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Preface

TACL 2011, the 5th Conference on Topology, Algebra, and Categories in Logic, was held in Mar-
seilles, France, on July 26-30 2011.

The conference was dedicated to the memory of Leo Esakia, who passed away in November 2010.
Leo was the founder of the logic school in Georgia. He made numerous important contributions to
the study of algebraic and topological semantics of modal and intuitionistic logics. Several landmark
theorems in the field bear his name. Leo also contributed immensely to establishing a strong research
community working on algebraic, topological, and categorical methods in logic. In particular, he was
one of the driving forces in establishing the TACL conference series.

The editors wish to thank the contributing scientists who, with their work and ideas, primarily con-
tributed to the success of the conference and to the wealthiness of TACL research area. They would also
like to thank the anonymous reviewers and members of the Program Committee for their collaboration
in the process of selecting the contributions.

A special thank goes to the French institutions that made the organization of the conference possible
through their financial support:

- Laboratoire d’Informatique Fondamentale de Marseille (LIF, UMR 6166),

- Laboratoire des Sciences de l’Information et des Systèmes (UMR 6168)

- Institut de Mathématiques de Luminy (UMR 6206),

- Université Aix-Marseille I (Université de Provence),

- Université Aix-Marseille II (Université de la Mediterranée),

- Université Aix-Marseille III (Université de Paul-Cezanne),

- Fédération de Recherche des Unités de Mathématiques de Marseille (FRUMAM),

- Centre national de la recherche scientifique (CNRS),

- Ville de Marseille,

- Région Provence-Alpes-Côte d’Azur (PACA),

- Conseil géneral des Bouches-du-Rhône (CG13).

Marseilles, July 14, 2011,
Luigi Santocanale, Nicola Olivetti, Yves Lafont
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SCIENTIFIC LEGACY OF LEO ESAKIA

GURAM BEZHANISHVILI

This talk will review Leo Esakia's main contributions to intuitionistic and modal
logics. It will also have biographical sketches of Leo Esakia, and will discuss his
in�uence on several generations of Georgian (and non-Georgian) mathematicians,
as well as his main mathematical interests, most of which are central to the TACL
conference series.

New Mexico State University

E-mail address: gbezhani@math.nmsu.edu

URL: http://www.math.nmsu.edu/~gbezhani/
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INTUITIONISTIC MODALITIES IN TOPOLOGY AND ALGEBRA

MAMUKA JIBLADZE

In this talk I will review recent results obtained by the Esakia school on intu-
itionistic modalities, which are motivated by topological, algebraic and categorical
considerations. The resulting modalities arise on the lattices of open sets of topo-
logical spaces as coderivative operators (duals of the topological derivative). I will
discuss algebraic properties of such operators arising from various classes of topo-
logical spaces.

Razmadze Mathematical Institute, Tbilisi, Georgia.

E-mail address: mamuka.jibladze@gmail.com
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TOPOLOGICAL SEMANTICS OF MODAL LOGIC

DAVID GABELAIA

One of the focal points of research at Leo Esakia's logic group in Tbilisi has

been the topological interpretations of modal diamond �rst put forth my McKinsey

and Tarski in the 1940s. In this talk I will survey this research area and report

some recent results obtained by Leo Esakia, his students and colleagues. I will try

to delineate the main trends, methods and constructions, as well as the remaining

open problems in this line of research.

Razmadze Mathematical Institute, Tbilisi, Georgia.

E-mail address: gabelaia@gmail.com
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TOPOLOGICAL SEMANTICS

OF POLYMODAL PROVABILITY LOGIC

LEV BEKLEMISHEV

Topological semantics of provability logic is well-known since the work of Harold
Simmons and Leo Esakia in the 1970s. The diamond modality can be interpreted
as a topological derivative operator acting on a scattered topological space. Al-
though quite natural and complete, this semantics has not been much used in the
study of provability logics because of the more convenient Kripke semantics. The
situation turns out to be di�erent for the polymodal provability logic GLP that has
been applied to proof-theoretic analysis of Peano arithmetic. GLP is known to be
incomplete w.r.t. any class of Kripke frames.

We study natural topological models of GLP where modalities correspond to
derivative operators on a polytopological space (X, τ0, τ1, . . . ). We call such a space
GLP-space if, for all n, topologies τn are scattered, τn ⊆ τn+1, and dn(A) is open
in τn+1, for any A ⊆ X. Here dn(A) denotes the set of limit points of A w.r.t.
topology τn. GLP-spaces are exactly the spaces validating all the axioms of GLP.
We show that GLP is complete w.r.t. the class of GLP-spaces (joint work with
David Gabelaia).

On the other hand, completeness w.r.t. natural ordinal GLP-spaces turns out to
be dependent on large cardinal axioms of set theory and various facts on re�ecting
stationary sets. In particular, it is consistent (relative to ZFC) that GLP is incom-
plete. However, under the assumption of large cardinal axioms one can establish at
least some partial completeness results. Under the assumption V=L we show that
the bimodal fragment of GLP is complete w.r.t. the cardinal ℵω (taken with the
interval topology and the club �lter topology).

Steklov Mathematical Institute, Moscow

E-mail address: lbekl@yandex.ru

URL: http://www.mi.ras.ru/~bekl/
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HOMOTOPY TYPE THEORY

STEVE AWODEY

Homotopy type theory refers to a new interpretation of Martin-Löf's system of
intensional, constructive type theory into abstract homotopy theory. Propositional
equality is interpreted as homotopy and type isomorphism as homotopy equivalence.
Logical constructions in type theory then correspond to homotopy-invariant con-
structions on spaces, while theorems and even proofs in the logical system inherit
a homotopical meaning.

In parallel, Vladimir Voevodsky (IAS) has recently proposed a comprehensive,
computational foundation for mathematics based on this homotopical interpretation
of type theory. The Univalent Foundations Program posits a new univalence axiom

relating propositional equality on the universe with homotopy equivalence of small
types. The program is currently being implemented with the help of the automated
proof assistant Coq.

This talk will survey some of these recent developments.

Carnegie Mellon, Pittsburgh

E-mail address: awodey@cmu.edu

URL: http://www.andrew.cmu.edu/user/awodey/
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RELATIVIZING THE SUBSTRUCTURAL HIERARCHY
†

NIKOLAOS GALATOS

Substructural logics are generalizations of classical and intuitionistic logic and
they include among others relevance, many-valued, and linear logic. Their algebraic
semantics are classes of residuated lattices, examples of which include Boolean al-
gebras, Heyting algebras, lattice-ordered groups, ideal lattices of rings, and relation
algebras. Residuated frames provide relational, Kripke-style, semantics for sub-
structural logics. They di�er from Kripke frames for modal and intuitionistic logic
in that they are not based on distributive logics (so two sets of worlds need to be
considered) and in that the accessibility relation is ternary. The apparent com-
plexity of the structure does not allow direct combinatorial manipulation of the
frames as in modal and intuitionistic logic. However, the generality of residuated
frames essentially encompasses proof theory, and proof-theoretic tools can be ex-
tended and applied to residuated frames yielding results on both logic and algebra.
Moreover, they provide a way to organize and generalize proof-theoretic systems
(from sequents to hypersequents and beyond) in view of a hierarchy of formulas.

We will �rst survey the above in a historically inaccurate but pedagogically
instructive and very accessible way, showing how they can all be derived in a natural
fashion from simple algebraic properties of residuated lattices. Having obtained a
deep and fundamental algebraic understanding of the substructural hierarchy and
of residuated frames, we will show how to relativize the hierarchy to the involutive
and to the distributive cases and we will obtain two new applications of the theory.

†Partly based on joint work with A. Ciabattoni and K. Terui, and with P. Jipsen.

University of Denver

E-mail address: ngalatos@du.edu

URL: http://web.cs.du.edu/~ngalatos/
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THE POSSIBLE VALUES OF CRITICAL POINTS BETWEEN

VARIETIES OF ALGEBRAS

PIERRE GILLIBERT

Why do so many representation problems in algebra, enjoying positive solutions
in the finite case, have counterexamples of minimal cardinality either ℵ0, ℵ1, ℵ2 and
no other cardinality? By a representation problem, we mean that we are given two
functors with the same codomain, and we compare there range. We also assume
that the involved categories are equipped with a notion of “cardinality”.

Examples of such representation problems cover various fields of mathematics.
Here are a few examples, among many:

(1) Every (at most) countable Boolean algebra is generated by a chain (cf.
[6, Theorem 172]), but not every Boolean algebra is generated by a chain
(cf. [6, Lemma 179]). It is an easy exercise to verify that in fact, every
subchain C of the free Boolean algebra F on ℵ1 generators is countable,
thus F cannot be generated by C.

(2) Every dimension group with at most ℵ1 elements is isomorphic to K0(R)
for some (von Neumann) regular ring R (cf. [1, 5]), but there is a dimension
group with ℵ2 elements which is not isomorphic to K0(R) for any regular
ring R (cf. [14]).

(3) Every distributive algebraic lattice with at most ℵ1 compact elements is
isomorphic to the congruence lattice of some lattice (cf. [7, 8, 9]), but not
every distributive algebraic lattice is isomorphic to the congruence lattice
of some lattice (cf. [15]); the minimal number of compact elements in a
counterexample, namely ℵ2, is obtained in [11].

J. Tůma and F. Wehrung introduced in [13] a particular case of the kind of
representation problem considered above, concentrated in the notion of critical
point between two varieties of (universal) algebras. The critical point is related to
the following statement:

(∗) For each algebra in the first variety there is an algebra in the second variety
with the same congruence lattice.

If (∗) does not hold for two varieties, the critical point is the minimal number of
compact congruences of a counterexample.

For example, the critical point between the variety of all lattices and the variety
of all groups is ℵ2 (cf. [12]). The critical point between variety of all majority
algebras and the variety of all lattices is ℵ2 (cf. [10]).

In this talk we shall study the case where both varieties are locally finite, and the
second variety satisfies a “smallness” condition, which turns out to be satisfied if
the variety is finitely generated and congruence-modular. Under these conditions,
either (∗) is satisfied or the critical point is at most ℵ2 (cf. [3]). The proof relies
on the Armature Lemma (cf. [4]) it allows to construct a counterexample to (∗),
using a diagram counterexample to the generalization of (∗).

7



P. GILLIBERT

We shall also show that in the case of varieties of lattices, the local finiteness as-
sumption can be dropped modulo a rather weak assumption on the simple members
of the second variety, moreover, under that assumption, the containment between
two congruence classes can occur only for the obvious reason, namely, the first
variety is contained in either the second variety or its dual variety (cf. [2]).
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[12] P. Růžička, J. Tůma, and F. Wehrung, Distributive congruence lattices of congruence-
permutable algebras, J. Algebra 311 (2007), no. 1, 96–116.
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A FEW PEARLS IN THE THEORY OF QUASI-METRIC SPACES

JEAN GOUBAULT-LARRECQ

Quasi-metrics are just like metrics, except you don't require the distance from x
to y to be the same as from y to x: think of distance as measuring the e�ort it takes
to go from x to y, and comparing climbing up and down a mountain. I'll show that
several classic results in the theory of metric spaces transfer to quasi-metric spaces
� with some complications. And I'd like to mention some of the results that please
me most:

1. Completeness splits into two notions, a strong one (Smyth completeness)
and a weak one (Yoneda completeness, due to Rutten, Bonsangue, and
van Breugel), but both can be characterized elegantly through the notion
of formal balls, as shown by Kostanek-Waszkiewicz and by Romaguera-
Vallero, both in 2010. My contribution here will be in a simpler presentation
of the Romaguera-Vallero Theorem, using Erné's notion of c-space and
sobriety (equivalently, the domain-theoretic notion of abstract bases, and
rounded ideal completion).

2. The space of probability distributions on a quasi-metric space is itself quasi-
metric, and I'll mention a quasi-metric form of the Kantorovitch-Rubinstein
theorem, itself an in�nite version of linear programming duality.

3. Generalizing the Kantorovitch-Hutchinson metric, one can compare states
from in�nite-state 2 player turn-based stochastic games, in such a way that
close states yield close values of the (min-, max-) expected payo�. This is
called a simulation distance.

4. There is a simple modal logic, interpreted on the latter games, which char-
acterizes similarity, and simulation distances.

I only have a modest contribution in Item 1. Items 2 and 3 are from one of my
papers at FOSSACS'08. Item 4 is new.

ENS Cachan, CNRS, INRIA

E-mail address: goubault@lsv.ens-cachan.fr

URL: http://www.lsv.ens-cachan.fr/~goubault/
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THROUGH THE LOOKING-GLASS:

UNIFICATION, PROJECTIVITY, AND DUALITY

VINCENZO MARRA

Solving equations has long featured as a main item in the mathematician's
agenda, at the very least since Diophantus' Arithmetica appeared. Uni�cation is
the modern version of the quest for general solutions to systems of equations within
a class of domains. If the class in question is equationally de�nable, one speaks of
uni�cation modulo an equational theory. A straightforward universal-algebraic re-
formulation shows that, in this case, one is really concerned with solving equations
in a given variety of algebras. A tight connection between uni�cation problems in
a variety and �nitely presented projective objects in the variety was established
by Ghilardi in 1997. When coupled with Gabriel's and Ulmer's 1971 categorial
abstraction of �nitely presentable object, Ghilardi's work extends the scope of the
theory of uni�cation to all locally small categories.

What tools do we have to understand the structure of the set of solutions to a
uni�cation problem in such general contexts, or even just in varieties of algebras? I
argue that key insights can usually be gained by dualising the problem � provided,
of course, that an e�cient description of the dual category is available. I support
this claim with selected examples where such a description is known, including
Boolean algebras, distributive lattices, rings, and MV-algebras. (The featured talk
by Luca Spada discusses uni�cation for MV-algebras in greater detail.) Through
these case studies, an interesting pattern begins to emerge. Stepping from syntax to
semantics through the looking-glass provided by a duality theory allows to develop
an analogy between the structure of the set of solutions to a uni�cation problem,
and such homotopy-theoretic notions as the universal covering space of a su�ciently
connected topological space. I discuss some preliminary results indicating that this
analogy may indeed be fruitful.

Dipartimento di Informatica e Comunicazione, Università degli Studi di Milano,

Italy

E-mail address: marra@dico.unimi.it

URL: http://marra.dico.unimi.it
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A CATEGORICAL ACCOUNT OF KRIVINE'S CLASSICAL

REALIZABILITY

THOMAS STREICHER

After revisiting the basic ideas of Krivine's classical realizability we give an alge-
braic reformulation of the basic ingredients by identifying the notion of an Abstract
Krivine Structure (aks). Such structures may be understood as an extension of com-
binatory logic by stacks (i.e continuations) and control operators. We prove that
in a precise sense Cohen forcing is the commutative case of classical realizability.
Further, we show how classical realizability over an arbitrary aks gives rise to a
�classical realizability tripos� this way subsuming Krivine's highly original work in
more traditional terms, namely the categorical account of realizability as originated
by Martin Hyland's work in the early 1980s. Finally, we sketch how to build forc-
ing models on top of classical realizability and how such a 2 step construction can
be understood as a single classical realizability construction. This is a necessary
requirement for building classical models of ZF validating stronger and stronger
choice principles.

Technical University Darmstadt

E-mail address: streicher@mathematik.tu-darmstadt.de
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Generalised type setups for dependently sorted

logic

Peter Aczel
Schools of Mathematics and Computer Science
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June 10, 2011

1 Introduction

Dependently sorted logic is intended to be a generalisation of many sorted logic
that allows sorts to depend on variables in the kind of way that types can
depend on variables in dependent type theories. The notion of a generalised
Type Setup (gTS) is a generalisation of the notion of a type setup. The latter
notion was previously introduced by me, in about 2004, as a suitable abstract
notion of type theory for specifying the sorts and terms dependent on contexts
of variable declarations, needed to formulate a dependently sorted logic. The
aim of my paper will be to review the notion of a type setup and introduce the
more general notion.

2 Some earlier examples of notions of depen-

dently sorted logics

A seminal example of a logic having dependent sorts is the logic for equational
reasoning in Cartmell’s Generalised Algebraic (GA) theories, [Cartmell, 1978,
Cartmell, 1986]. A typical example of a GA theory is the axiom system for the
notion of a category which has a sort Obj of objects and a sort constructor Hom
for forming a sort Hom(x, y) of maps x → y, for x, y : Obj and has function
symbols, i,e, term constructors, id and comp for forming identity terms id(x), for
x : Obj and composition maps comp(x, y, z, u, v) : Hom(x, z) for x, y, z : Obj, u :
Hom(x, y), v : Hom(y, z). The notion of a GA theory, being purely equational,
does not capture the full generality of the idea of a dependently sorted logic,
which allows first order formulae which are not equations. Nevertheless the
formulation of the general notion of a signature for the language of a GA theory
and the definition of the syntactic categories of contexts of variable declarations,
sorts and terms is already rather complicated.
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Another significant example of a logic having dependent sorts is Makkai’s
first order logic with dependent sorts (FOLDS),[Makkai, 1995]. While FOLDS
has the usual logical constants for first order logic it avoids having individual
constants or function symbols and so can get away with a simple notion of sort
because the only terms are the variables so that each sort must either be a
constant sort or else must have the form s(x1, . . . , xn) where s is an n-place sort
constructor, for n > 0, and x1, . . . , xn is a list of variables.

The notion of a Logic-enriched type theory, [Aczel and Gambino, 2002],
[Gambino and Aczel, 2006], provides another kind of example of a notion of logic
with dependent sorts, the sorts being the dependent types of a type theory.
Here the sorts and terms are expressions of the type theory, the type theory
itself having a rather complicated structure. In order to give a precise definition
of the idea of a logic-enrichment of a type theory it is necessary to have a
precise definition of the notion of a type theory. In [Gambino and Aczel, 2006]
a concrete syntactic notion of standard pure type theory was presented that had
certain forms of judgement and allowed an arbitrary system of rules for deriving
judgements.

3 Type Setups

It has seemed desirable to formulate a more general notion of dependently sorted
logic which would include the above examples. What seems to be needed is
a more general, more abstract, notion of dependent type theory. Already, in
[Cartmell, 1978, Cartmell, 1986], Cartmell introduced the notions of category
with attributes and contextual category, claiming that, for his GA theories, con-
textual categories are the algebraic structures

‘that structurally correspond exactly to the syntactically defined the-
ories’

After Cartmell’s work category theorists have come up with many variations
on the notions of category with attributes and contextual category; e.g. cate-
gory with display maps, [Taylor, 1986], comprehension category, [Jacobs, 1991],
category with families, [Dybjer, 1996]. These are intended to capture at various
levels of abstraction the syntax and/or semantics of dependent type theories.

But none of these notions have seemed to me to be quite right as an abstract
notion of ‘type theory’ suitable for a sufficiently general formulation of the notion
of a dependently sorted logic over a ‘type theory’ that would give a smooth
generalisation of the usual way first order logic is presented. I have introduced
the notion of a type setup for that purpose, see [Aczel, 2009], and the notion has
been investigated by Joao Belo, [Belo, 2007, Belo, 2009].

In contrast to the above earlier notions, type setups make use of an explicit
notion of variable with contexts as finite sequences of variable declarations,
x : A, and substitutions as finite sequences of variable assignments, x := a.
From a purely category theoretic point of view the explicit use of variables is
not essential. Nevertheless, even in our abstract setting we prefer to keep to the

14



logically familiar use of variables so as to have a smooth generalisation of the
traditional presentation of many-sorted logic.

The contexts, Γ, of a type setup are the objects of a category C whose maps
γ : Γ′ → Γ, play the role of substitutions. Associated with each context Γ is
a set of Γ-types and, for each Γ-type A there is a set of Γ-terms of type A.
The substitutions γ : Γ′ → Γ act, functorially on types and terms so that,
for each Γ-type A, A[γ] is a Γ′-type and a[γ] is a Γ′-term of type A[γ] for
each Γ-term a of type A. As with the earlier category theoretic notions for
dependent types, a fundamental ingredient of the notion of a type setup are
axioms for the ‘comprehension extension’ of a context. In a type setup a given
a Γ-type A can be extended by adding a new variable declaration x : A to
obtain the context (Γ, x : A), provided that the variable x is Γ-free; i.e. has
not been already declared in Γ. In addition, given a substitution γ : ∆ → Γ
and a Γ-term a of type A, the substitution γ can be extended to a substitution
(γ, x := a) : ∆ → (Γ, x : A) such that x[(γ, x := a)] = a.

Given a type setup and a signature of sorted predicate symbols we have all
the ingredients needed to formulate the syntax of formulae of a dependently
sorted logic, with a notion of Γ-formula inductively generated from the atomic
Γ-formulae using the usual connectives and quantifiers, the quantifiers having
the forms (∀x : A), (∃x : A) where A is a Γ-type and the variable x is Γ-free.
The action of the substitutions of the type setup on formulae can be defined by
structural recursion on formulae in the usal way and a natural deduction style
axiomatisation of intuitionistic logic using sequents can be formulated.

4 The notion of a Generalised Type Setup (gTS)

Concrete dependent type theories generally use untyped variables, but use con-
texts which are finite sequences of variable declarations, that associate a type
with each declared variable. So the contexts form a tree structure of finite se-
quences, with the empty context at the root and each context having as its
children its extensions by adding a new variable declaration. The notion of a
contextual category also has such a tree structure. Other notions of category for
type dependency, such as the notions of category with attributes and category
with families, are more aimed at the semantics of type dependency and do not
impose the tree structure.

As with concrete dependent type theories the notion of a type setup also uses
a tree structure of finite sequences of variable declarations. I now think that
this extra structure, which only complicates the presentation, is unnecessary for
the purpose of the formulation of dependently sorted logic and the new notion
of generalised type setup avoids the extra structure. Of course the notion of a
gTS keeps the fundamental notion of context extension, as do all the various
competing notions.

In my talk I hope to explain the notion of a gTS, describe intuitionistic pred-
icate logic with equality over a gTS and, if there is time, outline an application
of a logic-enriched type theory.
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THE EQUATIONAL THEORY OF KLEENE LATTICES

H. ANDRÉKA, SZ. MIKULÁS AND I. NÉMETI

Abstract. Languages and families of binary relations are standard in-
terpretations of Kleene algebras. It is known that the equational theories
of these interpretations coincide. We investigate the identities valid in
these interpretations when we expand the signature of Kleene algebras
with the meet operation. In both cases meet is interpreted as intersec-
tion. We show that there are more identities valid in language algebras
than in relation algebras (exactly three more in some sense). We also
look at the picture when we exclude the identity from the signature.
We prove that in this case the equational theories of the two kinds of
interpretations coincide again.

1. Introduction

Kleene algebras (KA) are extensively investigated in language theory and
in programming logics, see, e.g. [1, 2, 4, 7]. Two prominent types of Kleene
algebras are language algebras and relation algebras. They are defined as
follows. Let Σ be a set (alphabet) and Σ∗ denote the free monoid of all
finite words over Σ including the empty word λ. The class of language
Kleene algebras is defined as the class of subalgebras of algebras of the form

(℘(Σ∗),+, ;, ∗, 0, 1)

where + is set union, ; is complex concatenation (of words)

X ; Y = {wv : w ∈ X, v ∈ Y } , (1)

∗ is the Kleene star operation

X∗ = {w1 . . . wn : w1, . . . , wn ∈ X for some natural number n} , (2)

0 is the empty language and 1 is the singleton language consisting of the
empty word λ. We will denote the class of language Kleene algebras by LKA.

The class of relational Kleene algebras is defined as the class of subalgebras
of algebras of the form

(℘(W ),+, ;, ∗, 0, 1)

where W = U × U for some set U , + is set union, ; is relation composition

x ; y = {(u, v) ∈W : (u,w) ∈ x and (w, v) ∈ y for some w} , (3)

∗ is reflexive-transitive closure, 0 is the emptyset and 1 is the identity relation
restricted to W

1 = {(u, v) ∈W : u = v} . (4)

We will denote the class of relational Kleene algebras by RKA.

Research supported by Hungarian National Foundation for Scientific Research grant
No T81188.
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It is well known that the same equations are true in language Kleene
algebras and in relational Kleene algebras:

Eq(LKA) = Eq(RKA) (5)

where Eq(K) denotes the set of equations valid in the class K of algebras.
Equation (5) can be established by showing that LKA and RKA have the
same free algebra, viz. the algebra of regular languages, see, e.g. [6] for the
argument in the context of dynamic algebras.

The meet · operation is not included into the similarity type of Kleene
algebras, although it has a natural interpretation in both language and rela-
tion algebras, viz. intersection. Thus we can expand the signature of Kleene
algebras by meet, and define Kleene algebras with meet, or Kleene lattices
[5, 3]. The class of language Kleene lattices, LKL, is defined similarly to LKA
with the additional requirement that · is interpreted as intersection. The
class of relational Kleene lattices, RKL is defined as the analogous expansion
of RKA.

The question that we address in this paper is whether the language and
relational interpretations of Kleene lattices have the same equational theory.
One of the main results is that there are more valid equations in LKL than
in RKL, but Eq(LKL) is finitely axiomatisable over Eq(RKL): Theorem 3.1.
The reason for the different equational theories is that the free algebra is
no longer atomic in the lattice case, e.g. the term x · y is smaller than the
term x, and similarly, the term 1 · y is smaller than the term 1. However,
1 is still an atom in every language algebra, while not necessary an atom
in a relation algebra. So the culprit is the identity operation 1 interacting
with meet ·. This motivates the following definition of identity-free Kleene
lattices.

Recall the standard abbreviation x+ for x;x∗. Let KA− denote the class of
generalised subreducts of elements of KA to the signature (+, ;,+, 0). We will
use similar notation for other classes of algebras: LKA− and LKL− denote
language algebras, and RKA− and RKL− denote relation algebras of the
similarity types where 1 and ∗ are replaced by +. The other main result is
that if we omit occurrences of 1 (even implicitly as in x∗), then the equational
theories of language and relation algebras coincide: Eq(LKL−) = Eq(RKL−),
see Theorem 2.1.

2. Equations valid in algebras with meet but no identity

The following theorem says that if the identity operation is not present,
even implicitly in the ∗-operation, then the same equations hold in language
and in relation algebras.

Theorem 2.1. The equational theories of LKL− and RKL− coincide:

Eq(LKL−) = Eq(RKL−) .

The key observation is the following technical lemma which establishes a
connection between language and relation algebras.

Lemma 2.2. For every term τ in which none of 1, 0,+, ∗,+ occurs, there
are a “characteristic” language algebra Aτ , word wτ and valuation kτ of the
variables such that
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(1) wτ ∈ τAτ [kτ ]
(2) RKL− |= τ ≤ σ whenever wτ ∈ σAτ [kτ ] for any term σ.

Proof of Theorem 2.1. Assume LKL− |= τ ≤ σ. It is easy to see that both
language and relation algebras have the following “continuity” property:
there is a set {τi : i ∈ I} such that none of 0,+,+ occurs in τi for any i ∈ I,
and also

τA[k] =
⋃
{τAi [k] : i ∈ I} (6)

for any A ∈ LKL− ∪ RKL− and for any appropriate valuation k of the vari-
ables. In particular, (6) holds when A is the free algebra of RKL−, since the
free algebra is in SPRKL−.

Let i ∈ I be arbitrary. Then LKL− |= τi ≤ σ by equation (6). Let Aτi ,
wτi and kτi be such that they satisfy the conditions of Lemma 2.2. Then

wτi ∈ τ
Aτi
i [kτi ] by these conditions, and so wτi ∈ σAτi [kτi ] by LKL− |= τi ≤ σ.

Hence RKL− |= τi ≤ σ by Lemma 2.2. Thus RKL− |= τ ≤ σ by equation (6)
(when A is the free algebra of RKL−). By this, Theorem 2.1 has been
proved. �

3. Equations valid in Kleene lattices

Now we turn to equations valid in language algebras LKL. All the equa-
tions valid in relation algebras are valid in language algebras, too. Hint: use
the Cayley-representation

f(X) = {(w,wx) : w ∈ Σ∗ and x ∈ X} .
However, more equations are valid in language algebras than in relation
algebras. In fact, it is easy to check that the following equations are not
valid in relation algebras, while they are valid in language algebras, since
1 = {λ} and λ cannot be written as a concatenation of non-empty words.

(x ; y) · 1 = (x · 1) ; (y · 1) (7)

(x · 1) ; y = y ; (x · 1) (8)

(z + (x · 1) ; y)∗ = z∗ + (x · 1) ; (z + y)∗ (9)

Our next result states that the above three additional equations axiomatise
Eq(LKL) over Eq(RKL).

Theorem 3.1. Eq(LKL) is finitely axiomatisable over Eq(RKL):

Eq(RKL) ∪ {(7), (8), (9)} ` Eq(LKL) .

To prove Theorem 3.1, we state some lemmas first. We call a term τ to
be in normal form if τ is of form

η ; τ ′

with either η or τ ′ possibly missing, where η is of form (x1 ; . . . ; xn) · 1 with
n a natural number and x1, . . . , xn distinct variables, and τ ′ is a term in
which 1 does not occur and ∗ occurs only in the form of +, i.e. τ ′ is a term
in the language of LKL−. Let E = Eq(RKL) ∪ {(7), (8), (9)}.
Lemma 3.2. Assume E . Each term τ is provably equivalent to a finite sum
of terms in normal form.
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The proof of the following corollary uses Lemma 2.2.

Corollary 3.3. If LKL |= τ ≤ σ such that 1 and ∗ do not occur in τ (but +

may occur in τ , and 1 and + may occur in σ), then RKL |= τ ≤ σ.

Lemma 3.4. Assume E . Let x1, . . . , xn be variables, τ be an arbitrary term,
and let τ ′ denote the term we obtain from τ by replacing each occurrence
of xi with xi + 1 for i ≤ n. Then E proves

((x1 ; . . . ; xn) · 1) ; τ = ((x1 ; . . . ; xn) · 1) ; τ ′ .

Proof of Theorem 3.1. Assume that LKL |= τ ≤ σ. By Lemma 3.2, E proves
that τ is equivalent to a sum of terms in normal form, say τ =

∑
ηi ; τi.

By the equations for join + in E expressing that + is supremum then it is
enough to prove for each i that ηi ; τi ≤ σ. We will omit the indices i, so it is
enough to prove that E ` η ; τ ≤ σ, where η ≤ 1 and 1 does not occur in τ .
We know that LKL |= η ; τ ≤ σ. Let η′ and σ′ be the terms we obtain from
η and σ by replacing all the variables xj occurring in η with xj + 1. Then
LKL |= η′ ; τ ≤ σ′, because we get this if we choose any evaluation for the
variables occurring in η such that they contain the identity. Since 1 ≤ η′

(all operations are monotone), we have LKL |= τ ≤ σ′. By Corollary 3.3
then RKL |= τ ≤ σ′, so E proves τ ≤ σ′. Also, E proves η ; σ = η ; σ′ by
Lemma 3.4. Now, we get η ; τ ≤ η ; σ′ = η ; σ ≤ σ, and we are done. �
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We present a general topos-theoretic interpretation of ‘Stone-type dual-
ities’; by this term we refer, following the standard terminology, to a class
of dualities or equivalences between categories of preordered structures and
categories of posets, locales or topological spaces, a class which notably in-
cludes the classical Stone duality for Boolean algebras (or, more generally, for
distributive lattices), the duality between spatial frames and sober spaces,
the equivalence between preorders and Alexandrov spaces, the Lindenbaum-
Tarski duality between sets and complete atomic Boolean algebras, and the
Birkhoff’s duality between finite distributive lattices and finite posets.

We introduce an abstract framework in which all of these dualities are
interpreted as instances of just one topos-theoretic phenomenon, and in which
several new dualities are introduced. In fact, the known dualities, as well as
the new ones, all arise from the application of one ‘general machinery for
generating dualities’ to specific ‘sets of inputs’ which vary from case to case.

Conceptually, our ‘machinery’ arise from the process of functorially trans-
ferring topos-theoretic invariants across two different sites of definition of
the same topos, according to the method ‘toposes as bridges’ introduced
in [2]. Specifically, the dualities between a given category K of preorders
and a category of locales are generated by assigning to each structure C of
K, equipped with a subcanonical Grothendieck topology JC in such a way
that the morphisms in the category K induce morphisms of the associated
sites, the locale IdJC(C) of JC-ideals on C, and from the inverse process of
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functorially recovering C from the locale IdJC(C) (equivalently, from the topos
Sh(C, JC) ' Sh(IdJC(C))) through a topos-theoretic invariant (equivalently, a
frame-theoretic invariant). The frame-theoretic invariants which enable us to
identify the principal ideals on C among all the ideals in IdJC(C), and hence to
recover a poset C from the topos Sh(C, JC) through a topos-theoretic invari-
ant, are generalized notions of compactness; specifically, if the Grothendieck
topologies JC are ‘uniformly defined’ by a frame-theoretic invariant C of fam-
ilies of elements of a frame (technically, C-induced in the sense of Definition
3.22 [2]) then the principal JC-ideals on C are precisely the ideals in IdJC(C)
which are C-compact (in the sense that every covering of them in IdJC(C)
admits a refinement satisfying C).

The target categories of locales in the dualities can also be naturally char-
acterized in terms of the invariant C, as categories of locales which possess a
basis of C-compact elements satisfying some specific invariant properties (cf.
Theorem 3.28 [3]).

To obtain covariant equivalences with categories of locales, one relies on
the well-known possibility of assigning a geometric morphism [C,Set] →
[D,Set] to a given functor C → D in a canonical way.

Given a duality (resp. equivalence) between a category K of preorders
and a category of locales, we have a general methodology for ‘lifting’ it to a
duality (resp. equivalence) between K and a category of topological spaces.
This methodology relies on the possibility of defining, for any set of points of
a Grothendieck toposes E indexed by a set I, a natural topology on the set I,
which we call the subterminal topology (cf. Definition 2.2 [3]), and of making
this construction functorial. While the dualities (resp. equivalences) with
locales (or more generally with posets) generated through our method have
an essentially constructive nature, this process of ‘lifting’ to dualities (resp.
equivalences) with categories of topological spaces might require, depending
on the case, some form of the axiom of choice.

The interest of the notion of subterminal topology lies in its level of gen-
erality, which encompasses that of classical topology (every topological space
arises from this construction in a canonical way), as well as in its formulation
as a topos-theoretic invariant admitting a ‘natural behaviour’ with respect to
sites. Indeed, this notion allows us to recover, with natural choices of sites of
definition and of sets of points of toposes, many interesting topological spaces
considered in the literature, leaving at the same time enough freedom to con-
struct new ones with particular properties. Our method for building dualities
or equivalences with categories of locales starting from Morita-equivalences
of the form

Sh(C, JC) ' Sh(IdJC(C))
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can be further generalized to Morita-equivalences of the form

Sh(C, J) ' Sh(D, K),

where C and D are preordered categories. This generalization allows an
abstract symmetric definition of the functors yielding the dualities, and pro-
vides us with an additional degree of freedom in building dualities or equiv-
alences between categories of preordered structures. Grothendieck Compari-
son Lemma turns out be an extremely fruitful source of Morita-equivalences
to which we can apply our methods; we illustrate this point by generating
several new dualities or equivalences. In particular, we establish a duality
which naturally generalizes Birkhoff’s duality for finite distributive lattices, a
duality which extends the well-known duality between algebraic lattices and
sup-semilattices, and a ‘finitary version’ of Lindenbaum-Tarski duality.

Our theory (whose details are all given in [3]) provides a unified per-
spective on the subject of Stone-type dualities, in that several well-known
dualities are easily recovered as applications of it. Anyway, what we consider
to be the main interest of our topos-theoretic machinery is, apart from the
conceptual enlightenment that it brings into the world of classical dualities,
its inherent technical flexibility. In fact, one can generate infinitely many new
dualities by applying it. We illustrate this by discussing various examples of
dualities generated by using our method. We recover the classical Stone du-
ality for distributive lattices (and Boolean algebras), the Alexandrov duality
between preorders and Alexandrov spaces, the Lindenbaum-Tarski duality,
the duality between spatial frames and sober spaces, (a simplified version
of) Moshier and Jipsen’s topological duality for meet-semilattices (cf. [5]),
and we establish several new dualities, including a localic duality for meet-
semilattices, an equivalence between the category of posets and a category
of spatial locales (equivalently, a category of sober topological spaces), and
a localic duality for k-frames (for a regular cardinal k, as defined in [8]).

The different ‘ingredients’ that our ‘machinery’ for generating dualities
with categories of locales or topological spaces takes as ‘inputs’ are: the
initial category K of preordered structures, the subcanonical Grothendieck
topologies JC on the structures C in K, the topos-theoretic invariant enabling
one to recover a structure C from the topos Sh(C, JC) and, if a duality with
topological spaces is to be generated, appropriate sets of points of the toposes
Sh(C, JC) (and functions between them). In fact, the more general approach
mentioned above provides us with an additional degree of freedom in the
choice of ingredients. Given such ingredients, dualities are generated in an
automatic and ‘uniform’ way by the ‘machine’, as different concrete instances
of a unique abstract pattern; in this way, the problem of building dualities
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gets reduced in many important cases to the much easier one of choosing
appropriate sets of ingredients for this ‘machine’.

Finally, we discuss how our topos-theoretic interpretation, combined with
the method ‘toposes as bridges’ of [2], can be fruitfully exploited for obtain-
ing results connecting properties of preorders and properties of the corre-
sponding locales or topological spaces, as well as for establishing adjunctions
between various kinds of categories (including reflections from various cate-
gories of preordered structures to the category of frames and reflections be-
tween categories of posets satisfying some generalized ‘distributive law’ and
full subcategories of them consisting of posets satisfying certain ‘topological
conditions’).

We conclude by suggesting some future research directions opened up by
our theory.
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Algorithmic correspondence and canonicity for non-distributive logics
(Extended abstract)

Willem Conradie, Alessandra Palmigiano

Introduction

Sahqvist theory has a long and distinguished history within modal logic, going back to [9] and [10]. The Sahlqvist theorem
in [9] gives a syntactic definition of a class of modal formulas, the Sahlqvist class, each member of which defines an
elementary class of frames and is canonical — two highly desirable properties. As it turns out, both these properties
(singularly and in combination) are algorithmically undecidable [1], so decidable approximations, such as the Sahlqvist
class, are of great interest.

