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81. Introduction

e Proofs in modal logics are typically nonconstructive.

e A constructive method will be proposed here by reducting deriv-

ability in L & ¢ to derivability in L.

e Mostly, the method is not more complex than its rivals.



82. Modal Logic: Language

Fml is the following set:
® {p; i € w} C Fml
@ 1 € Fml.
® If ¢, x € Fml then (=), (@ A x) € Fml.
@ If o € L, also (Lyp) € Fml.

(pVx)and (p — x) are abbreviations. dg(¢y) is the maximum nesting
of modal operators. sf(A) the set of subformulae of A, A = |sf(A)].

(1) |:|<k-|-1$0 = A |:||:|<k90
(2) OA:=0"AA



83. Normal Modal Logics

A subset L C Fml is a (normal) modal logic if
@ L contains all tautologies of classical logic.
@ L is closed under substitution.
® L is closed under MP: If ¢ — x € L and ¢ € L then x € L.
@ O(po — p1) = ((Hpo) = (Op1)) € L
® L is closed under (MN): If ¢ € L then Oy € L.

The smallest normal modal logic is called K.



84. Some Standard Logics
L & A denotes the smallest modal logic containing L and A.

K4 .= K& Upy — Opg
G:= Ko OOpy — po) — Opo
S4 .= K@ {Opy — OOpg, Opo — po}
Grz .= S4 ® O(0(py — Opg) — po) — Opg
B:=K®p)— USp
K.alt; .= K® Opy — Lpg
T:=Kdpy— Cpog



85. Local and Global Consequence

1. The local consequence relation of L. A F ¢ iff ¢ can be
proved from A U L using only (MP).

2. The global consequence relation of L. A I, ¢ iff ¢ can be
derived from A U L using (MP) and (MN).



§6. Reduction Functions I

Assume that L € M and A Fy . Let IT = (m; © @ < n) be a
Hilbert-style proof of ¢ from A. Let X(A;p) be the set of theorems
of M contained in II. Then

X (A; ) is finite
A; X(Asp) b

We may also assume
var([ll] C var[A; ¢]



§7. Reduction Function II

Definition 1 (Local Reduction Function) Assume L C M.
X : p(Fml) — p(Fml) is a local reduction function from M to
L if

O X (A) is finite if A is,

® X(A) C M,

O Aty g iff A X(A5p) L w, and

O for all A: var| X (A)] C var[A].



§8. Reducing Decidability

Theorem 2 Suppose that L C M.

1. If M s decidable, there exists a computable reduction func-
tion to L.

2. If L 1s decidable and there exists a computable reduction
function from M to L, M 1is also decidable.



89. Global Reduction Functions

Definition 3 (Global Reduction Function) Assume L C M.

X (M) — (M) is a global reduction function from M to
L if

1. X(A) is finite if A is,

2. X(A) C M,

3. Al @ iff Ay X(A;9) kL @, and
4. for all A: var| X (A)] C var[A].



§10. Examples of Global Reduction Functions

The following are global reduction functions:

X4(A) = {0Ox —0O0x:Ox esf(A)}
Xp(A) = {201}
X1(A) = {0Ox — x:Oxest(A)}
Xg(A) = {-x— 0O-0Ox:0Ox esf(A)}
Xe(d) = {0y — -0 Vv-Oyx):Ox esf(A)}
Xer(A) = {-0Oxy — -0O(xVv-O(x — Oyx)) : Ox € sf(A)}
Xa, (A) = {-0Ox = O-x:Ox esf(A)}

The functions X¢, X, are reduction functions to K4 and S4, respec-

tively, all others are to K.



811. An Example

Theorem 4 Let L be complete for a class of finite frames that is

closed under passing from the relation to its symmetric closure.
Then

(3) Xg(A) ;= OS82~y - O-0Oy : Oy € sf(A)}
s a local reduction function of L & B to L.

Corollary 5 B has the finite model property and is complete with

respect to finite symmetric frames.

Finite model property becomes a corollary of the reduction, but is
implicitly used in the proof. Notice that all proofs are constructive!

No need to use infinite frames.



812. Proof
Assume that A; [052Xg(A) is L-consistent, where ¢ := dg(A). We will
show that A is L @ B-consistent. Pick a finite L-frame (F, <), § and

T st
(4) ((F,<1),8,2) F A;D=1Xg(A)

Put €:= <U <™. Thisis an L @ B-frame. By induction on y we show
that for all w reachable in < ¢ — dg(x) steps from z:

(5) (F,pfwEx &  ({F<),5w)FX



§13. Proof (continued)

(6) (F€pwEx <  ({(F9)8wkEX

The only critical step is x = O7. (=) If z <y then also x € y. (<)
Assume ((F, «), B,w) ¥ Or. Then there is a v such that w <« v and
((F, <), B,v) E —-1. If w<v, we are done. Otherwise, v<iw. However,
we have ((F, <), B,v) E -7 — O-0O-7. IH yields ((F, <), 5,v) E
—7, and so ((F, <), B, w) E =07. This means ((F, <), B, w) ¥ Or,
as promised.

The claim now follows since A has depth at most q. Hence A is

L & B-consistent. X



g814. Interpolation

Definition 6 L has (local) interpolation if whenever ¢ - ¥
there exists a x such that var(x) C var(yp)Nvar(y) and ¢ Fp x Fr 9.

Say that a reduction function splits if

X(p—=x)=X(p;x) =X(p)UX(x)

Theorem 7 Suppose that there is a splitting global reduction func-
tion from M to L. Then if L has (local) interpolation, so does M.



