i := \{E \in \mathcal{H} : E \subset V_i\}$

Put $Tr(\mathcal{H}_0) := \{\emptyset\}$ Goal: for all $0 \le i \le n$ given $Tr(\mathcal{H}_i)$ enumerate $Tr(\mathcal{H}_{i+1})$

Ordered generation: solution graph

Wanted properties:

(A) no cycle: to avoid repetitions(B) no leaf before level *n*: to avoid useless computation

(A) No cycle: parent relation

Let (T, i) with $1 \leq i \leq n$ and $T \in Tr(\mathcal{H}_i)$

Parent of (T, i): set T^* obtained by repeating while there exists a vertex $v \in T$ with no private edge in \mathcal{H}_{i-1} remove one such vertex of smallest label

Properties:

- *T*^{*} is uniquely defined
- T^* belongs to $Tr(\mathcal{H}_{i-1})$

Put Children(T^* , *i*) as the set of minimal transversals of \mathcal{H}_{i+1}

whose parent is T^*

(B) No stopping branch: extension

Let (T^*, i) with $1 \leq i \leq n$ and $T^* \in Tr(\mathcal{H}_i)$

Properties: either

- T^* belongs to $Tr(\mathcal{H}_{i+1})$; or
- $T^* \cup \{v_{i+1}\}$ does

Moreover this set is actually a child of (T^*, i)

Proof sketch: edges of \mathcal{H}_{i+1} not in \mathcal{H}_i are those intersecting v_{i+1} ; moreover, private edges of T^* are included in V_i hence may not be lost by adding v_{i+1}

Ordered generation: the theorem FPT style

Theorem

There is an FPT-delay algorithm for Trans-Enum whenever there is one for children generation given any (T^*, i) .

Proof sketch: worst case delay is twice the height of the solution tree times the computation of the next child

Parameters: formal definitions

Let \mathcal{H} be a hypergraph

The degeneracy is the minimum, over all (left-to-right) vertex ordering v_1, \ldots, v_n , of the maximum (left) degree $|\{E \in \mathcal{H}_i : v_i \in E\}| \le k, 1 \le i \le n$

The dimension is the maximum size of an edge in $\ensuremath{\mathcal{H}}$

Degeneracy 1 Dimension 3 Children generation: brute force approach

Let us denote by k the degeneracy and d the dimension

Let v_1, \ldots, v_n be the degeneracy ordering

Goal: generate Children (T^*, i) given $T^* \in Tr(\mathcal{H}_i)$ and $1 \le i \le n$

Observations:

- childrens of T^{*} are of the form T^{*} ∪ X for X a minimal transversal of inc_{i+1}(v_{i+1}) := {E ∈ H_{i+1} : v_{i+1} ∈ E}
- $|\operatorname{inc}_{i+1}(v_{i+1})| \leq k$
- $|E| \le d$ for any $E \in \operatorname{inc}_{i+1}(v_{i+1})$

Brute force approach: compute $\bigcup \operatorname{inc}_{i+1}(v_{i+1})$ in $n^{O(1)}$ time and select among the $2^{k \cdot d}$ obtained subsets those that are minimal transversal of \mathcal{X} and children of (\mathcal{T}^*, i) .

This can be optimized to $k^d \cdot n^{O(1)}$ by guessing private edges

Children generation: limitations

Unfortunately, this approach fails if we relax

- the dimension: W[1]-hard p.b. degeneracy⁶
- the degeneracy: para-NP-hard p.b. the dimension

FPT for these parameters stays open

Preliminary steps of interest include:

- FPT p.b. the degeneracy for hypergraphs of neighborhoods
 ≡ minimal dominating sets enumeration p.b. degeneracy
- FPT p.b. by dimension in some classes of hypergraphs?
- FPT p.b. generalizations of the above combination e.g. degeneracy and edge-intersection/conformality

⁶This even holds for any chosen optimal degeneracy ordering