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Non-normal modal logics

Non-normal modal logics

Non-normal modal logics are obtained by adding to classical propositional logic
the rule of inference

A+ B

(RE) 5408

and any combination of the axioms

(M) O(AAB)—OAAOB
(C) CAAOB—O(AAB)
(N OT

Notation

The resulting systems are denoted with ES;...S,,, where S; € {M,C,N}.
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The cube of non-normal modal logics

EMCN (K)
EMC EMN ECN
EM EC EN
E
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Neighbourhood semantics

Neighbourhood frames

A neighbourhood frame is a pair F = (W, I) where
e W is a non empty set and
@ [ is a function W — PP(W).

Neighbourhood models
A neighbourhood model is a triple M = (W, I, V) where
e (W,I) is a neighbourhood frame and

@ V is a valuation function for atomic formulas.
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Neighbourhood semantics

Neighbourhood frames

A neighbourhood frame is a pair F = (W, I) where
e W is a non empty set and
@ [ is a function W — PP(W).

Neighbourhood models
A neighbourhood model is a triple M = (W, I, V) where
e (W,I) is a neighbourhood frame and

@ V is a valuation function for atomic formulas.

Truth in a world

M,wEp iff  weV(p):

Mw b= L

M,wEAANB  iff M,wE Aand M,w E B;

MwEA—-B iff Mywpk Ao M,wE B,

M,w = 0A iff Al € I(w), where ||[A||={veW | M,vE A}
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Neighbourhood semantics

Frame properties

A neighbourhood frame F = (W, I)
o is supplemented if: if & € I(w) and « C 3, then 8 € I(w);
e is closed under intersections if: if a, 8 € I(w), then a N g € I(w);
@ contains the unit if: for allw € W, W € I(w).
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Frame properties

A neighbourhood frame F = (W, I)
o is supplemented if: if & € I(w) and « C 3, then 8 € I(w);
e is closed under intersections if: if a, 8 € I(w), then a N g € I(w);
@ contains the unit if: for allw € W, W € I(w).

Correspondence
o M is valid on F iff F is supplemented.
o Cis valid on F iff F is closed under intersections.

@ N is valid on F iff F contains the unit.
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Neighbourhood semantics

Frame properties

A neighbourhood frame F = (W, I)
o is supplemented if: if & € I(w) and « C 3, then 8 € I(w);
e is closed under intersections if: if a, 8 € I(w), then a N g € I(w);
@ contains the unit if: for allw € W, W € I(w).

Correspondence
o M is valid on F iff F is supplemented.
e Cis valid on F iff F is closed under intersections.
@ N is valid on F iff F contains the unit.

Completeness

E(M/C/N) is sound and complete w.r.t. the class of all the neighbourhood
frames (that are supplemented/closed under intersections/contain the unit).
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Sequent calculi for basic non-normal modal logics

)
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State of the art

Internal calculi

o Lavendhomme, R., and T. Lucas, Sequent Calculi and Decision Procedures
for Weak Modal Systems, «Studia Logica», 65 (2000), pp. 121-145.

@ Lellmann, B. and E. Pimentel, Proof Search in Nested Sequent Calculi, in M.
Davis et al. (eds.), Proceedings of LPAR-20, 2015, pp. 558-574.
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o Lavendhomme, R., and T. Lucas, Sequent Calculi and Decision Procedures
for Weak Modal Systems, «Studia Logica», 65 (2000), pp. 121-145.

@ Lellmann, B. and E. Pimentel, Proof Search in Nested Sequent Calculi, in M.
Davis et al. (eds.), Proceedings of LPAR-20, 2015, pp. 558-574.

External calculi

o Gilbert, D. and P. Maffezioli, Modular Sequent Calculi for Classical Moldal
Logics, «Studia Logica», 103 (2015), pp. 175-217.

o Negri, S., Proof theory for non-normal modal logics: The neighbourhood
formalism and basic results, «IfColLog», 4 (2017), pp. 1241-1286.

Further internal calculi by Indrzejczak and Orlandelli for logics beyond the cube
(see References).
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Global aim

Desiderata
o Analyticity
o Standardness: finite numbers of rules each one with finite and fixed number
of premisses.
e Stronger requirement: each modal rule introduces exactly one modal formula.