Over the years, many extensions, variations, and analogues of this result have appeared. These includes, among others,
(a) generalizations to non-Boolean modal logics, e.g., the Sahlqvit theorem for distributive modal logic of [6], and (b)
both syntactic characterizations and algorithmic approaches properly extending the Sahlqvist class, such as the inductive
formulas in [8] and the SQEMA algorithm of [2]. In [3] we combined these two trends, by devising an analogue of
SQEMA, called ALBA, for distributive modal logic.

The present work aims at extending this theory to logics based on non-distributive propositional logic, in line with what
is done e.g. in [6], in [7], and in [3], by proving an algorithmic correspondence result for modal logics whose algebraic
semantics is based on arbitrary lattices with operators (LO’s). We identify the appropriate extension of the Sahlqvist and
inductive inequalities to this more general setting. The proof of the canonicity and elementarity of these inequalities takes
the shape of an algorithm (called ND-ALBA) which tries to eliminate variables from the inequality, by replacing them, if
possible, with special variables, ranging only over the completely join- and meet-irreducible elements of perfect lattices
(defined below). In this generalized context, perfect lattices play the same role of complete and atomic Boolean algebras
in the classical setting. In particular, their completely join- and meet-irreducible elements are the states of their dual
relational structures, of which perfect lattices are the “complex algebras”. It can be shown that ND-ALBA is correct and
that all inequalities on which it terminates successfully are elementary and canonical.

1 (Perfect) lattices with operators, canonical extensions, and languages

For definiteness’ sake we fix a signature containing ∧, ∨, ◦, ?, ^, �, C and B, i.e., the signature of [6], augmented with the
binary connectives ◦ and ?, called fusion and fission, respectively. The algebras under consideration will be of the form
A = (A,∧,∨, ◦, ?,^,�,C,B, 0, 1), where (A,∧,∨, 0, 1) is a perfect lattice, ◦ (binary) and ^ (unary) are join-preserving
operations, ? (binary) and � (unary) are meet-preserving operations, while C(a ∧ b) = Ca ∨ Cb and B(a ∨ b) = Ba ∧ Bb.

The terms of the language associated with these LO’s are given by

ϕ ::= ⊥ | > | p ∈ PROP | ϕ ∨ ψ | ϕ ∧ ψ | ^ϕ | �ϕ | Cϕ | Bϕ | ϕ ? ψ | ϕ ◦ ψ,

where PROP is some denumerably infinite set of variables.

An LO A = (A,∧,∨, ◦, ?,^,�,C,B, 0, 1) is perfect if it is (a) complete, (b) join-generated by its completely join-
irreducible elements (the set of which is denoted by J∞), (c) meet-generated by its completely meet-irreducible elements
(the set of which is denoted by M∞), and moreover if (d) ◦ and^ are completely join-preserving, (e)? and � are completely
meet-preserving, while (f) C

∧
S =
∨
CS and B

∨
S =
∧
BS for all S ⊆ A. It follows that in perfect LO’s the operations

◦, ?, ^, �, C and B are residuated. We denote their residuals by \◦, /◦, \?, /?, �, _, J and I, respectively.

To talk about perfect LO’s, we expand our language with these residuals, as well as with two sets of special variables,
called, respectively, nominals, ranging over J∞, denoted i, j, etc., and co-nominals, ranging over M∞, denoted m,n, etc. A
term or inequality in this language which contains no variables from PROP but only (possibly) nominals and co-nominals
will be called pure.1

1The terminology is inspired by hybrid logic.
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Every LO A can be embedded into its canonical extension (see, e.g., [5]), i.e., into a perfect LO Aσ, in such a way that
(a) every element of Aσ is both a meet of joins and a join of meets of (images of) elements A (if (a) holds, we say that A
is dense in Aσ) and (b) for every S ,T ⊆ A, if

∧
S ≤ ∨T , then

∧
S ′ ≤ ∨T ′ for some finite S ′ ⊆ S and T ′ ⊆ T , where

the meet is taken in Aσ (if (b) holds, we say that A is compact in Aσ). The canonical extension of A always exists and is
unique up to an isomorphism fixing A. An inequality s ≤ t is called canonical if A |= s ≤ t implies Aσ |= s ≤ t.

The (two-sorted) relational duals of perfect lattices are called RS-frames (see [4]). The relational duals of perfect LO’s
are relational structures based on RS-frames, which, for the sake of this abstract, will also be referred to as RS-frames.
As is the case with Kripke frames, every formula (i.e., term in the language above) defines a second-order condition on
RS-frames. Formulas whose frame conditions are equivalent to first-order formulas are called elementary. We will exploit
the observation that, since the completely join- and meet-irreducible elements of a perfect LO correspond to the individuals
in its dual RS frame, pure inequalities correspond to elementary formulas.

2 Sahlqvist and inductive inequalities

As in [6], we will use the notion of a signed generation tree of a term s, which is here denoted by ∗s, where ∗ ∈ {+,−}; the
positive and negative trees are denoted by +s and −s respectively. Recall that every node in a signed generation tree passes
its sign to its children, except those labelled by C and B, whose children have the opposite sign.

Syntactically Join-Friendly (SJF) Syntactically Right Adjoint (SRA)
+ ∨ ^ C ◦
− ∧ � B ?

+ ∧ � B ?
− ∨ ^ C ◦

Table 1: SJF and SRA nodes

An order type over n ∈ N is an n-tuple ε ∈ {1, ∂}n. For every order type ε, let ε∂ be its opposite order type, i.e., for every
1 ≤ i ≤ n, we have ε∂i = 1 iff εi = ∂. For any term s(p1, . . . pn), any order type ε over n, and any 1 ≤ i ≤ n, an ε-critical
node in a signed generation tree of s is a (leaf) node +pi if εi = 1 or −pi if εi = ∂. An ε-critical branch in the tree is a
branch from an ε-critical node. The intuition, which will be built upon later, is that variable occurrences corresponding to
ε-critical nodes are to be solved for, according to ε. For every term s(p1, . . . pn) and every order type ε, we say that +s (resp.
−s) agrees with ε, and write ε(+s) (resp. ε(−s)), if every leaf in the signed generation tree of +s (resp. −s) is ε-critical.

Definition 2.1. Nodes in signed generation trees will be called syntactically join-friendly (SJF) and syntactically right
adjoint (SRA) according to the specification given in table 1. A branch in a signed generation tree ∗s is called a good
branch if it is the concatenation of two paths P1 and P2, one of which may possibly be of length 0, such that P1 is a path
from the leaf consisting (apart from variable nodes) only of SRA-nodes, and P2 consists (apart from variable nodes) only
of SJF-nodes. A branch is excellent if it is good and in P1 there are no binary nodes other than +∧ or −∨. A good branch
is called join-friendly if P1 has length 0.

Definition 2.2. Given an order type ε and a strict partial order <Ω on the variables p1, . . . pn, the signed generation tree
∗s of a term s(p1, . . . pn) is (Ω, ε)-inductive if for all 1 ≤ i ≤ n, every ε-critical branch with leaf labelled pi is good, and
moreover, for every binary SRA node ∗(α ~ β) on the branch, if ∗~ < {+∧,−∨}, then for some γ ∈ {α, β},

1. ε∂(∗γ), and

2. p j <Ω pi for every p j occurring in γ.

We will refer to <Ω as the dependency order on the variables. An inequality s ≤ t is (Ω, ε)-inductive if the trees +s and
−t are both (Ω, ε)-inductive. An inequality s ≤ t is inductive if it is (Ω, ε)-inductive for some Ω and ε.

Definition 2.3. (cf. [6]) Given an order type ε, the signed generation tree ∗s of a term s(p1, . . . pn) is ε-Sahlqvist if every
ε-critical branch is excellent. An inequality s ≤ t is ε-Sahlqvist if the trees +s and −t are both ε-Sahlqvist. An inequality
s ≤ t is Sahlqvist if it is ε-Sahlqvist for some ε. (Note that this definition is a special case of Definition 2.2.)
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Example 2.4. The inequality ϕ1 ≤ ψ1 := (�p1 ◦ �Cp1) ◦ ^p2 ≤ Cp1 ? ^�p2 is ε-Sahlqvist for ε = (1, 1). The inequality
ϕ2 ≤ ψ2 := (�p ? ^>) ◦ �Cq ≤ �(Cq ◦ �p) is (Ω, ε)-inductive with p <Ω q and ε = (1, 1). The inequality ϕ3 ≤ ψ3 :=
^(�C(q ◦ r) ∧ �(p ? �q)) ≤ C�(p ∧ r) ∨ ^p is (Ω, ε)-inductive with p <Ω q <Ω r and εp = ∂, εq = εr = 1. The inequality
ϕ4 = s ≤ t := �(Bq ? p) ≤ ^(Cq ◦ �p) is not inductive. Indeed, for every ε-critical branch in +s and −t to be good, the
only possible ε is (1, 1). Given this ε, if +s is to be (Ω, ε)-inductive, it will have to be the case that q <Ω p, and similarly,
for −t to be (Ω, ε)-inductive, it will have to be the case that p <Ω q, which is impossible if <Ω is to be a strict partial order.

The next Theorem is a corollary of Theorems 3.1 and 3.2, below.

Theorem 2.5. Every inductive inequality (and hence every Sahlqvist inequality) is elementary and canonical.

3 The algorithm

ND-ALBA takes an inequality ϕ ≤ ψ as input and then proceeds in three stages. The first stage eliminates all propositional
variables occurring only positively or only negatively, by suitable substitution with ⊥ and >, obtaining an inequality
ϕ′ ≤ ψ′. The initial system (S , Ineq), consisting of a set S (initialized to ∅) and an inequality Ineq (initialized to ϕ′ ≤ ψ′)
is formed.

The second stage (called the reduction stage) transforms S and Ineq through the application of its transformation rules.
The aim is to eliminate all “wild” propositional variables from S and Ineq in favour of “tame” nominals and co-nominals.
A system for which this has been done will be called pure or purified. The actual eliminations are effected through the
Ackermann-rules (we give only the right Ackerman-rule, the left one is dual):

Right Ackermann-rule: If S = {αi ≤ p | 1 ≤ i ≤ n} ∪ {β j(p) ≤ γ j(p) | 1 ≤ j ≤ m} where (a) p does not occur in
α1, . . . , αn, (b) β1(p), . . . , βm(p) are positive in p, (c) γ1(p), . . . , γm(p) are negative in p, and (e) p does not occur in Ineq,
then

• S := {β j(
∨n

i=1 αi) ≤ γ j(
∨n

i=1 αi) | 1 ≤ j ≤ m}, and

• Ineq := Ineq.

The other rules are used to bring S and Ineq into the appropriate shape which make the applications of the Ackermann-
rules possible. These rules include four approximation rules. For example, the

Left-positive approximation rule. We write ϕ(!x) to indicate that the variable x occurs exactly once in ϕ, and we let
ϕ(γ/!x) be the formula obtained by substituting γ for x in ϕ(!x). If Ineq = ϕ ≤ ψ, and ϕ = ϕ′(γ/!x), and +x ≺ +ϕ′(!x),
and the branch of +ϕ′(!x) starting at +x is join-friendly, then:

• S := S ∪ {j ≤ γ}, and

• Ineq := ϕ′(j) ≤ ψ
where j is the first nominal not previously occurring in S or Ineq.

The rule above is sound by the distributive behaviour of join-friendly operation occurrences and the join generation of
perfect LO’s by J∞. The other three approximation rules provide for the other combinations of ϕ occurring on the left/right
of the inequality and being positive/negative in x.

The residuation rules operate on the inequalities in S , and are based on the residuation of the operations:

^α ≤ β
α ≤ �β

α ≤ �β
_α ≤ β

Cα ≤ β
Jβ ≤ α

α ≤ Bβ
β ≤ Iα

α ◦ β ≤ γ
α ≤ γ/◦β

α ◦ β ≤ γ
β ≤ α\◦γ

α ◦ β ≤ γ
β ≤ α\◦γ

α ≤ β ? γ
β\?α ≤ γ
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Once all propositional variables have been eliminated, this phase terminates and returns the pure quasi-inequality
& S ⇒ Ineq. If this is not possible the algorithm reports failure (this may be because the original inequality is not
canonical, or not elementary, but not necessarily).

Theorem 3.1. If an inequality is successfully purified by ND-ALBA, then it is elementary and canonical.

Theorem 3.2. ND-ALBA successfully purifies all inductive and Sahlqvist inequalities.

Example 3.3. Consider the inductive inequality ϕ2 = (�p?^>)◦�Cq ≤ �(Cq◦�p) from example 2.4. The initial system
is

S 0 = ∅ and Ineq0 = (�p ? ^>) ◦ �Cq ≤ �(Cq ◦ �p).

Applying the left-positive approximation rule twice and also the right-negative approximation rule transforms this into

S 1 = {j ≤ (�p ? ^>), k ≤ �Cq, (Cq ◦ �p) ≤ m} and Ineq1 = j ◦ k ≤ �m.

Now the residuation rules for ? and for � can be applied to the first inequality in S 1. The residuation rule for ◦ can be
applied to the third inequality in S 1. This results in the system

S 2 = {_(j/?^>) ≤ p, k ≤ �Cq, Cq ≤ m/◦�p} and Ineq2 = j ◦ k ≤ �m.

Now the right Ackermann-rule can be applied to eliminate p:

S 3 = {k ≤ �Cq, Cq ≤ m/◦�_(j/?^>)} and Ineq3 = j ◦ k ≤ �m.

Next we apply the residuation rule for C to the second inequality in S 3, yielding the system

S 4 = {k ≤ �Cq, J(m/◦�_(j/?^>)) ≤ q} and Ineq4 = j ◦ k ≤ �m,

to which the right Ackermann-rule can be applied to eliminate q, giving the pure system

S 5 = {k ≤ �CJ(m/◦�_(j/?^>))} and Ineq5 = j ◦ k ≤ �m.

It follows that ϕ2 is elementary and canonical. In fact, on perfect LO’s it is equivalent to the quasi-inequality k ≤
�CJ(m/◦�_(j/?^>))⇒ j ◦ k ≤ �m.
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Canonical extension of coherent categories

Dion Coumans

In 1951, Jónsson and Tarski introduced the notion of canonical extension of a Boolean algebra with

operators [4]. Since then, their ideas have been developed further, which has led to a smooth theory of

canonical extensions applicable in a broad setting such as distributive lattices and even partially ordered

sets [2, 3]. This theory has proved to be a powerful tool in the algebraic study of propositional logics.

Generalizing the notion of canonical extension to the categorical setting opens the door to the application

of those techniques in the study of predicate logics.

In his thesis [9], Magnan claims that the topos of types construction, introduced by Makkai in [10], is a

natural generalization of canonical extension to the categoricial setting. Furthermore, at a talk at PSSL

in 1999, his then PhD advisor Reyes announced (but did not prove) that this construction may be used to

prove interpolation for different first order logics [12]. In [1], Butz gives a logical description of Makkai’s

topos of types, also drawing attention to the connection with canonical extension.

We will give a short overview of this earlier work and then describe an alternative construction of the

topos of types which is a natural extension of the algebraic construction of canonical extensions. This

alternative point of view will hopefully enable applications of the topos of types in the study of predicate

logics, for example with respect to interpolation problems.

We will focus on distributive lattices and their categorical counterparts. For a distributive lattice L, its

canonical extension Lδ may be concretely described as the downset lattice of the poset (PL,⊇) of prime

filters of L ordered by reverse inclusion. The assignment L 7→ Lδ extends to a functor ( )δ : DL→ DL+,

from the category of distributive lattices to the category of completely distributive algebraic lattices,

which is left adjoint to the forgetful functor DL+ → DL.

The categorical analogue of a distributive lattice is a coherent category, i.e., a category C which has

finite limits, stable images and the property that, for all A ∈ C, SubC(A) has stable finite joins. We

write Coh for the category of all (small) coherent categories, with structure preserving functors between

them. Coherent categories provide semantics for coherent logic, the fragment of first order logic with only

the connectives ∧, ∨, >, ⊥ and ∃. Note that in a coherent category C, for each A ∈ C, SubC(A) is a

distributive lattice. This enables the interpretation of the propositional connectives. As C has images,

for each f : A → B, the pullback functor f∗ : SubC(B) → SubC(A) has a left adjoint ∃f , which enables

the interpretation of the existential quantifier (see e.g. D1 in [5]).

For a coherent category C, we write T (C) for its topos of types (see [10]). There is a natural embedding

[ ] : C → T (C). In [9], it is shown that this construction has categorical properties corresponding to the

algebraic properties of the canonical extension of a distributive lattice. For example, for all A in C, the

distributive lattice SubT (C)([A]) is the canonical extension of the distributive lattice SubC(A), and, in

case C is a Heyting category (a coherent category in which all pullback morphisms between subobject

lattices have a right adjoint), the mapping [ ] preserves this additional structure.

In [1], Butz gives a logical description of the topos of types. He first considers the category cdCoh

of coherent categories with the additional property that all subobject lattices are complete completely

distributive, pullbacks preserve arbitrary joins of subobjects, and existential quantification (left adjoints to

the pullback morphisms between subobject lattices) distributes over filtered meets. By using the general
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construction of a syntactic category he shows that the forgetful functor cdCoh→ Coh has a left adjoint

I : Coh→ cdCoh. To get to the topos of types, he remarks that, for a category D in cdCoh, there is a

natural Grothendieck topology on D given by defining a sieve {Ai αi−→ A} to be a cover iff A =
∨
I ∃αi

Ai,

where the join is taking in SubD(A). For a coherent category C, the topos Sh(I(C), J) is equivalent to

the topos of types T (C).

We will describe an alternative construction of the topos of types T (C), for a coherent category C. Our

construction is inspired by the work of Pitts. In [13, 14], he defines, for a coherent category C, its topos

of filters Φ(C), which is a categorical generalisation of the functor which sends a lattice L to the lattice

Idl(Flt(L)) of ideals of the lattice of filters of L. In his description of Φ(C) the correspondence between

coherent categories and so-called polyadic distributive lattices plays a crucial role. We will exploit this

connection to give an alternative description of the topos of types construction, which is closely related

to the canonical extension construction for distributive lattices.

We will now outline our construction and its connections to the earlier work. We start with the definition

of polyadic distributive lattices (pDLs) and we will see that, for a coherent category C, the functor

SubC : Cop → DL, which sends an object of C to the distributive lattice of its subobjects, is a pDL from

which we may recover C (up to equivalence).

Definition 1 Let B be a category with finite limits. A polyadic distributive lattice (pDL) over B is a

functor P : Bop → DL such that, for every morphism I
α−→ J in B, P (α) : P (J)→ P (I) has a left adjoint

∃Pα satisfying

1. Frobenius reciprocity, i.e., for all a ∈ P (I), b ∈ P (J),

∃Pα (a ∧ P (α)(b)) = ∃Pα (a) ∧ b

2. Beck-Chevalley condition, i.e., for every pullback square

Q
α′ //

β′

��

J

β

��
I α

// K

in B, P (β)∃Pα = ∃Pα′(β′).

We will often omit the superscript P in ∃Pα . A pDL morphism from P : Bop → DL to P ′ : B′op → DL

is a pair (K, τ), where K : B → B′ is a finite limit preserving functor and τ : P → P ′ ◦ K is a natural

transformation satisfying, for all I
α−→ J , ∃P ′α ◦ τI = τJ ◦ ∃Pα . We write pDL for the category of polyadic

distributive lattices.

A coherent logic naturally gives rise to a pDL Fm : Bop → DL. The contexts and terms form the objects

and morphisms of the category B. For each context ~x = [x0, . . . , xn−1], Fm(~x) consists of the formulae in

the variables ~x (modulo provable equivalence). The morphisms Fm(α) are given by substitution of terms

in formulae and their adjoints are given by existential quantification (for more background see [8]).

As stated above, for a coherent category C, the functor SubC : Cop → DL is a pDL. This assignment

naturally extends to a functor S : Coh → pDL. Conversely, for a polyadic distributive lattice P over
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B, we define a coherent category A(P ) whose objects are pairs (I, a), where I ∈ B and a ∈ P (I). A

morphism (I, a)→ (J, b) is an element f ∈ P (I × J) which is, in the internal language of P , a functional

relation {x | a(x)} → {y | b(y)}. This yields a functor A : pDL→ Coh, which is left adjoint to S [13].

Proposition 2 The functors A : pDL � Coh : S form an adjunction, A a S, and, for each C ∈ Coh,

the counit at C, εC : A(S(C))→ C, is an equivalence of categories.

One may show that, for a polyadic distributive lattice P over B, the functor P δ = ( )δ ◦ P : Bop → DL is

again a pDL over B. In particular, for a coherent category C, S(C)δ is a pDL. The following proposition

relates this construction to canonical extension of distributive lattices.

Proposition 3 Let L be a distributive lattice. Viewing L as a coherent category, A(S(L)δ) ' Lδ.

We now get to our main theorem. Let C be a coherent category. For all A∈C, S(C)δ(A) is a complete

completely distributive lattice and therefore it is in particular a frame. Using that S(C)δ is a pDL, it

follows from the description of internal locales in SetC
op

given in [6], that S(C)δ is a locale in SetC
op

.

Theorem 4 For a coherent category C, the topos of types T (C) is equivalent to the topos of sheaves over

the internal locale S(C)δ in SetC
op

.

We will give a sketch of the proof. To ease the notation, we write XC for the internal locale S(C)δ.

Using a general construction in [11], we may describe an (external) site (CnXC, J) such that the topos

Sh(CnXC, J) is equivalent to the topos of sheaves over the internal locale XC. The objects of CnXC are

pairs (A, u), where A ∈ C and u ∈ XC(A). A morphism (A, u)→ (B, v) is a morphism A
α−→ B in C such

that u ≤ XC(α)(v). The Grothendieck topology J on CnXC is given by: a sieve {(Ai, ui) αi−→ (A, u)}i∈I
is a cover iff ∨

{∃αi
ui | i ∈ I} = u.

Makkai defines the topos of types T (C) as T (C) = Sh(τC, Jp). Here, τC is the category of types

of C, whose objects are pairs (A, ρ), where A ∈ C and ρ is a prime filter in SubC(A). A morphism

(A, ρ) → (A′, ρ′) is an equivalence class [α] of so-called ‘local continuous maps’. This is the categorical

version of the poset of prime filters of a distributive lattice. For a detailed description of the category of

types the reader is refered to [10]. The Grothendieck topology Jp on τC is the topology generated by the

singleton covers, that is, a sieve {(Ai, ρi)
[αi]−−→}(A, ρ)}i∈I is a cover iff there exists i ∈ I s.t. ∃[αi]ρi = ρ,

where ∃[αi]ρi = {V ∈SubC(A) |α∗i (V ) ∈ ρi}.
For a distributive lattice L, the prime filters of L correspond to the completely join irreducible elements

J∞(Lδ) of its canonical extension Lδ. Furthermore, Lδ is join generated by J∞(Lδ). Recall that, for

A ∈ C, XC(A) = SubC(A)δ. Hence, the completely join irreducible elements of XC(A) correspond to the

prime filters in SubC(A) and they join-generate XC(A). Using this, we prove that the topoi Sh(CnXC, J)

and Sh(τC, Jp) are equivalent by considering the full subcategory D of CnXC consisting of the objects

of the form (A, x), where A ∈ C and x ∈ J∞(XC(A)). The induced Grothendieck topology J ′ on D is

the topology generated by the singleton covers. Two applications of the Comparison Lemma (see [7]) now

yield

Sh(CnXC, J) ' Sh(D, J ′) ' Sh(τC, Jp) = T (C),

thereby completing the proof that taking sheaves over the internal locale XC = S(C)δ in SetC
op

yields

the topos of types T (C).
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We conclude by mentioning some current research topics. A first question is how the mapping C 7→
A(S(C)δ) relates to the functor I : Coh → cdCoh described by Butz. One would expect, especially

in view of Proposition 3, that, for a coherent category C, A(S(C)δ) is equivalent to I(C). However,

for example for the coherent category Set, the category A(S(Set)δ) does not have the property that

existential quantification distributes over filtered meets, whence A(S(Set)δ) is not in cdCoh.

Furthermore, our construction of the topos of types, as described in Theorem 4, is very close to the alge-

braic construction of canonical extensions. Therefore, we hope that it will enable us to translate canonical

extension methods used in the study of propositional logics to the predicate setting. In particular, we

intend to apply our construction in the study of interpolation problems for various first order logics.

References

[1] C. Butz, Saturated models of intuitionistic theories, Annals of Pure and Applied Logic 129 (2004), p. 245-275.

[2] M. Gehrke and B. Jónsson, Bounded distributive lattices with operators, Mathematica Japonica 40 (1994),

p. 207-215.

[3] M. Gehrke and H.A. Priestley, Canonical extensions and completions of posets and lattices, Rep. on Math.

Logic 43 (2008), p.133-152.

[4] B. Jónsson and A. Tarski, Boolean algebras with operators I, Amer. J. Math. 73 (1951), p. 891-939.

[5] P.T. Johnstone, Sketches of an elephant, Oxford Logic Guides 43 and 44, Clarendon Press, Oxford (2002).

[6] A. Joyal and M. Tierney, An extension of the Galois theory of Grothendieck, Memoires of the Amer. Math.

Soc. 51, no. 309 (1984).

[7] A. Kock and I. Moerdijk, Presentations of étendues, Cahiers de topologie et géométrie differentielle
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Topological duality for arbitrary lattices via the canonical extension

Andrew Craig, Mai Gehrke, Sam van Gool

Topological dualities for Boolean algebras and distributive lattices [8] form the basis for semantics for logics

based on propositional languages. The theory of canonical extensions for Boolean algebras and distributive

lattices [6] forms an algebraic framework for topological duality theory.

Canonical extensions have been generalized to the context of lattices1 which are not necessarily distributive

[5], and even to partially ordered sets [1]. The ensuing theory has been successfully applied to the study

of substructural logics. Using canonical extensions, relational semantics for additional operators can be

obtained, even in settings where no topological duality theory is available [1].

Regarding topological duality, there have also been several attempts to generalize the theory to lattices

which are not necessarily distributive, e.g., [9, 7]. As we will argue, Hartung’s approach [7] is the most

natural of these from the point of view of canonical extensions. Moreover, Hartung was the first to describe

the topological morphisms dual to lattice homomorphisms in general. It was shown in [1], using methods

from Sahlqvist correspondence theory, that these morphisms arise naturally from the theory of canonical

extensions. In this paper we give an equally natural account of the topology on the spaces in the dual of a

lattice. In addition, we will show that the spaces considered in [7] are not sober and that another choice is

possible where the dual is based on two spectral spaces. Finally we will give a first result relating these two

choices for the dual space of a lattice.

The starting point of our approach to topological duality for arbitrary lattices is a discrete duality between

the category Lat+ of perfect lattices and the category RSFr of RS frames, described in [3]. We aim to

‘topologize’ this duality, drawing inspiration from the distributive case, where Stone introduced topology

to generalize Birkhoff’s discrete duality between finite distributive lattices and posets to a duality between

arbitrary distributive lattices and Stone (spectral) spaces, as indicated in the diagram on the left. By analogy,

the diagram on the right provides our road map for the case of arbitrary lattices.

DLat+ Posetop Lat+ RSFrop

DLat Stone Lat ?

(·)+

(·)+

(·)δ U

(·)∗

(·)∗

(·)+

(·)+

(·)∗

(·)∗

U(·)δ

In the diagram on the right, the functor (·)δ sends a lattice L to its canonical extension Lδ, which is in Lat+,

and the pair ((·)+, (·)+) is the discrete duality described in [3], of which we will now briefly recall the relevant

details.

The objects of the category RSFr are tuples (X,Y,R), with R ⊆ X × Y a relation satisfying certain first-

order properties, called RS frames in [3]. Given an arbitrary lattice L, walking through this diagram yields

the RS frame (X,Y,R) = (Lδ)+, which minimally represents Lδ: X is the set of completely join-irreducibles

of Lδ, Y is the set of completely meet-irreducibles of Lδ, and R ⊆ X × Y is the order in Lδ from X to Y .

The lattice Lδ is now represented in both partial orders P(X) and P(Y )op as the lattice of stable sets under

the Galois connection ()u : P(X)� P(Y )op : ()l induced by R.

The composition L ↪→ Lδ → P(X) and similarly for P(Y )op yield representations of the original lattice

L inside P(X) and P(Y )op, given by sending a lattice element a ∈ L to â := {x ∈ X | x ≤Lδ a}, and

1Throughout this abstract, we use the word ‘lattice’ to mean ‘bounded lattice’, i.e., lattice with 0 and 1.
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ǎ := {y ∈ Y | a ≤Lδ y}. The map (̂·) is a ∧-embedding of L into P(X), and (̌·) is a ∨-embedding of L into

P(Y )op.

Summarizing, we have the following diagram.

P(X) P(Y )op

Lδ

L

i j

(̂·) (̌·)

()u

()l

Denote by D∧(L) the sublattice of P(X) generated by the image of (̂·), and by D∨(L) the sublattice of P(Y )

generated by the image of (̌·). We observe that the Galois connection (()u, ()l) restricts to the distributive

lattices D∧(L) and D∨(L), and that L can also be represented as the lattice of stable pairs under this

restricted Galois connection.

The lattices D∧(L) and D∨(L) yield ‘topological structure’, in the following two ways. Firstly, the lattice

D∧(L), being a collection of subsets, can be used to generate a topology τX on X, in a manner that we will

describe below, and similarly D∨(L) can be used to generate a topology τY on Y . From the topologized RS

frame (X, τX ;Y, τY ;R), the original lattice L can be retrieved, and we will see below that this yields a very

natural description of Hartung’s topological duality in terms of the canonical extension.

Secondly, if we denote by (XS , σX) and (YS , σY ) the Stone dual spaces of the distributive lattices D∧(L) and

D∨(L), respectively, and by S ⊆ XS ×YS the relation dual to the Galois connection (()u, ()l), then the tuple

(XS , σX ;YS , σY ;S) will also suffice to retrieve the original lattice L.

Our goal is to study both of these topological structures in more detail as well as relations between them.

In order to do so, our first result is a construction of the distributive lattices D∧(L) and D∨(L) completely in

terms of L, so that referring to its canonical extension is no longer necessary. We do so by defining a finitary

version of a classical construction by Bruns and Lakser of the injective hull of a meet-semilattice [2]. Call a

finite subset M ⊆ L join-admissible if, for all a ∈ L,

∨
M ∧ a =

∨

m∈M
(m ∧ a).

We now say a subset A ⊆ L is an admissible downset if A is a downset such that for all join-admissible

M ⊆ A,
∨
M ∈ A. We then prove the following characterisation theorem.

Theorem. The poset of finitely generated admissible downsets, ordered by inclusion, is a distributive lattice

which is isomorphic to D∧(L). Moreover, (̂·) : L→ D∧(L) is the unique distributive ∧-extension of L which

preserves admissible joins and in which L is join-dense.

Of course we have an order-dual characterisation for D∨(L).

If the lattice L is distributive, then any finite join is admissible, so that the admissible downsets coincide

with the lattice ideals. Moreover, the finitely generated lattice ideals are simply the principal ideals, so that

in this case, L is isomorphic to D∧(L), and similarly, L is isomorphic to D∨(L).

Now recall, from how we first defined D∧(L), that D∧(L) comes with a set representation on X = J∞(Lδ),

which we want to use to generate a topology τX on X. If L is distributive, then we can simply take the sets

in D∧(L) as a basis for the open sets of a topology on X to obtain the Stone dual space of L. However, if L

is not distributive, then taking D∧(L) to be a basis for the open sets may destroy all the information about
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the lattice, as the following example shows.

Let L = M∞ be a countable antichain with top and bottom, as in the diagram on the left, and let L′ be the

poset obtained from L by adding a join of two elements in the antichain, as in the diagram on the right.

L

.....

L′

.....

Both lattices L and L′ are equal to their canonical extension, and the sets XL and XL′ of completely join-

irreducible elements of L and L′ are both equal to the infinite antichain. For each a in the antichain, the

set â is the singleton {a}, so that the topology generated by taking the sets â to be a basis of open sets is

the discrete topology on an infinite set. This topology is not compact, and it is impossible to recover any

information about L and L′ from it.

Alternatively, one could take the complements (â)c as a subbasis for the open sets of a topology on XL :=

J∞(Lδ). The topology thus generated on XL is the cofinite topology, which is compact. However, this

topology is not sober, and, moreover, XL is homeomorphic to XL′ with this topology, even though the

lattices L and L′ are not isomorphic.

We are now ready to give an account of the general set-up of Hartung’s duality, relative to canonical exten-

sions. Let τX be the topology on X, generated by taking the complements of the sets in D∧(L) ⊆ P(X) as

a basis, and similarly define the topology τY on Y . Then the topological RS frame (X, τX ;Y, τY ;R), with

R ⊆ X×Y the restriction of the order ≤Lδ , is exactly the structure dual to the lattice L defined by Hartung,

now put in the context of canonical extensions. The topologies τX and τY have some peculiar properties:

they are not sober in general, as we saw above, and although they always have a subbasis of compact-open

sets, there are examples in which the intersection of two compact-open sets is not compact, so in general, the

compact-open sets do not form a basis for the topology.

As mentioned above, the lattice Lmay also be understood topologically by considering the tuple (XS , σX ;YS , σY ;S),

arising from the Galois connection ()u : D∧(L)� D∨(L) : ()l by Stone duality for distributive lattices. This

topological representation has the advantage of involving two sober spaces. We also observe that the spaces

(X, τX) and (Y, τY ) can be embedded in (XS , σX) and (YS , σY ), respectively.

It is natural to ask how these two choices of duals are related. We can provide the following preliminary

results. While the complements of the sets in D∧(L) form a basis for the topology of (X, τX), these sets are

not necessarily all compact in τX as shown by the following example (see explanation on the next page).

M ↪→Mδ

b2 c2

a2b1 c1

a1b0 c0

a0

..
.

..
.

..
.

b

a

c

0

z0z1z2. . .
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In the above diagram, the elements of the original lattice M are drawn as filled dots, and the three additional

elements a, b and c of the canonical extension M δ are drawn as transparent dots. The set X = J∞(M δ) is

{bi, ci, zi | i ≥ 0} ∪ {b, c}. In the space (X, τX) associated to M , we have that {(ân)c}∞n=0 is an open cover

of (b̂0 ∪ ĉ0)c = {zi : i ≥ 0} with no finite subcover.

As a consequence, even the sobrification of (X, τX) will not equal (XS , σX) in general. However, if we use

the lattice representation D∧(L) ↪→ P(X) to generate a quasi-uniform (or ordered uniform) space on X

instead of a topological space, then, using results from [4], we may obtain (XS , σX) (or the Priestley space

corresponding to (XS , σX)) by quasi-uniform (or ordered uniform) space completion. To be more specific, the

version dealing with ordered uniform spaces is already available in [4]: The ordered Hausdorff completion of

the ordered uniform Pervin space corresponding to any representation of a bounded distributive lattice, and

thus in particular D∧(L) ↪→ P(X), is equal to the Priestley space of that lattice, see [4, Theorem 1.6, p. 4]

and the comments in Section 6 of that paper. We note that a quasi-uniform space version of the results in

[4] will soon be available in the journal version of that paper, thus allowing us to obtain (XS , σX) directly

as a quasi-uniform completion of the quasi-uniform Pervin space corresponding to the lattice representation

D∧(L) ↪→ P(X). This provides a relation between the points of the two spaces (X, τX) and (XS , σX) which

we want to explore further. Of course order-dual comments hold for the spaces (Y, τY ) and (YS , σY ).
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Residuated Park Theories: Extended Abstract

Z. Ésik
Dept. of Computer Science, University of Szeged

6720 Szeged, Árpád tér 2, Hungary

1 Introduction

The semantics of recursion is usually described by fixed points of functions, functors, or other constructors,
cf. [2, 14]. Least fixed points of monotone or continuous functions on cpo’s or complete lattices have
been widely used to give semantics to functional programs and various programming logics such as the
µ-calculus. The parameterized least fixed point operation †, in conjunction with function composition
and the cartesian operations (or Lawvere theory operations) and the binary supremum operation satisfies
several nontrivial equations, such as the well-known De Bakker-Scott-Bekić equation, [1, 3]. One would
naturally like to have a complete description of all valid (in)equations in the form of a system of axioms.
Our aim in this paper is to provide such complete descriptions.

The program carried out in this paper stems on one side from [11] and [5, 7, 8], and from [12, 13] on the
other side. All theorems formulated in this abstract are new unpublished results. Complete proofs can
be found in [9].

2 Theories and residuated theories

In any category we write composition f · g of morphisms f : a → b and g : b → c in diagrammatic order
and we let 1a denote the identity morphism a → a.

A Lawvere theory is a small category T whose objects are the nonnegative integers such that each object
n is the n-fold coproduct of object 1 with itself. We assume that every Lawvere theory comes with
distinguished coproduct injections in : 1 → n, i ∈ [n] = {1, . . . , n}. Thus, for any sequence of morphisms
f1, . . . , fn : 1 → p there is a unique f : n → p with in · f = fi, for all i ∈ [n]. We denote this unique
morphism f by 〈f1, . . . , fn〉 and call it the tupling of the fi. When n = 0, we also write 0p. It is clear that
1n = 〈1n, . . . , nn〉 for all n. We require that 11 = 11, so that 〈f〉 = f for all f : 1 → p. Since an object
n + m is the coproduct of objects n and m with respect to coproduct injections κn,n+m : n → n + m and
λm,n+m : m → n + m that are tuplings of the injections in+m, i ∈ [n + m], any theory is equipped with a
pairing operation mapping a pair of morphisms (f, g) with f : n → p and g : m → p to 〈f, g〉 : n+m → p.
Also, we can define for f : n → p and g : m → q the morphism f⊕g : n+m → p+q as 〈f ·κp,p+q , g·λq,p+q〉.
When A is any set, the Lawvere theory of functions FA has as morphisms n → p all functions Ap → An

(note the reversal of the arrow). The composition f · g of f : n → p and g : p → q is their function
composition which is a function Aq → An. The distinguished coproduct injections are the projections. It
is well-known that each Lawvere theory can be embedded by an object and coproduct preserving functor
in a theory FA, for some set A. Thus, each theory can be faithfully represented as a theory of functions.
Also, each theory T may be seen as a many-sorted algebra satisfying certain equational axioms whose set
of sorts is the set N × N of all ordered pairs of nonnegative integers, see e.g. [2] for details.

