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Operations on tables: the natural join

Name Surname Item
Luigi Santocanale 33
Alan Turing 21

./

Item Description
33 Book
33 Livre
21 Machine

=

Name Surname Item Description
Luigi Santocanale 33 Book
Luigi Santocanale 33 Livre
Alan Turing 21 Machine

5/26



Operations on tables: the inner union

Name Surname Item
Luigi Santocanale 33
Alan Turing 21

∪
Name Surname Sport
Diego Maradona Football
Usain Bolt Athletics

=

Name Surname
Luigi Santocanale
Alan Turing

Diego Maradona
Usain Bolt
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Lattices from databases

Proposition. [Spight & Tropashko, 2006] The set of tables, whose
columns are indexed by a subset of A and values are from a set D,
is a lattice, with natural join as meet and inner union as join.

R(D,A) shall denote the lattice whose elements are tables, with
columns indexed a subset of A and cells’ values are from a set D.

A project (Tropashko). Rebuild Codd’s relational algebra out of
lattice theoretic building blocks.
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A family of undecidable theories and problems

Theorem (Maddux)

The equational theory of 3-dimensional diagonal free cylindric
algebras is undecidable.

Theorem (Hirsch and Hodkinson)

It is not decidable whether a finite simple relation algebra embeds
into a concrete one (a powerset of a binary product).

Theorem (Hirsch, Hodkinson and Kurucz)

It is not decidable whether a finite mutimodal frame has a
surjective p-morphism from a universal product frame.
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n-dimensional diagonal free cylindric algebras,
aka the multidimensional modal logic S5n

I n-dimensional cylindric algebras:
algebraic modelling of first order logic with no more than n variables.
Diagonal free: no equality.

I n-multimodal logic S5: we have n modal operators 〈i〉, i = 1, . . . , n,
each one is S5.

I S5n is the n-multimodal logic determined by the universal product
frames. These are product sets

X1 × . . .× Xn

with accessibility given by:

(x1, . . . , xn)Ri (y1, . . . , yn) iff xj = yj , for all j 6= i .

I For n ≥ 3, S5n has the finite model property, it is recursively
enumerable, yet it is not decidable.
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Quasiequations, equations

I A quasiequation (definite Horn clause) is the universal closure
of a formula of the form

s1 = t1 ∧ . . . ∧ sn = tn =⇒ s0 = t0 ,

with si , ti , i = 0, . . . , n, terms build over a fixed signature.

I The quasiequational theory of a class K: the set of
quasiequations holding in all elements of K.

I An equation is a quasiequation as above with n = 0.

I The equational theory of a class K: the set of equations
holding in all elements of K.
See the standard Birkhoff’s theorem.
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Undecidable quasiequational theories of relational lattices

Theorem (Litak, Mikulás and Hidders, 2015)

The set of quasiequations in the signature (∧,∨,H) that are valid
on relational lattices is undecidable.

This was refined to:

Theorem (Santocanale, RAMICS 2017)

The set of quasiequations in the signature (∧,∨) that are valid on
relational lattices is undecidable.

where we actually proved a stronger result:

Theorem (Santocanale 2017)

It is undecidable whether a finite subdirectly irreducible lattice
embeds into some R(D,A).
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The relational lattices R(D,A)

A a set of attributes, D a set of values.

An element of R(D,A):

I a pair (α,Y ) with α ⊆ A and Y ⊆ Dα.

We have

(α1,Y1) ≤ (α2,Y2) iff α2 ⊆ α1 and Y1��α2⊆ Y2 .

NB :

I �� is restriction:

Y��α = { f�α | f ∈ Y } .
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Meet and join

(α1,Y1) ∧ (α2,Y2) := (α1 ∪ α2,Y )

where Y = { f | f�αi
∈ Yi , i = 1, 2 }

= iα1∪α2(Y1) ∩ iα1∪α2(Y2) ,

(α1,Y1) ∨ (α2,Y2) := (α1 ∩ α2,Y )

where Y = { f | ∃i ∈ { 1, 2 },∃g ∈ Yi s.t. g �α1∩α2
= f }

= Y1��α1∩α2 ∪Y2��α1∩α2 .

NB :

I i is cylindrification:

iα(Y ) = { f | f�α ∈ Y } .
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Representation via closure operators

The Hamming/Priess Crampe-Ribenboim ultrametric distance on DA:

δ(f , g) := { x ∈ A | f (x) 6= g(x) } .

NB: this distance takes values in the join-semilattice (P(A), ∅,∪).

A subset Z of A + DA is closed if(
δ(f , g) ⊆ A ∩ Z

g ∈ DA ∩ Z

)
implies f ∈ Z .

Proposition. [Litak, Mikulás and Hidders 2015] R(D,A) is isomorphic to
the lattice of closed subsets of A + DA.
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Lattices from generalized ultrametric spaces

In a similar way, we can construct a lattice from any generalized
ultrametric space (X , δ) over some P(A).