Modularity
Termination of the decision procedure
Optimal complexity

Countermodel generation: obtain directly a countermodel from a failed proof
search.
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Global aim

Desiderata
o Analyticity

@ Standardness: finite numbers of rules each one with finite and fixed number
of premisses.

e Stronger requirement: each modal rule introduces exactly one modal formula.

e Modularity

@ Termination of the decision procedure

@ Optimal complexity

@ Countermodel generation: obtain directly a countermodel from a failed proof
search.

Long term goal
o Give labelled calculi satisfying the desiderata for all logics of the cube.

o Condider extensions with axioms T, D, 4, 5 and B.
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Labelled sequent calculus G3E
Negri (2017) }
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G3E  Negri (2017)

Enriching the language
o Labels: world labels z,, z ... ; neighbourhood labels: a,b,c....
o Expressions: a € I(z), z €a, xz: A, alF¥ A, A<a.
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G3E  Negri (2017)

Enriching the language

o Labels: world labels z,, z ... ; neighbourhood labels: a,b,c....
@ Expressions: a € I(z), x €a, v: A, alF" A, A<a.

Rules of G3E
Initial sequents =z :p,.I'= A, xz:p r€a,l=Ax€a

Propositional rules As for G3K

Rules for O

acl(z),alFr” A,A<a,T = A
z:0AT=A

LO (a fresh)

acl(z),l=Az:04,alF" A a€l(z),l'=Az:04,Ada

a€l(z),l = A z:04

12 / 39



G3E  Negri (2017)

Rules of G3E
Rules for local forcing
: v €al'=Az:A
r€a,r:Aallt” AT=A L TEa vﬂv RIFY (z fresh)
zeaalt’ AT=A I'=Aalt” A
Rules for <

A<a,I'= Az A r€a,Ada,'= A I
A<al = A <

*

z: A= Az€a
I'=AAda

R< (x fresh)

*Cf. Correction note.

13 / 39




G3E  Negri (2017)

Rules of G3E
Rules for local forcing
: v €al'=Az:A
ze€a,xz:Aalk” A=A L TEa vﬂv RILY (« fresh)
zeaalt’ AT=A I'=Aalt” A
Rules for <

A<a,I'= Az A r€a,Ada,'= A I
A<al = A <

*

z: A= Az€a
I'=AAda

R< (x fresh)

*Cf. Correction note.

Remarks

@ Too much syntax, not justified by the semantics.
e L< is computationally expensive.
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G3°E

Equivalent conditions for M, w = OA

(1) ]| € I(w).

(2) Thereis an a € I(w) such that o C [|A|| and || 4] C o

(3) Thereis an o € I(w) such that o C || A]| and a“ N || A[| = 0.
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G3°E

Equivalent conditions for M, w = OA

(1) 1Al € I(w).

(2) Thereis an « € I(w) such that o C ||A]| and ||A]| C «a.
(3) There is an o € I(w) such that oo C || A]| and a° N ||A]|

I
=

Idea
Rewrite the calculus by using (3).

Two kinds of neighbourhood labels

@ positive neighbourhood labels a, b, ¢, ...

@ negative neighbourhood labels @, b, , ...

e TS B



G3°E

Equivalent conditions for M, w = OA

(1) ]| € I(w).

(2) Thereis an a € I(w) such that o C [|A|| and || 4] C o

(3) Thereis an o € I(w) such that o C ||A]| and a“ N [|A]| = 0.

Idea
Rewrite the calculus by using (3).

Two kinds of neighbourhood labels
@ positive neighbourhood labels a, b, ¢, ...
@ negative neighbourhood labels @, b, , ...

