Neighborhood inclusions for minimal dominating sets enumeration

Oscar Defrain and Lhouari Nourine LIMOS, Université Clermont Auvergne, France

ISAAC 2019 Shanghai, China December 8–11 Typical question:

Given input I, list all objects of type X in I.

Examples:

- cycles, cliques, stable sets, dominating sets of a graph
- transversals of a hypergraph
- antichains of a partial order
- variable assignments satisfying a formula
- trains to Paris leaving tomorrow before 10:00
- . . .

Remark: possibly many objects! $3^{n/3} \approx 1.4422^n$

Two perspectives about complexity

Input-sensitive: in terms of input size

Theorem (Fomin, Grandoni, Pyatkin, and Stepanov, 2008) There is an $O(1.7159^n)$ -time algorithm enumerating all minimal dominating sets in n-vertex graphs.

ightarrow basically upper-bounds the number of objects

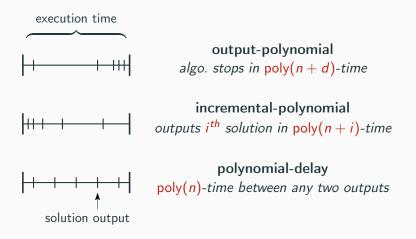
Output-sensitive: in terms of input+output size

Theorem (Fredman and Khachiyan, 1996)

There is an $N^{o(\log N)}$ -time algorithm enumerating all the minimal dominating sets of a n-vertex graph G, where $N = n + |\mathcal{D}(G)|$.

→ many techniques (reverse search, backtrack search, etc.)

Let *n* be input size, e.g., number of vertices of a graph GLet *d* be output size, e.g., number of dominating sets in G



Minimal dominating sets

- N[v]: closed neighborhood of vertex v
- dominating set (DS): D ⊆ V(G) s.t. V(G) = N[D]
 "D can see everybody else"
- minimal dominating set: inclusion-wise minimal DS
- private neighbor of $v \in D$: vertex u s.t. $N[u] \cap D = \{v\}$



Observation

A DS is minimal iff all its vertices have a private neighbor.

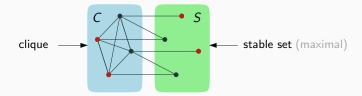
Minimal DS Enumeration (Dom-Enum) input: a *n*-vertex graph G output: the set $\mathcal{D}(G)$ of minimal DS of G

Dream goal: an output-poly. poly(*N*) algorithm, $N = n + |\mathcal{D}(G)|$ **General case:** open, best is quasi-polynomial $N^{o(\log N)}$

Known cases:

- **output-poly.**: log(n)-degenerate graphs, K_t -free graphs for fixed t
- incr. poly.: chordal bipartite graphs, bounded conformality graphs
- poly. delay: degenerate, line, and chordal graphs
- linear delay: permutation and interval graphs, graphs with bounded clique-width, split and *P*₆-free chordal graphs

Dom-Enum in split graphs (Kanté et al., 2014)



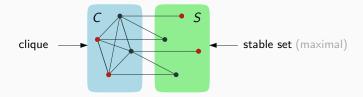
Proposition (Kanté, Limouzy, Mary, and Nourine, 2014) A set $D \subseteq V(G)$ is a minimal DS of G iff D dominates S and every $v \in D$ has a private neighbor in S.

Then: $D \cap S = \{ \text{all vertices not dominated by } D \cap C \}$

Enumeration: complete every set $X \subseteq C$ with priv. neighbors in *S* into a minimal DS of *G*

- \rightarrow the family of such X's is an independence set system
- ightarrow can be enumerated with linear delay

Dom-Enum in split graphs (Kanté et al., 2014)



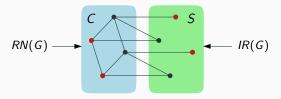
Theorem (Kanté, Limouzy, Mary, and Nourine, 2014) *There is a linear-delay algorithm enumerating minimal dominating sets in split graphs.*

Then: $D \cap S = \{ \text{all vertices not dominated by } D \cap C \}$

Enumeration: complete every set $X \subseteq C$ with priv. neighbors in *S* into a minimal DS of *G*

