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§1. Introduction

• Proofs in modal logics are typically nonconstructive.

• A constructive method will be proposed here by reducting deriv-

ability in L⊕ ϕ to derivability in L.

• Mostly, the method is not more complex than its rivals.



§2. Modal Logic: Language

Fml is the following set:

➀ {pi : i ∈ ω} ⊆ Fml

➁ ⊥ ∈ Fml.

➂ If ϕ, χ ∈ Fml then (¬ϕ), (ϕ ∧ χ) ∈ Fml.

➃ If ϕ ∈ L, also (�ϕ) ∈ Fml.

(ϕ∨χ) and (ϕ→ χ) are abbreviations. dg(ϕ) is the maximum nesting

of modal operators. sf(∆) the set of subformulae of ∆, ♯∆ := | sf(∆)|.

�
<k+1ϕ := ϕ ∧��

<kϕ(1)

�
<k∆ := �

<k
∧

∆(2)



§3. Normal Modal Logics

A subset L ⊆ Fml is a (normal) modal logic if

➀ L contains all tautologies of classical logic.

➁ L is closed under substitution.

➂ L is closed under MP: If ϕ→ χ ∈ L and ϕ ∈ L then χ ∈ L.

➃ �(p0 → p1) → ((�p0) → (�p1)) ∈ L

➄ L is closed under (MN): If ϕ ∈ L then �ϕ ∈ L.

The smallest normal modal logic is called K.



§4. Some Standard Logics

L⊕∆ denotes the smallest modal logic containing L and ∆.

K4 := K⊕�p0 → ��p0

G := K⊕�(�p0 → p0) → �p0

S4 := K⊕ {�p0 → ��p0,�p0 → p0}
Grz := S4⊕�(�(p0 → �p0) → p0) → �p0

B := K⊕ p0 → �✸p0

K.alt1 := K⊕✸p0 → �p0

T := K⊕ p0 → ✸p0



§5. Local and Global Consequence

1. The local consequence relation of L. ∆ ⊢L ϕ iff ϕ can be

proved from ∆ ∪ L using only (MP).

2. The global consequence relation of L. ∆ 
L ϕ iff ϕ can be

derived from ∆ ∪ L using (MP) and (MN).



§6. Reduction Functions I

Assume that L ⊆ M and ∆ ⊢M ϕ. Let Π = 〈πi : i < n〉 be a

Hilbert-style proof of ϕ from ∆. Let X(∆;ϕ) be the set of theorems

of M contained in Π. Then

X(∆;ϕ) is finite

∆;X(∆;ϕ) ⊢L ϕ

We may also assume

var[Π] ⊆ var[∆;ϕ]



§7. Reduction Function II

Definition 1 (Local Reduction Function) Assume L ⊆ M .

X : ℘(Fml) → ℘(Fml) is a local reduction function from M to

L if

➊ X(∆) is finite if ∆ is,

➋ X(∆) ⊆M ,

➌ ∆ ⊢M ϕ iff ∆;X(∆;ϕ) ⊢L ϕ, and

➍ for all ∆: var[X(∆)] ⊆ var[∆].



§8. Reducing Decidability

Theorem 2 Suppose that L ⊆M .

1. If M is decidable, there exists a computable reduction func-

tion to L.

2. If L is decidable and there exists a computable reduction

function from M to L, M is also decidable.



§9. Global Reduction Functions

Definition 3 (Global Reduction Function) Assume L ⊆ M .

X : ℘(M) → ℘(M) is a global reduction function from M to

L if

1. X(∆) is finite if ∆ is,

2. X(∆) ⊆M ,

3. ∆ 
M ϕ iff ∆;X(∆;ϕ) 
L ϕ, and

4. for all ∆: var[X(∆)] ⊆ var[∆].



§10. Examples of Global Reduction Functions

The following are global reduction functions:

X4(∆) := {�χ→ ��χ : �χ ∈ sf(∆)}
XD(∆) := {¬�⊥}
XT(∆) := {�χ→ χ : �χ ∈ sf(∆)}
XB(∆) := {¬χ→ �¬�χ : �χ ∈ sf(∆)}
XG(∆) := {¬�χ→ ¬�(χ ∨ ¬�χ) : �χ ∈ sf(∆)}
XGrz(∆) := {¬�χ→ ¬�(χ ∨ ¬�(χ→ �χ)) : �χ ∈ sf(∆)}
Xalt1

(∆) := {¬�χ→ �¬χ : �χ ∈ sf(∆)}

The functions XG, XGrz are reduction functions to K4 and S4, respec-

tively, all others are to K.



§11. An Example

Theorem 4 Let L be complete for a class of finite frames that is

closed under passing from the relation to its symmetric closure.