A new LO rule

acl(z),alr” AT=Aal= A
r:0AT = A

LO (a fresh)
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G3°E
Initial sequents z:p,'= A x:p

Propositional rules  As in Negri 2017

Rules for O

acl(z),alr”" AT=Aalk A
d
T OATS A LO (a fresh)

a€l(x),l'=Az:04,alt" A acl(x),alr® ATl = A,z:0A4

O
a€l(z),l'=Az:04 R
Rules for local forcing
tAalFY AT = A €a,l'=Az:A
A T T2 RIY (x fresh)
rc€a,all” AT = A ' AalF” A
ca,xz: A=A . I3
z aaﬂf LI (« fresh) z€a,l'=Azxz:Aal" A RIL3
alFF AT = A

zea,l'=Aal® A

] 16 / 39



G3°E

Basic structural properties
@ Weakening and contraction are height-preserving admissible;
o All the rules are height-preserving invertible;
@ The cut rule is admissible (syntactic cut elimination).
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Basic structural properties
@ Weakening and contraction are height-preserving admissible;
o All the rules are height-preserving invertible;

@ The cut rule is admissible (syntactic cut elimination).

Completeness

G3CE is equivalent to E:

E-FA iff G3CEt=z: A forall z.

Completeness

G3CE is sound and complete w.r.t. the class of all the neighbourhood frames.
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G3°E

Basic structural properties
@ Weakening and contraction are height-preserving admissible;
o All the rules are height-preserving invertible;
@ The cut rule is admissible (syntactic cut elimination).

Completeness

G3CE is equivalent to E:

E-FA iff G3CEt=z: A forall z.

Completeness

G3CE is sound and complete w.r.t. the class of all the neighbourhood frames.

Termination of the decision procedure

Proof search for = 2 : A in G3“E is terminating.
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G3°E

Admissible rule

A crucial issue for semantic completeness of the calculus is the admissibility of the
rule

real =A rea,l'=A
I'= A

e Y



Digression: Weak neighbourhood semantics J
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Digression: Weak neighbourhood semantics

Weak neighbourhood frames
A weak neighbourhood frame is a pair F = (W, I) where
@ W is a non empty set and
o for any w € W, I(w) C P(W) x P(W) such that
if (a, ) € I(w), then aNa’ = 1.
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Weak neighbourhood frames
A weak neighbourhood frame is a pair F = (W, I) where
@ W is a non empty set and

o for any w € W, I(w) C P(W) x P(W) such that
if (a, ) € I(w), then aNa’ = 1.

M, w = OA iff there is a pair (o, o) € I(w) s.t. a C ||A]| and o/ N ||A]| = 0. ]
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Weak neighbourhood frames
A weak neighbourhood frame is a pair F = (W, I) where
@ W is a non empty set and
o for any w € W, I(w) C P(W) x P(W) such that
if (a, ) € I(w), then aNa’ = 1.

M, w = OA iff there is a pair (o, o) € I(w) s.t. a C ||A]| and o/ N ||A]| = 0. ]
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G3CE is sound and complete w.r.t. the class of all the weak neighb. frames.
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Digression: Weak neighbourhood semantics

@ W is a non empty set and
o for any w € W, I(w) C P(W) x P(W) such that
if (a, ) € I(w), then aNa’ = 1.

M, w = OA iff there is a pair (o, o) € I(w) s.t. a C ||A]| and o/ N ||A]| = 0.

Completeness

G3CE is sound and complete w.r.t. the class of all the weak neighb. frames.

Completeness (corollary)

Weak neighbourhood frames
A weak neighbourhood frame is a pair F = (W, I) where J
E is sound and complete w.r.t. the class of all the weak neighbourhood frames. J

e 0 f £



Digression: Weak neighbourhood semantics

Weak neighbourhood frames

A weak neighbourhood frame is a pair F = (W, I) where
@ W is a non empty set and
o forany w € W, I(w) C P(W) x P(W) such that
if (a, ) € I(w), then aNa’ = 1.

M, w = OA iff there is a pair (o, o) € I(w) s.t. a C ||A]| and o/ N ||A]| = 0. J

Completeness

G3CE is sound and complete w.r.t. the class of all the weak neighb. frames.

Completeness (corollary)

E is sound and complete w.r.t. the class of all the weak neighbourhood frames.

4

Semantic equivalence (corollary)

Est A iff g Al
e 20 / 390




Extending G3°E with N, C and M J
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Extending G3°E

(N) W e I(w) for all w € W. )

e =Y



Extending G3“E

(N) W e I(w) for all w e W.