An ordered theory is a theory T equipped with a partial order ≤ defined on each hom-set T (n, p) such
that composition is monotone and for all f, g : n → p, f ≤ g iff in · f ≤ in · g for all i ∈ [n]. A semilattice
ordered theory is an ordered theory T such that each home-set is semilattice ordered. Alternatively, a
semilattice ordered theory may be viewed as a theory T equipped with a binary operation ∨, defined on
each hom-set T (n, p) such that (T (n, p), ∨) is an upper semilattice, moreover

f · g ≤ (f ∨ f ′) · (g ∨ g′), f, f ′ : n → p, g, g′ : p → q

in · (f ∨ g) ≤ (in · f) ∨ (in · g), f, g : n → p, i ∈ [n],

where for any f, g : n → p, f ≤ g is an abbreviation for f ∨ g = g.

Suppose that T is an ordered theory. Then any morphism g : p → q in T induces a monotone function
T (n, p) → T (n, q) by right composition: f 7→ f · g, for all f : n → p. When this function has a right
adjoint, we have a Galois connection that defines a (left) residuation operation.

Definition 2.1 Suppose that T is an ordered theory. We call T a residuated ordered theory if T is
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equipped with a binary operation

T (n, q) × T (p, q) → T (n, p), n, p, q ≥ 0

(h, g) 7→ h⇐g

such that f · g ≤ h iff f ≤ (h⇐g) for all f : n → p, g : p → q and h : n → q. We call h⇐g the (left)
residual of h by g.

A residuated semilattice ordered theory is a semilattice ordered theory which is a residuated ordered
theory.

Note that in a residuated ordered theory, for any h : n → q and g : p → q, h⇐g is the greatest morphism
f : n → p with f · g ≤ h. Thus, an ordered theory can be turned into a residuated ordered theory in at
most one way.

Suppose that L is a complete lattice. Let MonL denote the theory of all monotone functions on L
which is a subtheory of FL. Equipped with the pointwise partial order, MonL is a residuated semilattice
ordered theory.

3 Residuated Park theories
Definition 3.1 A residuated Park theory T is a residuated ordered theory equipped with a dagger
operation † : T (n, n + p) → T (n, p) for n, p ≥ 0 satisfying the following conditions:

f ≤ g ⇒ f † ≤ g†, f, g : n → n + p (1)

f · 〈f †,1p〉 ≤ f †, f : n → n + p (2)

f † · g ≤ (f · (1n⊕g))†, f : n → n + p, g : p → q (3)

(g⇐〈g,1p〉)† ≤ g, g : n → p. (4)

A residuated semilattice ordered Park theory is a residuated Park theory which is semilattice or-
dered.

Note that when T is semilattice ordered, (1) can be expressed by the inequation

f † ≤ (f ∨ g)†, f, g : n → n + p.

It is not difficult to show that in any residuated Park theory it holds that

f · 〈f †,1p〉 = f †, f : n → n + p and f † · g = (f · (1n⊕g))†, f : n → n + p, g : p → q.

Moreover, the least fixed point rule (or Park induction) holds:

f · 〈g,1p〉 ≤ g ⇒ f † ≤ g, f : n → n + p, g : n → p.

Thus, any residuated Park theory is a Park theory as defined in [5].

When L is a complete lattice, MonL is a residuated semilattice ordered Park theory. The dagger operation
maps a morphism f : n → n + p, i.e., a monotone function f : Ln+p → Ln to the monotone function
f † : Lp → Ln such that for each y ∈ Lp, f †(y) is the least fixed point of the monotone endofuntction
Ln → Ln, x 7→ f(x, y).

A term in the language of theories equipped with a dagger operation is a well-formed expression composed
from sorted morphism variables (or letters) f : n → p and the symbols in : 1 → n, i ∈ [n], n ≥ 0, by
the theory operations and dagger. A term in the language of theories equipped with some additional
operations such as ∨ or the residuation and star operations introduced later in the sequel may involve
those additional operations. Each term t has a source n and a target p, noted t : n → p. When the
variables f are interpreted as morphisms of appropriate source and target in a theory T equipped with
dagger or the other additional operations, each term t : n → p denotes a morphism n → p of T . When
T is ordered, we say that an inequation t ≤ t′ between terms t, t′ : n → p holds in T if under each
interpretation of the variables by morphisms in T , the morphism denoted by t is less than or equal to
the morphism denoted by t′ in the ordering of T . We say that the equation t = t′ holds in T if both
t ≤ t′ and t′ ≤ t hold. Clearly, when T is semilattice ordered, t ≤ t′ holds iff t ∨ t′ = t′ does. Examples of
inequations that hold in all theories MonL, where L is any complete lattice are given in Definition 3.1.

The equational properties of the dagger operation in the theories MonL in conjunction with the theory
operations are captured by the axioms of iteration theories axiomatized by the “Conway equations” and
an equation associated with each finite (simple) group [6]. As the next result shows, this infinite collection
of equational axioms may be replaced by a much simpler one if we enlarge the set of operations with
residuation. 38



Theorem 3.2 An inequation between terms in the language of theories equipped with a † operation holds
in all theories MonL, where L is a complete lattice iff it holds in all residuated Park theories.

An equation between terms in the language of theories equipped with a dagger operation and an operation
∨ holds in all theories MonL, where L is a complete lattice iff it holds in all residuated semilattice ordered
Park theories.

4 Dagger vs. star
Call an ordered theory T strict if for each n, p ≥ 0 there exists a least morphism n → p, denoted
⊥n,p : n → p, such that ⊥n,p · g = ⊥n,q. Every Park theory is strict with ⊥n,p = (1n⊕0p)

†. For any
morphism f : n → n + p in a semilattice ordered theory, let us define

f τ = f · (1n⊕0n⊕1p) ∨ (0n⊕1n⊕0p) : n → n + n + p.

(We assume that · has higher precedence than ∨.)

Definition 4.1 A residuated star Park theory is a strict residuated semilattice ordered theory equipped
with a star operation ∗ : T (n, n + p) → T (n, n + p), n, p ≥ 0 satisfying

f∗ = (f τ )∗ · 〈⊥n,n+p,1n+p〉, f : n → n + p (5)

f∗ ≤ (f ∨ g)∗, f, g : n → n + p (6)

f∗ · (1n⊕g) ≤ (f · (1n⊕g))∗, f : n → n + p, g : p → q (7)

f · 〈f∗, 0n⊕1p〉 ∨ (1n⊕0p) ≤ f∗, f : n → n + p (8)

(g⇐〈g, 0n⊕1p〉)∗ ≤ (g⇐〈g, 0n⊕1p〉), g : n → n + p (9)

It is clear that the star operation is monotone in any star Park theory.

Let T be a strict (residuated) semilattice ordered theory. If T is equipped with a dagger operation, define
a star operation by f∗ = (f τ )†, for all f : n → n+p. Let T∗ denote the resulting theory. If T is equipped
with a star operation, define f † = f∗ · 〈⊥n,p,1p〉, for all f : n → n + p. The resulting theory is denoted
T†.

Theorem 4.2 The assignments T 7→ T∗ and T 7→ T† are inverse bijections between residuated semilattice
ordered Park theories and residuated star Park theories.

Actually by introducing appropriate morphisms, it follows that the category of residuated semilattice
ordered Park theories is isomorphic to the category of residuated star Park theories.

Theorem 4.3 An (in)equation between terms in the language of theories equipped with operations ∨
and ∗ and constants ⊥n,p holds in all theories MonL, where L is any complete lattice iff it holds in all
residuated star Park theories.

We end this section by presenting an interesting property of the star operation in residuated star Park
theories.

Theorem 4.4 Suppose that T is a strict residuated semilattice ordered theory equipped with a star op-
eration. Then T is a residuated star Park theory iff (5), (7) hold and for each f : n → n + p, f∗ is the
least morphism g : n → n + p such that

(1n⊕0p) ∨ f ∨ g · 〈g, 0n⊕1p〉 ≤ g. (10)

5 Regular tree languages
In this section, we present a computer science application. When Σ is ranked alphabet (or signature)
and n ≥ 0, we denote by TΣ(Xn) the set of all Σ-terms (or Σ-trees) in the variables x1, . . . , xn, cf. [10].
We recall that a (Σ-)tree language is a subset of TΣ(Xn), for some n ≥ 0. The theory TreeLangΣ has as
morphisms n → p all n-tuples of tree languages in TΣ(Xp). Composition is defined by OI-substitution [4]
and for each i ∈ [n], n ≥ 0, the ith distinguished morphism 1 → n is the language {xi} containing only
the variable xi. Equipped with the pointwise inclusion, TreeLangΣ is uniquely a residuated semilattice
ordered Park theory and a residuated star Park theory. It contains the theory RegΣ of regular (finite
tree automaton recognizable) tree languages as a subtheory. (For unexplained notions we refer to [10] or
[9].) 39



Definition 5.1 Suppose that T is a strict semilattice ordered theory. We call a morphism f : 1 → p
strict if

f · 〈1p, . . . , (i − 1)p, ⊥1,p, (i + 1)p, . . . , pp〉 = ⊥1,p

for all i ∈ [p]. We call f distributive if f ·〈1p+1, . . . , (i−1)p+1, ip+1∨(i+1)p+1, (i+2)p+1, . . . , (p+1)p+1〉 =

f · 〈1p+1, . . . , (i − 1)p+1, ip+1, (i + 2)p+1, . . . , (p + 1)p+1〉 ∨
f · 〈1p+1, . . . , (i − 1)p+1, (i + 1)p+1, (i + 2)p+1, . . . , (p + 1)p+1〉

for all i ∈ [p].

For example, for each letter σ ∈ Σp, the morphism {σ(x1, . . . , xp)} : 1 → p in TreeLangΣ is strict and
distributive. More generally, a tree language L : 1 → p in TreeLangΣ is strict and distributive iff each
tree t ∈ L contains exactly one occurrence of each variable xi ∈ Xp.

For any term t over Σ in the language of theories equipped with operations ∨ and †, we let |t| denote the
morphism denoted by t in RegΣ when each letter σ ∈ Σp is interpreted as the language {σ(x1, . . . , xp)} :
1 → p.

Theorem 5.2 Suppose that t and t′ are terms n → p over Σ in the language of theories equipped with
operations ∨ and † (or ∗). Then |t| = |t′| iff t = t′ holds in all residuated semilattice ordered Park theories
under all interpretations of the letters in Σ by strict distributive morphisms.

This theorem extends a result from [12] from regular word languages to regular tree languages. Actually
for regular word languages it is stronger than the corresponding result in [12] since it involves only
one-sided residuation.

Remark 5.3 The dagger operation and the star operation may be replaced by their “scalar versions”,
i.e., operations mapping a morphism f : 1 → 1 + p to a morphism f † : 1 → p or f∗ : 1 → 1 + p. See [9].
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[5] Z. Ésik, Completeness of Park induction.Theoret. Comput. Sci., 177(1997), no. 1, 217–283.
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Abstract

We present a generalization of Permutative logic (PL) [1] which is a non-commutative variant
of Linear logic suggested by some topological investigations on the geometry of linear proofs. The
original logical status based on a variety-presentation framework is simplified by extending the notion
of q-permutation to the one of pq-permutation [7]. Whereas PL is limited to orientable structures,
we characterize the whole range of topological surfaces, orientable as well as non-orientable. The
system we obtain is a surface calculus that enjoys both cut elimination and focussing properties and
comes with a natural phase semantics whenever explicit context is considered.

Among the different viewpoints considered for studying proofs of Linear Logic, let us recall that
its graph-theoretical representations may be seen as topological objects and considered as surfaces on
which usual proofs are drawn without crossing edges [2, 6, 5]. Following that interpretation, Gaubert [3]
provided a way to compute surfaces. Moreover, based on the fact that the exchange rule may model
topological operations, non-commutative variants of Multiplicative Linear logic (MLL) were developed:
planar logic [5], the calculus of surfaces [3] and permutative logic (PL) [1]. In all these cases the
conclusions of the proofs are drawn on disjoint oriented circles, more precisely orientable surfaces with
boundary. E.g. in PL the underlying structure is that of a permutation, which is a product of disjoint
cycles, together with a natural number to express the number of tori, actually a topological invariant of
the surface. The shape of such sequents is called a q-permutation and geometrically studied in [7] by one
of the present authors. One of the main topological results given in [7] is related to Massey classification
theorem [4]: any orientable surface, possibly with boundary, is homeomorphic either to a sphere or to a
finite connected sum of tori, possibly with boundary.

We consider in this paper a generalization to surfaces orientable or not. Massey theorem states in
that case that it may be homeomorphic also to a finite connected sum of projective planes, possibly
with boundary. For that purpose, we consider in our work pq-permutations which are simply obtained
from q-permutations by replacing the single index q with an ordered couple (p, q) of positive integers for
counting tori handles and projective planes. The shape of our sequents still integrates the topology of
a surface and non-trivial exchange rules correspond to surface transformations, following what is done
in PL but also in Melliès planar logic [5]. After presenting the logical system, we prove a few logical
properties: it enjoys both cut elimination and the focussing property, as PL does. We give a phase
semantics that is sound and complete with respect to the calculus. Though a phase semantics may seem
a too elementary result, it allows us to tackle the problem of contextual structures. The aim of our work
is to shed new light on the relationship between topology and logic.

1 sPL: A Sequent Calculus for Surfaces
Formulas of sPL are inductively built from a countable infinite set of atomsA = {a, b, c, . . . , a⊥, b⊥, c⊥, . . .}
and the two usual multiplicative connectives O and ⊗, together with a unary bar operation (_̄) that
models the inversion of the orientation:

F ::= F ∈ A | F̄ | F1 O F2 | F1 ⊗ F2
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IDENTITY GROUP
ax.

`00 (A,A⊥)
`pq Σ, (Γ, A) `p

′

q′ Ξ, (∆, A⊥)
cut

`p+p
′

q+q′ Σ,Ξ, (Γ,∆)

ORIENTABLE STRUCTURAL RULES

`pq Σ, (Γ,∆)
cylinder`pq Σ, (Γ), (∆)

`pq Σ, (Γ), (∆)
torus`pq+1 Σ, (Γ,∆)

`pq Σ
invert`pq Σ

NON-ORIENTABLE STRUCTURAL RULES

`pq Σ, (Γ,∆)
Möbius`p+1

q Σ, (Γ,∆)

`pq Σ, (Γ), (∆)
Klein`p+2

q Σ, (Γ,∆)

LOGICAL RULES

`pq Σ, (Γ, A,B)
O`pq Σ, (Γ, AOB)

`pq Σ, (Γ, A) `p
′

q′ Ξ, (∆, B)
⊗

`p+p
′

q+q′ Σ,Ξ, (Γ, A⊗B,∆)

Table 1: Sequent calculus for sPL

The negation is defined as usual by de Morgan duality and preserves the bar operation. A sequent
is denoted `pq Γ where Γ is a multiset of cyclic sequences which are formulas separated by ’,’ within
parenthesis, and p and q are integers with the intuition they denote a pq-permutation (p for projective
planes). We write () for an empty cycle. Type derivations are built from the rules of table 1.

Remark that the key rules of divide and merge in PL are also in sPL as respectively cylinder and
torus acting as orientable rules.

2 Cut Elimination and Focussing Property
Theorem 1 (cut-elimination). Any proof of a sPL sequent can be rewritten into a cut-free proof of the
same sequent.

A standard proof by case analysis need a particular attention for commutative conversions involving
the Möbius or the Klein rule. This result can also be obtained as a consequence of focalization.

A focalized sequent calculus, called foc-sPL, may be defined with sequents of the form `pq Γ|Σ where
Γ is the focus – a distinguished cyclic sequence – and Σ is a multiset of cyclic sequences of formulas
separated by ’;’. The cut rule acts only on focusses. The main ingredients are the following ones: a focus
rule is added and Klein and torus rules are changed in the following way:

`pq |(Γ); Σ
focus`pq Γ|Σ

`pq Γ,Λ,∆|Σ
torus’`pq+1 Γ,∆,Λ|Σ

`pq Γ,Λ,∆|Σ
Klein’`p+2

q Γ,∆,Λ|Σ

In such a presentation the defocus rule is simply a special case of the cylinder rule (with () neutral w.r.t.
’;’). As it follows from topological considerations, structures of proofs in foc-sPL may be normalized in
such a way that cylinder applications arrive only at the end of a proof construction. Such proofs are
called maximally focalized and it is then possible to prove a cut-elimination property on them.

Proposition 2 (Maximal Focalization). A sequent is provable in foc-sPL if and only if there exists a
proof such that cylinder rules are applied only at the end. Moreover cuts in a maximally focalized proof
in foc-sPL may be eliminated.

Sketch. As the cut rule is applied to focalized formulas and that cut and cylinder rules commute, one
may consider that cuts are applied to sequents of the form `pq Γ|. The rest is done by case analysis.
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We are finally able to prove that provability in sPL and foc-sPL are equivalent, hence a cut-elimination
theorem for sPL follows.

Proposition 3 (Focussing property). A sequent is provable in sPL if and only if it is provable in foc-sPL.

3 Phase Semantic
A phase space is provided that is proved to be complete and valid with respect to the calculus. This
should be considered as a first step towards a better understanding of the calculus and its relation to
geometry. In fact, this is not at all obvious if we notice that there is not yet satisfying proof semantics
for non-commutative logic (NL) even though its phase space has been given together with its sequent
calculus (by Ruet in his 1997’thesis). What is the main difficulty when turning to a calculus of surfaces?
Or equivalently what makes NL an easier situation? The orientation has to be taken into account, more
than that the context cannot be neglected. In NL, the non-commutative structure is an order variety.
Hence a formula on which an operation is applied may be ‘extracted’ from its context: the structure
of the semantics is close to what is required with Linear Logic. This is no more true in the calculus of
surfaces as see-saw structural rules are not valid: one is required to deal explicitly with the context.

For that purpose, a support phase space Supp(M) interpreting formulas is embedded into a context
phase space Con(M) interpreting sequents. The two phase spaces are defined from an associative monoid
and give rise to two closure operations ⊥ and † in such a way that the fundamental proposition is provable:

Proposition 4. Let M = (M,?, 1) be a (not necessarily commutative) associative monoid with neutral
element 1, let F,G ⊂M,

(F ? G⊥⊥)⊥⊥ = (F ? G)⊥⊥

(F ? G††)†† = (F ? G)††

We consider as usual that a fact is a subset A of the support phase space such that A⊥⊥ = A.
Operations are defined on facts:

A⊗B def
= (A ? B)⊥⊥ AOB

def
= (B⊥ ? A⊥)⊥ 1

def
=⊥⊥ ⊥ is given

A⊕B def
= (A ∪B)⊥⊥ A&B

def
= A ∩B> def

= M 0
def
= >⊥

Although the general lines for proving soundness and validity of the model are standard, their proofs
are more complex as they require to consider explicitly the context.

4 Principal line of current work: Relaxation
Relaxation is the binary relation induced by structural transformations – divide, merge, Möbius and Klein
– on the set of pq-permutations. We write α ≺ β, β relaxes α, for meaning that the pq-permutation α
can be rewritten into β through a suitable series of applications of structural rules. Since each structural
rule increases the topological genus of the transformed surface, relaxation turns out to impose a partial
order on the set of pq-permutations. We pose the problem of providing an algorithm for the decision
of relaxation, namely an effective procedure able to answer to the question ‘α ≺ β ?’ being given two
pq-permutations α and β.

Two parallel solutions have been already afforded in case of q-permutations, namely in case of combi-
natorial structures encoding orientable surfaces. The first one has been considered in [1] and consists in
interpreting orientable transformations – divide and merge – as the effect of composing q-permutations
with a suitable transposition. Being established such an algebraic correspondence, the solution comes
straightforwardly by stressing very standard achievements in theory of permutations. The other solution
provides a geometrical and interactive approach. For answering to our question ‘α ≺ β ?’ we compute
the surface Sα ∗ Sβ obtained by composing, through identification of paired edges occurring on the
boundaries, the two surfaces Sα and Sβ respectively corresponding to α and β. In [7], it is proved that
the topological genus of Sα ∗Sβ provides information enough to decide relaxation.

The passage from q to pq-permutations turns out to be critical from the point of view of the decision of
relaxation. Whereas orientable transformations exclusively act at the level of the combinatorial structure
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of pq-permutations, Möbius and Klein also affect their supports so as to make impossible any resort to
theory of permutations. On the contrary, we guess that the just mentioned geometrical procedure might
admit a very natural extension in order to include non-orientable transformations and surfaces. As a
matter of fact, it is an often remarked logical phenomenon that genuinely interactive approaches allow
to avoid technical problems due to syntactical bureaucracy.

5 At the end...
Our logical system sPL generalizes Permutative logic, and in this way it is an embedding of the mul-
tiplicative Cyclic Linear logic (CyLL) and MLL. A completely unexplored field of research is that one
of proof-nets for PL and sPL. The starting point should be the criterion for proof-nets of Planar Logic
which just consists in requiring, together with the logical correctness, the planarity of the graph [5].
In this direction the main difficulty is that structural rules are usually ‘transparent’ with respect to
the syntax of proof-nets so as we need to recover this kind of information by stressing the geometrical
structure of the net. As far as PL is concerned, some useful results could be borrowed from [6], whereas
the non-orientable side of the question misses at all of contributions.

Finally we developed a framework allowing to characterize the relationship between logic and ori-
entable as well as not orientable surfaces. Semantical issues have not yet been explored and we are
peculiarly interested in denotational semantic to give a topological interpretation of formulas and proofs.
The existence of a phase semantics for sPL may provide some alternative algebraic tools for studying the
geometry of 2-manifolds. A standard application of phase semantics consists in singling out redundant
rules, namely rules which are superfluous with respect to the deductive power of the system, typically
the cut rule. Now, since the basic topological transformations are embodied into our system, the classical
classification theorem might find an interesting alternative proof when addressed in terms of semantics.
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This paper is a contribution to the theory of standard BL-algebras, where
‘standard’ means that the domain is the real interval [0, 1] and BL refers to
Hájek’s Basic Fuzzy Logic. The study of BL-algebras was initiated in [5]. In
[2] it has been shown that BL is complete w. r. t. standard BL-algebras. The
paper [1] gives a characterization of BL-generic BL-chains, and [3] shows that
each logic given by a particular single standard BL-algebra can be finitely
axiomatized. [4] shows how to extend this result to finite sets of standard
BL-algebras.

In this work, we address the problem of arbitrary sets of standard BL-
algebras, and we want to argue that passing from finite sets of BL-algebras
to infinite ones brings nothing new. We prove the following.

Theorem 1. If V is a subvariety of BL generated by a set of standard
BL-algebras, then V is generated by a finite set of standard BL-algebras.

This result offers answers to some important questions, such as, what
the cardinality is of the class of subvarieties of BL generated by classes of
its standard algebras, or how to axiomatize them.

We build on, and assume familiarity with, [3] and the notions therein,
in particular, the notion of Fin(A) and a crucial result of that paper stating
that, for two standard BL-algebras A and B, we have Var(A) ⊆ Var(B) iff
Fin(A) ⊆ Fin(B). Also, for each standard BL-algebra, there is a canonical
standard BL-algebra that generates the same variety and can be expressed
in alphabet ∞ L, ∞Π,  L, G, Π (see [3]). W. l. o. g., we may assume that
we work with canonical, pairwise non-isomorphic standard BL-algebras. We
proceed by a case study involving finitely many cases, relying on the follow-
ing statement.

∗Supported by grant P202/10/1826 of the Czech Science Foundation
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Lemma 2. Let K =
⋃

i∈I Ki, L =
⋃

i∈I Li be classes of algebras of the same
signature. Assume Var(Ki) = Var(Li) for i ∈ I. Then Var(K) = Var(L).

Let k ∈ N. A standard BL-algebra is said to be of type  L ⊕ k. L if it
starts with an  L-component, which is followed by an ordinal sum containing
exactly k other  L-components ( as well as possibly other components, the
order is immaterial). Analogously, the type  L ⊕ k. L either starts with a
component other than  L, or has no first component, and has exactly k
 L-components altogether. The type  L has no  L-components. Further, a
standard BL-algebra is said to be of type  L ⊕ ∞ L if it starts with an  L-
component, which is followed by an ordinal sum containing infinitely many
other  L-components; analogously for  L⊕∞ L.

Given a class K of standard BL-algebras, we decompose it into K0, con-
sisting of all algebras in K starting with an  L-component, and K1, consisting
of all algebras in K not starting with an  L-component. Relying on Lemma
2, we tackle K0 and K1 separately, trying to replace each class by a suitable
finite counterpart.

Lemma 3. If the set {k ∈ N|∃A ∈ K0(A of type  L⊕ k. L)} is infinite, or if
 L⊕∞ L ∈ K0, then Var(K0) = BL.

If a class of standard algebras K0 generates the variety BL, then we have
Var(K0) = Var( L ⊕∞ L) = Var(∞ L); thus the variety generated by K0 is
also generated by a single standard canonical BL-algebra ∞ L.

On the other hand, if K0 does not satisfy the conditions of Lemma 3,
then there is a k0 ∈ N such that each algebra A ∈ K0 has at most k0
 L-components. In such a case, K0 generates a strict subvariety of BL.

In exactly analogous way, one shows that the class K1 either generates
the variety SBL, or the number of  L-components in each A ∈ K1 is bounded
by some k1 ∈ N, and in the latter case K1 generates a strict subvariety of
SBL. In the former case, K1 can be replaced by the single algebra Π⊕∞ L,
which also generates SBL.

In the rest, we address the problem of finding, for a given a class K
of canonical standard (S)BL-algebras with at most k  L-components each,
a finite class K′ of (canonical) standard BL-algebras such that Var(K) =
Var(K′). Building on Lemma 2, we partition K into finitely many classes
Ki, i ≤ k, depending on the number i of  L-components, and solve the prob-
lem separately for each i.

For k ∈ N, we denote Lk the class of all (isomorhism types of) canonical
standard BL-algebras with exactly k  L-components. Clearly for i ≤ k0 we
have Ki ⊆ Li. Moreover, in a way analogous to the previous case, we proceed
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separately for algebras starting with an  L-component and for algebras not
starting with an  L-component. We address the latter case; the former case
can be viewed as a special case.

Fix k ∈ N. For A ∈ Lk, we may write

A = A0 ⊕  L⊕A1 ⊕ · · · ⊕Ak−1 ⊕  L⊕Ak

where A0 is non-empty (by assumption) and each Aj , 1 ≤ j ≤ k is either
an empty sum ∅, or a finite ordinal sum of G’s and Π’s, or it is ∞Π.

Definition 4. For canonical standard BL-algebras A,B, let A � B iff
Var(A) ⊆ Var(B). Moreover, let ∅ � A for any standard BL-algebra A.

Lemma 5. � on Lk is the product order of its restrictions to each of
{0, . . . , k}; i. e., for A,B ∈ Lk, where A = A0⊕  L⊕A1⊕· · ·⊕Ak−1⊕  L⊕Ak

and B = B0 ⊕  L⊕B1 ⊕ · · · ⊕Bk−1 ⊕  L⊕Bk, we have A � B iff for each
j ≤ k, Aj � Bj.

It is illuminating to study the behaviour of � on L0 first. It is easy to
show that ∞Π is the top element of L0 w. r. t. �; by definition, ∅ is the
bottom element. Moreover, if A,B ∈ L0 are finite ordinal sums (of G and
Π-components), then A � B iff A is a subsum of B. Employing Higman’s
theorem, � on L0 is a w.q.o. and hence, L0 has no infinite �-antichains.

Further, we investigate �-chains in L0. Let {Ai}i∈I be a non-empty
�-chain in L0. Then {Ai}i∈I has a supremum (in L0), and Var({Ai}i∈I) =
Var(sup({Ai}i∈I)).

Using the above results on L0, we investigate the case of Lk for a fixed
k ∈ N. By a standard argument, if � on L0 is a w.q.o., then so is � on Lk

using Lemma 5. Hence, in particular, Lk has no infinite �-antichains.
Moreover, again using Lemma 5, if {Ai}i∈I is a �-chain in Lk, then

Var({Ai}i∈I) = Var(sup({Ai}i∈I)).
Let K ⊆ Lk. Let {Ai}i∈I be a �-chain in K. We say that {Ai}i∈I is

maximal in K iff there is no B ∈ K such that Ai ≺ B for each i ∈ I.

Lemma 6. Let K ⊆ Lk. Let {Ai}i∈I , {Bi′}i′∈I′ be two maximal �-chains in
K. If {Bi′}i′∈I′ has a top element in K, then sup({Ai}i∈I) 6≺ sup({Bi′}i′∈I′).

Now we are ready to tackle the main statement of this paper. A class
K ⊆ Lk of standard (canonical, pairwise non-isomorphic) BL-algebras is
given. We need to find a finite K′ ⊆ Lk such that Var(K) = Var(K′). Let us
denote D0 = K.
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Definition 7. Let D0 ⊆ Lk. For n ∈ N, define

Dn+1 = {A|A = sup({Ai}i∈I) for some maximal chain {Ai}i∈I in Dn}
Theorem 8. (i) Var(Dn) = Var(Dn+1) for each n ∈ N

(ii) There is an n ≤ k + 2 such that

(a) Dn = Dn+1

(b) Dn is finite

The key point in the proof is observing that, for n ≥ 1, that if A,B ∈
Dn, then A ≺ B implies B 6∈ Dn−1; moreover, if, for n ∈ N, we have
A ∈ Dn+1 \ Dn, then, for at least n distinct elements j ∈ J = {0, . . . , k} we
have (A)j =∞Π (by induction on n).

Corollary 9. Let K ⊆ Lk be a class of BL-algebras. Then K′ = Dk+2 is a
finite set of standard algebras in Lk generating the same variety as K.

To conclude, we have provided, for a given class K of standard BL-
algebras, a finite class of BL-algebras generating the same subvariety of
BL, by first dealing with the case that K generates BL or SBL, and then
addressing the case that the number of  L-components in elements of K is
bounded. In the latter case, we proceeded again by cases, distinguishing by
exact number i of  L-components. For each such case, we have replaced the
algebras in Ki with a suitable finite counterpart.
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The problems considered in this paper originate in recent applications of large scale ontologies
in medicine and other life sciences. The profile OWL2EL of the OWL2 Web Ontology Language,1

used for this purpose, is based on the description logic EL [7]. The syntactic terms of EL, called
concepts, are interpreted as sets in first-order relational models. Concepts are constructed from
atomic concepts and constants for the whole domain and empty set using intersection and existential
restrictions of the form ∃R.C, R a binary relation and C a concept, which are understood as
∃y (R(x, y) ∧ C(y)). From a modal logic point of view, concepts are modal formulas constructed
from propositional variables and the constants >, ⊥ using conjunction and diamonds. An EL-theory
is a set of inclusions (or implications) between such concepts, and the main reasoning problem in
applications of EL in life sciences is to decide whether an EL-theory entails a concept inclusion when
interpreted over a class of relational structures satisfying certain constraints on its binary relations.
Standard constraints in OWL2EL are transitivity and reflexivity, for which reasoning in EL is
PTime-complete, as well as symmetry and functionality, for which reasoning is ExpTime-complete
[1, 2].

As in modal logic, apart from reasoning over relational models, one can try to develop a purely
syntactical reasoning machinery using a calculus. In other words, we can define a more general
algebraic semantics for EL: the underlying algebras are bounded meet-semilattices with monotone
operators (SLOs, for short), constraints are given by equational theories of SLOs, and the reason-
ing problem is validity of quasi-equations in such equational theories. The resulting more general
entailment problem is not necessarily complete with respect to the ‘intended’ relational semantics.
This paper presents our initial results in an attempt to clarify which equational theories of SLOs
are complete in this sense and which are not. We also prove that the completeness problem—given
a finitely axiomatised equational theory of SLOs, decide whether it is complete with respect to
the relational semantics—is algorithmically undecidable, which establishes a principle limitation
regarding possible answers to our research question.

An EL-equation is an expression of the form ϕ ≤ ψ, where ϕ and ψ are terms that are built
from variables xj , j ≥ 1, using meet ∧, unary operators fi, for i ∈ I, and constants 1 and 0.
An EL-theory, T , is a set of EL-equations; and an EL-quasi-equation is an expression of the form
(ϕ1 ≤ ψ1) & · · · & (ϕn ≤ ψn) → (ϕ ≤ ψ), where the ϕi ≤ ψi and ϕ ≤ ψ are EL-equations. The
class of SLOs A = (A,∧, 0, 1, fi)i∈I validating all equations in T is the variety V(T ). The ‘intended’

1http://www.w3.org/TR/owl2-overview/
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relational semantics of EL is given by EL-structures F = (∆, Ri)i∈I , which consist of a set ∆ 6= ∅
and binary relations Ri on it. Every such F gives rise to the complex algebra F+ = (2∆, Fi)i∈I of F,
where 2∆ is the full Boolean set algebra over ∆ and Fi(X) = {x ∈ ∆ | ∃y ∈ X xRiy}, for X ⊆ ∆.
Complex algebras (CAs) are special cases of Boolean algebras with normal and ∨-additive operators
(BAOs, for short). The class of bounded distributive lattices with normal and ∨-additive operators is
denoted by DLO. Slightly abusing notation (and remembering the signatures of DLOs and BAOs),
we may assume that CA ⊆ BAO ⊆ DLO ⊆ SLO.

Given a class C of SLOs, an EL-theory T and a quasi-equation q, we say that q follows from T
over C and write T |=C q if A |= q, for every A ∈ C with A |= T . An EL-theory T is said to be
C-conservative if T |=C q implies T |=SLO q, for every quasi-equation q. We call T complete if it is
CA-conservative.

A standard way of establishing completeness of a modal logic is by showing that its axioms
generate what Goldblatt [3] calls a ‘complex variety.’ This notion works equally well in the EL
setting: We say that an EL-theory T is complex if every A ∈ V(T ) is embeddable in some F+ ∈ V(T ).
The following theorem provides our main tool for investigating completeness of EL-theories:

Theorem 1. For every EL-theory T ,

T is complex iff T is complete iff T is BAO-conservative.

The proof of this theorem uses the fact that all EL-equations correspond to Sahlqvist formulas
in modal logic. Therefore, every A ∈ BAO validating an EL-theory T is embeddable into some
F+ ∈ CA validating T . It also follows from the ‘correspondence’ part of Sahlqvist’s theorem that
the class of EL-structures validating any EL-theory is first-order definable. For example,

– x ≤ f(x) defines reflexivity;

– f(f(x)) ≤ f(x) defines transitivity;

– x ∧ f(y) ≤ f(f(x) ∧ y) defines symmetry;

– f(x) ∧ f(y) ≤ f(x ∧ y) defines functionality;

– f(x ∧ y) ∧ f(x ∧ z) ≤ f(x ∧ f(y) ∧ f(z)) defines linearity over quasi-orders.

(We refer the reader to [6] for first steps towards a correspondence theory for EL.) In contrast to
modal logic, however, the ‘completeness’ part of Sahlqvist’s theorem does not hold. The possibly
simplest example of an incomplete EL-theory is {f(x) ≤ x} (to see that this theory is not complex,
it is enough to consider the SLO with three elements 0 < a < 1 and the operation f such that
f(a) = f(0) = 0 and f(1) = 1).

SLOs validating the reflexivity and transitivity equations above (but without 0 and 1 in the
signature) have been studied by Jackson [4] under the name ‘closure semilattices’ (CSLs). He
proves that every CSL is embeddable into a BAO validating reflexivity and transitivity. With a
slight modification of his technique, we can obtain:

Theorem 2. The EL-theory {x ≤ f(x), f(f(x)) ≤ f(x)} is complete.

A more general completeness result has been proved by Sofronie-Stokkermans [9]:

Theorem 3 ([9]). Every EL-theory consisting of equations of the form f1 . . . fn(x) ≤ f(x), n ≥ 0,
is complete.

This result implies that reflexivity or transitivity alone is also complete. Using modifications of
Sofronie-Stokkermans’ techniques, we can also cover symmetry, functionality, and some combinations
thereof.
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Theorem 4. The following EL-theories are complete:

– {x ∧ f(y) ≤ f(f(x) ∧ y)} (symmetry);

– {f(x) ∧ f(y) ≤ f(x ∧ y)} (functionality);

– {x ≤ f(x), f(f(x)) ≤ f(x), x ∧ f(y) ≤ f(f(x) ∧ y)} (reflexivity, transitivity and symmetry).

In general, completeness is not preserved under unions of EL-theories. For example:

Theorem 5. Neither the union T1 of reflexivity and functionality, nor the union T2 of symmetry
and functionality is complete.

Interestingly, in both cases one can easily restore completeness by adding the equation f(x) ≤ x
to T1, and by adding f(f(x)) ≤ x to T2. (Observe that these equations are consequences of T1 and
T2 in modal logic.)

We also have a full picture of extensions of

TS5 = {x ≤ f(x), f(f(x)) ≤ f(x), x ∧ f(y) ≤ f(f(x) ∧ y)},

using that these equations axiomatise the well-known modal logic S5, and normal CSLs in [4]:

Theorem 6. The EL-theory TS5 ∪ {f(x) ∧ f(y) ≤ f(x ∧ y)} is incomplete. All other (countably
infinitely many) extensions of TS5 are complete.

As a first step towards general completeness results, we note the following analogue of complete-
ness preservation under fusions of modal logics [5]. We call T1 ∪ T2 a fusion of EL-theories T1 and
T2 if the sets of the fi-operators occurring in T1 and T2 are disjoint.

Theorem 7. The fusion of complete EL-theories is also complete.

The proofs of Theorems 3 and 4 go via two steps: (1) by embedding any SLO validating T into
a DLO validating T , and then (2) by embedding this DLO into a BAO validating T , using various
extensions of Priestley’s [8] DL-to-BA embedding to the operators fi. As concerns step (1), we have
the following result:

Theorem 8. Every EL-theory containing only equations where each variable occurs at most once
in the left-hand side is DLO-conservative.

An interesting example, showing that the condition on the number of occurrences of variables in
the left-hand side of equations in Theorem 8 cannot be dropped, is given by the EL-theory

TS4.3 = {x ≤ f(x), f(f(x)) ≤ f(x), f(x ∧ y) ∧ f(x ∧ z) ≤ f(x ∧ f(y) ∧ f(z))}.