- \rightarrow the family of such X's is an independence set system
- ightarrow can be enumerated with linear delay

Redundant and irredundant vertices



- vertex v is redundant if there exists u s.t. $N[u] \subseteq N[v]$
- vertex v is irredundant otherwise

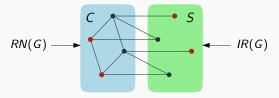
is minimal w.r.t. neighborhood inclusion

- *RN(G)*: the set of redundant vertices
- *IR*(*G*): the set of irredundant vertices

Proposition

A set $D \subseteq V(G)$ is a minimal DS of G iff D dominates IR(G)and every $v \in D$ has a priv. neighbor in IR(G).

Neighborhood inclusions for Dom-Enum



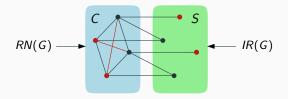
For $D \subseteq V(G)$:

- let $D_{RN} = D \cap RN(G)$ and $D_{IR} = D \cap IR(G)$
- let D_{RN}(G) = {D_{RN} | D ∈ D(G)} → an independence set system whenever G is P₇-free chordal, and an accessible set system whenever G is P₈-free chordal.

Enumeration: check for every set $A \subseteq RN(G)$

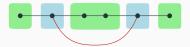
- \rightarrow whether $A \in \mathcal{D}_{RN}(G)$ (irredundant extension problem)
- \rightarrow if so, enumerate every extension $X \subseteq IR(G)$ s.t. $A \cup X \in \mathcal{D}(G)$

Case A: P₆-free chordal graphs

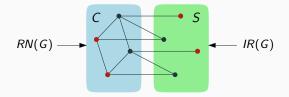


Proposition (Kanté, Limouzy, Mary, and Nourine, 2014) Let G be a P_6 -free chordal graph. Then completing RN(G) into a clique yields a split graph with the same minimal DS.

- \rightarrow linear-delay algorithm for Dom-Enum in P_6 -free chordal graphs
- \rightarrow does not hold for *P*₇-free chordal graphs (not even chordal)



Case B: P7-free and P8-free chordal graphs

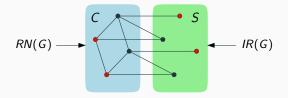


Proposition

Let G be a P_k -free chordal graph, $k \in \mathbb{N}$. Then the graph G[IR(G)] induced by IR(G) is P_{k-4} -free chordal.

- \rightarrow linear-delay algorithm for Dom-Enum in P7-free chordal graphs
- \rightarrow poly.-delay algorithm for Dom-Enum in P₈-free chordal graphs
 - \rightarrow checking $A \in \mathcal{D}_{RN}(G)$ is linear
 - \rightarrow enumerating X s.t. $A \cup X \in \mathcal{D}(G)$ is polynomial delay using backtrack search technique

Case B: P7-free and P8-free chordal graphs



Theorem (D. and Nourine, 2019)

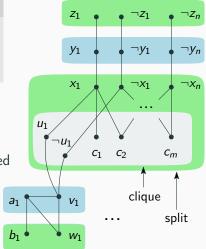
There are linear and polynomial-delay algorithms enumerating minimal dominating sets in P_7 -free and P_8 -free chordal graphs.

- \rightarrow linear-delay algorithm for Dom-Enum in P₇-free chordal graphs
- \rightarrow poly.-delay algorithm for Dom-Enum in P_8 -free chordal graphs
 - \rightarrow checking $A \in \mathcal{D}_{RN}(G)$ is linear
 - \rightarrow enumerating X s.t. $A \cup X \in \mathcal{D}(G)$ is polynomial delay using backtrack search technique

Case C: P9-free chordal graphs

Theorem (D. and Nourine, 2019) Deciding whether $A \in \mathcal{D}_{RN}(G)$ is NP-complete even when restricted to P₉-free chordal graphs.

- \rightarrow by reduction from SAT
- \rightarrow setting A = RN(G)
 - v_i needs a private u_i or $\neg u_i$
 - only c_1, \ldots, c_m are to be dominated



RN(G)

IR(G)