Negri (2017)

acl(z), T<al'=A
' A

N (a fresh)

where z is in I’ U A.

22 / 39



Extending G3°E

(N) W e I(w) for all w € W. )

Negri (2017)

acl(z), T<al'=A
'sA

N (a fresh)

where z is in I’ U A.

New rules

Add a neighbourhood constant 7, interpreted as W.

Tel(x),l=A N
'=A g

zeTr, = A NT

where z is in T UA in rule NT.

e =Y



Ll

y: Lyerrel(z),=z:0T,y: L

R NF
- v yenrte€l(x),=x:0T,y:T yeT,y: T,7€l(x),=z:0T TH
RIF LIk

rel(z),=z:0T,7IFY T FIF T,7 € I(z),=2:0T
RO
Tel(x),=2:0T
=z:0T N7

] 23/ 30



Extending G3“E

(O) If , 8 € I(w), then an B € I(w), for all a, 8 C W. J
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Extending G3“E

(O) If , 8 € I(w), then an B € I(w), for all a, 8 C W.

Negri (2017)

anbel(x),acl(x),bel(z),I = A
acl(x),bel(x),T=A

re€a,rebxrcandl = A
re€anbl'= A

F'=Azxzecanbzrea F'=Azxecanbzrebd

I'sAzxzcand

24 / 39



Extending G3“E

(O) If , 8 € I(w), then an B € I(w), for all a, 8 C W. J

Negri (2017)

anbel(x),acl(x),bel(z),I = A
acl(x),bel(x),T=A

re€a,rebxrcandl = A
re€anbl'= A

I'sAxcanbzrea I'=sAzxzcanbxed
I'sAzxzcand

Remark

Infinitely many terms: order and repetitions count.

] 24/ 30



Extending G3°E

Two possible solutions

@ Restrict the applicability of rule C' in some opportune way.

@ Define neighbourhood terms as sets.

Neighbourhood terms as sets
Positive neighbourhood terms are sets of positive neighbourhood labels and are
written (aq, ..., ay).

t1 Uty EI(LL'),tl EI(Q?),tQ EI(.’L‘),F:>A
t1 El(l‘),tg EI(J?),F:>A

rE€t,x Etg,xet, I = A
ret,l'= A

LY (if t; Uty =1t)

ret,xet,'= A re€ty,xet,'= A
rzet,I'= A

L0 (if ty Uty = t)

e T3 /1 £



Ly ETy:Ay:B=alFI A y: A... o y€by:Ay:B,=blF3 B,y:B,...

"3 - — — RIF3
Ly Eay:Ay:B=al3 A.. Ly Eb,y: Ay B,=0bIF3 B, ...
LA
Ly E(a,b),y: A,y:B=alr? A,bIF3 B, ...
LA
*) oy €E(a,b),y: AANB=alF3 A DI B, ...
— 3 ENEE L3
L@l AaaB=aird A, 513 B, ...
— RO
(a,b) € I(z),a € I(x),b € I(x),alrY A,bIFY B= o :0(AAB), a3 A,b+3 B
a€I(z),beI(x),alrY A,b+Y B=a:0(AAB),@lF A, b3 B =
z:0A z:0B = z:0(AAB) Lo
L yi Ay :B=y:B,.. Yt A,y B =y A, ..
RA
L y€a,yEby:Ay:B y€ (a,b),alF? A bIFY B=y:AAB,... v
LI
L y€a,yebyc(ab),alFY A bIFY B=y:AAB,... ,
LN
oy €(a,b),alrY A b IFY B=y:AAB,...
v v v RIFY
*)...,atY A, b Y B, = (a,b) FY AAB, ...
e O £



Extending G3°E

(M) If a € I(w) and o C S, then 8 € I(w), for all a, 8 C W. |
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Extending G3°E

(M) If a € I(w) and o C S, then 8 € I(w), for all a, 8 C W.

a€l(w),aCbbel(lw),l'=A
a€l(w),aChT=A
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Extending G3°E

(M) If a € I(w) and o C S, then 8 € I(w), for all a, 8 C W. J
a€l(w),aCbbel(lw),l'=A

a€llw),aCbI'=A J

@ M is not applicable in G3E (also if rules for C are taken). J
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Extending G3°E