Observe first that TS4.3 defines a relation which is reflexive, transitive and right-linear, that is,
∀x, y, z(R(x, y) ∧R(x, z)→ R(y, z) ∨R(z, y)). The modal logic determined by this frame condition
is known as S4.3, and the EL-equations above axiomatise, if added to the equations for BAOs, the
corresponding variety. However, one can show the following:

Theorem 9. TS4.3 is not DLO-conservative.

Proof. Consider the quasi-equation

q =
(
f(x) ∧ y = x ∧ f(y)

)
→

(
f(x) ∧ f(y) = f(x ∧ y)

)
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and the SLO A = (A,∧, 0, 1, f), where

A = {0, a, b, c, d, e, 1},
a ∧ b = a ∧ c = b ∧ c = 0,

d = a ∨ b, e = b ∨ c, 1 = d ∨ e,
f(a) = d, f(c) = e, and f(x) = x for the remaining x ∈ A.

One can check that TS4.3 |=DLO q; on the other hand, A |= TS4.3, A 6|= q, and so TS4.3 6|=SLO q.

Finally, we analyse the completeness problem for EL-theories from the algorithmic point of view
and show that it is impossible to give an effective syntactic criterion for completeness:

Theorem 10. It is undecidable whether a finite set T of EL-equations is complete.

The proof of this result proceeds in two steps. First, we show the following by reduction of the
undecidable halting problem for Turing machines:

Theorem 11. Triviality of finite sets of EL-equations is undecidable; more precisely, no algorithm
can decide, given a finite set T of EL-equations, whether T |=SLO 0 = 1.

In the second step, we prove that, for every EL-theory T , the following two conditions are
equivalent:

– the fusion of T and {f(x) ≤ x} is complete;

– T |=SLO 0 = 1.

Theorem 10 is then an immediate consequence of Theorem 11 and this equivalence.
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The unification type of  Lukasiewicz logic and MV-algebras is
nullaryI
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The classical, syntactic unification problem is: given two terms s, t (built from func-
tion symbols and variables), find a unifier for them, that is, a uniform replacement of
the variables occurring in s and t by other terms that makes s and t identical. When
the latter syntactical identity is replaced by equality modulo a given equational theory
E, one speaks of E-unification. Unsurprisingly, E-unification can be far harder than
syntactic unification even when the theory E comes from the least exotic corners of the
mathematical world. For instance, it may well be impossible to uniformly decide whether
two terms admit at least one unifier, i.e. whether they are unifiable at all; and even when
the two terms indeed are unifiable, there may well be no most general unifier for them,
contrary to the situation in the syntactic case. In light of these considerations, perhaps
the most basic piece of information one would like to have about E in connection with
unification issues is its unification type.

In order to present the result, a quick glance to unification is given below, however
we refer the reader to [1] and references therein for a far more complete introduction to
the subject. Given a first order language constituted by a set of function symbols F and
an infinite set of variables V = {X1, X2, . . .}, we let TermV (F ) be the term algebra built
from F and V in the usual manner. A substitution is a mapping σ : V → TermV (F )
that acts identically to within a finite number of exceptions; substitutions compose in the
obvious manner. An equational theory over the signature F is a set E = {(li, ri) | i ∈ I}
of pairs of terms li, ri ∈ TermV (F ), where I is some index set. The set of equations E
axiomatises the variety of algebras consisting of the models of the theory E, written VE .

Now a (symbolic) unification problem modulo E is a finite set of pairs

E = {(sj , tj) | sj , tj ∈ TermV (F ) , j ∈ J} ,

for some finite index set J . A unifier for E is a substitution σ such that

E |= σ(sj) ≈ σ(tj) ,

for each j ∈ J , i.e. such that the equality σ(sj) = σ(tj) holds in every algebra of the
variety VE in the usual universal-algebraic sense. The problem E is unifiable if it admits
at least one unifier. The set U(E ) of unifiers for E can be partially ordered as follows. If

IThis paper is based on a joint work with Vincenzo Marra (University of Milan), for a final
version of this work please visit the Home page below where it will shortly be available.

Email address: lspada@unisa.it

Home page: http://logica.dmi.unisa.it/lucaspada/
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σ and τ are substitutions and V ⊆ V is a set of variables, we say that σ is more general
than τ (with respect to E and V ), written τ �V

E σ, if there exists a substitution ρ such
that

E |= τ(X) ≈ (ρ ◦ σ)(X)

holds for every X ∈ V . This amounts to saying that τ is an instantiation of σ, but
only to within E-equivalence, and only as far as the set of variables V is concerned. We
endow U(E ) with the relation �V

E , where V is the set of variables occurring in the terms
sj , tj with (sj , tj) ∈ E , as j ranges in J . The relation �V

E is a pre-order, hence it can be
canonically made into a partial order 6V

E , by taking the quotient set U(E )/∼, where ∼
identifies σ and τ if and only if τ �V

E σ and σ �V
E τ both hold. Since we are interested in

unifiers modulo equivalence, we call unifiers also the members of the quotient set, even
though its elements actually are equivalence classes of unifiers.

The unification type of the unification problem E is:

1. unitary, if 6V
E admits a maximum;

2. finitary, if 6V
E admits no maximum, but admits finitely many maximal elements

[µ1], . . . , [µu] such that every [σ] ∈ U(E )/∼ lies below some [µi];

3. infinitary, if6V
E admits infinitely many maximal elements {[µi] ∈ U(E )/∼ | i ∈ I},

for I an infinite index set, such that every [σ] ∈ U(E )/∼ lies below some [µi];

4. nullary, if none of the preceding cases applies.

It is understood that the list above is arranged in decreasing order of desirability. In the
best, unitary case, any element of the maximum equivalence class [µ] is called a most
general unifier for E , or mgu for short. An mgu is then unique up to the relation ∼,
whence one speaks of the mgu for E . If [µ], on the other hand, is maximal but not a
maximum, then any element of [µ] is called a maximally general unifier. The unification
type of the equational theory E is now defined to be the worst unification type occurring
among the unification problems E modulo E.

Establishing the unification type of a theory seems to be a problem of an essentially
syntactical flavour, however, in [4] Ghilardi presents a particularly useful categorical
characterisation of the unification type of a class of structures. In Ghilardi’s approach
a unification problem E , as in the above, is modelled by the algebra finitely presented
by the relations sj = tj , and a unifier is modelled by a morphism u : A → P , with P a
finitely presented projective algebra P . Unifiers are pre-ordered via comparison arrows
and a hierarchy of unification types is given as above, mutatis mutandi. Ghilardi’s main
general result is that the algebraic unification type defined along these lines coincides
with the traditional, symbolic unification type.

This result has two main advantages: on the one hand it allows a syntax-free treat-
ment of unification, on the other hand it establishes the categorical invariance of the
unification type, which is therefore preserved under categorical equivalence. In this work
we use the aforementioned approach through projectivity to establish the unification type
of MV-algebras.

MV-algebras arose in mathematics as the Lindenbaum-Tarski algebras of  Lukasiewicz
(infinite-valued propositional) logic: a logical system with a many-valued semantics go-
ing back to the 1920’s. The standard reference is [3]. In modern terms one says that
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MV-algebras are the equivalent algebraic semantics of  Lukasiewicz logic. Since, in the
appropriate setting, the correspondence by Blok and Pigozzi [2] between a logical sys-
tem and its equivalent algebraic semantics can stated as a categorical equivalence, MV-
algebras and  Lukasiewicz logic have the same unification type. The interval (of truth
values) [0, 1] ⊆ R can be made into an MV-algebra with neutral element 0 by defin-
ing x ⊕ y = min {x+ y, 1} and ¬x = 1 − x; MV-algebras can be characterised as that
class of structures which satisfies exactly the equational properties of the above algebra
〈[0, 1],⊕,¬, 0〉.

Our main result is the following

Theorem. The unification type of the variety of MV-algebras is nullary. Specifically,
consider the unification problem in the language of MV-algebras

E = { (X1 ∨ ¬X1 ∨X2 ∨ ¬X2 , 1) } . (?)

Then the partially ordered set of unifiers for E contains a co-final chain of order-type ω.

Coupling algebraic unification with Stone-type dualities often leads to decisive topo-
logical insight. In [4, Theorem 5.7], for instance, Ghilardi used the basic duality between
finitely presented distributive lattices and finite partially ordered sets to show that the
unification type of distributive lattices is nullary. In the same way, to establish our result,
we perform a further step across categories. Indeed, specialists know that the full sub-
category of finitely presented MV-algebras is dually equivalent to a category of rational
polyhedra whose morphisms, called Z-maps, are continuous, piece-wise linear functions
with integer coefficients.

Under this duality the finitely generated algebra presented by (?) is precisely the
boundary B of [0, 1]2. If [0, 1]2 is endowed with its Euclidean metric topology, then
B inherits a subspace topology that makes it homeomorphic to S1 = {(x, y) ∈ R2 |
x2 + y2 = 1}, the standard unit circle in the plane. In particular, B is not simply-
connected: it is connected, but its fundamental (Poincaré) group is not trivial. It is also
an easy matter to obtain a characterisation of the duals of projective finitely presented
MV-algebras. These rational polyhedra are precisely those obtainable as retracts of
unit cubes [0, 1]n by Z-maps, for some positive integer n; it follows that they are simply-
connected. It transpires form the proof of the Theorem that these homotopical properties
of B and its (co-)unifiers are the deeper impediments that force (?) to have nullary type.

To prove the Theorem, we first construct what can be considered (in a very strong
sense) the polyhedral universal cover of B; the map representing this universal cover is
called ζ, while its domain is called t∞. Such a cover can be thought of as the polyhedral
correspondent of the universal cover of the circle (we refer to [5] for all unexplained
notions in algebraic topology). The universal cover (t∞, ζ) is depicted in the left part of
Figure 1 below.

The map ζ (projection) is a Z-map, while the object t∞ is very close to be a rational
polyhedron, but is not, as it is not compact. We therefore extract from it an infinite
sequence of compact subspaces ti, by symmetrically cutting t∞ above and below at a
certain integer i. The restrictions ζi of the map ζ obviously remain Z-maps and the ti’s
are seen to be projective by some recent result by Cabrer and Mundici; hence the pairs
(ζi, ti) are indeed dual algebraic unifiers for (?). By the inclusion maps, these unifiers
form an increasing sequence.
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Figure 1: The lifting property of the spirals t∞.

To shows that the constructed sequence is in fact a strictly increasing, co-final se-
quence of unifiers for E , the argument hinges on the lifting properties of a polyhedral
universal covering space of B. In particular we are able to show that for any map ϕ from
a simply-connected rational polyhedron P into B there exists a lift, hence commuting,
ϕ̃ from P into t∞ (see Figure 1), with the crucial property of being a Z-map. The image
of ϕ being compact, this amounts to say that any unifier of B must be less general or
equivalent to some ti in the sequence. The strictness of the order among the ti is an easy
consequence of the fact that if i < j then ti has strictly fewer lattice points than tj and,
as Z-maps preserve lattice points, the existence of a commuting Z-map from ti into tj
would contradict the uniqueness of the lifting above.

This result is quite in contrast with what was previously known about MV-algebras.
Indeed every subvariety of MV-algebras generated by a finite chain has unitary unification
type. Furthermore MV-algebras are categorical equivalent to Abelian lattice-ordered
groups with strong unit (hence our result also extends to this latter class of structures),
however the unification type of Abelian lattice-ordered groups (without necessarily a
strong unit) is again unitary.
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SUBLATTICES OF ASSOCIAHEDRA AND PERMUTOHEDRA

LUIGI SANTOCANALE AND FRIEDRICH WEHRUNG

Abstract. Grätzer asked in 1971 for a characterization of sublattices of Tamari

lattices (associahedra). A natural candidate was coined by McKenzie in 1972

with the notion of a bounded homomorphic image of a free lattice—in short,
bounded lattice. Urquhart proved in 1978 that every associahedron is bounded

(thus so are its sublattices). Geyer conjectured in 1994 that every finite

bounded lattice embeds into some associahedron.
We disprove Geyer’s conjecture, by introducing an infinite collection of

lattice-theoretical identities that hold in every associahedron, but not in every

finite bounded lattice. Among those finite counterexamples, there are the per-
mutohedron on four letters P(4), and in fact two of its subdirectly irreducible

retracts, which are Cambrian lattices of type A.
For natural numbers m and n, we denote by B(m,n) the (bounded) lattice

obtained by doubling a join of m atoms in an (m + n)-atom Boolean lattice.

We prove that B(m,n) embeds into an associahedron iff min{m,n} ≤ 1, and
that B(m,n) embeds into a permutohedron iff min{m,n} ≤ 2. In particular,

B(3, 3) cannot be embedded into any permutohedron. Nevertheless we prove

that B(3, 3) is a homomorphic image of a sublattice of the permutohedron
on 12 letters.

This is a summary of the main results from the preprint [5].

Permutohedra and Associahedra

For each natural number n set

[n] := {1, . . . , n} , In := {(i, j) ∈ [n]× [n] | i < j} .
A subset x of In is closed if (i, j) ∈ x and (j, k) ∈ x implies that (i, k) ∈ x, for all
i, j, k ∈ [n]. A subset x of In is open if In \ x is closed; it is clopen if both x and
In \x are closed. A subset x of In is a left subset if (i, k) ∈ x implies (i, j) ∈ x, for
all i, j, k ∈ [n] such that i < j < k. Notice that a left subset is open.

Definition. The permutohedron of index n, denoted by P(n), is the set of all clopen
subsets of In, partially ordered by inclusion. The associahedron of index n, denoted
by A(n), is the set of all closed left subsets of In, partially ordered by inclusion.

It is a well known fact [6] that P(n) is isomorphic (as a poset) to the set of
permutations on n elements, endowed with the weak Bruhat order. Similarly, the
poset A(n) is isomorphic to the set of all binary trees (or parenthesized words)
with n+ 1 leaves, where the order is obtained by taking the reflexive and transitive
closure of the relation that re-associates a tree from left to right.

The representations of P(n) and A(n) by families of subsets of In easily allow
to establish that these posets are lattices. As every intersection of closed sets is
closed, every union of open sets is open. For a subset x of In, denote by int(x)
(resp., cl(x)) the largest open subset of x (resp., the least closed set containing x).
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Lemma. The set cl(x) is open, for each open x ⊆ In. Dually, the set int(x) is
closed, for each closed x ⊆ In. Consequently, the poset P(n) is a lattice where the
meet and the join are computed by the formulas

x ∧ y = int(x ∩ y) , x ∨ y = cl(x ∪ y) .

It is easily verified that closed left subsets are stable under intersections, so that
A(n) is a lattice. As the closure of a left subset is a left subset and int(x) = x if x
is a left subset, the associahedron A(n) is actually a sublattice of P(n) (and, as we
will see later, a lattice-theoretical retract).

Generalized Associahedra are Cambrian Lattices

Let us fix a subset U of [n] and denote by DU (n) the collection of all subsets a
of In such that 1 ≤ i < j < k ≤ n and (i, k) ∈ a implies that (i, j) ∈ a in case j ∈ U
and (j, k) ∈ a in case j /∈ U .

Definition. We define PU (n) as the collection of all closed members of DU (n), and
we order PU (n) by set-theoretical inclusion.

The posets PU (n) generalize associahedra, in the sense that P[n](n) = A(n).

Proposition. Each poset PU (n) is a 0, 1-sublattice of P(n), where the meet and
the join of elements x,y ∈ PU (n) are given by x∧y = x∩y and x∨y = cl(x∪y),
respectively. Moreover, PU (n) is a quotient of P(n), and in fact a lattice-theoretical
retract of P(n).

In the following we shall denote by πU : P(n) → PU (n) the projection map,
that associates to each x ∈ P(n) the largest element of PU (n) below x. The
subset U ⊆ [n] gives rise to an orientation of the Dynkin diagram of the group of
permutations and, in turn, to a Cambrian congruence [4] on the lattice P(n).

Proposition. The Cambrian congruence associated to U is the kernel of πU . Con-
sequently, the associated Cambrian lattice is PU (n).

The following Proposition exhibits the role of Cambrian lattices from an algebraic
perspective.

Proposition. Every lattice PU (n) is subdirectly irreducible, and the diagonal map
π : P(n) → ∏

(PU (n) | U ⊆ [n]), x 7→ (πU (x) | U ⊆ [n]) is a subdirect product
decomposition of the permutohedron P(n).

The Gazpacho Identities

For ~m = (m1, . . . ,md) ∈ Nd with d ≥ 2, set F(~m) :=
∏

([mi] | 1 ≤ i ≤ d). Define

terms ai, b̃i, e~m, e∗~m in the variables ai,j and bi by

ai :=

mi∨

j=1

ai,j , b̃i :=
( d∨

i′=1

bi′
)
∧ (ai ∨ bi) (for 1 ≤ i ≤ d) ,

e~m :=
d∧

i=1

(ai ∨ bi) , e∗~m :=
( d∨

i′=1

bi′
)
∧ e~m =

d∧

i=1

b̃i .

Further, we define lattice terms fσ,τi , for 2 ≤ i ≤ d and (σ, τ) ∈ Sd × F(~m), by
downward induction on i (for 2 ≤ i < d), by

fσ,τd := (aσ(d),τσ(d) ∨ b̃σ(1)) ∧ (aσ(d) ∨ bσ(d)) ,

fσ,τi := (aσ(i),τσ(i) ∨ b̃σ(1)) ∧ (aσ(i) ∨ bσ(i)) ∧
∧

i<j≤d

(
aσ(i),τσ(i) ∨ fσ,τj

)
.
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ASSOCIAHEDRA AND PERMUTOHEDRA

Let Gzp(~m) (the Gazpacho identity with index ~m) be the following lattice-theoretical
identity, in the variables ai,j and bi, for 1 ≤ i ≤ d and 1 ≤ j ≤ mi:

e~m ≤ e∗~m ∨
∨(

fσ,τ2 | (σ, τ) ∈ Sd × F(~m)
)
. (Gzp(~m))

Theorem. Every associahedron satisfies Gzp(~m) for each ~m ∈ Nd.

The identity Gzp(1, 1) is equivalent to the identity below:

(a1 ∨ b1) ∧ (a2 ∨ b2) ≤
(
(a1 ∨ b1) ∧ (a1 ∨ b̃2)

)
∨
(
(a2 ∨ b̃1) ∧ (a2 ∨ b2)

)
, (Veg1)

where b̃i := (b1 ∨ b2)∧ (ai ∨ bi). Hence, as a consequence of the previous Theorem,
we obtain that every associahedron satisfies (Veg1). Yet we have:

Proposition. The permutohedron P(4) does not satisfy the identity (Veg1). In
particular, it has no lattice embedding into any associahedron.

Thus we obtain a first counterexample to Geyer’s conjecture [2] that every finite
bounded lattice embeds into some associahedron. A second counterexample arises
from the following indentity:

(a1 ∨ a2 ∨ b1) ∧ (a1 ∨ a2 ∨ b2) =
∨

i,j∈{1,2}

(
(ai ∨ b̃j) ∧ (a1 ∨ a2 ∨ b3−j)

)
, (Veg2)

with the lattice terms b̃j := (b1 ∨ b2) ∧ (a1 ∨ a2 ∨ bj), for j ∈ {1, 2}. It is a
weakening of Gzp(2, 2), and therefore every associahedron satisfies (Veg2). For
natural numbers m and n, we denote by B(m,n) the lattice obtained by doubling
the join of m atoms in the (m+ n)-atom Boolean lattice.

Proposition. The lattice B(2, 2) does not satisfy the identity (Veg2). In particular,
it cannot be embedded into any associahedron.

Permutohedra are not Universal

Polarized measures are the tools that we use when searching for an embedding
of a lattice into some PU (n). For L a join-semilattice and U ⊆ [n], an L-valued
U -polarized measure is a map µ : In → L such that

(i) µ(x, z) ≤ µ(x, y) ∨ µ(y, z),
(ii) y ∈ U implies that µ(x, y) ≤ µ(x, z),
(iii) y /∈ U implies that µ(y, z) ≤ µ(x, z),

for all x < y < z in [n]. We say that µ satisfies the V-condition if for all (x, y) ∈ In
and all a, b ∈ L,

if µ(x, y) ≤ a ∨ b, then (V)

there are m ≥ 1 and a subdivision x = z0 < z1 < · · · < zm = y of [n] such that

either µ(zi, zi+1) ≤ a or µ(zi, zi+1) ≤ b for each i < m .

We say that maps µ : In → L and ϕ : L→ PU (n) are dual if, for all (x, y) ∈ In and
all a ∈ L, (x, y) ∈ ϕ(a) iff µ(x, y) ≤ a.

Lemma. Let U ⊆ [n], let L be a finite lattice, and let µ : In → L and ϕ : L→ PU (n)
be dual. The following statements hold:

(i) µ is an L-valued U -polarized measure satisfying the V-condition iff ϕ is a
1-preserving lattice homomorphism,

(ii) ϕ(0) = ∅ iff 0 does not belong to the range of µ,
(iii) the range of µ generates L as a (∨, 0)-subsemilattice iff ϕ is one-to-one.

59



L. SANTOCANALE AND F. WEHRUNG

The following Theorem collects our results concerning embeddability of the lat-
tices B(m,n) into associahedra and permutohedra.

Theorem. Let m and n be natural numbers. The following statements hold:
(i) The lattice B(m,n) embeds into some associahedron iff min{m,n} ≤ 1.

(ii) The lattice B(m, 2) has a 0, 1-lattice embedding into the Cambrian lattice
P[m+2,2m+1](2m+ 2), for every positive integer m.

(iii) The lattice B(3, 3) cannot be embedded into any permutohedron.

After several unsuccessful attempts to turn the last statement into an identity
holding in all permutohedra while failing in B(3, 3), the authors wondered whether
it could actually be the case that B(3, 3) satisfies every lattice-theoretical identity
satisfied by all permutohedra. This turned out to be the correct guess. In order
to prove this, we needed the notion of splitting identity of a finite, bounded, sub-
directly irreducible lattice—or, using the terminology introduced in [3], a splitting
lattice. It is a classical result of lattice theory (cf. Freese, Ježek, and Nation [1,
Corollary 2.76]) that for every splitting lattice K, there exists a largest lattice
variety CK which is maximal with respect to not containing K as a member. Fur-
thermore, CK can be defined by a single lattice identity, called a splitting identity
for K, and there is an effective way to compute such an identity.

The lattices B(m,n) are splitting lattices. We obtained the example underlying
the next Theorem with the assistance of the Mace4 part of the Prover9 - Mace4

software, available online on William McCune’s Web page at http://www.cs.unm.
edu/~mccune/prover9/.

Theorem. Set U := {5, 6, 9, 10, 11}. Then the Cambrian lattice PU (12) does not
satisfy the splitting identity for B(3, 3). Consequently, B(3, 3) is the homomorphic
image of a sublattice of PU (12). In particular, it satisfies all the identities satisfied
by PU (12), thus all the identities satisfied by all permutohedra.
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ORDERED DIRECT IMPLICATIONAL BASIS OF A FINITE

CLOSURE SYSTEM

K. ADARICHEVA, J. B. NATION, AND R. RAND

1. Introduction

In K. Bertet and B. Monjardet [2], it is shown that five implicational bases
for a closure operator on a finite set, found in various contexts in the literature,
are actually the same. The goal of this paper is to demonstrate that standard
lattice-theoretic results about the “most economical way” to describe the structure
of a finite lattice may be transformed into a basis for a closure system naturally
associated with that lattice. We may refer to [7], where the coding of a finite lattice
in the form of so-called OD-graph was first suggested.

We will call the basis directly following from this OD-graph a D-basis, since it is
closely associated with a D-relation on the set of join-irreducibles of a lattice that
was crucial in the studies of free and lower bounded lattices, see [5]. We show that
the D-basis is a subset of a canonical direct unit basis that unifies the five bases
discussed in [2]. The reverse inclusion does not hold, thus this newly introduced
D-basis is generally shorter than the existing ones.

Recall that the main desirable feature of bases from [2] is that they be direct,
which means that the computation of the closure of any subset can be done in
a single application of each implication from the basis. While the D-basis is not
direct in this meaning of this term, the closures can still be computed in a single
application of each implication from the basis, provided the basis was put in a
specific order prior to computation. We call the bases with this property ordered
direct. There exists a simple and effective linear time algorithm for ordering a
D-basis appropriately. The application of the D-basis can be compared to the
iteration known in artificial intelligence as the forward chaining algorithm, see [4].

We also discuss the E-relation, introduced in [5], which leads to the definition
of the E-basis in closure systems without cycles. In such systems the E-basis is
ordered direct and it is contained in the D-basis.

We explore the connections between D-basis, E-basis and the canonical basis
introduced in [3]. While the canonical basis has the minimal number of implications
among all the bases of a closure system, it is not ordered direct. In the full version of
the paper (available at http://www.math.hawaii.edu/∼jb/papers.html), we present
examples of closure systems on 6-element set, for which the canonical basis cannot
be ordered.

2. Lattices, closure operators and Horn formulas

The collection of closed subsets of a closure operator forms a lattice. Conversely,
we can associate with every finite lattice L a particular closure system 〈S, φ〉 in such
a way that L is isomorphic to a closure lattice of that closure system. Consider
J(L) ⊆ L, the subset of join-irreducible elements. We define a closure system

61



with S = J(L) and the following closure operator: φ(X) = [0,
∨
X] ∩ J(L). It

is straightforward to check that the closure lattice of φ is isomorphic to L. This
representation is called standard.

If y ∈ φ(X), then this relation between an element y ∈ S and a subset X ⊆ S
in a closure system can be written in the form of implication: X → y. Thus, the
closure system 〈S, φ〉 can be replaced by the set of implications:

Σφ = {X → y : y ∈ S,X ⊆ S and y ∈ φ(X)}
Conversely, any set of implications Σ defines a closure system.
Two sets of implications Σ and Σ′ on the same set S are called equivalent, if

they define the same closure system on S. The term basis is used for the set of
implications Σ′ satisfying some minimality condition.

Closure operator arise in logic programming because implications X → y, X ⊆
S, x ∈ S, can be treated as the Horn formulas of propositional logic over the set of
literals S.

3. D-basis

Let us translate to the language of closure systems the defining relations of a
finite lattice developed in the lattice theory framework.

Given a standard closure system 〈S, φ〉, let us define two auxiliary relations. The
first relation is between the subsets of S: we write X � Y , if for every x ∈ X there
is y ∈ Y satisfying x ∈ φ(y). We define X ∼� Y , if X � Y and Y � X.

Lemma 1. The relation ∼� is an equivalence relation on P (S). Moreover, each
equivalence class has a unique minimal element with respect to the containment
order.

We will call a subset X ⊆ S a cover of x if x ∈ φ(X) and x 6∈ φ(x′), for any
x′ ∈ X. A subset Y ⊆ S is called a minimal cover of an element x ∈ S, if Y is a
cover of x, and for every other cover Z of x, Z � Y implies Y ⊆ Z.

Definition 2. Given a standard closure system 〈S, φ〉, we define a D-basis ΣD as
a union of two subsets of implications:

(1) {y → x : x ∈ φ(y) \ y, y ∈ S};
(2) {X → x : X is a minimal cover for x}.

Lemma 3. ΣD generates 〈S, φ〉, for any closure system 〈S, φ〉.

4. Direct basis versus ordered direct basis

If Σ is some set of implications, then, in notation of [2], πΣ(X) = X ∪ {b : A ⊆
X and (A → b) ∈ Σ}. Then φ(X) = π(X) ∪ π2(X) ∪ π3(X) . . . . The bases for
which φ(X) = π(X) are called direct. The goal of this section to implement a
different approach to the concept of iteration.

Definition 4. Suppose the set of implications Σ is equipped with some linear
order <, or, equivalently, is indexed as Σ = {s1, s2, . . . , sn}. Define a mapping
ρΣ : P (S) → P (S) associated with this ordering as follows. For any X ⊆ S, let
X0 = X. If Xk is computed and implication sk+1 is A→ b, then

Xk+1 =

{
Xk ∪ {b}, if A ⊆ Xk,
Xk, otherwise.

Finally, ρΣ(X) = Xn. We will call ρΣ an ordered iteration of Σ.
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Definition 5. The set of implications with some linear ordering on it, 〈Σ, <〉, is
called an ordered direct basis, if, with respect to this ordering φΣ(X) = ρΣ(X), for
all X ⊆ S.

The D-basis ΣD is, in fact, an ordered direct basis. Moreover, it does not take
much computational effort to impose a proper ordering on ΣD.

Lemma 6. Let < be any linear ordering on ΣD such that all implications of the
form y → x precede implications X → x, where X is a minimal cover of x. Then,
with respect to this ordering, ΣD is an ordered direct basis.

Corollary 7. If ΣD = {s1, . . . , sn} is the D-basis of an implicational system Σ,
then it requires time O(n) to turn it into a direct ordered basis of Σ.

Let Σc denote the canonical direct unit basis that unifies all direct bases discussed
in [2].

Lemma 8. ΣD ⊆ Σc, in particular, D-basis is contained in every direct unit basis.

Proposition 9. Given any direct unit basis Σ with n implications, on set S with
m elements, it requires time O((mn)2) to build the D-basis ΣD equivalent to Σ.

5. Closure systems without cycles and the E-basis

It turns out that the D-basis can be further reduced, when an additional property
holds in a closure system 〈S, φ〉. The results of this section use section 2.4 in [5].

We will write xDy, for x, y ∈ S, if y ∈ Y , for some minimal cover Y of x.
We note that D-relation is a subset of so-called dependence relation δ from [6]. A
sequence x1, x2, . . . , xn, n > 1, is called a D-cycle, if x1Dx2D . . . xnDx1.

Definition 10. A finite closure system 〈S, φ〉 is said to be without cycles, if it does
not have D-cycles.

The lattices of closed sets of such systems are known as lower bounded.
For every x ∈ S, consider M(x) = {Y ⊆ S :Y is a minimal cover of x}. Let

M∗(x) = {Y ∈M(x) : φ(Y ) is minimal by containment in φ(M(x))}.
We will write xEy, for x, y ∈ S, if y ∈ Y for some Y ∈M∗(x). According to the

definition, if xEy then xDy. On the other hand, converse is not always true.

Lemma 11. Let 〈S, φ〉 be a standard closure system without cycles. Consider a
subset ΣE of the D-basis that is the union of two sets of implications:

(1) {y → x : x ∈ φ(y)};
(2) {X → x : X ∈M∗(x)}.

Then ΣE is a basis for 〈S, φ〉. Moreover, this basis is ordered direct.

Proposition 12. Suppose ΣD = {s1, s2, . . . , sn} is a D-basis of some closure sys-
tem 〈S, φ〉 and |S| = m. It requires time O(mn2) to determine whether the closure
system is without cycles, and if it is, to build its ordered direct basis ΣE.

6. D-basis versus canonical basis

The canonical basis was introduced by V. Duquenne and J.L. Guigues in [3],
see also [1]. It is defined by means of critical (also, pseudo-closed) sets that are
explicitly defined for each closure system (S, φ). The basis then consists of the
implications C → φ(C), where C ranges over all critical sets. Note that here the
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implications not necessarily have one-element sets as the conclusion. Among all
the bases for the closure system, the Duquenne-Guigues canonical basis has the
minimum number of implications.

It turns out that the canonical basis is not ordered direct. In our paper we
present two examples that were discovered by running a computer program and
checking about a million of closure systems on 5− 7 element sets.

The performance of the D-basis in comparison with Duquenne-Guigues canonical
basis (in its unit form) and canonical (or optimal) unit direct basis was tested
on randomly generated closure systems. The following table shows that D-basis
performs consistently faster than two others on the average closure system.

Figure 1. Bases comparison on domain set 7
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ON SCATTERED CONVEX GEOMETRIES

KIRA ADARICHEVA AND MAURICE POUZET

1. Introduction

We call a pair (X,φ) of a non-empty set X and a closure operator φ : 2X → 2X on X a convex

geometry [5], if it satisfies the anti-exchange axiom: for all x 6= y and closed X ⊆ A, if x ∈ X ∪ {y}
and x /∈ X, then y /∈ X ∪ {x}.

The study of convex geometries in finite case was inspired by their frequent appearance in mod-
eling various discrete structures, as well as by their juxtaposition to matroids, see [11, 12]. More
recently, there was a number of publications, see, for example, [6, 4, 16, 17, 18] brought up by
studies in infinite convex geometries.

Convex geometry is called algebraic, if the closure operator φ is finitary. Most of interesting
infinite convex geometries are algebraic, such as convex geometries of relatively convex sets, sub-
semilattices of a semilattice, suborders of a partial order or convex subsets of a partially ordered
set. In particular, the closed sets of algebraic convex geometry form an algebraic lattice, i.e. a
complete lattice, whose each element is a join of compact elements. Compact elements are exactly
the closures of finite subsets of X, and they form a semilattice with the respect to the join operation
of the lattice.

There is a serious restriction on the structure of an algebraic lattice and its semilattice of compact
elements, when the lattice is order-scattered, i.e. it does not contain a chain of type η, the order type
of the chain of rational numbers Q, as a sub-order. While the description of order-scattered algebraic
lattices remains to be an open problem, it was recently obtained in the case of modular lattices.
The description is done in the form of obstructions, i.e. prohibiting special types of subsemilattices
in the semilattice of compact elements.

Theorem 1.1. [9] The algebraic modular lattice is order-scattered iff the semilattice of compact
elements is order-scattered and does not contain as a subsemilattice the semilattice P<ω(N) of finite
subsets of a countable set.

This theorem motivated the current investigation, due to the fact that convex geometries almost
never satisfy the modular law, see [5]. It is known that outside the modular case the list of ob-
structions contains the semilattice Ω(η) described in [10]. We show in section 5 that Ω(η) appears
naturally as a subsemilattice of compact of elements in the convex geometries known as multichains.
For this, one of the chains must be of type ω (the order type of natural numbers), and another of
type η.

More generally, we prove in Theorem 6.3 that any algebraic convex geometry whose semilattice
of compact elements K has the finite semilattice dimension will be order scattered iff K is order-
scattered and it does not have a sub-semilattice isomorphic to either P<ω(N) or Ω(η).

As for the other types of convex geometries, we prove the result analogous to modular case.
It holds true trivially in case of convex geometries of subsemilattices and suborders of a partial
order, since order scattered geometries of these types are always finite, see section 4. For the
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Figure 1. Ω(η)

convex geometries of relatively convex sets, we analyze independent sets and reduce the problem to
relatively convex sets on a line. As stated in Theorem 3.1, the only obstruction in the semilattice
of compact elements in this case is P<ω(N).

We also discuss the topological issues of the algebraic convex geometries and establish that the
convex geometry of relatively convex sets is order scattered iff it is topologically scattered in product
topology. This is the result analogous to Mislove’s theorem for algebraic distributive lattices [15].

2. Weakly atomic convex geometries

In this section we prove a general statement about the structure of convex geometries that are
weakly atomic, i.e., whose every interval has a cover. The result hints how to produce algebraic
distributive lattice which is not a convex geometry.

Theorem 2.1. Suppose convex geometry C = (X,φ) satisfies the property that every interval [X,Y ]
of closed sets has a cover: X ⊆ X ′ ≺ Y ′ ⊆ Y . Then C = (X,φ) is spatial, i.e. every element is a
join of completely join irreducible elements. In particular, one can choose Y ⊆ X, define an anti-
exchange operator ψ on Y , and present convex geometry as C = (Y, ψ) so that ψ(y) is completely
join-irreducible, for every y ∈ Y .

Corollary 2.2. In any of the following cases, the convex geometry C = (X,φ) is spatial:

(1) φ is algebraic closure operator. Equivalently, the lattice of closed sets of C = (X,φ) is
algebraic.

(2) C = (X,φ) is order scattered.

Another example of weakly atomic convex geometry was presented recently in [6]. Since it was
given in the form of antimatroid, i.e. the structure of open sets of convex geometry, we will provide
the corresponding definition of super solvable convex geometry here.

Definition 2.3. Convex geometry C = (X,φ) is called super solvable, if there exists well-ordering
≤X on X such that, for all A = φ(A), B = φ(B), if A 6⊆ B, then A \ a is φ-closed, where a =
min(A \B)

We note that the corresponding definition of super solvable antimatroid in [6] is more restrictive
in the sense that X is countable and (X,≤X) is a chain of order type ω. Super solvable antimatroids
with such definition appear as the structure associated with special ordering of elements in Coxeter
groups.

Corollary 2.4. If convex geometry C = (X,φ) is super solvable then it is spatial.

Example of a finite super solvable convex geometry is given also by lattice of subsemilattices
Sub∧(P ) of a finite lattice P . This follows from result in [14], where it was established for more
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general (and dual) lattices of closure operators on finite partially ordered sets. We deal with infinite
lattices Sub∧(P ) in section 4.

3. Relatively convex sets

Let V be a real vector space, X a subset of V . Let Co(V,X) be the collection of sets C ∩ X,
where C is a convex subset of V . Ordered by inclusion Co(V,X) is an algebraic convex geometry.
Several recent publications are devoted to this convex geometry [2, 3, 7].

The main goal of this section is to prove the following analogue of Theorem 1.1.

Theorem 3.1. Co(V,X) is order scattered iff the semilattice S of compact elements of Co(V,X)
is order scattered and does not have P<ω(N) as a subsemilattice.

Since the argument will involve some topological considerations, we will be able to establish also
the analogue of Mislove’s result [15].

Theorem 3.2. Co(V,X) is topologically scattered iff it is order-scattered.

4. The lattice of subsemilattices and the lattice of suborders

Convex geometries of subsemilattices of a semilattice and suborders of a partially ordered set
play important role in the studies of convex geometries in general due to their close connection to
lattices of quasi-equational theories, see [4, 5, 17, 18].

Theorem 4.1. If S is an infinite ∧-semilattice, then the lattice Sub∧(S) of subsemilattices of S
always has a copy of Q. Thus, Sub∧(S) is order-scattered iff S is finite.

Similar result holds for the lattice of suborders. For a partially ordered set 〈P,≤〉, denote by
S(P ) the strict order associated with P , i.e. S(P ) = {(p, q) : p ≤ q and p 6= q, p, q ∈ P}. The lattice
of suborders O(P ) is the lattice of transitively closed subsets of S(P ).

Theorem 4.2. The lattice of suborders O(P ) of a partially ordered set 〈P,≤〉 is order-scattered iff
S(P ) is finite.

5. Semilattice Ω(η) as an obstruction in algebraic convex geometry

As mentioned in the introduction, the semilattice Ω(η) does not appear in the semilattice of com-
pact elements of an algebraic modular lattice, see [9]. We show that Ω(η) is a typical subsemilattice
of compact elements in some special convex geometries called multi-chains.