A subset Z ∈ P(A + X ) is closed if(
δ(f , g) ⊆ A ∩ Z

g ∈ X ∩ Z

)
implies f ∈ Z .

Thus we put

L(X , δ) := { (α,Y ) | 〈α〉Y ⊆ Y } ,

where

〈α〉Y = { f ∈ X | ∃g ∈ Y s.t. δ(f , g) ⊆ α } .

Clearly R(D,A) = L(DA, δ).
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Universal product spaces as injective generalized
ultrametric spaces

Lemma
TFAE :

I (X , δ) is injective in the category of generalized ultrametric
spaces over P(A),

I (X , δ) is, up to isomorphism, a universal product space:

X =
∏
a∈A

Xa , δ(x , y) = { a ∈ A | xa 6= ya } .

Remark : intuitively, injective means complete.
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Relational lattices as modal logic
We can interpret the theory of the lattices L(X , δ) in a sort of
multidimensional S5n modal logic. Modal operators are indexed by
subsets of A:

〈α〉Y := { f ∈ DA | ∃g ∈ Y s.t. δ(f , g) ⊆ α } .

If (X , δ) is injective, then we have the following logical equivalence:

〈α1 ∪ α2〉Y = 〈α1〉〈α2〉Y .

Meet is conjunction, where the join is:

(α1,Y1) ∨ (α2,Y2) = (α1 ∪ α2, 〈α1 ∪ α2〉(Y1 ∪ Y2))

= (α1 ∪ α2, 〈α1 ∪ α2〉Y1 ∪ 〈α1 ∪ α2〉Y2)

= (α1 ∪ α2, 〈α2〉〈α1〉Y1 ∪ 〈α1〉〈α2〉Y2)

= (α1 ∪ α2, 〈α2〉Y1 ∪ 〈α1〉Y2) .
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Strategy

I Every lattice equation t = s is equivalent to a pair of
“inclusions”, t ≤ s and s ≤ t.

I We show that if an inclusion t ≤ s fails in a lattice R(D,A),

then it fails in a lattice R(E ,B) of size O(22
2n

), with
n = size(t, s).

I The method is reminiscent of Gabbay’s selective filtration in
modal logic.

I Thanks to TICAMORE: I would have not found this, if had
not wondered about semantics vs syntactic methods for
decidability in modal logic.
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The tableau of a failure

Suppose t ≤ s is not vaild in all the R(D,A)s.

I For some A,D and v : X −→ R(D,A), JtKv 6⊆ JsKv .

I We can suppose that f ∈ JtKv \ JsKv for some f ∈ DA.

Lemma (preservation of failures)

There is a finite subset T (f , t) ⊆ DA such that, if
T (f , t) ⊆ T ⊆ DA, then

L(T , δ) 6|= t ≤ s .

I Above, (T , δ) is the subspace of (DA, δ) induced by T .
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Failures in a finite lattice

I The lattice L(T , δ) might still be infinite, even if T is finite.

I This is because we have a copy of P(A) inside it.

Let T be finite.

I If BT is the Boolean algebra generated by

{ δ(g , h) | g , h ∈ T } ∪ {A ∩ v(x) | x ∈ Vars(t, s) } ,

then BT ' P(BT ) for some finite subset BT .

I We consider T as a generalized ultrametric space (T , δBT
) over

P(BT ).

Lemma (preservation of failures in the finite)
There is a finite subset T (f , t) ⊆ DA such that, if T (f , t) ⊆ T ⊆ DA

and T is finite, then

L(T , δBT
) 6|= t ≤ s .
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Failures in a universal product frame

I The L(T , δBT
) is finite lattice.

I Yet, it does not need to be in the variety of the R(D,A)s.

Lemma
For each finite T there is a finite G (T ) ⊆ DA such that

I T ⊆ G (T ),

I BT = BG(T ),

I (G (T ), δBG(T )
) is injective relative to P(BT ).

Corollary. Let T0 := T (f , t). Then the lattice L(G (T0), δBT0
) is

finite and

L(G (T0), δBT0
) 6|= t ≤ s .
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Summing up

I If (G (T0), δBT0
) is injective then (up to isomorphism)

G (T0) =
∏

b∈BT0

Xb .

I Taking b0 so Xb0 is of maximal cardinality, we can embed G (T0)
into Xb0

BT0 : ∏
b∈BT0

Xb ⊆
∏

b∈BT0

Xb0 = Xb0
BT0 .

I Using injectivity, functoriality, and a bit of lattice theoretic tricks,
we can show L(G (T0), δBT0

) is a homomorphic image of a sublattice
of R(Xb0 ,BT0).

I Then

R(Xb0 ,BT0) 6|= t ≤ s

otherwise we would have L(G (T0), δBT0
) |= t ≤ s.
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TICAMORE challenges

I complexity issues ;

I axiomatizations and automated tools ;

I completeness ;

I from labeled calculi to pure equational axioms ?
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