815. Proof
By assumption and DT, I3, o — 1. So,

Xe—=9¢)lFpe =4
There is a k such that
O X(p =) Frp =9
Since X is splitting, J<* X (¢); O<*X () 1, ¢ — 1, whence
0: 0% X () b NOFX () — ¢
Pick an interpolant y:
o; 0% X () b x b \OFX () =

var(x) C var(X(p); ) = var(p), var(x) C var(X(¢);¢) = var(v).
And o Fyr x Far . X



816. Halldén-Completeness
All reduction functions shown above are splitting. Hence, interpolation
follows for many standard systems. Rautenberg (1983) uses a criterion

based on tableau rules, which is however quite opaque.

Definition 8 L is said to be Halldén-complete if for every ¢
and x disjoint in variables: If o Fr x then either o = L ortp x.

Theorem 9 Suppose that X s a splitting global reduction function
from M to L. Then if L is Halldén-complete, so is M.



§17. Tableaux
Ag:={x:0Ox € A}

A== Ay Ny
(—E) (AE)
A; NS
A;=(p AN Y) A;=Op
(VE) (OF)
A; =] A; =) Ap;

Proposition 10 A has a closed tableau iff = \ A is inconsistent
i K.



§18. Completeness
Rautenberg (1983) has proposed the following rule for G.

A; =L

(G)
LHAD; Ap; —p; Lo

This rule corresponds to adding [y — Uy as well as -y —
=(¢ V =) above the line for certain formulae and then doing a
(LE)-step. (—(p vV —Up) = = AUep.)



819. Space Requirements of the Tableaux
Reduction functions allow to prove completeness of tableaux calculi.
[|All is the length of A as a sequence, but with variables counting 1

each (so, the index 7 in p; does not count). Put gA := |sf(A)].

Proposition 11 Let A be a sequence. A branch for A in a local
tableau needs O(§A logy #A) space to code.

Theorem 12 [t can be checked in O(§Alog, $A) space whether a

given set A\ of fomulae is satisfiable in K.



§20. Improving the Space Bound
Hemaspaandra (2000) assumes only one rule:
A; =L
(Ag; —p)*

where ©* denotes a downward saturation of ©.

At step n only the formulae of modal embedding n + 1 become
relevant. The sets of occurrences of different degree are disjoint. Hence

we get

Theorem 13 (Hemaspaandra (2000)) [t can be checked using

O(8A) space whether a given sequence A of formulae is satisfiable

m K.



821. Global Space Bounds via Reduction Functions

Lemma 14 Let L O K. Let X be a global reduction function from
L to K. If X is polynomial in 82, L is globally EXPTIME.

Theorem 15 Let L O K. Suppose that X s a global reduction
function from L to K. Suppose further that there is a finite set ©
of L-theorems such that X(A) consists of some or all substitution
instances of © by members of st(A) for its variables. Then L is

globally in EXPTIME with respect to any of the measures.

Let n be the number of variables in ©. Then we say X is n-analytic

with skeletal set O.



§22. Local Space Bounds I

Definition 16 Suppose that X is an n-analytic global reduction
from M to L wnth skeletal set © and that p 1s a function from sets

of formulae to natural numbers. If
(7) Y(A) = {05 A X(A))

s a local reduction function from M to L, Y 1is called n-analytic

with skeletal set © and depth reduction function p.



§23. Local Space Bounds II

Theorem 17 Let n > 0. Suppose that Y is an n-analytic local re-
duction function from L to K with skeletal set © and depth reduc-
tion function p with p(A) < 4A. Then if A is L-unsatisfiable then a
closing K-tableau for A; Y (A) can be computed using O(($A)" dg(A)))

space.

Theorem 18 Let M be a union of any the following logics: K,
KT, KB, K.alty, KD. Then M is locally in O(§Alog tA)-space.



824. Global to Local Reduction
One can also reduce the global consequence to the local. Consider
h : o(Fml) — N such that

AlFr e < OMEIAR o
The depth reduction function for K is exponential.
Theorem 19 Let p .= tA and q := fip. Then

Alrkp & OFHAR¢p

The bound cannot be significantly reduced. Eg if L C K.alty, then
there are infinitely many A such that

hi(A) > 2V



§25. Transitive Logics

For L transitive, A I ¢ iff A;OA Fp . This transformation of
problems is linear; thus, the local /global distinction collapses. Hemas-
paandra’s method can be used to obtain an easy proof for the following

result.

Theorem 20 (Nguyen (1999)) Local satisfiability in K4 can be
checked in O(Alog #A) space.

Theorem 21 Let L be any union of KT, KB, KD, K.alt;, K4, KD,
K4.G and K4.Grz. Then L is locally in O($A log #A)-space.



826. Further Results

e The method is straightforwardly generalized to polymodal logics.

e Extensions of S4.3 are cofinal subframe logics (see Chagrov & Za-
kharyaschev (1997)). For L O S4.3 only a single tableau needs to
be computed. Hence, L is in NP and NP-complete if consistent
(see Spaan (1993)).

e Satisfiability in tense logic is in O(§A log §A).
e PDL with converse is EXPTIME-complete (see de Giacomo (1996)).

e Many splitting axioms preserve complexity bounds above K4 and
S4 (see Kracht (1993)). Eg (above K4): .1, .2 and (above S4):

.Dum.



e Using the standard Godel-translation, which is linear, the space
bound O(#Alog#A) for intuitionistic propositional logic given in
Hudelmaier (1993) can also be established.



§27. Conclusion

@® Reduction functions provide constructive proofs of the finite model
property, decidability, interpolation and Halldén-completeness of

many standard systems.

@ The method is uniform and requires only to establish the reduction.
Everything is else (eg interpolation, Halldén-completeness) is a

straightforward application of general theorems.

@ The best known complexity bounds can be established for the stan-

dard systems.