The main result of this section is about particular bi-chains: these are structures (E,<1, <2),
where E is a countable set, <1 is the order of type ω, and <2 is a total order that has a suborder of
type η. For each i ∈ {1, 2}, define a convex geometry Ci = I(E,<i) of initial segments of (E,<i).
A convex geometry C = C1 ∨ C2 is called a duplex.

Lemma 5.1. Ω(η) is a subsemilattice of the semilattice of compact elements of some duplex.

6. Order scattered algebraic convex geometries with finite ∨-dimension of
semilattice of compact elements

In this section we characterize by obstruction the order scattered algebraic convex geometries
whose semilattice of compact elements has a finite dimension.

The following conjecture is stated in [8].

Conjecture 6.1. L = J(P ), the lattice of ideals of a semilattice P is order scattered iff P is order
scattered, and neither P<ω(N), nor Ω(η) is embeddable into P as a semilattice.
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If L is in addition modular, then Ω(η) cannot appear as a subsemilattice of P . In this case, the
conjecture was proved in [8]. When L is a convex geometry, as was shown in section 5, Ω(η) may
be a subsemilattice of P .

In current paper we prove the conjecture for algebraic convex geometries L = J(P ), for which P
has a finite ∨-dimension.

Definition 6.2. We say that a semilattice P with 0 has ∨-dimension dim∨(P ) = κ, if κ is the
smallest cardinal for which there exist κ chains Ci, i < κ, with minimal element 0i, and injective
map f : P → ΠCi such that f(a ∨ b) = f(a) ∨ f(b) and f(0) = (0i, i < κ).

Our central result is the next Theorem.

Theorem 6.3. Let C be an algebraic convex geometry, let P be the semilattice of compact elements
of C = J(P ). If dim∨P = n < ω, then C is order scattered iff P is order scattered and Ω(η) is not
a subsemilattice of P .

One of technical tools is the iterative application of the bracket relation η → [η]23, a famous
unpublished theorem by F. Galvin whose proof can be found in [13].
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1 The Logic of Comparative Similarity

As a part of their investigations on several logics for distance and topological
reasoning, Sheremet, Tishkovsky, Wolter and Zakharyaschev have presented in
[4,5] the logic CSL of comparative similarity, whose main operator,⇔, represents
qualitative assertions of the form ”being more similar/closer to . . . than to . . . ”.

The language LCSL of CSL is generated from a (countable) set of propositio-
nal variables p1, p2, . . . ∈ Vp by ordinary propositional connectives together with
the operator ⇔: A,B ::= ⊥ | pi | ¬A | A uB | A⇔ B.

The original semantics of CSL is based on distance spaces. A distance space
is a pair (∆, d) where ∆ is a non-empty set, and d : ∆×∆→ R≥0 is a distance
function satisfying the following condition: ∀x, y ∈ ∆, d(x, y) = 0 iff x = y.
The distance between an object w and a non-empty subset X of ∆ is defined
by d(w,X) = inf{d(w, x) | x ∈ X}. If X = ∅, then d(w,X) =∞. CSL-distance
models are defined as a kind of Kripke models based on distance spaces:

Definition 1 (CSL-distance model [5,4]). A CSL-distance model I is a
triple I = 〈∆, d, .I〉 where:
– (∆, d) is a distance space.
– .I is the evaluation function defined as usual on propositional variables and

boolean connectives, and as follows for ⇔:

(A⇔ B)I
def
= {x ∈ ∆ | d(x,AI) < d(x,BI)}.

Additional properties of the distance function may be assumed, namely the
symmetry, the triangular inequality, and the minspace property:
(SYM) d(x, y) = d(y, x),
(TRI) d(x, y) ≤ d(x,w) + d(w, x),
(MIN) ∀x ∈ ∆,∀Y ⊆ ∆,Y 6= ∅ implies ∃y ∈ Y such that d(x, Y ) = d(x, y).

Despite its apparent simplicity, CSL can be seen as a fragment, indeed a
powerful one (including for instance the logic S4u of topological spaces), of a
general logic for spatial reasoning comprising different modal operators defined
by (bounded) quantified distance expressions (namely the logic QML [5]). The
satisfiability problem for the CSL logic is ExpTime-complete. Sadly, when in-
terpreted over subspaces of Rn, it turns out that this logic is undecidable [5].
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2 Axiomatization

An axiomatization CSg of CSL over arbitrary distance spaces is presented in
figure 1. This axiomatization can be easily derived from the axiomatization of
CSL over minspaces in [2], or from the one in [5].

(1) ¬(A ⇔ B) t ¬(B ⇔ A) (2) ¬(A ⇔ C) u ¬(C ⇔ B)→ ¬(A ⇔ B)

(3) B → ¬(>⇔ B) (4) (A ⇔ B) u (A ⇔ C)→ (A ⇔ (B t C))

(5) (A ⇔ ⊥)→ ¬(¬(A ⇔ ⊥) ⇔ ⊥) (Taut) All tautologies and classical rules.

(Mon)

` (A→ B)

` (A ⇔ C)→ (B ⇔ C)

Figure 1. The CSg system.

Interestingly, it is shown in [5] that, when the minspace property is not
assumed, CSL is not sensible to the symmetry alone. But it can distinguish
between arbitrary distance models, distance models with (TRI), and distance
models with (TRI)+(SYM) (ie. metric models). On the contrary, if we assume
the minspace property, the situation changes drastically: CSL becomes sensible
to (SYM), whereas it is blind to (TRI) (with or without (SYM)). To take into
account additional properties of the distance function, additional axioms can be
considered:
(MS) ¬(>⇔ B)→ B
(TR) ¬(¬(>⇔ A)⇔ A)
(MT) (A⇔ B)→ (>⇔ ¬(A⇔ B))
The following theorem shows the correspondence between each axiomatization
and the class of models they define.

Theorem 2 (Soundness and Completeness of CSg).
– CSg is sound and complete for the class of arbitrary distance models.
– CSg + (TR) is sound and complete for distance models satisfying the trian-

gular inequality [5].
– CSg + (TR) + (MT) is sound and complete for metric models [5].
– CSg + (MS) is sound and complete for minspace models [2].

3 A Preferential Semantics

CSL is a logic of pure qualitative comparisons. This motivates an alternative
semantics where the distance function is replaced by a family of comparisons
relations, one for each object. Our preferential structures are similar to the ones
used for some conditional logics, that is to say a set equipped by a family of
strict pre-orders encoding distance comparisons between objects (or regions) of
the distance spaces: x ≤w y means ”the objects of the region w are closer to
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the region x than to the region y”. By this mean, we intend to abstract away
from the numerical values of the distance function, and give a purely relational,
modal-like, semantics.

Definition 3 (CSL preferential model [1]). A CSL-preferential I model is
a triple 〈∆, (≤w)w∈∆, .I〉 where:
– ∆ is a non-empty countable set.
– (≤w)w∈∆ is a family of total pre-orders indexed by the objects of ∆, each ≤w

satisfying:
(Limit Assumption) For all non-empty subset X of ∆:
∃x ∈ X such that ∀x′ ∈ X, x ≤w x′.

(Weak Centering) For all x ∈ ∆, w ≤w x.
– .I is the evaluation function defined as usual for propositional variables and

boolean operators, and as follows for ⇔:

(A⇔ B)I
def
=
{
w
∣∣∃x ∈ AI such that ∀y ∈ BI , x <w y

}

where <w is the strict weak order induced by ≤w.

To take into account additional properties of the distance function, we can
assume further properties on the pre-orders. One of the most interesting is the
strong centering, y ≤x x iff x = y, which captures the minspace property. Pre-
ferential models satisfying the strong centering will be called preferential min-
model. Note that the minspace property in distance spaces is not related to the
limit assumption: preferential models always satisfy the limit assumption [1].

It seems that symmetric minspaces models cannot be represented in a natu-
ral way by preferential structures as defined above. In particular, it is not yet
known whether symmetric minspaces can be captured by a finite set of addi-
tional properties on the pre-orders. This motivated the study of an alternative
preferential semantics, closer to the distance one, where the preference relation
compares pairs of objects [3].

Given a non-empty set ∆, we denote by MS2(∆) the set of two-element
multisets over ∆; its elements are denoted by {a, b} (abusing set-notation). This
set will be equipped with a total pre-order ≤. Intuitively, each {a, b} represents
the distance from a to b, while distance comparison will be represented by the
total pre-order ≤. We can restate the definition of a CSL-model in terms of
preferential structures of this kind:

Definition 4 (Pair Model [3]). A CSL-pair-model I is a triple 〈∆,≤, .I〉
where:
– ∆ is a non empty countable set.
– ≤ is a total pre-order over MS2(∆) satisfying the following properties:

(Strong Limit Assumption) For every non empty-subsets X and Y of ∆,:
∃x ∈ X,∃y ∈ Y, such that ∀x′ ∈ X,∀y′ ∈ Y, {x, y} ≤ {x′, y′}.

(Pair-Centering) For every x, y ∈ ∆, {x, x} < {x, y}.
– .I is the evaluation function defined as usual on propositional variables and

boolean connectives, and as follow for the concept similarity operator:
(A⇔ B)I =

{
x
∣∣∃y ∈ AI ,∀z ∈ BI , {x, y} < {x, z}

}
,

where < is the strict weak order induced by ≤.
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Theorem 5. – A formula is satisfiable in a general distance model iff it is
satisfiable in a preferential model [1].

– For each minspace distance model, there exists an equivalent (ie. satisfying
exactly the same formulas) preferential min-model, and vice-versa [2].

– For every symmetric distance minspace model, there exists an equivalent (ie.
satisfying exactly the same formulas) pair-model [3].

It is possible to show that CSL has the finite model property over minspaces,
but this fails for CSL over arbitrary distance spaces with the distance semantics.
On the contrary, the next theorem shows that the preferential semantics always
enjoy the small model property. This fact was exploited to give several tableau
calculi, grounded on the preferential semantics, for CSL over various classes of
distance spaces [2,3,1].

Theorem 6 (Small model property [3,1]). A formula A is satisfiable in a
preferential model (resp. preferential min-model, pair-model), iff it is satisfiable
in a preferential model (resp. preferential min-model, pair-model) such that the
number of objects in ∆ is bounded by 2|sub(A)|, where sub(A) is the set of subfor-
mulas of A.

4 Conclusion

There are several issues and open problems that are of interest. First is finding
the additional conditions on the preferential relations needed to capture distance
models with (TRI), and metric models. We expect these conditions to be similar
to the ones used for the decidability and axiomatization’s completeness proof in
[5]. Such a preferential semantics could be used as a base to extend the tableau
calculi in [2,3,1], giving practical decision procedure for these cases. Another
open problem is to find a direct axiomatization of CSL over symmetric mins-
paces. As for the corresponding property in the original preferential semantics,
we conjecture that such an axiomatization is likely to be infinite.

References

1. R. Alenda and N. Olivetti. Tableau calculus for the logic of comparative similarity
over arbitrary distance spaces. In Proc. LPAR 2010, volume 6397:52–66 of LNCS,
2010.

2. R. Alenda, N. Olivetti, and C. Schwind. Comparative concept similarity over mins-
paces: Axiomatisation and tableaux calculus. In Proc. TABLEAUX 2009, volume
5607:17–31 of LNCS, 2009.

3. R. Alenda, N. Olivetti, C. Schwind, and D. Tishkovsky. Tableau calculi for csl over
minspaces. In Proc. CSL 2010, volume 6247:52–66 of LNCS, 2010.

4. M. Sheremet, D. Tishkovsky, F. Wolter, and M. Zakharyaschev. Comparative si-
milarity, tree automata, and diophantine equations. In Proc. LPAR 05, volume
3835:651–665 of LNAI, 2005.

5. M. Sheremet, F. Wolter, and M. Zakharyaschev. A modal logic framework for
reasoning about comparative distances and topology. Annals of Pure and Applied
Logic, 161:534–559(4), 2010.

72



Homotopical Fibring

Peter Arndt ∗

Over the last fifteen years the problem of fibring, i.e. of combining several logics into a single
common extension, has received a lot of attention, both for its significance in applications and
its interest for theoretical logic, see e.g. [3], [5], [6]. The main issues about fibring that have
been studied in the literature are fibring techniques for different settings of logic — like abstract
consequence relations, institutions or logics with frame semantics or topos semantics — and the
preservation of metaproperties of logics under fibring — e.g. the existence of implicit connectives
[3], completeness [2], or the position in the Leibniz hierarchy (which, roughly, measures the
degree of algebraizability/applicability of the Lindenbaum-Tarski algebra technique) [7].

A major conceptual advance, in [1], see also [10], was the recognition of fibring as a colimit
construction in an appropriate category of logics and translations between them. In particular
the combination of two logics sharing a common sublogic, called their constrained fibring, was
shown to be the pushout of the two logics along the inclusions of the sublogic into both of them.

However, the categories in which these considerations take place have a very restricted notion
of morphism: Morphisms are translations mapping the primitive connectives, which generate
the domain language, to primitive connectives of the target language. A more natural notion
of morphism would be to allow primitive connectives to be mapped to derived connectives,
as it happens e.g. in the ¬¬-translations from intuitionistic to classical logic. Unfortunately
the categories of logics with this broader notion of morphism are badly behaved, in particular
colimits other than the ones from the old setting do either not exist at all or are degenerate and
do not describe a combination of logics as desired. It has thus been an open problem how to
combine logics along more general translations.

In this talk we present a solution: Any category of logics known to the speaker comes with
a natural definition of when a translation is an equivalence of logics. It is thus open to the
methods of abstract homotopy theory, e.g. those exposed in [12] or [13] — in particular the
notion of homotopy colimit is defined, and this is what we call the homotopical fibring, or
hofibring, of logics, and what we propose to replace the colimit construction of fibring with. The
main conceptual advantages of hofibring over fibring in this setting are:

• homotopy colimits tend to exist in settings of interest where colimits do not exist

• one can always see the constituent logics as linguistic fragments of their hofibring, unlike
for fibring

• invariance under equivalence: replacing the logics to be combined by equivalent ones will
result in an equivalent hofibred logic

As an example we present the concrete meaning of this in a simple setting of propositional
Hilbert Calculi. In this setting we consider signatures S of generating connectives given with
arities (formally: a map S → N) and the absolutely free S-algebra L(S) generated by a fixed set
of propositional variables.
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We now work in the category whose objects are logics, presented by pairs (S,`), where S is
a signature and `⊆ P(L(S))× L(S) is a consequence relation between subsets of L(S) and
elements of L(S). As usual we write the consequence relation in infix notation Γ ` ϕ and say that
Γ entails ϕ. A morphism f : (S,`)→ (S′,`′) is an arity preserving map f : S → L(S′) such that

its extension f̂ : L(S)→ L(S′) to the absolutely free algebra L(S) satisfies Γ ` ϕ⇒ f̂(Γ) `′ f̂(ϕ)
(i.e. it is a “translation”).

There is an obvious forgetful functor from logics to signatures and it is easy to see that it
preserves and creates colimits. Thus the underlying signature of a colimit of logics will always
be the colimit of their underlying signatures. If, as in our case, signatures are given by free
algebras, this explains the problem of defective or non-existing colimits: Colimits of free algebras
are not “by nature” free again, and forcing them to be so results in degeneracy.

One can call a translation f : (S,`)→ (S′,`′) a weak equivalence, if Γ ` ϕ⇔ f̂(Γ) ` f̂(ϕ)
(i.e. it is a “conservative translation”) and if for every formula ϕ in the target there exists a

formula in the image of f̂ which is logically equivalent to ϕ (it has “dense image”).

One can further call cofibration a morphism which is given by mapping generating connectives
injectively to generating connectives (i.e. which is given by an injective, arity preserving map
between the signatures).

This category of logics and translations now has the convenient structure of a so–called
ABC cofibration category (see [11]), that is, we have a factorization of any morphism into a
cofibration followed by a weak equivalence, satisfying some axioms. The proof of this proceeds
in close analogy to the original topological setting, e.g. by constructing mapping cylinders. The
results of [11] then yield a concrete construction recipe for the homotopy colimit of a given
diagram as the actual colimit of a different diagram, by which we can

• express hofibring through fibring

• see that fibring is a special case of hofibring (which yields a new universal property of
fibring)

• see that all homotopy colimits exist and

• transfer preservation results known from fibring to hofibring, for metaproperties which are
invariant under equivalence

While existence of homotopy colimits could be inferred through any structure of ABC
cofibration category, for the last group of results we make crucial use of our concrete choice of
cofibrations and weak equivalences. Among the preservation results obtained by this technique,
those on the existence of implicit connectives are straightforward. Preservation of completeness
and position in the Leibniz hierarchy require a homotopical view on semantics first, which we
will provide before applying the transfer result.

In the talk, after having explained the above central ideas for the example of Hilbert calculi,
we will show that they are in fact largely independent of the chosen notion of “logic” and extend
e.g. to first order logics by admitting many-sorted signatures and to the fibring of institutions
via the c-parchments from [14].

To conclude, we sketch a picture of homotopical versions of other variants of fibring, like
modulated fibring ([4]), metafibring ([8]) and fibring of non-truth functional logics [9], as well as
of the homotopical categories given by other settings like institutions and type theory. If time
remains, we hint at a variety of approaches to abstract logic, other than those aimed at fibring
questions, suggested by the homotopical view point.
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The word problem in semiconcept algebras
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1 Introduction

Extending concept lattices to protoconcept algebras and semiconcept algebras,
Herrmann et al. [5] and Wille [10] introduced negations in conceptual structures
based on formal contexts such as double Boolean algebras. These algebras have
attracted interest for their theoretical merits — basic representations have been
obtained [5, 10] — and their practical relevance — applications in the field of
knowledge representation have been developed [7, 8]. This interest motivated
Vormbrock [9] to attack the word problem (WP) in protoconcept algebras and
to demonstrate that given terms s, t, if s = t is not valid in all protoconcept
algebras then there exists a finite protoconcept algebra in which s = t is not
valid. Nevertheless, the upper bound on the size of the finite protoconcept
algebra given in [9, Page 258] is not elementary. Therefore, it does not allow us
to conclude — as wrongly stated in [9, Page 240] — that the WP in protoconcept
algebras is NP-complete. Switching over to semiconcept algebras, our aim is to
prove that the WP in semiconcept algebras is PSPACE-complete.

2 Pure double Boolean algebras

See [3, Chapter 3] or [4] for a short introduction to formal concept analysis. For-
mal contexts are structures of the form IK = (G,M,∆) where G is a nonempty
set, M is a nonempty set and ∆ is a binary relation between G and M . For
all X ⊆ G and for all Y ⊆ M , let X. = {m ∈ M : for all g ∈ G, if g ∈ X
then g ∆ m} and Y / = {g ∈ G: for all m ∈ M , if m ∈ Y then g ∆ m}.
Let IK = (G,M,∆) be a formal context. Given X ⊆ G and Y ⊆ M , the pair
(X,Y ) is called “semiconcept of IK” iff Y = X. or X = Y /. Let H(IK) =
(H(IK),⊥l,⊥r,>l,>r,¬l,¬r,∨l,∨r,∧l,∧r) be the algebraic structure of type
(0, 0, 0, 0, 1, 1, 2, 2, 2, 2) where H(IK) is the set of all semiconcepts of IK, ⊥l =
(∅,M), ⊥r = (M/,M), >l = (G,G.), >r = (G, ∅), ¬l(X,Y ) = (G\X, (G\X).),
¬r(X,Y ) = ((M \ Y )/,M \ Y ), (X1, Y1) ∨l (X2, Y2) = (X1 ∪X2, (X1 ∪X2).),

∗Address: Institut de recherche en informatique de Toulouse, CNRS — Université de
Toulouse, 118 route de Narbonne, 31062 TOULOUSE CEDEX 9, France.
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(X1, Y1)∨r (X2, Y2) = ((Y1∩Y2)/, Y1∩Y2), (X1, Y1)∧l (X2, Y2) = (X1∩X2, (X1∩
X2).) and (X1, Y1) ∧r (X2, Y2) = ((Y1 ∪ Y2)/, Y1 ∪ Y2). It is a simple matter to
check that H(IK) satisfies the following conditions: x∧l (y ∧l z) = (x∧l y)∧l z,
x∨r (y ∨r z) = (x∨r y)∨r z, x∧l y = y ∧l x, x∨r y = y ∨r x, ¬l(x∧l x) = ¬lx,
¬r(x ∨r x) = ¬rx, x ∧l (y ∧l y) = x ∧l y, x ∨r (y ∨r y) = x ∨r y, x ∧l (y ∨l z) =
(x ∧l y) ∨l (x ∧l z), x ∨r (y ∧r z) = (x ∨r y) ∧r (x ∨r z), x ∧l (x ∨l y) = x ∧l x,
x∨r (x∧r y) = x∨r x, x∧l (x∨r y) = x∧l x, x∨r (x∧l y) = x∨r x, ¬l(¬lx∧l¬ly)
= x∨l y, ¬r(¬rx∨r ¬ry) = x∧r y, ¬l⊥l = >l, ¬r>r = ⊥r, ¬l>r = ⊥l, ¬r⊥l =
>r, >r ∧l >r = >l, ⊥l ∨r ⊥l = ⊥r, x ∧l ¬lx = ⊥l, x ∨r ¬rx = >r, ¬l¬l(x ∧l y)
= x ∧l y, ¬r¬r(x ∨r y) = x ∨r y, (x ∧l x) ∨r (x ∧l x) = (x ∨r x) ∧l (x ∨r x)
and x ∧l x = x or x ∨r x = x. We shall say that an algebraic structure D =
(D,⊥l,⊥r,>l,>r,¬l,¬r,∨l,∨r,∧l,∧r) of type (0, 0, 0, 0, 1, 1, 2, 2, 2, 2) is a pure
double Boolean algebra iff the operations ⊥l, ⊥r, >l, >r, ¬l, ¬r, ∨l, ∨r, ∧l and
∧r satisfy the above conditions.

3 The word problem

Let V ar denote a countable set of individual variables (x, y, etc). The set t(V ar)
of all terms (s, t, etc) is given by the rule s ::= x | 0l | 0r | 1l | 1r | −ls | −rs |
(stlt) | (strt) | (sult) | (surt). LetD = (D,⊥l,⊥r,>l,>r,¬l,¬r,∨l,∨r,∧l,∧r)
be a pure double Boolean algebra. A valuation based on D is a function m
assigning to each individual variable x an element m(x) of D. m induces a
function (·)m assigning to each term s an element (s)m of D such that (x)m

= m(x), (0l)
m = ⊥l, (0r)

m = ⊥r, (1l)
m = >l, (1r)

m = >r, (−ls)m = ¬l(s)m,
(−rs)m = ¬r(s)m, (s tl t)m = (s)m ∨l (t)m, (s tr t)m = (s)m ∨r (t)m, (s ul t)m
= (s)m ∧l (t)m and (s ur t)m = (s)m ∧r (t)m. Now, for the WP in pure double
Boolean algebras: given terms s, t, decide whether there exists a pure double
Boolean algebra D and a valuation m based on D such that (s)m 6= (t)m. Our
aim is to prove that the WP in pure double Boolean algebras is PSPACE-
complete. In this respect, we need to introduce the computational complexity
of the 2-sorted modal logic K2.

4 Computational complexity of K2

See [1, Chapter 6] or [6] for a short introduction to the computational complexity
of modal logic. The language of K2 is based on a countable set OV ar of object
variables (P , Q, etc) and a countable set AV ar of attribute variables (p, q, etc).
The set of all object formulas (A, B, etc) and the set of all attribute formulas
(a, b, etc) are given by the rules A ::= P | ⊥ | ¬A | (A ∨ B) | 2a and a ::=
p | ⊥ | ¬a | (a ∨ b) | 2A. A formula (α, β, etc) is either an object formula or

an attribute formula. Let ~OV ar = P1, P2, . . . be an enumeration of OV ar and
~AV ar = p1, p2, . . . be an enumeration of AV ar. We shall say that a substitution

(Θ, θ) is normal with respect to ~OV ar and ~AV ar iff for all positive integers i,
Θ(Pi) = Pi and θ(pi) = 2Pi or Θ(Pi) = 2pi and θ(pi) = pi. Given a formula
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α, V ar(α) will denote the set of all variables occurring in α. A formula α is
said to be nice iff V ar(α) ⊆ OV ar or V ar(α) ⊆ AV ar. Let IK = (G,M,∆) be
a formal context. A IK-valuation is a pair (V, v) of functions where V assigns
to each object variable P a subset V (P ) of G and v assigns to each attribute
variable p a subset v(p) of M . (V, v) induces a function (·)(V,v) assigning to each
formula α a subset (α)(V,v) of G ∪M such that (P )(V,v) = V (P ), (⊥)(V,v) = ∅,
(¬A)(V,v) = G \ (A)(V,v), (A ∨ B)(V,v) = (A)(V,v) ∪ (B)(V,v), (2a)(V,v) = {g ∈
G: for all m ∈ M , if m ∈ (a)(V,v) then g ∆ m}, (p)(V,v) = v(p), (⊥)(V,v) = ∅,
(¬a)(V,v) = M \ (a)(V,v), (a ∨ b)(V,v) = (a)(V,v) ∪ (b)(V,v) and (2A)(V,v) = {m
∈ M : for all g ∈ G, if g ∈ (A)(V,v) then g ∆ m}. A formula α is said to be
satisfiable iff there exists a formal context IK = (G,M,∆) and a IK-valuation
(V, v) such that (α)(V,v) is nonempty. Following the line of reasoning suggested
in [1, Chapter 6] or [6], one can prove that

Proposition 1 The following decision problem is PSPACE-hard: given a nice
formula α, determine whether α is satisfiable.

Proposition 2 The following decision problem is in PSPACE: given a for-
mula α, determine whether α is satisfiable.

5 Lower and upper bound for the WP

Let ~OV ar = P1, P2, . . . be an enumeration of OV ar, ~AV ar = p1, p2, . . . be an
enumeration of AV ar and ~V ar = x1, y1, x2, y2, . . . be an enumeration of V ar.
The function T (·) assigning to each nice object formula A a term T (A) and the
function t(·) assigning to each nice attribute formula a a term t(a) are such that
T (Pi) = xi, T (⊥) = 0l, T (¬A) = −lT (A), T (A∨B) = T (A)tl T (B), T (2a) =
−l −l −r −r t(a), t(pi) = yi, t(⊥) = 1r, t(¬a) = −rt(a), t(a ∨ b) = t(a) ur t(b)
and t(2A) = −r −r −l −l T (A). Let (s1(·), s2(·)) be the function assigning to
each nice formula α a pair (s1(α), s2(α)) of terms such that if α is a nice object
formula then s1(α) = T (α) and s2(α) = 0l and if α is a nice attribute formula
then s1(α) = t(α) and s2(α) = 1r. One can prove that if α is nice then α is
satisfiable iff there exists a pure double Boolean algebra D and a valuation m
based on D such that (s1(α))m 6= (s2(α))m. Thus, by proposition 1,

Proposition 3 The WP in pure double Boolean algebras is PSPACE-hard.

Let ~V ar = x1, x2, . . . be an enumeration of V ar, ~OV ar = P1, P2, . . . be an
enumeration of OV ar and ~AV ar = p1, p2, . . . be an enumeration of AV ar. The
function F (·) assigning to each term s an object formula F (s) and the function
f(·) assigning to each term s an attribute formula f(s) are such that F (xi) = Pi,
f(xi) = pi, F (0l) = ⊥, f(0l) = 2⊥, F (0r) = 2>, f(0r) = >, F (1l) = >, f(1l)
= 2>, F (1r) = 2⊥, f(1r) = ⊥, F (−ls) = ¬F (s), f(−ls) = 2¬F (s), F (−rs)
= 2¬f(s), f(−rs) = ¬f(s), F (stl t) = F (s)∨F (t), f(stl t) = 2(F (s)∨F (t)),
F (str t) = 2(f(s)∧f(t)), f(str t) = f(s)∧f(t), F (sul t) = F (s)∧F (t), f(sul t)
= 2(F (s) ∧ F (t)), F (s ur t) = 2(f(s) ∨ f(t)) and f(s ur t) = f(s) ∨ f(t). Let

79



O(·, ·) be the function assigning to each pair (s, t) of terms the object formula
O(s, t) such that O(s, t) = ¬(F (s)↔ F (t)). Let A(·, ·) be the function assigning
to each pair (s, t) of terms the attribute formula A(s, t) such that A(s, t) =
¬(f(s)↔ f(t)). One can prove that there exists a pure double Boolean algebra
D and a valuation m based on D such that (s)m 6= (t)m iff there exists a

substitution (Θ, θ) such that (Θ, θ) is normal with respect to ~OV ar and ~AV ar
and O(s, t)(Θ,θ) is satisfiable or A(s, t)(Θ,θ) is satisfiable. Thus, by proposition 2,

Proposition 4 The WP in pure double Boolean algebras is in PSPACE.
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decidability. In Grädel, E., Kolaitis, P., Libkin, L., Marx, M., Spencer, J.,
Vardi, M., Venema, Y., Weinstein, S. (editors): Finite Model Theory and its
Applications. Springer (2007) 371–429.

[7] Priss, U.: Formal concept analysis in information science. Annual Review
of Information Science and Technology 40 (2006) 521–543.

[8] Stumme, G.: Formal concept analysis on its way from mathematics to com-
puter science. In Priss, U., Corbett, D., Angelova, G. (editors): Conceptual
Structures: Integration and Interfaces. Springer (2002) 2–19.

[9] Vormbrock, B.: A solution of the word problem for free double Boolean al-
gebras. In Kuznetsov, S., Schmidt, S. (editors): Formal Concept Analysis.
Springer (2007) 240–270.

[10] Wille, R.: Boolean concept logic. In Ganter, B., Mineau, G. (editors): Con-
ceptual Structures: Logical, Linguistic, and Computational Issues. Springer
(2000) 317–331.

80
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1 Introduction

A possible interpretation of Coquand’s winning strategies in backtracking games
in [6] is as learning strategies. This generalizes Gold’s idea of “learning in the
limit” in [7], making any arithmetical set learnable (see [3]).

By learning in the limit, in its simplest form called 1-backtracking in [2], we
mean the activity of making falsifiable hypothesis, or “guesses”, about a law
describing a given sequence of individuals, with the possibility of changing a
guess as soon as it is contradicted by new evidences in the sequence. This kind
of learning is successful if the limit of the sequences of guesses about the law
describing the sequence is a correct guess about the sequence.

In this paper we give a topology over a set of knowledge states, providing
a description of Learning in the Limit in both monotonic and non-monotonic
cases. We investigate a quite general description of the original Gold’s approach,
by giving a topology over a set of individual we call “answers”, a topology which
is directly motivated by the concept of learning. The topology we have in mind
is an extension of Scott’s topology, akin to Lawson topology but more general
than it.

We represent a knowledge state as an equivalence relation over a set of
answers: two answers are equivalent if they are two alternative answers to the
same question. Answers are divided into true and false answers. A knowledge
state is a choice of at most one true answer in each equivalent class (that is at
most one true answer for each question), and it represents the current knowledge
we have about the true answers to some (usually, not all) questions considered
up to a certain point. The topology has all basic opens of a Scott-like topology:
the family of all knowledge states including a fixed finite knowledge state is a
basic open. These basic opens represent positive information, or a finite list of
questions for which we selected one true answer. We consider a second kind of
basic open, representing negative information, or a set of questions for which
we assume there is no true answer. A basic open of this second kind consists of
all knowledge states having empty intersection with a finite set of equivalence
classes. These equivalence classes represent finitely many questions for which
we assume there is no true answer in the knowledge state.

We use this topology as a frame in which to state and solve several problems
about learning in the limit. We define a correct learning strategy as any contin-
uous map taking a state of learning and a set of possible counterexamples, and
returning finitely many new answers, which we may add to the current state in
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order to produce a new and more accurate set of guesses. In [4] we call such
strategies interactive realizers, of which we study the monotonic case. Interac-
tive realizers have also been related to Kleene’s realizability in [1]. A general
notion of interactive reliazer also exists, and it is sketched in [5].

2 The Space of States

In this section we define a set of “possible answers”, equipped with an equiv-
alence relation relating two alternative answers to the same question, then a
notion of knowledge states consisting in a consistent selection of answers, and
eventually a topology over the knowledge states. Basic opens of this topology
represent finite positive or negative information about a knowledge state.

Let A be some countable set of atoms, and ∼ ⊆ A×A an equivalence relation.
Two atoms x, y ∈ A are compatible, written x#y, according to:

x#y ⇔ x = y ∨ x 6∼ y.

We think of an atom as a possible answer, right or wrong, to a given question,
and two equivalent atoms as two alternative answers to the same question.

A set of atoms X ⊆ A is consistent, namely if and only if:

∀x, y ∈ X. x#y.

Equivalently X is consistent if for all x ∈ A the set X ∩ [x] is either empty
or a singleton, where [x] is the equivalence class of x w.r.t. ∼. We think of a
consistent set of atoms as a “knowledge state”, or equivalently as a selection of
at most one answer for each question.

We call S∞ = {X ⊆ A | X is consistent} the set of consistent sets of atoms,
and S = {X ∈ S∞ | X ∈ Pfin(A)} the set of states, using s, t, . . . to range over
S.

The set S∞ is a poset by subset inclusion, and it is downward closed. It
follows that (S∞,∩,⊆) is an inf-semilattice with bottom ∅. S is closed under
arbitrary but non-empty inf, as the empty inf, namely the whole A, is not
consistent in general. S∞ it is not closed under union, unless the compatibility
relation is trivial. We write X ↑ Y and say, by overloading terminology, that
X and Y are compatible, if X ⊆ Z ⊇ Y for some Z ∈ S∞. Clearly the union
of a family U ⊆ S∞ belongs to S∞ if and only if all elements of U are pairwise
compatible. Thus S∞ is closed under directed sups, so it is a cpo, which has
compacts K(S∞) = S and it is algebraic. We now introduce a state topology,
whose basic opens are all possible positive and negative information about a
finite set of questions.

Definition 2.1 (State Topology) The state topology (S∞,Ω(S∞)) is gener-
ated by the subbasics Ax, Bx, with x ∈ A:

Ax = {X ∈ S | x ∈ X} = {X ∈ S | X ∩ [x] a singleton},
Bx = {X ∈ S | X ∩ [x] = ∅}.

X ∈ Ax means that the knowledge state X has selected the answer y ∈ [x] to
the question [x], while X ∈ Bx means that X has no answer to the question [x].
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By definition, a basic open of Ω(S∞) has the shape:

OU,V =
⋂

x∈U

Ax ∩
⋂

y∈V

By,

for some finite U, V ⊆ A. If ¬x#y, that is x ∼ y and x 6= y, then Ax ∩Ay = ∅,
so that ∅ is a basic open. On the other hand if x ∼ y then Bx = By. Therefore
without loss of generality we assume U, V to be consistent, so that we shall refer
to basic opens Os,t with s, t ∈ S only.

The state topology resembles Lawson topology, and in fact it is finer than
that. The lower topology over a poset is generated by the complements of princi-
pal filters; the Lawson topology is the smallest refinement of both the lower and
the Scott topology. In case of the cpo (S∞,⊆) the Lawson topology is generated
by the subbasics:

X ↑ = {Y ∈ S∞ | X 6⊆ Y } and s↑ = {Y ∈ S∞ | s ⊆ Y },

for X ∈ S∞ and s ∈ S, representing the negative and positive information
respectively.

Proposition 2.2 (State versus Lawson Topology) The state topology Ω(S∞)
refines the Lawson topology over the cpo (S∞,⊆), and they coincide if and only
if [x] is finite for all x ∈ A.

3 Layered states and relative truth

In this section we define a stratification into level for the set of answers, trans-
lating the notion of non-monotonic learning. When there is a single level of
answers, we may check directly whenever an answer is true or false. When
there are two or more levels of answers, the truth or falsity of an answer de-
pends, through a fixed continuous function, over the answers of smaller levels
belonging the same knowledge state. Whenever we change a knowledge state
the truth value of all its answers may change: this situation makes learning in
the limit much more difficult to study. Let us assume the existence of a map
lev : A→ Ord, associating to each atom x the ordinal lev(x), and such that any
two answers to the same question are of the same level:

∀x, y ∈ A. x ∼ y ⇒ lev(x) = lev(y).

If X ∈ S∞ and α ∈ Ord we write X � α = {x ∈ X | lev(x) < α}. We may now
precise a notion of truth of an answer w.r.t. a knowledge state.

Definition 3.1 (Layered Valuations) A map tr : A × S∞ → B, where B =
{true, false}, is a layered valuation, or a valuation for short, if:

1. tr is continous, by taking A and B with the discrete toplogy, S∞ with the
state topology Ω(S∞), and A× S∞ with the product topology

2. tr(x,X) = tr(x,X � lev(x))
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When tr is a layered valuation, we say that x is relatively true w.r.t. X, or
just x true w.r.t. X, if tr(x,X) = true. By definition the truth of x w.r.t. X
depends only on the atoms of lover level than lev(x); it follows that

lev(x) = 0⇒ tr(x,X) = tr(x, ∅)

that is the truth value of atoms of level 0 is absolute, and depends just on the
choice of tr. Let tr be some fixed truth predicate. We will now introduce a
notion of knowledge state which is “maximal” in a sense.

Definition 3.2 (Sound and Complete States) Let X ∈ S∞, then:

1. X sound ⇔ ∀x ∈ X. tr(x,X) = true

2. X complete ⇔ ∀x ∈ A. X ∩ [x] = ∅ ⇒ tr(x,X) = false

3. X is a model if and only if X is sound and complete.

In words, X is sound if all its atoms are true w.r.t. X; X is a model if it is
maximal among sound states. We may prove that there are models: this fact
will play an important role in the study of the notion of learning.

Theorem 3.3 (Existence of Models) There exists a model X ∈ S∞.
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SAHLQVIST PRESERVATION FOR MODAL MU-ALGEBRAS

NICK BEZHANISHVILI AND IAN HODKINSON

Abstract. We define Sahlqvist fixed point formulas and present completeness and correspondence results

for modal fixed point logics axiomatized by these formulas for LFP-definable classes of general µ-frames. We

also define modal µ∗-algebras and show that Sahlqvist fixed point formulas are preserved under completions
of conjugated modal µ∗-algebras. This work is based on [3] and [4].