Then

(3) XB(∆) := �
≤dg∆{¬χ→ �¬�χ : �χ ∈ sf(∆)}

is a local reduction function of L⊕ B to L.

Corollary 5 B has the finite model property and is complete with

respect to finite symmetric frames.

Finite model property becomes a corollary of the reduction, but is

implicitly used in the proof. Notice that all proofs are constructive!

No need to use infinite frames.



§12. Proof

Assume that ∆;�≤qXB(∆) is L-consistent, where q := dg(∆). We will

show that ∆ is L⊕ B-consistent. Pick a finite L-frame 〈F,✁〉, β and

x st

(4) 〈〈F,✁〉, β, x〉 � ∆;�≤qXB(∆)

Put ◭:= ✁∪✁
`. This is an L⊕B-frame. By induction on χ we show

that for all w reachable in ≤ q − dg(χ) steps from x:

(5) 〈〈F,◭〉, β, w〉 � χ ⇔ 〈〈F,✁〉, β, w〉 � χ



§13. Proof (continued)

(6) 〈〈F,◭〉, β, w〉 � χ ⇔ 〈〈F,✁〉, β, w〉 � χ

The only critical step is χ = �τ . (⇒) If x✁ y then also x ◭ y. (⇐)

Assume 〈〈F,◭〉, β, w〉 2 �τ . Then there is a v such that w ◭ v and

〈〈F,◭〉, β, v〉 � ¬τ . If w✁v, we are done. Otherwise, v✁w. However,
we have 〈〈F,✁〉, β, v〉 � ¬τ → �¬�¬τ . IH yields 〈〈F,✁〉, β, v〉 �

¬τ , and so 〈〈F,✁〉, β, w〉 � ¬�τ . This means 〈〈F,✁〉, β, w〉 2 �τ ,

as promised.

The claim now follows since ∆ has depth at most q. Hence ∆ is

L⊕ B-consistent. ⊠



§14. Interpolation

Definition 6 L has (local) interpolation if whenever ϕ ⊢L ψ

there exists a χ such that var(χ) ⊆ var(ϕ)∩var(ψ) and ϕ ⊢L χ ⊢L ψ.

Say that a reduction function splits if

X(ϕ→ χ) = X(ϕ;χ) = X(ϕ) ∪X(χ)

Theorem 7 Suppose that there is a splitting global reduction func-

tion from M to L. Then if L has (local) interpolation, so does M .



§15. Proof

By assumption and DT, 
M ϕ→ ψ. So,

X(ϕ→ ψ) 
L ϕ→ ψ

There is a k such that

�
<kX(ϕ→ ψ) ⊢L ϕ→ ψ

Since X is splitting, �<kX(ϕ);�<kX(ψ) ⊢L ϕ→ ψ, whence

ϕ;�<kX(ϕ) ⊢L
∧

�
<kX(ψ) → ψ

Pick an interpolant χ:

ϕ;�<kX(ϕ) ⊢L χ ⊢L
∧

�
<kX(ψ) → ψ

var(χ) ⊆ var(X(ϕ);ϕ) = var(ϕ), var(χ) ⊆ var(X(ψ);ψ) = var(ψ).

And ϕ ⊢M χ ⊢M ψ. ⊠



§16. Halldén-Completeness

All reduction functions shown above are splitting. Hence, interpolation

follows for many standard systems. Rautenberg (1983) uses a criterion

based on tableau rules, which is however quite opaque.

Definition 8 L is said to be Halldén-complete if for every ϕ

and χ disjoint in variables: If ϕ ⊢L χ then either ϕ ⊢L ⊥ or ⊢L χ.

Theorem 9 Suppose that X is a splitting global reduction function

from M to L. Then if L is Halldén-complete, so is M .



§17. Tableaux

∆� := {χ : �χ ∈ ∆}.

(¬E) ∆;¬¬ϕ
∆;ϕ

(∧E) ∆;ϕ ∧ ψ
∆;ϕ;ψ

(∨E) ∆;¬(ϕ ∧ ψ)
∆;¬ϕ|∆;¬ψ

(�E)
∆;¬�ϕ
∆�;¬ϕ

Proposition 10 ∆ has a closed tableau iff ¬
∧
∆ is inconsistent

in K.



§18. Completeness

Rautenberg (1983) has proposed the following rule for G.

(G)
∆;¬�ϕ

�∆�; ∆�;¬ϕ;�ϕ

This rule corresponds to adding �χ → ��χ as well as ¬�ϕ →
¬�(ϕ ∨ ¬�ϕ) above the line for certain formulae and then doing a

(�E)-step. (¬(ϕ ∨ ¬�ϕ) ≡ ¬ϕ ∧�ϕ.)



§19. Space Requirements of the Tableaux

Reduction functions allow to prove completeness of tableaux calculi.

||∆|| is the length of ∆ as a sequence, but with variables counting 1

each (so, the index i in pi does not count). Put ♯∆ := | sf(∆)|.