(M) If a € I(w) and o C S, then 8 € I(w), for all a, 8 C W. |
a€l(w),aCbbel(lw),I=A u
a€l(w),aChT=A J

@ M is not applicable in G3E (also if rules for C are taken). |

@ In general, it seems that supplementation cannot be expressed by a “good”
semantic rule.
w = O(AA B)
IAAB| € I(w)
Al € I(w)
Because ||A A B|| C ||A||: there is the truth-set ||A|| and ||[A A BJ| C || A].
This existential step is obvious (implicit) when reasoning semantically but it
isn't obvious for the proof system (cf. Gilbert and Maffezioli (2015)).

e L f1 B



Extending G3°E

Negri (2017)
M is obtained by modifying (simplifying) rules for O (a fresh in LOm).

acl(z),alr” AT = A acl(zx),l = A,z:04,alF" A

O
r:O0AT = A Lom a€l(x),l = Az:04 Rom

e Y



Extending G3°E

Negri (2017)
M is obtained by modifying (simplifying) rules for O (a fresh in LOm).

acl(z),alr” AT = A acl(zx),l = A,z:04,alF" A

r:O0AT = A Lom a€l(x),l = Az:04

Om

Our proposal

@ In our calculus the same rules are obtained by removing existential forcings

instead of <I-statements.

e For monotonicity we take the rules by Negri (2017).
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Extending G3°E

Negri (2017)
M is obtained by modifying (simplifying) rules for O (a fresh in LOm).

acl(z),alr” AT = A acl(zx),l = A,z:04,alF" A

O
r:O0AT = A Lom a€l(x),l = Az:04 Rom

Our proposal

@ In our calculus the same rules are obtained by removing existential forcings
instead of <-statements.

e For monotonicity we take the rules by Negri (2017).

Consequence

Calculi for monotonic and non-monotonic logics have separate but parallel lives:
Extensions are obtained by adding the same rules (or sometimes a simplified
versions for monotonic case).

e T 1 £



Mapping: from internal to external calculi J
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Internal calculi Lavendhomme and Lucas (2000)

Eseq: (CB) + (E) OP = 0Q

P=Q
Mseq: (CB)Jr(M)m.
P,..P,=Q Q=P .. Q=2P,

ECseq: (CB) + (En) OP,..,0P, = 0Q

P, ., P,=Q

MCseq: (CB) + (Mn) ap,...0pP, = 0Q

P=Q

MNseq: (CB) + (M) OP=0Q

+ (N)

=0Q

P,..P,=Q

MCNseq: (CB) + (Mn) oP,..,0P, = 0Q

(n>0).
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Translation

For every world label x
o ifI'=A,..., A, thenTl =z : Ay, ...z : A,.
o (I'= A)ls =Tl = Als,

e SV



Translation

For every world label x
o ifI'=A,..., A, thenTl =z : Ay, ...z : A,.
o (I'= A)ls =Tl = Als,

Theorem

If a sequent I" = A is derivable in an internal calculus, then its translation
(I' = A)t= is derivable in the corresponding external calculus for every label z.
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Translation

For every world label x
oif’=A;,..,A, thenTt =x: Ay, ...,z : A,.
o (I'= A)ls =Tl = Als,

Theorem

If a sequent I" = A is derivable in an internal calculus, then its translation
(I' = A)t= is derivable in the corresponding external calculus for every label .

Example: rule M,, (n > 1) of MCseq is derivable in G3“EMC.

eyt Al eyt An =y B,
y € ai,y € (a1,...,an), (a1, ...,an) € I(z),a; € I(x),a; F¥ A; =z : 0B,y : B
y € (a1, -, an), (a1, -..,an) € I(x),a; € I(x),a; F¥ A; = 2z :0B,y: B
(a1, ...,an) € I(x),a; € I(x),a; F¥ A; =z : OB, (a1, ...,a,) F’ B
(a1,..;an) € I(x),a; € I(z),a; F¥ A; = x: OB
a; € I(z),a; V¥ A; =z : OB
r:0A,..,x: 04, = x:0B

L IF7
LN*
RIFY

Om

*

LOm*

e ST



Open problems and future work

Extensions with T, D, 4, 5, B

@ In form of internal calculi they are considered in the works of Indrzejczak (see
References).
e All monotonic logics obtained by adding any combinations of axioms T, D, 4,
5, B have a cut free calculus.
o Only some of the non monotonic logics obtained by adding combinations of T,
D, 4, 5, B have a cut free calculus.