1. Introduction

Modal fixed point logic is an extension of modal logic with fixed point operators that is very expressive,
but still decidable, e.g., [6, Section 5]. Many expressive modal and temporal logics are fragments of it: e.g.,
[6, Section 4.1].

[1] studied non-classical, order-topological semantics of modal µ-calculus. Descriptive frames are order-
topological structures extensively used in modal logic: e.g., [5, Chapter 5]. In [1] the authors define, what
we call in this paper, descriptive µ-frames – those descriptive frames that admit a topological interpretation
of the least fixed point operator. Unlike the classical semantics of fixed point logics, in descriptive µ-frames
the least fixed point operator is interpreted as the intersection of not all pre-fixed points, but of all clopen
pre-fixed points.

In this paper we extend this semantics to what we call admissible semantics, by evaluating fixed point
operators as meets of pre-fixed points from some given subset F of a modal algebra A. We call such algebras
modal µ∗-algebras. In case F = A, we recover the semantics of [1]. There are (at least) three reasons for
studying this semantics. First, admissible semantics gives completeness for all (normal) systems of modal
fixed point logic, whereas completeness results for fixed point logics with the classical semantics are very
sparse [13], [7]. Second, we can obtain positive results such as Theorems 3.5 and 4.1 for admissible semantics,
whereas the analogues for the classical semantics do not hold. We are also able to obtain a workable notion
of completion as opposed to the standard one which was shown to be ‘badly behaved’ [11]. Third, admissible
semantics provides more ‘realistic’ logics for practical applications. For example, if we are dealing with the
spatial logic of the real plane, we might want to assign formulas only to some practically realizable subsets
such as, say, polygons — resulting in an admissible spatial semantics. If we take this seriously, then fixed
point operators should also be interpreted relative to admissible semantics.

We give Sahlqvist completeness and correspondence results for admissible semantics. Moreover, for an
arbitrary F we show that Sahlqvist fixed point formulas are preserved under completions of conjugated
modal µ∗-algebras.

2. Modal algebras and descriptive frames

We recall that the language of modal µ-calculus consists of a countably infinite set of propositional
variables (x, y, p, q, x0, x1, etc), constants ⊥ and >, connectives ∧, ∨, ¬, modal operators ♦ and �, and
formulas µxϕ for all formulas ϕ positive in x (i.e., x occurs under the scope of only an even number of
negations). Formulas of modal µ-calculus will be called modal µ-formulas. A formula without µ-operators
will be called a modal formula.

A Kripke frame is a pair (W,R), where W is a non-empty set and R ⊆W 2 a binary relation. Let (W,R)
be a Kripke frame. An assignment is a map h from the propositional variables into the powerset P(W ) of
W . For each modal µ-formula ϕ we denote by [[ϕ]]h the set of points satisfying ϕ under h. Satisfiability and
validity of a modal µ-formula in the Kripke model (W,R, h) and the frame (W,R) are defined in a standard
way (see, e.g., [6]).

For each w ∈ W we let R(w) = {v ∈ W : wRv}. For each U ⊆ W we let [R]U = {v ∈ W : R(v) ⊆ U}
and 〈R〉U = {v ∈ W : R(v) ∩ U 6= ∅}. A Stone space is a compact Hausdorff topological space with a basis
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of clopen sets. A descriptive frame is a pair (W,R) such that W is a Stone space and R a binary relation on
W such that R(w) is closed for each w ∈W and the set Clop(W ) of clopen subsets of W is closed under the
operations [R] and 〈R〉.

A modal algebra is a pair B = (B,♦), where B is a Boolean algebra and ♦ a unary operation on B
satisfying ♦0 = 0 and ♦(a ∨ b) = ♦a ∨ ♦b for each a, b ∈ B. There is a well known duality between modal
algebras and descriptive frames (see e.g., [5]).

Definition 2.1.

(1) Let B = (B,♦) be a modal algebra and F ⊆ B. A map h from propositional variables to B is
called an algebra assignment. We define a (possibly partial) semantics for modal µ-formulas by the
following inductive definition.

[⊥]Fh = 0, [>]Fh = 1, and [x]Fh = h(x), where x is a propositional variable,
[ϕ ∧ ψ]Fh = [ϕ]Fh ∧ [ψ]Fh , [ϕ ∨ ψ]Fh = [ϕ]Fh ∨ [ψ]Fh , and [¬ϕ]Fh = ¬[ϕ]Fh ,
[♦ϕ]Fh = ♦[ϕ]Fh and [�ϕ]Fh = �[ϕ]Fh .

For a ∈ B we denote by hax the algebra assignment such that hax(x) = a and hax(y) = h(y) for
each variable y 6= x. If ϕ is positive in x, let

[µxϕ]Fh =
∧
{a ∈ F : [ϕ]Fha

x
≤ a},

if this meet exists; otherwise, the semantics for µxϕ is undefined.

(2) A triple (B,♦,F) is called a modal F-µ-algebra if [ϕ]Fh is defined for any modal µ-formula ϕ and
any algebra assignment h.

(3) A modal F-µ-algebra (B,♦,F) is called a modal µ-algebra if F = B. A modal µ∗-algebra is a modal
F-µ-algebra for some F .

Recall that a modal algebra (B,♦) is called complete if B is a complete Boolean algebra; that is, for each
subset S of B the meet

∧
S and the join

∨
S exist. Every complete modal algebra B is a modal µ-algebra.

Locally finite modal algebras are other examples of modal µ-algebras (see [3] for details).

Definition 2.2. Let (W,R) be a descriptive frame, F ⊆ P(W ) and h an arbitrary assignment, that is, a map
from the propositional variables to P(W ). We define the semantics for modal µ-formulas by the following
inductive definition.

• [[⊥]]Fh = ∅, [[>]]Fh = W , and [[x]]Fh = h(x), where x is a propositional variable,

• [[ϕ ∧ ψ]]Fh = [[ϕ]]Fh ∩ [[ψ]]Fh, [[ϕ ∨ ψ]]Fh = [[ϕ]]Fh ∪ [[ψ]]Fh, and [[¬ϕ]]Fh = W \ [[ϕ]]Fh,

• [[♦ϕ]]Fh = 〈R〉[[ϕ]]Fh and [[�ϕ]]Fh = [R][[ϕ]]Fh.
• For U ∈ P(W ) we denote by hUx a new assignment such that hUx (x) = U and hUx (y) = h(y) for each

propositional variable y 6= x. Let ϕ be positive in x. Then

[[µxϕ]]Fh =
⋂
{U ∈ F : [[ϕ]]F

hU
x
⊆ U}.

Let (W,R) be a descriptive frame. We call a map h from the propositional variables to P(W ) a set-theoretic
assignment. If rng(h) ⊆ Clop(W ) then h is called a clopen assignment.

Definition 2.3. A triple (W,R,F) is called a general frame if (W,R) is a Kripke frame and F ⊆ P(W ).
Elements of F are called admissible sets. An assignment h from the propositional variables to F is called an
admissible assignment. (W,R,F) is called a general µ-frame if [[ϕ]]Fh ∈ F for each modal µ-formula ϕ and
admissible assignment h.

A descriptive frame (W,R) is called a descriptive µ-frame if for each clopen assignment h and modal

µ-formula ϕ, the set [[ϕ]]
Clop(W )
h is clopen.

Clearly, a descriptive µ-frame (W,R) can be viewed as a general µ-frame (W,R, Clop(W )).

Theorem 2.4. ([1]) The correspondence between modal algebras and descriptive frames restricts to a one-
to-one correspondence between modal µ-algebras and descriptive µ-frames.

Also, every axiomatically defined system of modal fixed point logic is sound and complete with respect to
modal µ-algebras, descriptive µ-frames and general µ-frames [1, 7].
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3. Completeness and correspondence of Sahlqvist fixed point formulas

Definition 3.1. We call a modal µ-formula ϕ positive if it does not contain any negations. For each m ∈ ω
we let �0x = x and �m+1x = �(�mx).

Definition 3.2. A formula ϕ is called a Sahlqvist fixed point formula if it is obtained from formulas of the
form ¬�mx (x a propositional variable, m ∈ ω) and positive formulas (in the language with the µ-operator)
by applying the operations ∨ and �.

Remark 3.3. In the language without fixed point operators, the above definition of Sahlqvist formula is
different from the ‘standard’ definition (see e.g., [5]), but any Sahlqvist formula of [5] is equivalent to a
conjunction of Sahlqvist formulas in the aforementioned sense.

Theorem 3.4. Let (W,R) be a descriptive frame,1 w ∈ W and ϕ a Sahlqvist fixed point formula. If

w ∈ [[ϕ]]
Clop(W )
f for each clopen assignment f , then w ∈ [[ϕ]]

Clop(W )
h for each set-theoretic assignment h.

In algebraic terminology, Theorem 3.4 means roughly that Sahlqvist fixed point formulas are preserved
under canonical extensions of modal µ∗-algebras.

Now let LFP be the first-order language augmented with the least fixed point operator µ; see, e.g., [8].
We assume that µ is applied to unary predicates only. For each propositional variable p we reserve a unary
predicate symbol P . An LFP-formula ξ is said to be an LFP-frame condition if it has no free variables or
free unary predicate symbols.

Let M = (W,R,F) be a general µ-frame and h an admissible assignment. We view M as an LFP-structure
via PM = h(p) ⊆W , for each propositional variable p. The interpretation of LFP-formulas is standard (see,
e.g., [8, Section 8]), except for expressions of the type (µ(Z, u) ξ(u, Z))(v), where Z is a unary predicate
symbol and u and v first-order variables. This is interpreted in (M, h, g) as stating that the value assigned
to v is in the intersection of all admissible (elements of F) pre-fixed points of the map F : P(W ) → P(W ),
where

(1) F (U) = {w ∈W : (M, hUz , g
w
u ) |= ξ(u, Z)},

in which gwu is a first-order assignment mapping variable u to the point w ∈W . For an LFP frame condition
ξ, the notion ‘(M, h, g) |= ξ’ does not depend on h and g, so we drop them.

Theorem 3.5. (Main Theorem 1) For each Sahlqvist fixed point formula ϕ there exists a constructible
LFP-frame condition χ(ϕ) such that each modal fixed point logic axiomatized by a set Φ of Sahlqvist fixed
point formulas is

(1) sound and complete with respect to the class of general µ-frames satisfying the LFP-frame conditions
{χ(ϕ) : ϕ ∈ Φ},

(2) sound and complete with respect to the class of descriptive µ-frames satisfying the LFP-frame condi-
tions {χ(ϕ) : ϕ ∈ Φ}.

Essential in the proofs of Theorems 3.5 and 3.4 is the analogue of Esakia’s lemma for modal µ-formulas.
See [3] for details and for examples of Sahlqvist fixed point formulas and their corresponding LFP-frame con-
ditions. Also, [2] defines a larger class of Sahlqvist fixed point formulas and studies their LFP-correspondence
for classical semantics of fixed points.

4. Preservation of Sahlqvist fixed point formulas under completions

Let A be a Boolean algebra. A subalgebra B of A is said to be a dense subalgebra if for each 0 < a ∈ A
there exists 0 < b ∈ B such that b ≤ a. The MacNeille completion A of A is a complete Boolean algebra A
such that A is a dense subalgebra of A and all joins and meets that exist in A are preserved in A. In other

words, if S ⊆ A is such that
∨A

S exists, then
∨A

S =
∨A

S, and similarly for meets. The completion of a
Boolean algebra always exists and is unique up to isomorphism (see, e.g., [12]).

Let f, g : A→ A. g is called the conjugate of f if for all a, b ∈ A we have a ∧ f(b) = 0 iff b ∧ g(a) = 0. A
modal algebra A = (A, fi)i∈I with multiple diamond operators is called conjugated if the fi fall into conjugate

1Note that we do not require that (W,R) is a descriptive µ-frame.
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pairs. It is well known (see e.g., [10]) that if A is conjugated then A = (A, f i)i∈I is also a conjugated modal

algebra, where fi is defined by: f i(b) =
∨A{fi(a) : a ∈ A, a ≤ b}. A is called the completion of A.

[11] shows inter alia that there exists a conjugated modal µ-algebra A that does not admit an embedding
into a complete modal µ-algebra preserving fixed point formulas. This motivates the following, alternative
definition of completions of modal µ-algebras. For a conjugated modal F-µ-algebra A = (A, fi,F)i∈I (with
multiple diamond operators), the modal F-µ-algebra A = (A, f i,F)i∈I is called its F-completion. Fixed
point formulas are preserved by the natural embedding of an F-µ-algebra into its F-completion. Moreover,

Theorem 4.1. (Main Theorem 2) Any Sahlqvist fixed point formula valid in a conjugated modal F-µ-
algebra is also valid in its F-completion.

The proof of Theorem 4.1 is in a way similar to the proof of Theorem 3.4, but does not use the analogue of
Esakia’s lemma. Theorem 4.1 can be formulated in the more general setting of conjugated Boolean algebras
with operators. See [4] for all details. Finally, we note that the following result of Givant and Venema [9] is
an immediate corollary of Theorem 4.1:

Corollary 4.2. ([9]) Let A be a conjugated modal algebra and A its completion. Then any modal Sahlqvist
formula valid in A is also valid in A.
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Basic pseudo hoops and normal valued basic

pseudo hoops

Michal Botur (join work with Anatolij Dvurečenskij and Tomasz Kowalski)

We recall that a pseudo hoop is an algebra (M, ·,→,;, 1) of type 〈2, 2, 2, 2, 0, 0〉 such that,
for all x, y, z ∈M,

i) x · 1 = x = 1 · x,

ii) x→ x = 1 = x; x,

iii) (x · y)→ z = x→ (y → z)

iv) (x · y) ; z = y ; (x; z)

v) (x→ y) · x = (y → x) · y = x · (x; y) = y · (y ; x).

If we set x ≤ y if and only if x → y = 1 (this is equivalent to x ; y = 1), then ≤ is a
partial order such that x ∧ y = (x→ y) · x and M is a ∧-semilattice.

We are saying that a pseudo hoop M satisfies Riesz decomposition property if a ≥ b · c
implies that there are two elements b′ ≥ b and c′ ≥ c such that a = b′ · c′.

Theorem. Every pseudo hoom M satisfies Riesz decomposition property.

We recall that filter F on pseudo hoop M is a non empty set closed over product and upper
bounds. A filter F is called to be a normal if x → y ∈ F iff x ; y ∈ M . The normal filters
are just 1-kernels of the congruences.

A filter F of a pseudo hoop M is said to be prime if, for two filters F1, F2 on M , F1∩F2 ⊆ F
entails F1 ⊆ F or F2 ⊆ F . We denote by P(M) the system of all prime filters of a pseudo
hoop M .

Moreover, due to Riesz decomposition property we can show that:

Theorem. The system of all filters F(M) of a pseudo hoop M is a distributive lattice under
the set-theoretical inclusion. In addition F ∩∨i Fi =

∨
i(F ∩ Fi).

A pseudo hoop M is said to be basic if, for all x, y, z ∈M

(B1) (x→ y)→ z ≤ ((y → x)→ z) ; z,

(B2) (x; y) ; z ≤ ((y ; x) ; z) ; z.

We can state the following theorems:

Theorem. The variety of basic pseudo hoops termwise equivalent to the variety of pseudo
BL-algebras (thus it is lattice ordered set and the prelinearity identity x→ y ∨ y →= x = 1 =
x; y ∨ y ; x holds).

Remark. Let M be a basic pseudo hoop. The value of an element g ∈M \ {1} is any filter V
of M that is maximal with respect to the property g 6∈ V . A value V exists (more precisely,
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any filter F with g 6∈ V is contained in some value V ) and it is prime. Let Val(g) be the set of
all values of g < 1. The filter V ∗ generated by a value V of g and by the element g is said to
be the cover of V .

We say that a basic pseudo hoop M is normal-valued if every value V of M is normal in its
cover v∗. According to Wolfenstein, an `-group G is normal-valued iff every a, b ∈ G− satisfy

b2 · a2 ≤ a · b. (1)

Hence, every cancellative pseudo hoop M is normal-valued iff (1) holds for any a, b ∈ M .
Moreover, every representable pseudo hoop satisfies (1). Similarly, a pseudo MV -algebra is
normal-valued iff (1) holds. Generally we prove:

Theorem. Let M be a basic pseudo hoop. Then M is normal-valued if and only if (1) holds
and

i) ((x→ y)n ; y)2 ≤ (x; y)2n → y for any n ∈ N,

ii) ((x; y)n → y)2 ≤ (x→ y)2n ; y for any n ∈ N,

holds.
In what follows, we present a variety of basic pseudo hoops satisfying a single equation such

that the inequality (1) is a necessary and sufficient condition for M to be normal-valued.
We say that a bounded pseudo hoop M with a minimal element 0 is good if (x→ 0) ; 0 =

(x ; 0) → 0. For example, every pseudo MV -algebra is good as well as every representable
pseudo hoop is good. Now we present a stronger equality:

(x→ y) ; y = (x; y)→ y. (2)

For example, every negative cone of an `-group and the negative interval of an `-group with
strong unit satisfies (2). We can state:

Theorem. Let M be a basic pseudo hoop satisfying (2). Then M is normal-valued if and only
if (1) holds.
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[4] A. Dvurečenskij, Pseudo MV-algebras are intervals in `-groups, J. Austral. Math. Soc.
70 (2002), 427–445.
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CLASSIFYING THE UNIFICATION PROBLEMS OF THE

THEORY OF DISTRIBUTIVE LATTICES AND KLEENE

ALGEBRAS

LEONARDO MANUEL CABRER AND SIMONE BOVA

Abstract. In this paper we present a procedure to determine if a unification
problem in the equational theory of Distributive Lattices or Kleene algebras

is unitary, finitary or nullary.

In [2], it was proven that the unification type of the theory of distributive lattices
is nullary. In [3], it was proven that the decision problem of whether a the unifi-
cation problem of the equational theory of for distributive lattices has a solution is
decidable.

The nullarity of the unification problem for distributive lattices do not provide
other information of the theory than saying that there is a unification problem
with nullary type. In this paper we will provide a procedure to check whether
a unification problem is unitary, finitary or nullary in the theory of distributive
lattices, and we will prove that there are no infinitary unification problems. Given
a unification problem U on the language of distributive lattice we will present first
order conditions on the poset of evaluations into the lattice 0,1 that satisfy the
equations of the given unification problem (, equivalently first order condition on
the dual Priestley space of the finitely presented distributive lattice given by U)
that completely characterize the unification type of the problem U.

In order to obtain similar results for the equational theory of Kleene algebra,
our main tool will be the natural duality for Kleene algebras (see [1, Chp. 4]). We
will first provide a characterization of the dual space of projective Kleene algebra.
Using this characterization we will provide procedure to determine if a unification
problem is unitary, finitary or nullary.

This paper is strongly based in the theory of algebraic unifiers develop in [2].
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BASIC ALGEBRAS AND THEIR APPLICATIONS

IVAN CHAJDA

Algebraic axiomatization of the classical propositional calculus is pro-
vided via Boolean algebras, i.e. bounded distributive lattices with comple-
mentation. However, not every reasoning may be described by means of the
classical two-valued logic. In particular, two important cases can be men-
tioned. At first, it is the logic of quantum mechanics where the logical law of
excluded middle fails. This caused that, contrary to the classical logic, the
induced lattice need not be distributive although the negation is still a com-
plementation. In 1940’s, G. Birkhoff and J. von Neumann found out that
the appropriate algebraic tool for axiomatizing this logic are orthomodular
lattices.

Another important class of non-classical logics having numerous applica-
tions are many-valued logics. In particular, the ÃLukasiewicz many-valued
logic is of interest due to the fact that it is a fuzzy logic which is applied
in numerous technical devices (e.g. fuzzy regulators, fuzzy control systems
etc.). It was recognized by C. C. Chang in the 1950’s that the appropri-
ate tool for axiomatizing many-valued ÃLukasiewicz logics are the so-called
MV-algebras.

The mentioned examples of non-classical logics motivated us to find a
basic tool which is common to all of them. As we have already mentioned,
the logic of quantum mechanics is axiomatized by a lattice which is com-
plemented but not necessarily distributive. It turns out that MV-algebras
induce bounded lattices which are distributive and the logical connective
negation is realized by an antitone involution which need not be a comple-
mentation. Hence, it is natural to search for a common algebraic structure
among non necessarily distributive bounded lattices equipped with an anti-
tone involution.

Having a bounded lattice L = (L;∨,∧, 0, 1), for every element a ∈ L the
interval [a, 1] is called a section. By an antitone involution on a lattice
L is meant a mapping f of L into itself such that f(f(a)) = a for each a ∈ L
and for x, y ∈ L with x ≤ y we have f(y) ≤ f(x). We say that L is endowed
by section antitone involutions if for every a ∈ L there exists an antitone
involution on [a, 1]. Hence, there exist so many antitone involutions as many
elements the lattice L has. Due to this, we will denote an antitone involution
on the section [a, 1] by a superscript a, i.e. for x ∈ [a, 1] its map is denoted
by xa. The fact that L has section antitone involutions is expressed by the
notation L = (L;∨,∧, (a)a∈L, 0, 1).
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It is easy to check that if L = (L;∨,∧,⊥ , 0, 1) is an orthomodular lattice
then L has section antitone involutions where for each a ∈ L we have xa =
x⊥ ∨ a (then, due to (OML), x ∧ xa = x ∧ (x⊥ ∨ a) = a and, evidently,
x ∨ xa = x ∨ x⊥ ∨ a = 1 thus it is in fact a complementation in [a, 1]).

Now we turn our attention to MV-algebras. Having an MV-algebra A =
(A;⊕,¬, 0), we denote by 1 := ¬0 and define an order on the underlying set
as follows

x ≤ y if and only if ¬x⊕ y = 1.

Then 0 ≤ x ≤ 1 for each x ∈ A and the ordered set (A;≤) is in fact a
bounded lattice where

x ∨ y = ¬(¬x⊕ y)⊕ y, x ∧ y = ¬(¬x ∨ ¬y).

Moreover, the mapping x → ¬x is an antitone involution and the so-called
induced lattice L(A) = (A;∨,∧,¬, 0, 1) is, moreover, distributive. Al-
though the lattice operations ∨ and ∧ are in fact term operations of the MV-
algebra A, we cannot express ⊕ as a term operation in the induced lattice
L(A). However, for every a ∈ A the mapping x→ xa = ¬x⊕a is an antitone
involution on the section [a, 1] (which need not be a complementation), in
particular, ¬x = x0. Hence, the induced lattice L(A) = (A;∨,∧, (a)a∈A, 0, 1)
is a distributive lattice with section antitone involutions. The advantage of
this setting is that now we can express the operations ofA as term operations
of L(A), namely

¬x = x0 and x⊕ y = (x0 ∨ y)y.

Comparing the induced lattice of an MV-algebra with an orthomodular
lattice, we can see that both of them are lattices with section antitone invo-
lutions which differ in the properties that these involutions are complemen-
tations but the lattice need not be distributive in the first case but the lattice
is distributive and the involutions need not be complementations in the sec-
ond case. We conclude that the common base of algebraic axiomatization
of the logic of quantum mechanics as well as of many-valued ÃLukasiewicz
logic are bounded lattices with section antitone involutions. Although these
lattices are very useful tools for computations, a formal disadvantage is that
they are not of the same type since the number of unary operations (section
antitone involutions) depends on the number of elements of the lattice. To
avoid this difficulty, let us define the following.

By a basic algebra is meant an algebra A = (A;⊕,¬, 0) of type (2,1,0)
satisfying the following identities

(BA1) x⊕ 0 = x
(BA2) ¬¬x = x
(BA3) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x
(BA4) ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬0.

It is easy to show that every MV-algebra is a basic algebra.
A basic algebra A is commutative if x⊕ y = y ⊕ x for each x, y ∈ A.
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Theorem 1. Every finite commutative basic algebra is an MV-algebra.

For infinite basic algebras it is not the case as it was proved by M. Botur:

Theorem 2. There exists a commutative (even linearly ordered) infinite
basic algebra which is not an MV-algebra.

We can complete this relationship with a recent result by M. Kolař́ık:

Theorem 3. A basic algebra is an MV-algebra if and only if it is associative
(i.e. x⊕ (y ⊕ z) = (x⊕ y)⊕ z for each x, y, z ∈ A).

However, we are interested in the question how are the basic algebras
related to bounded lattices with section antitone involutions. The answer is
as follows:

Theorem 4. (1) Let L = (L;∨,∧, (a)a∈A, 0, 1) be a bounded lattice with
section antitone involutions. If we define

x⊕ y := (x0 ∨ y)y and ¬x := x0

then A(L) = (L;⊕,¬, 0) is a basic algebra. We have x∨ y = ¬(¬x⊕ y)⊕ y,
x ∧ y = ¬(¬x ∨ ¬y) and xa = ¬x⊕ a for x ∈ [a, 1].

(2) Let A = (A;⊕,¬, 0) be a basic algebra and put

x ∨ y := ¬(¬x⊕ y)⊕ y and x ∧ y := ¬(¬x ∨ ¬y).

Let xa = ¬x ⊕ a and 1 := ¬0. Then L(A) = (A;∨,∧, (a)a∈A, 0, 1) is a
bounded lattice with section antitone involutions where the lattice order is
given by x ≤ y iff ¬x⊕ y = 1 and ¬x = x0, x⊕ y = (x0 ∨ y)y.

(3) The correspondence between bounded lattices with section antitone in-
volutions and basic algebras thus established is one-to-one, i.e. A(L(A)) = A
and L(A(L)) = L.

As mentioned, every orthomodular lattice L = (L;∨,∧,⊥ , 0, 1) is in fact
a bounded lattice with section antitone involutions and, due to Theorem 4,
it can be organized into a basic algebra. Since ¬x = x⊥ and xa = x⊥ ∨ a =
¬x ∨ a for x ∈ [a, 1], we easily derive by Theorem 4

x⊕ y = (x0 ∨ y)y = ¬(x0 ∨ y) ∨ y = (x⊥ ∨ y)⊥ ∨ y = (x ∧ y⊥) ∨ y.
Due to the orthomodular law, it yields the quasi-identity

x ≤ y ⇒ y ⊕ x = y

which can be converted into the identity

(OMI) y ⊕ (x ∧ y) = y.

It is an easy calculation to show the converse.

Theorem 5. Orthomodular lattices form a subvariety of the variety of basic
algebras B determined by the identity (OMI).
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The concept of effect algebra was introduced by D. J. Foulis and M. K.
Bennett in the sake to axiomatize unsharp events in quantum mechanics.

By an effect algebra is meant a structure E = (E; +, 0, 1) such that 0
and 1 are elements of E and + is a partial binary operation on E satisfying
the following conditions:

(E1) x+ y is defined iff y + x is defined and then x+ y = y + x
(E2) x+ (y+ z) is defined iff (x+ y) + z is defined and then x+ (y+ z) =

(x+ y) + z
(E3) for each x ∈ E there is a unique x′ ∈ E such that x + x′ is defined

and x+ x′ = 1
(E4) x+ 1 is defined if and only if x = 0.

Having an effect algebra E = (E; +, 0, 1), we can define x ≤ y if and only
if y = x + z for some z ∈ E. It is elementary to prove that ≤ is a partial
order on E such that 0 ≤ x ≤ 1 for every x ∈ E. In the case when (E;≤)
becomes a lattice, E is called a lattice effect algebra.

For our sake, it is important that every lattice effect algebra is a bounded
lattice with section antitone involutions where for x ∈ [a, 1] we have

xa = x′ + a.

The just revealed relationship can be formally described as follows:

Theorem 6. Let E = (E; +, 0, 1) be a lattice effect algebra. Define x⊕ y =
(x ∧ y′) + y and ¬x = x′. Then B(E) = (E;⊕,¬, 0) is a basic algebra.

Since x ∧ y′ ≤ y′ in each case, it yields that the operation ⊕ as defined
above is everywhere defined. One can easily recognized that

x+ y = x⊕ y whenever x ≤ ¬y.
The previous result gets rise a question what basic algebras are those

derived from lattice effect algebras.

Theorem 7. Let E = (E; +, 0, 1) be a lattice effect algebra. Then the derived
basic algebra B(E) satisfies the quasiidentity

(BEA) x ≤ ¬y and x⊕ y ≤ ¬z ⇒ x⊕ (z ⊕ y) = (x⊕ y)⊕ z.
The converse is also valid, i.e.

Theorem 8. Let A = (A;⊕,¬, 0) be a basic algebra satisfying the quasi-
identity (BEA). Define 1 = ¬0 and x + y is defined if x ≤ y′ and then
x+ y = x⊕ y. Then E(A) = (A; +, 0, 1) is a lattice effect algebra.

Department of Algebra and Geometry, Faculty of Sciences, Palacký Uni-
versity Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic
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1 Introduction

Relatively pseudocomplemented lattices and semilattices play an important role in the in-
vestigation of intuitionistic logics and their reducts. They were intensively studied by G.T.
Jones [6]. The operation of relative pseudocomplementation serves as an algebraic counterpart
of the intuitionistic connective implication. We can refer to the compendium [4] where essential
results on relatively pseudocomplemented semilattices and lattices are gathered.

To investigate some more general algebraic systems connected with non-classical logic (as
e.g. BCK-algebras, BCI-algebras, etc.), we often study ordered sets which are not necessarily
semilattices. However, a bit weaker structure was introduced by J. Ježek and R. Quackenbush
[5] as follows.

By a directoid (a commutative directoid in [5]) we mean a groupoid D = (D;u) satisfying
the identities

(D1) x u x = x (idempotency),

(D2) x u y = y u x (commutativity),

(D3) x u ((x u y) u z) = (x u y) u z (weak associativity).

Of course, every ∧-semilattice is a directoid but not vice versa. It can be shown that every
directoid D = (D;u) can be converted into an ordered set (D;≤) via

x ≤ y if and only if x u y = x

and every downward directed ordered set (D;≤) can be organized into a directoid taking

x u y = y u x ∈ L(x, y) = {z ∈ D; z ≤ x and z ≤ y}

arbitrarily for non-comparable elements x, y and

x u y = y u x = x when x ≤ y,

see [5] or [4] for details. It is worth noticing that the operation u is not isotone in general, in
fact we have

x ≤ y ⇒ x u z ≤ y u z for all x, y, z ∈ D
if and only if (D;u) is an ∧-semilattice where u coincides with the infimum ∧ (with respect to
≤).

A natural question arises if a directoid with a least element 0 can be equipped with pseu-
docomplementation. This task was investigated in [2] where an axiom system for pseudocom-
plementation on directoids was presented. Another problem is how to define and characterize
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relatively pseudocomplemented directoids. As mentioned in [3], x is a greatest element satis-
fying a ∧ x ≤ b if and only if x is a greatest element satisfying a ∧ x = a ∧ b in any relatively
pseudocomplemented semilattice. However, if for some a, b of an ∧-semilattice S the relative
pseudocomplement does not exist then the conditions need not coincide, see the following

Example 1. Let S = (S,∧) be an ∧-semilattice where S = {0, a, b, c, 1} whose diagram is
depicted in Fig. 1.

1

a

c

b

0

Fig. 1

Then there exists no pseudocomplement of c with respect to a since c ∧ b = 0 ≤ a, c ∧ a = a
but there is no greatest x ∈ S with c∧x ≤ a. On the other hand, there exists a greatest x ∈ S
with c ∧ x = c ∧ a, namely x = a.

♦

Of course, the aforementioned conditions are not equivalent in directoids either, see [3] for
details. Hence we use the following definition of relative pseudocomplementation in directoids
which was introduced in [3].

Definition. Let D = (D;u) be a directoid and a, b ∈ D. An element x is called a relative
pseudocomplement of a with respect to b if it is a greatest element of D such that aux =
au b. It is denoted by a ∗ b. A directoid D is relatively pseudocomplemented if there exists
a ∗ b for every a, b ∈ D.

The fact that D is a relatively pseudocomplemented directoid will be expressed by the
notation D = (D;u, ∗). As shown in [3], every relatively pseudocomplemented directoid has a
greatest element (which is denoted by 1).

Let us mention that if the above definition of relative pseudocomplementation is used
for ∧-semilattices, what we get is nothing else than the definition of the so-called sectional
pseudocomplementation as defined in [1].

As already noticed, in a relatively pseudocomplemented semilattice our new definition of
a∗b coincides with the usual relative pseudocomplement of a with respect to b. Hence, every rel-
atively pseudocomplemented semilattice belongs to the class of relatively pseudocomplemented
directoids.

Example 2. For the semilattice S from Example 1, the operation table for ∗ (defined by the
above Definition) is

∗ 0 a b c 1
0 1 1 1 1 1
a b 1 b 1 1
b c c 1 c 1
c b a b 1 1
1 0 a b c 1

Hence, if S is considered as a directoid then it is relatively pseudocomplemented. ♦
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2 Axiom system

It was shown in [3] that the class of relatively pseudocomplemented directoids forms a variety
which is determined by additional four identities as follows.

Proposition.(See Theorem 2 in [3].) Let (D;u) be a directoid and let ∗ be a binary operation
on D. Then D = (D;u, ∗) is a relatively pseudocomplemented directoid if and only if it satisfies
the following identities:

(S1) x u (x ∗ y) = x u y,

(S2) (x ∗ y) u y = y,

(S3) x ∗ y = x ∗ (x u y),

(S4) x ∗ x = y ∗ y.

A natural question is if the axioms (S1) – (S4) or, more generally, the axioms (D1) – (D3),
(S1) – (S4) are independent. An immediate reflexion shows that it is not the case. In fact, we
can prove the following result.

Theorem 1. Let D = (D;u, ∗) be an algebra with two binary operations. Then D is a relatively
pseudocomplemented directoid if and only if it satisfies the identities (D2), (D3), (S1), (S2)
and (S3). The identities (D2), (D3), (S1), (S2) and (S3) are independent.

3 Relative pseudocomplement as a residuum

It is well-known that relatively pseudocomplemented ∧-semilattices can be considered alter-
natively as residuated structures where the relationship between the operations ∧ and ∗ is
established by the so-called adjointness property:

a ∧ x ≤ b if and only if x ≤ a ∗ b. (AP)

As mentioned above, this cannot be translated to directoids since the operation u is not
isotone. A natural question is if also (AP) can be modified for directoids to characterize relative
pseudocomplementation as a residual operation. By replacing a ∧ x ≤ b by a u x = a u b, we
can easily infer

a u x = a u b ⇒ x ≤ a ∗ b. (I)

Unfortunately, the converse implication fails for relatively pseudocomplemented directoids, see
the following

Example 3. Let D = (D,u, ∗) be a relatively pseudocomplemented directoid whose Hasse
diagram is depicted in Fig. 2 (one can easily enumerate the operation ∗).

1

x

b

a ∗ b = d

a

c = a u x

0 = a u b

Fig. 2
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Although x ≤ d = a ∗ b, we have a u x = c 6= 0 = a u b. ♦

So, the right hand side of implication (I) must be completed to reach the condition in the form
of equivalence. Our solution follows.

Theorem 2. Let (D;u) be a directoid and let ∗ be a binary operation on D. Then D = (D;u, ∗)
is a relatively pseudocomplemented directoid if and only if the following adjointness property
holds:

a u x = a u b if and only if x ≤ a ∗ b and a u (a ∗ b) = a u x. (AD)

Although the condition (AD) is more complex than (AP), relatively pseudocomplemented
directoids satisfy also a condition which is more similar to the adjointness property.

Theorem 3. Let D = (D;u, ∗) be a relatively pseudocomplemented directoid. The following
condition is satisfied in D for all a, b, x ∈ D:

a u x ≤ b if and only if x ≤ (a u x) ∗ b. (A)

4 Further

We get also two important congruence properties, namely congruence distributivity and 3-
permutability valid in the variety V of relatively pseudocomplemented directoids. Then we show
some basic results connected with subdirect irreducibility in V. Finally, we show another way
how to introduce pseudocomplementation on directoids via relative pseudocomplementation.
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Abstract. “Always topologize!”[1]

1 Introduction

In a coalgebraic perspective, Kripke frames can be viewed as P-coalgebras where
P is the covariant powerset functor. Likewise, descriptive frames are VS-coalgebras
over Stone spaces as shown in [4], and the Jónsson-Tarski duality is a duality
between the category of MB-algebras and the category of VS-coalgebras ,i.e.

Coalg(VS)
--

U

��

Alg(MB)

U

��

nn

Stone

Clop
++
BA

Spec

ll

where VS is the Vietoris construction and MB is

the modal algebra construction over Boolean algebras. The duality also holds
for positive normal modal logic, i.e. the duality between modal algebras over
distributive lattice and the Vietoris topology over Priestley spaces [5].

Following these dualities, we generalise it to a duality between Coalg(V) and
Alg(MF ) over stably locally compact spaces where V is the Vietoris topology
construction taking compact lenses (i.e. the topological counterpart of semi-
fitted sublocales) and MF is the modal algebra construction over frames. These
construction can be found in [3].

As for the final V-coalgebra, we start from the algebraic view instead of
the coalgebraic view and obtain an initial MF -algebra concretely via the initial
sequence. The calculation relies on the coherence preservation of MF .By Stone
duality and the natural isomorphism between VPt and PtMF for stably locally
compact spaces, we find the final V-coalgebra from the initial MF -algebra. We
further generalise results to coherent Vietoris polynomial functors.

This duality enables us to study modal logic in a coalgebraic and topological
perspective only with a very mild condition. It provides a duality for most of
continuous multi-valued functions, topological transition systems e.g. the deno-
tational semantics of nondeterministic systems, topological automata etc.

2 Background and Definitions

Most of the definitions can be found in [2] and [3], but we use slightly different
symbols. Here we only briefly define notions used frequently.
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Given a frameA, the modal algebra construction over frames MF : Frm→ Frm
is an endofunctor mapping A to a free frame generated by tokens ♦a and �a, a ∈
A, subject to the following relations: (a) � and ♦ preserves directed joins , (b) �
preserves finitary meets, (c) ♦ preserves finitary joins , (d) ♦(a ∧ b) ≥ ♦a ∧�b,
and (e) �(a ∨ b) ≤ �a ∨ ♦b; and mapping a morphism f : A → B to MF f
defined on the generating set by ♦a 7→ ♦b and �a 7→ �b. MD : DLat→ DLat
is defined similarly without relation (a).