Proposition 11 Let ∆ be a sequence. A branch for ∆ in a local

tableau needs O(♯∆ log2 ♯∆) space to code.

Theorem 12 It can be checked in O(♯∆ log2 ♯∆) space whether a

given set ∆ of fomulae is satisfiable in K.



§20. Improving the Space Bound

Hemaspaandra (2000) assumes only one rule:

∆;¬�ϕ
(∆�;¬ϕ)∗

where Θ∗ denotes a downward saturation of Θ.

At step n only the formulae of modal embedding n + 1 become

relevant. The sets of occurrences of different degree are disjoint. Hence

we get

Theorem 13 (Hemaspaandra (2000)) It can be checked using

O(♯∆) space whether a given sequence ∆ of formulae is satisfiable

in K.



§21. Global Space Bounds via Reduction Functions

Lemma 14 Let L ⊇ K. Let X be a global reduction function from

L to K. If X is polynomial in ♯∆, L is globally EXPTIME.

Theorem 15 Let L ⊇ K. Suppose that X is a global reduction

function from L to K. Suppose further that there is a finite set Θ

of L-theorems such that X(∆) consists of some or all substitution

instances of Θ by members of sf(∆) for its variables. Then L is

globally in EXPTIME with respect to any of the measures.

Let n be the number of variables in Θ. Then we say X is n-analytic

with skeletal set Θ.



§22. Local Space Bounds I

Definition 16 Suppose that X is an n-analytic global reduction

from M to L with skeletal set Θ and that ρ is a function from sets

of formulae to natural numbers. If

(7) Y (∆) := {�<ρ(∆)+1
∧

X(∆)}

is a local reduction function from M to L, Y is called n-analytic

with skeletal set Θ and depth reduction function ρ.



§23. Local Space Bounds II

Theorem 17 Let n > 0. Suppose that Y is an n-analytic local re-

duction function from L to K with skeletal set Θ and depth reduc-

tion function ρ with ρ(∆) ≤ ♯∆. Then if ∆ is L-unsatisfiable then a

closing K-tableau for ∆;Y (∆) can be computed using O((♯∆)n dg(∆)))

space.

Theorem 18 Let M be a union of any the following logics: K,

KT, KB, K.alt1, KD. Then M is locally in O(♯∆ log ♯∆)-space.



§24. Global to Local Reduction

One can also reduce the global consequence to the local. Consider

h : ℘(Fml) → N such that

∆ 
L ϕ ⇔ �
<h(∆;ϕ)∆ ⊢L ϕ

The depth reduction function for K is exponential.

Theorem 19 Let p := ♯∆ and q := ♯ϕ. Then

∆ 
K ϕ ⇔ �
<2p+q∆ ⊢K ϕ

The bound cannot be significantly reduced. Eg if L ⊆ K.alt1, then

there are infinitely many ∆ such that

hL(∆) ≥ 2
√
♯∆



§25. Transitive Logics

For L transitive, ∆ 
L ϕ iff ∆;�∆ ⊢L ϕ. This transformation of

problems is linear; thus, the local/global distinction collapses. Hemas-

paandra’s method can be used to obtain an easy proof for the following

result.

Theorem 20 (Nguyen (1999)) Local satisfiability in K4 can be

checked in O(♯∆ log ♯∆) space.

Theorem 21 Let L be any union of KT, KB, KD, K.alt1, K4, KD,

K4.G and K4.Grz. Then L is locally in O(♯∆ log ♯∆)-space.



§26. Further Results

• The method is straightforwardly generalized to polymodal logics.

• Extensions of S4.3 are cofinal subframe logics (see Chagrov & Za-

kharyaschev (1997)). For L ⊇ S4.3 only a single tableau needs to

be computed. Hence, L is in NP and NP-complete if consistent

(see Spaan (1993)).

• Satisfiability in tense logic is in O(♯∆ log ♯∆).

• PDL with converse is EXPTIME-complete (see de Giacomo (1996)).

• Many splitting axioms preserve complexity bounds above K4 and

S4 (see Kracht (1993)). Eg (above K4): .1, .2 and (above S4):

.Dum.



• Using the standard Gödel-translation, which is linear, the space

bound O(♯∆ log ♯∆) for intuitionistic propositional logic given in

Hudelmaier (1993) can also be established.



§27. Conclusion

➀ Reduction functions provide constructive proofs of the finite model

property, decidability, interpolation and Halldén-completeness of

many standard systems.

➁ The method is uniform and requires only to establish the reduction.

Everything is else (eg interpolation, Halldén-completeness) is a

straightforward application of general theorems.

➂ The best known complexity bounds can be established for the stan-

dard systems.