@ Semantic based labelled sequent calculi have not yet been studied.
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Open problems and future work

Extensions with T, D, 4, 5, B

@ In form of internal calculi they are considered in the works of Indrzejczak (see
References).
e All monotonic logics obtained by adding any combinations of axioms T, D, 4,
5, B have a cut free calculus.
o Only some of the non monotonic logics obtained by adding combinations of T,
D, 4, 5, B have a cut free calculus.

@ Semantic based labelled sequent calculi have not yet been studied.

Correspondence
(T) DA— A if a € I(w), then w € a.
(D) 0OA— -0-4 if « € I(w), then o ¢ I(w).
(4) 0OA—ODA if a € I(w), then {v:a € I(v)} € I(w).
(5) -0A—0O-0A |ifad¢I(w), then{v:a¢I(v)}e l(w).
(B) A—0-0-4 if we a, then {v:ac ¢ I(v)} € I(w).

e Y



Future work

(T) If ael(w), thenw € a.

a€l(x),r€al =A

a€l(z),I'=A
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Future work

(T) Ifael(w), thenw € a.

a€l(x),r€al =A
acl(z),I'=A

r:Ar€aacl(n)alF A =r:AalF? A
r€aacl(z),alF" A, =x:AalF? A
acl(z),alr” A,;=z:Aal> A
r:0A=z:A

LIFY

] 33/ 30



Future work

(D) If a € I(w), then o ¢ I(w).

a€I(z),beI(z),y €a,yebl =A a€l(x),bel(x),y€a,yecbl =A
acl(z),bel(x),I'=>A

D (y fr.)

] 34/ 30



Future work

(D) If a € I(w), then o ¢ I(w).

a€I(z),beI(z),y €a,yebl =A a€l(x),bel(x),y€a,yecbl =A
acl(z),bel(x),I'=>A

D (y fr.)

v

(1) (2)
a€I(x),beI(x),alr” AbIFY -A=al3 A bIF3 -A ©
z:0A,z:0-A= LB
WYyt A=y i AL
y:Ay:~Ayeayecbacl(z)bel(z),alt’ AbIFY -A=alF3 A,bIF3 -A ﬁm)
- LIk
W y€cayebaci(z),bel(z),allkY AbIFY -A=al3 AbIF A
YAyt AL B
yeayebacl(x),bel(@),al” AblF ~A=alF2 A6 -A,y: A,y:-A o
RIF

2yca,ycbacl(zx),bcl(z),alr” AbIFY -A=al3 A bl A
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Future work

ac€l(z),bel(x)ycayechl'=A

acl(x),bel(z),l = A Dm (y fresh)
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Future work

acl(z),bel(z),ycayechl =A
acl(x),bel(z),l = A

Dm (y fresh)

WYyt A=yt AL
y:Ay:-Ay€ay€bacI(c),bcI(z),alr” AbIFY —A=
yEayebacl(x),bel(x),alF” AbIF —-A=
acI(z),b€I(z),alr” AbIFY A=
r:0A z:0-A=

=

LIFY®)

Dm

Lo®
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Open problems and future work

Future work
(1) Extensions with T, D, 4, 5, B.
(2) Show the opposite mapping: form external to internal systems.

(3) Intuitionistic non-normal modal logics.
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Open problems and future work

Future work
(1) Extensions with T, D, 4, 5, B.
(2) Show the opposite mapping: form external to internal systems.

(3) Intuitionistic non-normal modal logics.

Thank you! J
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The Dependence Theorem (cf. Indrzejczak (2010))

CPL+TFD
CPL+T+5FB
CPL+D+44+BFT
E+T+5H4
E+B+4+DF5
E+B+54+TH4
E+B+THN
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