A frame A is (a) locally compact if it is a domain; (b) stably locally compact
if it is locally compact and a � bi for i = 1, 2 implies a � b1 ∧ b2 where � is
the way-below relation; (c) coherent if it is isomorphic to the ideal completion
of the distributive lattice1 of its compact elements2, i.e. Idl(KA). For coherent
frames, not every frame homomorphism f : A→ B maps compact elements to
compact elements, so we say f is coherent if f maps KA to KB. The category
CohFrm of coherent frames consists of coherent frames and coherent maps, and
it is equivalent to the category DLat of distributive lattices.

The category Loc of locales is defined as the dual of Frm. We use the same
definitions to call locales, e.g. coherent locale, locally compact locale etc. A locale
morphism f : A → B comes from a frame homomorphism f∗ : B → A, so we
say a locale morphism f : A→ B is coherent if its dual f∗ : B → A is coherent.

Note that (a) [2, VII.4.3] a (stably) locally compact locale is spatial , (b) [2,
II.2.11] the forgetful functor from Frm to DLat has a left adjoint Idl; (c) [2,
VII.4.6] a coherent locale is stably locally compact.

3 Outline of Results

3.1 An initial MF -algebra

Firstly, we are going to show that the initial MF -algebra exists. This fact relies
on two key results: MF preserves coherence, and the category of coherent frames
is equivalent to the category of distributive lattices.

Theorem 1. MF preserves coherence, i.e. MF (IdlA) ∼= Idl(MDA) and MF f is
coherent if f is coherent.

Note that to compute the F -initial algebra, we start from the initial object and
apply F repeatedly to it. For MF , we notice that Mi

F 2 are coherent for all i.
Therefore we compute the initial MD-algebra instead.

Theorem 2. MD is finitary, i.e. MD preserves filtered colimits.

As a corollary, the initial sequence of MD stabilises at ω, i.e. MD has the least
fixed point Mω

D2 = Colim−−−→i<ωMi
D2. In particular, Mω

D2 is the union
⋃
i<ωMi

D2.

Lemma 1. The unique morphism from 2 to any coherent frame is coherent.

1 Following Johnstone’s convention, a distributive lattice is bounded.
2 An element a ∈ A is compact if a� a.

104



By applying the left adjoint Idl : DLat → Frm to the initial sequence of MD,
we obtain a sequence isomorphic to the initial sequence of MF as it preserves
colimits.

Note that MF Idl(Mω
D2) ∼= Idl(MDMω

D2) ∼= Idl(Mω
D2) by coherence preser-

vation of MF and the isomorphism between Mω+1
D 2 and Mω

D2. Hence we have:

Theorem 3. The initial sequence of MF stabilises at ω.

Let α denote the isomorphism from Mω+1
F to Mω

F .

3.2 A generalised Jónsson-Tarski duality

According to [3], given a spatial locale A, which comes from a topological space
X, we may not have enough points in MFA as well as sublocales of MFA. The
necessary condition to preserve spatiality is stable local compactness.

Lemma 2 ([3, 1.6][3, 3.9]). Let A be a stably locally compact locale. Then
(a) MFA is locally compact (and spatial); (b) any compact semi-fitted3sublocale
of A is spatial.

Since a stably locally compact locale is spatial, we call X a stably locally
compact space if ΩX is stably locally compact.

Corollary 1 ([3, 3.10]). If A is stably locally compact locale, then γA : VPtA ∼=
PtMFA where V is the Vietoris construction over spaces: VX is the space of
compact lenses4 K of X with the Vietoris topology generated by

�U = {K : K ⊆ U} and ♦U = {K : K ∩ U 6= ∅}

for any open set U in X.

Provided above facts and that the category of sober spaces is dual to the category
of spatial frames, we can conclude:

Corollary 2. The category of V-coalgebras is dual to the category of MF -algebras
for stably locally compact spaces and frames.

3.3 A final V-coalgebra over stably locally compact spaces

The initial MF -algebra over frames is also the initial MF -algebra over stably
locally compact frames since the initial object is stably locally compact and every
object in the initial sequence is stably locally compact by construction. Following

3 A sublocale is semi-fitted if it is an intersection of arbitrary many open sublocales
and a closed sublocale.

4 A lens is the topological counterpart of semi-fitted sublocale. Thus, a set S is a lens
if it is an intersection of open sets and a closed set.
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this, we can easily obtain the final V-coalgebra for stably locally compact spaces
from the MF -initial algebra as follows:

PtMω
F 2

Ptα //

γ◦(Ptα) &&MMMMMMMMMM
PtMFMω

F 2

γ

��
V(PtMω

F 2)

where γ ◦ (Ptα) is the desired final V-coalgebra. It is also called the canonical
model in modal logic.

3.4 The coherent Vietoris polynomial functors

The coherent Vietoris polynomial functors are defined in the following way:

T ::= I | KC | T + T | T × T | MFT

where I is the identity functor and KC is the constant functor ranging over
coherent frames. From the viewpoint of Lawvere theory, we can show that a
Vietoris polynomial functor of distributive lattices has the least fixed point,
and therefore it is easy to generalise above results of V to coherent Vietoris
polynomial functors.

To generalise it, we apply the same technique: (a) we start from distributive
lattices; (b) compute its initial algebra; (c) apply Idl to find the corresponding
initial algebra for frames; (d) find a duality between algebras and coalgebras;
(e) and apply Pt to obtain the final coalgebra. Since the left adjoint Idl preserves
colimits and V preserves coherences, the only thing we have to check is the
product of polynomial functors. However,

Lemma 3. Idl(A×B) ∼= IdlA× IdlB is natural in A and B.

Secondly, products and coproducts of stably locally compact frames can be iden-
tified as coproducts and products of spaces respectively from the duality. It shows
immediately the duality between T -algebras and L-coalgebras where T is a co-
herent Vietoris polynomial functor and L is the dual to T .
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This paper is a contribution to the theory of substructural logics. We introduce the notions
of (MP)-based and almost (MP)-based logics (w.r.t. a special set of formulae D), which leads
to an alternative proof of the well-known forms of the local deduction theorems for prominent
substructural logics (FL, FLe, FLew , etc.). Roughly speaking, we decompose the proof of the
local deduction theorem into the trivial part, which works almost classically, and the non-trivial
part of determining with respect to which set (if any) the logic is almost (MP)-based. We can
also show connection of (almost) (MP)-based condition and the proof by cases properties for
generalized disjunctions and the description of (deductive) filters generated by some elements of
a given algebra.

In order to provide as general theory as possible, i.e., to cover more logics than the usual Ono’s
definition of substructural logics [6] (i.e. axiomatic extensions of the logic of pointed residuated
lattices) we propose a more general notion of substructural logic based on a very weak system
lacking not only structural rules, but also associativity of multiplicative conjunction, and consider
all its (even non-axiomatic) extensions, expansions (by new connectives), and well-behaved frag-
ments thereof. This defines a wide family of logical systems containing pretty much all prominent
substructural logics.

Our basic logic will be the non-associative variant for the Full Lambek Calculus [6, 7], here
denoted as SL. Its language, LSL, consists of residuated conjunction &, right % and left $ residual
implications,1 lattice conjunction ∧ and disjunction ∨, and truth constants 0, 1. The logic SL is
given by the following axiomatic system:

⊢ φ%φ φ,φ%ψ ⊢ ψ φ ⊢ (φ%ψ)%ψ φ%ψ ⊢ (ψ%χ)%(φ%χ) ψ%χ ⊢ (φ%ψ)%(φ%χ)

⊢ φ % ((ψ $ φ) % ψ) φ % (ψ % χ) ⊢ ψ % (χ $ φ) ψ $ φ ⊢ φ % ψ
⊢ φ ∧ ψ % φ ⊢ φ ∧ ψ % ψ φ,ψ ⊢ φ ∧ ψ ⊢ (χ % φ) ∧ (χ % ψ) % (χ % φ ∧ ψ)

⊢ φ%φ∨ψ ⊢ ψ%φ∨ψ ⊢ (φ%χ)∧ (ψ%χ)% (φ∨ψ%χ) ⊢ (χ$φ)∧ (χ$ψ)% (χ$φ∨ψ)

⊢ ψ % (φ % φ& ψ) ψ % (φ % χ) ⊢ φ& ψ % χ
⊢ 1 ⊢ 1 % (φ % φ) ⊢ φ % (1 % φ)

Definition 1 A logic L in a language L containing % is a substructural logic if

• L is the expansion of the L ∩ LSL-fragment of SL.

• for each n, i < n, and each n-ary connective c ∈ L \ LSL holds:

φ % ψ, p % φ ⊢L c(χ1, . . . χi, φ, . . . , χn) % c(χ1, . . . χi, ψ, , . . . , χn)

Note that the first condition implies that the second condition holds for connectives from LSL.
Any substructural logic is finitely equivalential [5], order algebraizable [9], weakly implicative [2, 3],
and algebraizable in the sense of Blok and Pigozzi [1] in the presence of either ∨ or ∧ in its language.
The class of substructural logics as just defined contains:

0P. Cintula was supported by project 1M0545 of the Ministry of Education, Youth, and Sports of CR and
by Institutional Research Plan AV0Z10300504. C. Noguera was supported by the research contract “Juan de la
Cierva” JCI-2009-05453 and the projects TASSAT TIN2010-20967-C04-01 and ESF Eurocores-LogICCC/MICINN
FFI2008-03126-E/FILO.

1In the literature on substructural logics, the implications are usually denoted by /, \, whereas in the literature
on non-commutative fuzzy logic are used the symbols → (with swapped arguments) and  . Here we use the
signs $,% suggested by L.N. Stout, since besides indicating the side of conjoining the antecedent in the residuation
law they also mark the direction of the implication from the antecedent to the succedent. In logics satisfying the
exchange rule φ% (ψ%χ) ⊢ ψ% (φ%χ) both implications coincide and then we denote them by the usual symbol →.
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• substructural logics Ono’s sense, including e.g. monoidal logic, uninorm logic, psBL, GBL,
BL, Intuitionistic logic, (variants of) relevance logics,  Lukasiewicz logic;

• expansion of the mentioned logics by additional connectives, e.g. (classical) modalities, ex-
ponentials in (variants of) Linear Logic and Baaz delta in fuzzy logics;

• fragments of the mentioned logics to languages containing implication, e.g. BCK, BCI,
psBCK, BCC, hoop logics, etc.;

• non-associative logics recently developed by Buszkowski, Farulewski, Galatos, Ono, Halaš,
Botur, etc.

What seems to be left aside is e.g. the logic BCK∧ of BCK-semilattices [8] (because it does
not satisfy one of our axioms, namely: (χ % φ) ∧ (χ % ψ) % (χ % φ ∧ ψ)). This observation calls
for a comment on the postulative nature of our definition: when we claim that some logic is
substructural and it has a connective c ∈ LSL we postulate how this connective should behave.
Thus BCK∧ in the language {%,∧} is not a substructural logic (∧ does not behave as it should) but
(!) if we would formulate BCK∧ in the language {%,∧} it would indeed be a substructural logic
(because then the only SL connective present in its language, implication, behaves as it should).

Definition 2 ((MP)-based substructural logic) A substructural logic is (MP)-based if it has
a presentation where (MP) is the only deduction rule.

In substructural logics with & and 1 in the language we can introduce the following notation:
φ0 = {1}, φ1 = {φ}, φn+1 = {φ & ψ,ψ & φ | ψ ∈ φn} for every n ≥ 1; note that if the logic is
associative, we can identify φn just with any of its elements. The presence of 1 (or &) could be
avoided at the price of more cumbersome formulations of the theorems (in case of & also we would
also need to assume, implicationally expressed, associativity). The proof of the next theorem is
almost trivial:

Theorem 3 (Implicational deduction theorem) Let L be a substructural logics with & and
1 in the language. Then: L is (MP)-based iff L is finitary and for each set Γ ∪ {φ,ψ} of formulae
the following holds:

Γ, φ ⊢L ψ iff Γ ⊢L χ % ψ for some n ≥ 0 and χ ∈ φn.

Clearly FLew is an example of (MP)-based logic, thus we have just shown that it enjoys this
form of deduction theorem (and obviously the same holds for its axiomatic extensions). On the
other hand, we can use the previous theorem to show that FLe is not (MP)-based: indeed, φ ⊢ φ∧1
would entail provability of the theorem φn % φ ∧ 1 for some n which can be refuted by a simple
semantical counterexample.

Our next aim is to obtain some form of deduction theorem for FLe, FL, and other substructural
logics. To this end, we need to introduce three auxiliary notions. First, given a set S of formulae,
we denote by

∏
S the smallest set of formulae containing S ∪ {1} and closed under & (it can be

seen as the free groupoid with unit generated by S). Second, we introduce a notion of (MP)-based
companion for a given logic:

Definition 4 (Logic L(MP)) Let L be a substructural logic. By L(MP) we denote the logic axiom-
atized by all theorems of L and modus ponens as the only inference rule.2

Note that L is (MP)-based iff L = L(MP) and that L(MP) need not be a substructural logic in
the sense of Definition 1. Not withstanding this, we are able to easily prove a deduction theorem
for L(MP) (we formulate already it in a stronger form needed for the next corollary), which in turn
will allow to obtain a deduction theorem for L.

2Example: if L is the global variant of a normal modal logic, then L(MP) is its local variant.
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Lemma 5 Let L be a substructural logic with & and 1 in its language. Then:

Γ, S ⊢L(MP) ψ iff Γ ⊢L(MP) φ̂ % ψ for some φ̂ ∈
∏

S.

The third auxiliary, but crucial, notion is that of almost (MP)-based substructural logic:

Definition 6 (Almost (MP)-based substructural logic) A substructural logic L is almost (MP)-
based if there is a subset D(v, p⃗) ⊆ ThL(v) (v is a variable and p⃗ are possibly present parameters)
such that

Γ ⊢L φ iff
∪

{D(ψ, p⃗) | ψ ∈ Γ} ⊢L(MP) φ.

Notice that each (MP)-based logic is almost (MP)-based (with D = {v}) and that without
loss of generality we can assume that v ∈ D (unless explicitly said otherwise). Also notice that
any axiomatic extension of an almost (MP)-based logic is almost (MP)-based too. Finally, note
that each almost (MP)-based logic can be axiomatized with (MP) as the only non-unary rule, the
question whether the converse is true as well seems to be open. The previous lemma allows us to
straightforwardly extend the scope of the implicational deduction theorem to almost MP-based
logics.

Corollary 7 (Deduction theorem and almost (MP)-based substructural logics) Let L be
a substructural logic with & and 1 in the language and D(v, p⃗) ⊆ ThL(v). Then: L is almost (MP)-
based w.r.t. the set D(v, p⃗) if, and only if, for each set Γ ∪ {φ,ψ} of formulae holds:

Γ, φ ⊢L ψ iff Γ ⊢L φ̂ % ψ for some φ̂ ∈
∏

D(φ, p⃗).

Thus the proof of the deduction theorem in a given logic was rather effortlessly reduced to the
proof that the logic is almost (MP)-based. Recall the footnote 2 and observe that the well-known
connection of global and local variants of modal logic K can, in our terminology, be formulated
as ‘global K is almost (MP)-based with the D(v) = {v,�v,��v, . . . }’, which immediately give
us the deduction theorem of K. We show that the logics FLe and FL (and so all their axiomatic
extensions) are almost (MP)-based and determine the corresponding set D. As we can see, even
the proof of the most complicated case is rather simple:

Theorem 8

• The logic FLe is almost (MP)-based with the set DFLe = {v ∧ 1}.

• The logic FL is almost (MP)-based with the following set:

DFL = {γ(v) | γ(v) an iterated conjugate}.

Proof: We know that FL can be axiomatized by (MP) and rules (conl) and (conr): φ ⊢ λα(φ)
and φ ⊢ ρα(φ).

Let us denote the set
∪{D(χ, p⃗) | χ ∈ Γ} as Γ̂. We show that for each ψ in the proof of Γ ⊢FL φ

we have Γ̂ ⊢FL(MP) γ(ψ), for each iterated conjugate γ. The claim then follow from taking γ = λ1

and the trivial fact that ⊢FL φ ∧ 1 % φ.
If ψ is an axiom or an element of Γ, the claim is trivial. Assume that ψ was proved using the

rule (conl). Then ψ = λα(χ) for some formula χ appearing the proof before ψ. The induction
assumption will give us Γ̂ ⊢FL(MP) γ(χ) for each iterated conjugate γ. Thus, in particular, for each

iterated conjugate γ′ we have Γ̂ ⊢FL(MP) γ′(λα(χ)). The proof for (conr) is completely analogous.
Finally, assume that Γ ⊢FL χ and Γ ⊢FL χ % ψ. Thus, by the induction assumption, for each

iterated conjugate γ: Γ̂ ⊢FL(MP) γ(χ) and Γ̂ ⊢FL(MP) γ(χ%ψ). The fact that ⊢FL γ(φ%ψ)% (γ(φ)%
γ(ψ)) and modus ponens complete the proof.

Interestingly enough, these deductions theorems yield a connection with a variant of the clas-
sical proof by cases property. Recall that classical logic enjoys the following metarule:
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Γ, φ ⊢ χ Γ, ψ ⊢ χ
Γ, φ ∨ ψ ⊢ χ

We will see now how a similar property can be obtained for associative substructural logics
with a more complex form of disjunction built from the sets D(v, p⃗) used to show that these logics
are almost (MP)-based.

Theorem 9 Let L be an associative substructural logic with & and 1 in the language such that L
is almost (MP)-based w.r.t. the set D(v, p⃗). Then each set Γ ∪ {φ,ψ, χ} of formulae holds:

Γ, φ ⊢ χ Γ, ψ ⊢ χ
Γ ∪ {α ∨ β | α ∈ D(φ, p⃗), β ∈ D(ψ, p⃗)} ⊢ χ

Corollary 10 The following meta-rule holds in FL:

Γ, φ ⊢ χ Γ, ψ ⊢ χ
Γ ∪ {γ1(φ) ∨ γ2(ψ) | γ1(v), γ1(v) iterated conjugates} ⊢ χ

The following meta-rule holds in FLe:

Γ, φ ⊢ χ Γ, ψ ⊢ χ
Γ, (φ ∧ 1) ∨ (ψ ∧ 1) ⊢ χ

The following meta-rule holds in FLew :

Γ, φ ⊢ χ Γ, ψ ⊢ χ
Γ, φ ∨ ψ ⊢ χ

There is also a clear relation of almost (MP)-basedness and the description of the (deductive)
filters generated by a set (which is exactly what the deduction theorem says for filters in the
Lindebaum algebra (theories), taking in account that implication defined the order). However due
to the lack of space we will not go into details here.
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and C. Noguera, editors, Handbook of Mathematical Fuzzy Logic. College Publications, 201x.
To appear.

[5] Janusz Czelakowski. Protoalgebraic Logics, volume 10 of Trends in Logic. Kluwer, Dordercht,
2001.

[6] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: An Algebraic Glimpse
at Substructural Logics, volume 151 of Studies in Logic and the Foundations of Mathematics.
Elsevier, Amsterdam, 2007.

[7] N. Galatos and H. Ono. Cut elimination and strong separation for substructural logics: An
algebraic approach. Annals of Pure and Applied Logic, 161(9):1097–1133, 2010.

[8] P. Idziak. Lattice operations in BCK-algebras. Mathematica Japonica, 29(6):839–846, 1982.

[9] James G. Raftery. Order algebraizable logics, Manuscript, 2009.

110



Free algebras via a functor on partial algebras

Dion Coumans and Sam van Gool

In this paper we introduce a new setting, based on partial algebras, for studying constructions
of finitely generated free algebras. We will give sufficient conditions under which the finitely
generated free algebras for a variety V may be described as the colimit of a chain of finite partial
algebras obtained by repeated application of a functor. In particular, our method encompasses
the construction of finitely generated free algebras for varieties of algebras for a functor as in
[2], Heyting algebras as in [1] and S4 algebras as in [5].

Free algebras are of particular interest for varieties VL arising from algebraizable logics L.
A thorough understanding of the finitely generated free algebras of such a variety VL can yield
powerful results, for example related to questions about term complexity, decidability of logical
equivalence, interpolation and normal forms, i.e., problems in which one considers formulas
whose variables are drawn from a finite set.
In case the class of algebras VL associated with the logic L is axiomatized by equations which
are of rank 1 for an operation f ,1 the algebras for the logic can be represented as algebras for a
functor FL on the category of underlying algebra reducts without the operation f . This functor
FL enables a constructive description of the free VL algebras [2]. As many interesting logics
are not axiomatized by rank 1 axioms, one would want to extend these existing techniques.
However, as is shown in [6], non-rank 1 logics cannot be represented as algebras for a functor
and therefore we cannot use the standard construction of free algebras in a straightforward way.
Ghilardi pioneered the construction of free algebras for non-rank 1 varieties in [3]. Here he de-
scribes a method to incrementally build finitely generated free Heyting algebras by constructing
a chain of distributive lattices, where, in each step, implications are freely added to the lattice,
while keeping a specified set of implications which are already defined in the previous step. In a
subsequent paper, Ghilardi extended these techniques to apply to modal logic [4], and used his
algebraic and duality theoretic methods to derive normal forms for modal logics, notably S4.
Recently, this line of research has been picked up again. In [1] N. Bezhanishvili and Gehrke have
re-analysed Ghilardi’s incremental construction and have derived it by repeated application of
a functor, based on the ideas of the coalgebraic approach to rank 1 logics and Birkhoff duality
for finite distributive lattices. Shortly after, Ghilardi [5] gave a new construction of the free
S4 algebra in the same spirit. However, the methods in [1] and [5] rely on specific properties

1An equation is of rank 1 for an operation f if every variable occurs under the scope of exactly one occurrence
of f .
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of Heyting algebras and S4 algebras respectively, and they do not directly apply in a general
setting. Studying this work has led to the insight that the natural setting to consider is that of a
functor on a category of partial algebras, together with a natural transformation from the identity
to the functor.
We will now outline our general functorial method for constructing free algebras. Note that our
focus here is on Boolean logics with one additional unary ∨-preserving connective ^, and their
associated algebras (modal algebras), but the general method applies in a much wider setting.
However, assuming that operations are unary makes the notation less heavy, and assuming that
^ is ∨-preserving will simplify matters when duality theoretic methods are illustrated in this
context.
The notion of rank of a modal term is central in this paper and therefore we give a precise
definition.

Definition. Let P be a set of variables. We denote the set of Boolean terms in P by TBA(P). The
sets Tn

MA(P) of modal terms in P of rank at most n are defined inductively as follows.

T0
MA(P) := TBA(P),

Tn+1
MA(P) := TBA(P ∪ {^t : t ∈ Tn

MA(P)}).

The (quasi-)equational class V defined by a set of (quasi-)equations E is the class of alge-
bras satisfying all (quasi-)equations in E. A classical theorem of Birkhoff says that for every
(quasi-)equational class V of algebras and set of variables P, the free V algebra over P, FV(P),
exists.
The notion of rank allows us to understand this free algebra in a layered manner as follows. For
each n ≥ 0, the (equivalence classes of) terms of rank at most n form a Boolean subalgebra Bn

of FV(P). Furthermore, for each n, the operator ^ on FV(P) yields a map ^n+1 : Bn → Bn+1.
Hence, we have a chain of Boolean algebras with embeddings and operations between them:

B0 B1 B2 · · ·
^1 ^2 ^3

The Boolean reduct of FV(P) is the colimit of the chain of Boolean algebras and embeddings
and the operator ^ is the unique extension of the functions ^n to a function on FV(P).
One aspect of the new perspective on this chain that we propose in this paper is the following.
Instead of considering ^n+1 as a map Bn → Bn+1, we propose to view it as an partial operator
on Bn+1 (which is only defined on elements in the subalgebra Bn). This leads to the notion of
partial modal algebra, which we define to be a pair (B,^B), where ^B is a partial diamond
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B→ B, whose domain, dom(^B), is a Boolean subalgebra of B. A homomorphism from (B,^B)
to (C,^C) is a Boolean algebra homomorphism B→ C which maps dom(^B) into dom(^C), and
preserves ^ whenever it is defined.
The above chain may be described as a chain in the category of partial modal algebras

(B1,^1)� (B2,^2)� (B3,^3)� · · · ,

and this will allow us to see the chain as produced by repeated application of a functor F.
The crucial point of our method is that we can prove that, in a fairly general setting, it is possible
to obtain this approximating chain of FV(P) by a uniform construction, using a notion of free

image-total functor on a given category pV of partial algebras. The total algebras in pV form
a full subcategory V of pV. In the Theorem below, we give conditions on the functor so that
repeated application of it yields the approximating chain of the free total V algebra over a given
finite pV algebra. To obtain the approximating chain of the free V algebra over a given set, it
then remains to describe the first pV algebra of the chain, which is often easy to do.
A set of quasi-equations E of rank at most 1 naturally gives rise to a free image-total functor
FE on the subcategory pVE of partial algebras satisfying the equations in E.2 This functor FE
is roughly defined as follows. Given a pVE algebra (B,^B), we want to extend it to a pVE
algebra in which the operator is defined for all the elements of B. To do so, we will add formal
elements _b to B, for all b ∈ B, and turn the resulting set into a pVE algebra by taking an
appropriate quotient. In this quotient, we force the newly defined operator _ to agree with the
old ^B, whenever ^B was defined. From this construction, we also get a natural transformation
η : 1→ FE, where ηB maps the pVE algebra (B,^B) into the pVE algebra FE(B,^B).
Given a particular finite pVE algebra (B0,^0), we inductively define, for all n ≥ 0,

(Bn+1,^n+1) := FE(Bn,^n),

yielding a chain of partial pVE algebras with maps ηBn between them. We then prove the fol-
lowing theorem.

Theorem. If each of the maps ηBn : (Bn,^n) → (Bn+1,^n+1) is an embedding, then the chain

of partial algebras {ηBn : (Bn,^n) → (Bn+1,^n+1)}n≥0 is the approximating chain of the free VE
algebra over (B0,^0).

All known step-by-step constructions of free algebras that were mentioned above are special
cases of this general result. Clearly, an important question at this point is how to determine in

2Note that any set of quasi-equations may be rewritten to a logically equivalent set of quasi-equations of rank at
most 1 using flattening, see e.g. [5].
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general, for a given set of quasi-equations, whether the maps ηBn are embeddings. We illustrate
that in the case of S4 modal algebras, duality theory is an useful tool to give a concrete descrip-
tion of the functor FE so that one can check that each component of η is an embedding, using a
Stone-type duality theory for partial modal algebras.
It follows from the existence of non-decidable logics that we cannot hope that, for every set of
quasi-equations, the maps ηBn are embeddings. We conjecture that there even exist decidable
logics for which the maps ηBn are not all embeddings. Finding examples of such logics is left
for future work. Hence, the main contribution of our work is that we have provided a general
framework for studying the following question: Given an algebraizable logic L with associated
variety VL, does there exist a functor which yields the approximating chain for the free VL
algebra?

All modal logics

?

Decidable

S4K
ηBn embeddings

rank 1
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On augmented posets and (Z1, Z2)-complete
posets

Mustafa Demirci
Akdeniz University, Faculty of Sciences,
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e-mail: demirci@akdeniz.edu.tr

The main objective of this talk is to compare the approach of Banaschewski
and Bruns [2] and the subset selection-based approach to the classification of
posets with specified joins and meets, and is to derive the concepts and results
in the latter approach from the corresponding ones in the former.

Throughout this study, the letters Z and Zi (i = 1, ..., 4) always denote
subset selections [4, 6, 8], and Q designates the quadruple (Z1, Z2, Z3, Z4) where
Z3 and Z4 are subset systems [4, 9, 13]. The concepts of Z1-join-completeness
and Z2-meet-completeness suggest a useful classification of posets, and have
many fruitful applications [1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. Z-join(meet)-
complete poset is, by definition, a poset P with the property that each M ∈
Z (P ) has the join (meet) in P [6, 13]. We use the term ”(Z1, Z2)-complete
poset” instead of a Z1-join-complete and Z2-meet-complete poset for the sake
of shorthness. (Z1,Z2)-complete posets forms a construct whose morphisms
are (Z3, Z4)-continuous maps, i.e. a map f : P → Q is (Z3, Z4)-continuous iff
f is monotone, and preserves Z3-joins and Z4-meets [6]. This category that
we denote by Q-CPos provides a practically useful framework for many order-
theoretic structures, e.g. various categories of semilattices, lattices, complete
lattices, directed-complete posets, chain-complete posets and σ-lattices can be
considered in the form of Q-CPos for particular cases of Q. The category Q-
CPos also enables us to define Q-space a useful generalization of the notion
of topological space: A Q-space is a pair (X, τ) consisting of a set X and a
subset τ (so-called a Q-system on X) of P (X) such that the inclusion map
iτ : (τ,⊆) ↪→ (P (X) , ⊆) is a Q-CPos-morphism. Many familiar systems of
subsets of a set are examples of Q-systems, e.g., topology, pretopology, closure
systems, algebraic closure systems, kernel systems. The category Q-SPC of
Q-spaces and Q-space-continuous maps extends the familiar category Top of
topological spaces to the present setting.

As another approach to the classification of posets with specified joins and
meets, augmented posets have been proposed by Banaschewski and Bruns [2].
An augmented poset here means a triple U = (|U | , JU,MU) consisting of a poset
|U |, a subset JU of the power set P (U) such that each S ∈ JU has the join in
|U | and a subset MU of P (U) such that each R ∈ MU has the meet in |U |.
Augmented posets together with structure preserving maps (i.e. h : U → V is a
structure preserving map iff h : |U | → |V | is a monotone map such that h (S) ∈
JV and h (

∨
S) =

∨
h (S) for all S ∈ JU , h (R) ∈ MV and h (

∧
R) =

∧
h (R)

for all R ∈ MU) constitute a category P [2]. It was shown in [2] that P is dually
adjoint to the category S of spaces. Recall that objects of S are the quadruples
(the so-called spaces) W = (|W | , D(W ),Σ(W ), ∆(W )), where |W | is a set,
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D(W ) is a subset of P (|W |), Σ(W ) is a subset of {U ⊆ D(W ) | ∪U ∈ D(W )} and
∆(W ) is a subset of {B ⊆ D(W ) | ∩B ∈ D(W )}, while its morphisms f : W1 →
W2 are functions f : |W1| → |W2| with the properties that (f←)

→
(D(W2)) ⊆

D(W1), (f←)
→

(U) ∈ Σ(W1) and (f←)
→

(B) ∈ ∆(W1) for all U ∈ Σ(W2) and
for all B ∈ ∆(W2). The restriction of this adjunction to the full subcategory
SpaP of P of all spatial objects and the full subcategory SobS of S of all sober
objects gives a dual equivalence between SpaP and SobS.

Augmented posets and (Z1,Z2)-complete posets are seemingly two differ-
ent approaches to the classification of posets with specified joins and meets.
Given a poset P , let us denote the set of all M ∈ Z (P ) with the join (meet) by
Zsup (P ) (Z inf (P )). We will show in this presentation that the functors GQ : Q-
CPos→P and HQ : Q-SPC→S, defined by GQ(P ) =

(
P, Zsup

3 (P ) ,Z inf
4 (P )

)
,

GQ(f) = f , HQ (X, τ) =
(
X, τ, Zsup

3 (τ) , Z inf
4 (τ)

)
and HQ (g) = g for each

(Z1, Z2)-complete poset P , for each Q-CPos-morphism f , for each Q-space
(X, τ) and for each Q-SPC-morphism g, are two full embeddings, and so Ba-
naschewski and Bruns’s approach is more general than the subset selection-based
approach. Despite this fact, categories in the subset selection-based approach
provide a more direct formulation of various frequently used categories. The
full embeddings GQ and HQ give rise to many nice results. One of them is
that spatiality for (Z1, Z2)-complete posets and sobriety for Q-spaces can be
defined by means of the corresponding notions in augmented posets and spaces:
A (Z1, Z2)-complete poset A is Q-spatial iff GQ(A) is spatial, a Q-space (X, τ)
is Q-sober iff HQ(X, τ) is sober. Although Q-spatiality and Q-sobriety are
generally different from the concepts of Z-spatiality (alias being Z-lattice) and
Z-sobriety in the sense of Erne [5, 6, 7, 8], we will point out that the latter
concepts are particular cases of the former ones, and therefore give an answer
to the question of how Z-spatiality and Z-sobriety relate to spatiality and sobri-
ety in the sense of [2]. As another important implementation of the embeddings
GQ and HQ, we determine the suitable cases of the parameter Q making the
full subcategory of Q-CPos of all Q-spatial objects dually equivalent to the full
subcategory of Q-SPC of all Q-sober objects.
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[3] Bandelt, H. -J., Erné, M.: The category of Z-continuous posets. J. Pure
Appl. Algebra 30, 219-226 (1983)
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ORDERED DOMAIN ALGEBRAS

ROB EGROT, ROBIN HIRSCH AND SZABOLCS MIKULÁS

Abstract. We give a finite axiomatisation to representable ordered domain

algebras and show that finite algebras are representable on finite bases.

Domain algebras provide an elegant, one-sorted formalism for automated rea-
soning about program and system verification [DS08a, DS08b]. The algebraic
behaviour of domain algebras have been investigated, e.g. in [DJS09a, DJS09b].
Their primary models are algebras of relations, viz. representable domain algebras.
P. Jipsen and G. Struth raised the question whether the class R(;, dom) of repre-
sentable domain algebras of the minimal signature (;, dom) is finitely axiomatisable.
To formulate the question precisely, let us recall the definition of representable do-
main algebras R(;, dom).

Definition 0.1. The class R(;, dom) is defined as the isomorphs of A = (A, ;, dom)
where A ⊆ ℘(U × U) for some base set U and

x ; y = {(u, v) ∈ U × U : (u,w) ∈ x and (w, v) ∈ y for some w ∈ U}
dom(x) = {(u, u) ∈ U × U : (u, v) ∈ x for some v ∈ U}

for every x, y ∈ A.

The signature (;, dom) can be expanded to larger signatures τ by including other
operations. For instance, we can define

ran(x) = {(v, v) ∈ U × U : (u, v) ∈ x for some u ∈ U}
x^ = {(v, u) ∈ U × U : (u, v) ∈ x}

1′ = {(u, v) ∈ U × U : u = v}
and the corresponding representation classes R(τ) analogously to the definition of
R(;, dom). We can also include bottom 0 and top 1 elements (interpreted as ∅ and
U ×U , respectively) and the ordering ⊆ to yield representable algebraic structures.

It turned out that the answer to the above problem is negative.

Theorem 0.2. [[HM11]] Let τ be a similarity type such that (;, dom) ⊆ τ ⊆
(;, dom, ran, 0, 1′). The class R(τ) of representable τ -algebras is not finitely ax-
iomatisable in first-order logic.

Note that the above theorem does not apply to signatures where the ordering ⊆ is
definable. In fact, D.A. Bredikhin proved [Bre77] that the class R(;, dom, ran,^,⊆)
of representable algebraic structures is finitely axiomatisable. Our aim is to pro-
vide an alternative, and slightly more general, proof that R(;, dom, ran,^, 0, 1′,⊆)
is finitely axiomatisable. The advantage of our proof is that it uses a Cayley-type
representation of abstract algebraic structures that also shows finite representabil-
ity, i.e. that finite elements of R(;, dom, ran,^, 0, 1′,⊆) can be represented on finite
bases. In passing we note that if composition is not definable in τ , then R(τ)

119



has the finite representation property, but every signature containing (∩, ;, 1′) or
(∩, ;,^) fails to have the finite representation property.

Main result

Let Ax denote the following formulas.

Partial order: ≤ is reflexive, transitive and antisymmetric, with lower bound
0.

Monotonicity and normality: the operators ^, ;, dom, ran are monotonic,
e.g. a ≤ b → a ; c ≤ b ; c etc. and normal 0^ = 0 ; a = a ; 0 = dom(0) =
ran(0) = 0.

Involuted monoid: ; is associative, 1′ is left and right identity for ;, 1′^ = 1′

and ^ is an involution: (a^)^ = a, (a ; b)^ = b^ ; a^.
Domain/range axioms:

dom(a) = (dom(a))^ ≤ 1′ = dom(1′)(1)

dom(a) ≤ a ; a^(2)

dom(a^) = ran(a)(3)

dom(dom(a)) = dom(a) = ran(dom(a))(4)

dom(a) ; a = a(5)

dom(a ; b) = dom(a ; dom(b))(6)

dom(dom(a) ; dom(b)) = dom(a) ; dom(b) = dom(b) ; dom(a)(7)

dom(dom(a) ; b) = dom(a) ; dom(b)(8)

A model of these axioms is called an ordered domain algebra.
A consequence of axioms (4) and (5) is

(9) dom(a) ; dom(a) = dom(a)

Each of the axioms (1)–(8) has a dual axiom, obtained by swapping domain and
range and reversing the order of compositions, and we denote the dual axiom by a

∂ superscript, thus for example, (6)
∂

is ran(b ; a) = ran(ran(b) ; a). The dual axioms
can be obtained from the axioms above, using the involution axioms and (3).

Our main result is the following.

Theorem 0.3. The class R(;, dom, ran,^, 0, 1′,⊆) is finitely axiomatisable:

A ∈ R(;, dom, ran,^, 0, 1′,⊆) iff A |= Ax

and has the finite representation property.

Proof. First we extend the operations of a domain algebra to subsets of elements.

Definition 0.4. Let A be an ordered domain algebra.

(1) Write D(A) for the set of domain elements of A — those elements d ∈ A
such that dom(d) = d. Observe that (D(A), ;) forms a lower semilattice
ordered by ≤.

(2) For a ∈ A, let a↑ = {b ∈ A : a ≤ b} and more generally, for X ⊆ A, let
X↑ = {b ∈ A : (∃a ∈ X)a ≤ b}.
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(3) We extend the operations so as to apply to sets of elements. If X,Y ⊆
A, a ∈ A, then

X^ = {x^ : x ∈ X}↑(10)

X ; Y = {x ; y : x ∈ X, y ∈ Y }↑(11)

dom(X) = {dom(x) : x ∈ X}↑(12)

ran(X) = {ran(x) : x ∈ X}↑(13)

Note that these sets are all ‘closed upwards’ by definition.
(4) A non-empty subset X of A is closed if

(14) dom(X) ;X ; ran(X) = X

Thus, for an ordered domain algebra A, we can define another algebra on the
subsets ℘(A) of A, and the partial order ≤ on ℘(A) is given by ⊇. We will denote
this ordered algebra as C(A), the elements of ℘(A) by upper case letters X,Y, Z
etc. or by a↑, b↑ etc., and the elements of A with lower case letters a, b, c etc. It
should be clear from this notational convention whether we evaluate a term in A
or in C(A).

It is not difficult to check the following. Let τ ≤ σ be an axiom of domain
algebras such that every variable a occurs at most once in τ and at most once in σ.
Then the inequality τ ⊇ σ is valid C(A). (Hint: use monotonicity and the validity
of τ ≤ σ in A.) But axioms like (2) and (5) fail in general even in the subalgebra
of upwards-closed elements of C(A).

Observe, from definition 0.4(3) and the transitivity of ≤, that (dom(X) ; X ;
ran(X))↑ = dom(X) ;X ; ran(X), for any set X ⊆ A. So every closed set is upwards
closed. More equations are valid in C(A) if the variables are evaluated on closed
elements, e.g. (5), but closed elements may not be closed under the operations, e.g.
X ; Y for closed X and Y is not closed in general, and (2) may still fail.

Let Cl(A) be the set of all closed subsets of A. Since Cl(A) ⊆ ℘(A), we have
|Cl(A)| ≤ 2|A|. Define a map F from A to a structure with base Cl(A) as follows.

(15) (X,Y ) ∈ aF ⇐⇒ X ; a↑ ⊆ Y and Y ; (a^)↑ ⊆ X
We claim that F yields a representation of A. To this end let 0 6= a 6≤ b. It is easy
to show that (dom(a))↑, a↑ are closed. By monotonicity, (5) and (2), (dom(a))↑ ;
a↑ ⊆ a↑ and a↑ ; (a^)↑ ⊆ (dom(a))↑, so ((dom(a))↑, a↑) ∈ aF . Also, we cannot
have dom(a) ; b ≥ a, by transitivity, monotonicity and (1), since a 6≤ b. Thus
((dom(a))↑, a↑) 6∈ bF , whence F is faithful.

0F = ∅, by normality and the partial order axioms. ≤ is correctly represented
by the partial order axioms and monotonicity. 1′F = {(X,X) : X ∈ Cl(A)} by the
involuted monoid axioms. ^ is correctly represented by the involution axioms.

Next we check composition. If (X,Y ) ∈ aF and (Y,Z) ∈ bF , then X ; a↑ ⊆
Y, Y ; (a^)↑ ⊆ X, Y ; b↑ ⊆ Z and Z ; (b^)↑ ⊆ Y . Hence X ; (a ; b)↑ ⊆ Z and
Z ; ((a ; b)^)↑ = Z ; (b^ ; a^)↑ ⊆ X by associativity and the involution axioms. So
(X,Z) ∈ (a ; b)F .

Conversely, assume that (X,Z) ∈ (a;b)F . We need a closed Y such that (X,Y ) ∈
aF and (Y,Z) ∈ bF .

Claim 0.5. The sets

α = X ; a↑ ; ran(Z ; (b^)↑) and β = Z ; (b^)↑ ; ran(X ; a↑)

121



and α ∪ β are closed.

Thus we can define the closed element Y = α∪β. That ; is properly represented
follows by the following claim.

Claim 0.6. (X,Y ) ∈ aF and (Y,Z) ∈ bF .

Finally, we show that dom and ran are properly represented. If (X,Y ) ∈
(dom(a))F , then X ; (dom(a))↑ ⊆ Y . Since dom(a) ≤ 1′ by (1), we have that,
for every x ∈ X, there is y ∈ Y such that x ≥ x ; dom(a) ≥ y. Since Y is (up-
wards) closed, we get X ⊆ Y . Similarly, we get Y ⊆ X by Y ; ((dom(a))^)↑ ⊆
Y ; (dom(a))↑ ⊆ X (using (1)). Hence X = Y , i.e., (X,X) ∈ (dom(a))F . Note also
that dom(a) ∈ ran(X), since dom(a) ∈ ran(Y ; (dom(a))↑) ⊆ ran(x).

Define the closed element Z = X ; a↑. Then (X,Z) ∈ aF , since X ; a↑ ⊆ Z by
definition, and

X ; a↑ ; (a^)↑ ⊆ X ; (dom(a))↑ ⊆ X
by (2) and dom(a) ∈ ran(X). Conversely, suppose (X,Z) ∈ aF (for some Z). Then
X ; a↑ ⊆ Z and Z ; (a^)↑ ⊆ X. Since Z ; (a^)↑ ⊆ X, we have dom(a) = ran(a^) ∈
ran(Z ; (a^)↑) ⊆ ran(X), whence X ; (dom(a))↑ ⊆ X, i.e. (X,X) ∈ (dom(a))F . So
dom is correctly represented. Showing that ran is properly represented is similar.
This finishes the proof of Theorem 0.3. �
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1 Introduction

Simulation is a weak form of bisimulation satisfying the ‘forth’ but not neces-
sarily the ‘back’ condition. In this paper, we are interested in the question of
defining being simulated by a finite S4-model over the class of all topological
models. Our main results are that one cannot define simulability by finite S4
models in basic modal logic, but we can remedy this with a small addition to the
language. It is an operator on sets of formulas, very similar to one introduced
by [1] under a different guise. We will call this the tangle operator.

We will use a basic modal language L = L� which is built from propositional
variables in a finite1 set PV using the Boolean connectives ∧ and ¬ (all other
connectives are to be defined in terms of these) and the unary modal operator
�. As usual we write ♢ as a shorthand for ¬�¬.

We are interested in interpreting L over the class of all S4 frames and over
the class of all topological models. We will focus particularly on models of
the modal logic S4, which is given by the axioms �(φ → ψ) → �φ → �ψ,
�φ → ��φ and �α → α. The rules are Modus ponens and Necessitation.

The above axioms and rules are sound and complete for interpretations over
transitive, reflexive Kripke models W = ⟨|W|,4W, J·KW⟩, where we interpret
�α by w ∈ J�αKW if and only if, whenever v 4 w, v ∈ JαKW.

We will also use the notation w ≺ v for w 4 v but v ̸4 w and w ∼ v for
w 4 v and v 4 w.

An more general interpretation of S4 is that given by topological models
X = ⟨|X|, TX, J·KX⟩ . Here we set J�αKX = JαK◦

X (the topological interior).
Kripke semantics can be seen as a special case of topological semantics if we

let opens be the downsets.

1The reason we work with finite PV is that, evidently, one cannot define models up to
simulation or bisimulation in the presence of infinitely many variables using a finite formula.
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Definition 1.1. A state is a triple w = ⟨|w|,4w, 0w⟩ consisting of a finite S4
model equipped with a designated root 0w, that is, such that w 4w 0w for all
w ∈ |w|.

Properly speaking, we are interested in defining simulability by states, i.e.,
by finite, pointed S4 models.

Definition 1.2. If X, Y are Kripke models, a simulation between X and Y is
a binary relation χ ⊆ |X|× |Y| which preserves propositional variables and such
that χ−1(U) is open whenever U is (i.e., χ is continuous).

We will write ⟨X, x⟩ E ⟨Y, y⟩ if there exists a simulation χ between X and Y
such that x χ y.

2 Undefinability

If W is a Kripke model, we will denote its ultrafilter extension by W̃.

Theorem 2.1. There exist a finite S4 model W, w ∈ |W| and two S4 models2

X, Y with ⟨X, x⟩ and ⟨Y, y⟩ satisfying the same set of L�-formulas, such that
⟨W, w⟩ ̸E ⟨X, x⟩ but ⟨W, w⟩ E ⟨Y, y⟩.

Proof. We will begin by constructing a sort of ‘hedgehog’. Let

|X| = {0} ∪ {⟨n,m⟩ : 0 < n < m} ,

x 4X y if either y = 0 or x = ⟨nx,m⟩, y = ⟨ny,m⟩ and ny ≤ nx.
Let JpKX be the set {0} ∪ {⟨n,m⟩ : n is even} , JqKX be {⟨n,m⟩ : n is odd} .

Define W by setting |W| = {wp, wq} with JpKW = {wp}, JqKW = {wq} and
wp ∼W wq.

We claim that ⟨W, wp⟩ ̸E ⟨X, 0⟩. Indeed, in order to have a simulation
χ ⊆ |W| × |X| with wp χ 0, we would need an infinite sequence of (possibly
repeating) points 0 = y0 <X y1 <X y2 <X . . . with yi ∈ JpKX if i is even and
yi ∈ JqKX if i is odd.

To see this, assume that χ is such a simulation. Because χ is continuous,
wp χ 0 and wq 4W wp, it follows that there is a world y1 ∈ JqKX such that
wq χ y1 and y1 4X 0. By the same argument there is y2 ∈ JpKX such that
wp χ y2 and y2 4X y1, and this process can be continued indefinitely to construct
⟨yn⟩n<ω.

However, such a sequence clearly does not exist in X, and therefore ⟨W, wp⟩ ̸E
⟨X, 0⟩.

Now, consider the ultrafilter extension X̃. The principal filter (0) satisfies the

same set of L�-formulas as 0. However, we will show that ⟨W, wp⟩ E
⟨
X̃, (0)

⟩
.

For each i < ω let Si = {⟨i,m⟩ : i < m < ω} ; this is a ‘horizontal slice’ of
the hedgehog. Note that Si ⊆ JpKX if i is even, Si ⊆ JqKX if i is odd.

2These will be infinite.
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Let U be any non-principal ultrafilter3 over ω. Set Y0 = (0), and for i > 0
define Yi to be the ultrafilter of all sets E such that {m < ω : ⟨i,m⟩ ∈ E} ∈ U .
Clearly Si ∈ Yi for all i < ω, so it follows that JpKX ∈ Yi if i is even, and hence
Yi ∈ JpKX̃; similarly, Yi ∈ JqKX̃ if i is odd.

Also, note that Yj 4X̃ Yi whenever i < j. This is because if E ∈ Yi and
F ∈ Yj we have that

E′ = {m < ω : ⟨i,m⟩ ∈ E} ∈ U

and
F ′ = {m < ω : ⟨j,m⟩ ∈ F} ∈ U ,

therefore E′ ∩ F ′ ̸= ∅ and for m ∈ E′ ∩ F ′ we have that ⟨i,m⟩ ∈ E, ⟨j,m⟩ ∈ F
and ⟨j,m⟩ 4X ⟨i,m⟩.

Hence we have a simulation χ ⊆ |W| × |X̃| given by wp χ y if y = Yi with i
even and wq χ y if y = Yi with i odd.

We have now shown that ⟨X, 0⟩ and
⟨
X̃, (0)

⟩
satisfy the same set of L�-

formulas, but ⟨W, w⟩ ̸E ⟨X, 0⟩ and ⟨W, wp⟩ E
⟨
X̃, (0)

⟩
, as desired.

3 Definability

While simulability is undefinable in the basic modal language, this can be reme-
died by adding just a bit of expressive power. Namely, we need to be able to
express an operation on sets which we will call their ‘tangle’.

Definition 3.1 (Tangle). Let W be a Kripke model and S ⊆ 2|W|. We define
S♮, the tangle of S, to be the union of all sets E ⊆ ∪ S such that, for all S ∈ S
and w ∈ E, there is v 4 w with v ∈ E ∩ S.

Meanwhile, if X is a topological space and S ⊆ 2|X|, we define S♮ to be the
union of all sets E ⊆ ∪ S such that, for all S ∈ S, S ∩ E is dense in E.

We wish to extend our language in order to incorporate the tangle operator
into our semantics. Thus we consider the language L+ = L�♮, where ♮ acts on
finite sets4 of propositions of arbitrary size; that is, if φ0, ..., φn are formulas of
L+ then so is ♮ {φ0, ..., φn}. We interpret J♮ {φ0, ..., φn}K as {Jφ0K, ..., JφnK}♮

.
This gives a system very close to ML∗ introduced in [1]. Syntactically, this is a
fragment of the µ-calculus [2] and can be classified as a flat fixpoint logic [3].

Although simulability by a state is not definable in the basic modal lan-
guage, over L+ it is. We shall explicitly construct a formula Sim(w) defining
simulability by w for any finite S4 state w.

Below, τ(w) denotes the set of literals (propositional variables or their nega-
tion) which are true on w.

3These can be shown to exist by a well-known construction using Zorn’s Lemma, consid-
ering a maximal extension of the filter of all cofinite sets.

4We limit ourselves to finite sets of formulas only because we wish for all formulas to be
finite objects, but in principle one could consider a language where ♮ admits arbitrary sets of
formulas without altering its definition.
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Definition 3.2 (Simulability formula). Let W be a finite S4-model. We will
define a formula Sim(W, w) for w ∈ |W| by induction on the height of w.

First define, for v ∼ w or v = w, δ(v) =
∧
τ(v) ∧ ∧

u≺v ♢Sim(W, u).
Then, set Sim(W, w) equal to δ(w) ∧ ♮ {δ(v)}v∼w .

Theorem 3.1. Let w be a world on a finite S4 model W.
Then, for every x ∈ |X| we have that ⟨W, w⟩ E ⟨X, x⟩ if and only if x ∈

JSim(W, w)KX .
Our definability result can be extended to classes of finite models in certain

settings. Let p⃗ be a finite set of propositional variables and Wp⃗ denote the set of
all states on the variables p⃗. Lµ denotes the language of the unimodal µ-calculus
and Lµ its set of theorems, while Lµ(U) is the set of formulas valid on U . We
define L+ analogously.

Theorem 3.2. Any set U ⊆ Wp⃗ which is closed under simulability is definable
in L+ by a formula φ(U), in the sense that w |= φ(U) if and only if w ∈ U .

Corollary 3.1. If U ⊆ Wp⃗ is closed under simulability, then Lµ(U) is polyno-
mially (in fact, linearly) reducible to Lµ.

If further U is open, then Lµ(U) is axiomatized by Lµ + φ(U).
Analogous claims also hold for L+ in place of Lµ.

We can combine this with the fact that the validity problem for the µ-calculus
is in EXPTIME [4] to show the following:

Corollary 3.2. If U ⊆ Wp⃗ is closed under simulability, then Lµ(U) is decidable
in EXPTIME.
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LATTICE PSEUDOEFFECT ALGEBRAS AS DOUBLE

RESIDUATED STRUCTURES

DAVID J. FOULIS, SYLVIA PULMANNOVÁ AND ELENA VINCEKOVÁ

1. Introduction

An effect algebra is a partial algebraic structure, originally introduced as an al-
gebraic base for unsharp quantum measurements [5]. Recently, lattice effect al-
gebras (LEAs) have been studied as possible algebraic models for the semantics
of non-standard symbolic logics [6], just as MV-algebras (special kinds of LEAs)
are algebraic models for  Lukasiewicz many-valued logics, and orthomodular lattices
(also special kinds of LEAs) are algebraic models for sharp quantum logical calculi.
The interplay among conjunction, implication, and negation connectives on LEAs
has been studied, the conjunction and implication connectives being related by a
residuation law. As a result, a characterization of LEAs has been obtained in terms
of so-called Sasaki algebras and a more general structures called CI (conjunction-
implication) posets.

In [3, 4] pseudoeffect algebras (PEAs) were introduced as non-commutative gen-
eralizations of effect algebras. They are especially interesting for their relations
with po groups [4, 2]. In the present talk based on the paper [7], we study lattice
pseudoeffect algebras (LPEAs), focusing mainly on their logical aspects. In [9],
it was shown that there are two analogues of the Sasaki product in LPEAs: the
“right” and the “left”. It turns out that all logical connectives are doubled, and
we also have two residuation laws. As a main result, we obtain a characterization
of lattice pseudoeffect algebras in terms of so-called pseudo Sasaki algebras. While
LPEAs are partial algebraic structures, Sasaki algebras are total algebras.

Just as Sasaki algebras are a special subclass of CI-posets (see [6]), pseudo Sasaki
algebras are a special subclass of so-called double CI-posets, which we introduce
as bounded posets endowed with two pairs of binary operations (◦, ;) and (∗, →),
again connected by residuation. In comparison with bounded residuated posets,
see [8], it appears that the structure of double CI-posets is more general.

We introduce conditional double CI-posets as partially defined versions of double
CI-posets, and we show that all pseudoeffect algebras can alternatively be described
as conditional double CI-posets.
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2. Lattice pseudoeffect algebras and pseudo Sasaki algebras

Definition 2.1. A pseudoeffect algebra (PEA) is a partial algebra (P ; ⊕, 0, 1) of
the type (2, 0, 0) where the following axioms hold for any a, b, c ∈ P :

(PE1) a ⊕ b and (a ⊕ b) ⊕ c exist iff b ⊕ c and a ⊕ (b ⊕ c) exist and in this case
(a ⊕ b) ⊕ c = a ⊕ (b ⊕ c).

(PE2) There exists exactly one d ∈ P and exactly one e ∈ P such that a ⊕ d =
e ⊕ a = 1.

(PE3) If a ⊕ b exists, there are elements d, e ∈ P such that a ⊕ b = d ⊕ a = b ⊕ e.
(PE4) If a ⊕ 1 or 1 ⊕ a exists, then a = 0.

In a pseudoeffect algebra, we may define a partial order in the following way:

a ≤ b iff c ⊕ a = b for some c ∈ P.

Equivalently,

a ≤ b iff a ⊕ d = b for some d ∈ P.

If a pseudoeffect algebra is a lattice under the partial order ≤, we call it a lattice
pseudoeffect algebra (LPEA). A PEA admits two partial subtractions (“right” and
“left”) � and � as follows: b�a is defined and equals x iff b = x ⊕ a, and a�b
is defined and equals y iff b = a ⊕ y. Thus both b�a and a�b are defined iff
a ≤ b, and then (b�a) ⊕ a = b = a ⊕ (a�b). Moreover, for the elements d and
e in axiom (PE2) we write 1�a =: a− (the “left” complement) and a�1 := a∼

(the “right” complement). Clearly, 0∼ = 1 = 0− and 1∼ = 0 = 1−. Notice
that a ⊕ b exists iff a ≤ b−, equivalently, iff b ≤ a∼, also a−∼ = a∼− = a and
a ≤ b ⇒ b− ≤ a−, b∼ ≤ a∼.

The following two operations on a lattice pseudoeffect algebra (P ; ⊕, 0, 1) were
introduced in [9] as a generalization of the Sasaki product in LEAs:

Definition 2.2. a ◦ b := a ∧ b−�a; a ∗ b := a�a ∧ b∼.

Definition 2.3. A structure (P ; ≤,− ,∼ , ◦, ∗, 0, 1) of the type (1, 1, 2, 2, 0, 0) will be
called a pseudo Sasaki algebra if it satisfies the following axioms:

(PSA1) a−∼ = a∼− = a and a ≤ b ⇒ b− ≤ a−, b∼ ≤ a∼.
(PSA2) a ◦ 1 = 1 ◦ a = a = 1 ∗ a = a ∗ 1.
(PSA3) a ◦ b ≤ c iff a ∗ c− ≤ b− and

a ∗ b ≤ c iff a ◦ c∼ ≤ b∼.
(PSA4) c ≤ a, c ≤ b ⇒ c ≤ a ◦ (a ∗ b−)∼ = a ∗ (a ◦ b∼)−.
(PSA5) a ≤ b−, c ≤ a∼ ◦ b∼ ⇒ (a∼ ◦ b∼) ◦ c∼ = a∼ ◦ (b∼ ◦ c∼) and b ≤ a∼, c ≤

b− ∗ a− ⇒ c− ∗ (b− ∗ a−) = (c− ∗ b−) ∗ a−.
(PSA6) a ≤ b− ⇒ (a∼ ◦ b∼)− = (b− ∗ a−)∼.

The next two theorems show that lattice pseudoeffect algebras (as partial alge-
braic structures) are mathematically equivalent with pseudo Sasaki algebras (as
total algebraic structures).

Theorem 2.4. Let (P ; ⊕, 0, 1) be a lattice pseudoeffect algebra. With operations ◦
and ∗ as in Definition 2.2, (P ; ≤,− ,∼ , ◦, ∗, 0, 1) becomes a pseudo Sasaki algebra.

128



Theorem 2.5. Let (P ; ≤,− ,∼ , ◦, ∗, 0, 1) be a pseudo Sasaki algebra. With the op-
eration ⊕ defined by A⊕ b = (b− ∗a−)∼ = (a∼ ◦ b∼)− whenever a ≤ b−, (P ; ⊕, 0, 1)
is an LPEA.

Notice that a PEA is an effect algebra iff a ⊕ b exists whenever b ⊕ a exists, and
the equality a⊕ b = b⊕ a holds. It then follows that the right and left subtractions
and left and right complements coincide. In this case we have a◦b = a∗b for all a, b,
and the pseudo Sasaki algebra P (L) is reduced to a Sasaki algebra [6, Definition
4.1].

3. Double CI-posets

In [6], the notion of a conjunction/implication poset (CI-poset) was introduced. As
a non-commutative generalization of a CI-poset, we will now consider a structure
(P ; ≤, 0, 1, ◦, ∗,→,;) satisfying the following two axioms:

(1) 1 ◦ a = a ◦ 1 = a = 1 ∗ a = a ∗ 1 (unity),
(2) a ◦ b ≤ c ⇔ b ≤ a ; c and a ∗ b ≤ c ⇔ b ≤ a → c (residuation),

and with complements defined by a− := a → 0 and a∼ := a ; 0

Definition 3.1. The structure (P ; ≤, 0, 1, ◦, ∗,→,;) satisfying axioms (1) and (2)
will be called a double CI-poset. If a double CI-poset is a lattice, we call it a double
CI-lattice.

Double CI-posets are very general algebraic structures, which include many other
residuated algebras as special subalgebras, among them pseudo Sasaki algebras and
residuated po monoids [8].

Definition 3.2. A double CI-poset P satisfies:

(i) the pseudo-involution condition if a−∼ = a = a∼− and a ≤ b ⇒ b− ≤
a−, b∼ ≤ a∼;

(ii) the divisibility condition if c ≤ a, c ≤ b ⇔ c ≤ a ◦ (a ; b) = a ∗ (a → b);
(iii) the ortho-exchange condition if

a− ◦ b− = 0 and c∼ ≤ a ◦ b implies b− ≤ a ∗ c
and
a∼ ∗ b∼ = 0 and c− ≤ a ∗ b implies b∼ ≤ a ◦ c;

(iv) the self-adjointness condition if a ◦ b ≤ c ⇔ a ∗ c− ≤ b− and a ∗ b ≤ c ⇔
a ◦ c∼ ≤ b∼.

for all a, b, c ∈ P .

Theorem 3.3. Every pseudo Sasaki algebra is a double CI-lattice. Conversely,
a double CI-poset is a pseudo Sasaki algebra iff it satisfies conditions (i) (pseudo-
involution), (ii) (divisibility), (iii) resp. (iv) (self-adjoiness resp. ortho-exchange)
of Definition 3.2, and conditions (PSA5) and (PSA6) in Definition 2.3.

Remark 3.4. Recall that a residuated partially ordered groupoid is an algebra
(A; ·, \, /, ≤) such that (A; ≤) is a partially ordered set and the following law of
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residuation holds:

(res) x · y ≤ z iff y ≤ x\z iff x ≤ z/y.

(For more information see [8]). Let us consider a CI-poset. Under the stipulation

x\y = x ; y, x/y = y → x,

we observe that the residuation law (res) is satisfied iff x ◦ y = y ∗ x = x · y. Hence
a CI-poset is a residuated po-groupoid iff x ◦ y = y ∗x for all x, y. It is a residuated
po-monoid iff in addition the operation ◦ is associative.

Remark 3.5. Up to now, we considered lattice ordered pseudoeffect algebras as
double residuated structures. We note that in [1] it was shown that certain pseu-
doeffect algebras, so called ”good” pseudoeffect algebras, can be characterized as
conditionally residuated structures, where the residuated operations are partially
defined. Now, if we restrict the implication and conjunction operations in dou-
ble CI-posets to suitably defined partial operations, we obtain conditional double
CI-posets, which give an equivalent description for all pseudoeffect algebras.
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[3] A. Dvurečenskij, T. Vetterlein: Pseudoeffect algebras. I. Basic properties Inter. J. Theor.
Phys. 40 (2001), 685–701.
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CANONICAL EXTENSIONS AND UNIVERSAL PROPERTIES

MAI GEHRKE
JACOB VOSMAER

Abstract. The theory of canonical exensions is an important tool in algebraic logic. We discuss
several universal properties of canonical extensions, which relate them to domain theory and

topological algebra. In particular, we show that the canonical extension of a lattice can be given
a dcpo presentation, and that canonical extensions have universal properties with respect to
profinite and certain Boolean topological lattice-based algebras.

1. Introduction

Canonical extensions, which were introduced in 1951 by Jónsson and Tarski [9, 10] as part of the
representation theory for relation algebras, are nowadays an important construction in algebraic
logic. Inspired by the way any Boolean algebra embeds in the power set of its ultrafilters, canonical
extension provide an algebraic, point-free perspective on Stone duality. In this extended abstract
we discuss several mathematical properties of canonical extensions.

Using Stone duality, one can embed any Boolean algebra A in a power set algebra: simply take
X, the space of all ultrafilters of A, and embed A in P(X) by sending a 7→ {x ∈ X | a ∈ x}. The
embedding of A into P(X) can be seen as the starting point of the theory of canonical extensions.
We study this embedding without explicitly using Stone duality. The advantage of this is that one
can then define canonical extensions for bounded lattices [5] (or even posets [4]) rather than just
for Boolean algebras.

Concretely, the canonical extension of a lattice L is defined up to isomorphism as a completion
C of L, that is as a lattice embedding e : L→ C where C is a complete lattice, so that:

• for all x, y ∈ C such that x � y, there exist F, I ⊆ L such that
– F is a filter,

∧
e[F ] ≤ x and

∧
e[F ] � y;

– I is an ideal,
∨

e[I] ≥ y and
∨

e[I] � x;
• for every filter F ⊆ L and for every ideal I ⊆ L, if

∧
e[F ] ≤ ∨

e[I] then F ∩ I ̸= ∅.
Since canonical extensions are unique up to isomorphism, we will speak of the canonical extension
of any given lattice L and denote this extension as e : L→ Lδ. This definition is the starting point
of an extensive theory [7] of completions not only for lattices but also for lattice-based algebras.

In this extended abstract, we present two recently developed perspectives on canonical exten-
sions, both of which can be seen in terms of universal properties.

• We show how canonical extensions of lattices can be viewed as dcpo’s using techniques
from domain theory in §2.

• We show that canonical extensions of lattice-based algebras have universal properties with
respect to topogical algebras in §3.

2. Domain-theoretic universal properties

Usually, the canonical extension e : L → Lδ of a lattice is understood in terms of the relation
between the internal structure of Lδ and the forward image of L under e; see above. In [6]
and [13, §2.3], we showed that Lδ can also be characterized externally in terms of of how Lδ

sits in the category of dcpo’s and Scott-continuous functions, using a universal property. Since
this characterization uses Scott-continuous functions, we propose to call it a domain-theoretic [1]
characterization. We make use of technical results due to Jung, Moshier and Vickers [11].

Definition 1. A dcpo presentation [11] is a triple ⟨P,⊑, ▹⟩ where

Gehrke: IMAPP, Radboud University Nijmegen; Vosmaer (corresponding author): ILLC, University of
Amsterdam.
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• ⟨P,⊑⟩ is a pre-order;
• ▹ ⊆ P ×P(P ) is a binary relation such that a▹U only if U ⊆ P is non-empty and directed.

An order-preserving map f : P → D to a dcpo D is cover-stable if for all a ▹ U , f(a) ≤ ∨
f [U ].

In other words, a dcpo presentation consists of a pre-ordered set of generators ⟨P,⊑⟩ together
with set of relations of the form a ≤ ∨

U . A dcpo presentation ⟨P,⊑, ▹⟩ presents a dcpo D if there
exists a cover-stable order-preserving map η : P → D such that for all dcpos E, if f : P → E is
a cover-stable order-preserving map then there exists a unique Scott-continuous f ′ : D → E such
that f ′ ◦ η = f . If this is the case, we say that ⟨P,⊑, ▹⟩ presents D via η.

D

f ′

��
P

η
??~~~~~~~

f
// E

We know from [11] that every dcpo presentation presents a dcpo.
We will now need some notation. Given a lattice L, we denote its filter and ideal completion

by F L and I L, respectively. It is well known that I L can be characterized externally as the
free dcpo over L; similarly F L is the free co-dcpo over L. Given two sets X, Y ⊆ Z we define
X G Y :⇔ X ∩ Y ̸= ∅. We can now define the dcpo presentation with which we characterize the
canonical extension:

Definition 2. Given a lattice L, we define a dcpo presentation ∆(L) := ⟨F L,⊇, ▹L⟩, where for
all F ∈ F L and S ⊆ F L directed,

F ▹L S iff ∀I ∈ I L,
[
∀F ′ ∈ S, F ′ G I

]
⇒ F G I.

Observe that the generators of ∆(L) are the filters of L, ordered by reverse inclusion. The basic
cover relations use a universal quantification over all ideals of L. The following theorem states that
∆(L) is indeed a presentation of Lδ. The map eF : F L→ Lδ is defined as eF : F 7→ ∧

e[F ].

Theorem 3. Let L be a lattice and let e : L→ Lδ be its canonical extension. Then ∆(L) presents
Lδ via eF : F L→ Lδ.

The abstract machinery of dcpo presentations [11] allows us to do more than just characterize
the canonical extension of L: we can also use it to extend operators on lattices to operators on
canonical extensions. An operator f : Ln → L is a map which preserves binary joins in each
coordinate. The following result, which is due to Gehrke and Harding [5], can now be seen as an
instantiation of the dcpo presenation results of [11]. The condition “ωAδ = (ωA)▽” means that we
need to take the lower extension of each operator involved; we will not go into this technical detail
here.

Theorem 4 ([5]). Let A be a lattice-based algebra and let s 4 t be an inequation. If for each
operation ω occurring in s or t, ωA is an operator and ωAδ = (ωA)▽, then A |= s 4 t implies
Aδ |= s 4 t.

3. Universal properties with respect to topological algebras

Although the theory of canonical extensions can be viewed sec as being about completions of
lattices, its real strength lies in providing completions for lattice-based algebras. In the previous
section, we saw that the canonical extension Lδ of any lattice L has a universal property with
respect to dcpo’s. Below we will see, that the canonical extension Aδ of any lattice-based algebra
A has one or more universal properties with respect to topological algebras, i.e. algebras with
continuous operations. The results in this section come from [13, Ch. 3] and [7].

Below, we will consider two kinds of topological lattice-based algebras: Boolean topological
algebras and profinite algebras. A Boolean topological algebra is simply a topological algebra
whose topology is Boolean, i.e. compact, Hausdorff and zero-dimensional. Natural examples of such
algebras are provided by profinite algebras: algebras with are projective limits of finite algebras.
If we endow the finite algebras Ai in a projective limit lim←−I

Ai with the discrete topology, then

lim←−I
Ai inherits a Boolean topology from the Ai. Profinite algebras have been studied extensively

in Galois theory [12], but the construction makes as much sense in a universal algebra setting as
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it does in the restricted case of group theory. Moreover, the property of being profinite (i.e. being
the projective limit of a collection of finite algebras) can correspond to meaningful properties of
an algebra. For instance:

• A Boolean algebra is profinite iff it is complete and atomic;
• A distributive lattice is profinite iff it is complete and bi-algebraic;
• A Heyting algebra is profinite iff it is complete, bi-algebraic and residually finite, iff it is

(isomorphic to) the down-set lattice of an image-finite poset;
• A distributive lattice with operators is profinite iff it is (isomorphic to) the complex algebra

of a hereditarily finite ordered Kripke frame.

The results above about Boolean algebras and distributive lattices have a long history and are de-
scribed in [8, Ch. VI]. The result about Heying algebras was established more recently by Bezhan-
ishvili & Bezhanishvili [2]; the result about distributive lattices with operators is discussed in [13,
§4.1].

Interestingly, canonical extensions are strongly related to profinite lattice-based algebras, as we
will see in the result below.

Theorem 5. Let f : A → B be a homomorphism from a lattice-based algebra A to a profinite
lattice-based algebra B. Then f extends uniquely to the canonical extension eA : A → Aδ of A:
there exists a unique complete homomorphism f ′ : Aδ → B such that f ′ ◦ eA = f .

Aδ

f ′

��
A

eA
>>~~~~~~~~

f
// B

The result above should perhaps not be called a universal property in the strictest sense, because
it need not be the case that Aδ is itself a profinite algebra [13, Example 3.4.3]. In fact, one can
prove the following:

Theorem 6. Fix a lattice-based similarity type Ω and let V be a variety of lattice-based Ω-algebras.

(1) If V is finitely generated then for every A ∈ V, Aδ is profinite;
(2) If Ω is finite and for every A ∈ V, Aδ is profinite, then V is finitely generated.

Remember that earlier we introduced profinite algebras as an example of Boolean topological
algebras. All profinite algebras are Boolean topological algebras but the converse is not true; one
example is provided by the variety of modal algebras [13, §4.3]: there exist Boolean topological
modal algebras B which are not profinite (also see the Example below). For such modal algebras
B, our Theorems 5 and 6 need no longer hold. However, the lattice reduct of a Boolean topological
modal algebra is always a profinite lattice. This allows us to prove the following result. Observe that
we denote the lattice reduct of a lattice-based algebra A by Al, and that a monotone lattice-based
algebra is simply an algebra for which each operation is either order-preserving or order-reversing
in each coordinate.

Theorem 7. Fix a lattice-based similarity type Ω and a canonical extension type β. Let A be a
monotone lattice-based Ω-algebra. If f : A → B is an Ω-homomorphism to a Boolean topological
monotone lattice-based Ω-algebra B and if Bl, the lattice reduct of B, is profinite, then there exists
a unique complete Ω-algebra homomorphism f ′ : Aδ → B such that f ′ ◦ eA = f .

Aδ

f ′

��
A

eA
>>~~~~~~~~

f
// B

We would like to point out that the condition in the theorem above that Bl be profinite is not
superfluous: there exist examples of Boolean topological modular lattices which are not profinite
[3]. The universal property introduced in Theorem 7 leads to the following interesting corollary:

Theorem 8. Fix a lattice-based signature Ω and let A be a monotone lattice-based Ω-algebra
such that Al, the lattice reduct of A, is profinite. Then there exists a unique complete lattice
homomorphism g : (Aδ)l → Al such that g ◦ eA = idA. Moreover, the following are equivalent:
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(1) g : Aδ → A is an Ω-algebra homomorphism;
(2) A is a Boolean topological algebra.

Example. In the case of modal algebras (or more generally, Boolean algebras with operators),
Theorem 8 can be interpreted in terms of Kripke frames as follows. First, observe the following
fact [13, §4.3.1]:

• A modal algebra admits a Boolean topology iff it is (isomorphic to) the complex algebra
of an image-finite Kripke frame,

where we remind the reader that a Kripke frame is image-finite iff each of its point has a finite
set of successors. Theorem 8 now dually corresponds to the well-known observation that a Kripke
frame is image-finite iff it embeds in its ultrafilter extension; see [13, §4.3.2] for more details.

We would like to thank the referee for their very interesting questions and suggestions.
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COMPLETIONS OF SEMILATTICES

M. J. GOUVEIA AND H. A. PRIESTLEY

The work we present here was motivated by recent results obtained for lattice-
based algebras in finitely generated varieties which reconcile canonical, natural and
profinite extensions of those algebras.

A canonical extension of a lattice-based algebra is a completion of its lattice
reduct with special properties that allow one to lift to it the non-lattice basic oper-
ations. In [5] Gehrke and Harding proved that a canonical extension of a bounded
lattice always exists and that it is unique up to isomorphism. Subsequently the
ideas were extended to posets, and existence and uniqueness of canonical exten-
sions established in this wider setting (see for example [3]). In particular canonical
extensions of semilattices, and of the semilattice reducts of lattices, may be studied.

A profinite limit of an algebra is a particular subalgebra of a direct product
whose factors are finite quotients of the algebra. When the algebra belongs to a
residually finite variety, the algebra embeds into its profinite limit, and this then
serves as a completion. The operations of the given algebra are naturally extended
by the operations of the profinite completion, which are coordinatewise defined. In
the particular case of a variety V of lattice-based algebras, V is residually finite
whenever it is finitely generated and so both completions, canonical and profinite,
are available for every algebra in V and they coincide (see [9] and [4]).

The third theme we wish to consider, that of a natural extension, arises out
of ideas from natural duality theory (for background see the text of Clark and
Davey [1]). In its simplest form this theory applies to suitable quasivarieties D =
ISP(M), where M is a finite algebra. One seeks M∼ (some relational structure on
M equipped with the discrete topology τ), so that D is dually equivalent to the
category IScP+(M∼ ) of isomorphic copies of closed substructures of powers of M∼ .
When this is possible, the alter ego M∼ is said to yield a duality on D. This is the
case in particular when D is the variety D of bounded distributive lattices, which
is representable as ISP(2), with M∼ = ({0, 1};6, τ) with 6 the usual partial order.
We arrive at Priestley duality, which (in an equivalent formulation) was used by
Gehrke and Jónsson in [7] to build the canonical extension of any L ∈ D as a lattice
of order-preserving maps. In [2], Davey, Gouveia, Haviar and Priestley mimiced
this construction in the setting of any quasivariety ISP(M), whether dualisable
or not, and more generally for any residually finite variety (or merely prevariety).
The natural extension so defined was shown always to coincide with the profinite
completion [2, Theorem 3.6]. Moreover, as a consequence of the results of [2], the
natural extension of an algebra A in a dualisable quasivariety ISP(M) is the algebra
consisting of all the maps from the dual of A to M which preserve the relational
structure of a dualising alter ego.

Now let us focus on the variety of central interest to us here. Let S be the
category of ∨-semilattices with 0 where the morphisms are the maps that preserve
∨ and 0. (Since we shall consider only semilattices of this type, we shall henceforth
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use the term ‘semilattice’ to mean an element of S.) It is well known that S
is generated, as a variety and as a quasivariety, by the two-element semilattice
M = 〈{0, 1};∨, 0〉. The classic duality for semilattices due to Hofmann, Mislove
and Stralka [10] can with hindsight be seen as an instance of a natural duality. The
discretely topologised semilattice M∼ := 〈{0, 1};∨, 0, τ〉 provides an alter ego for M
whereby the category S is dually equivalent to the category Z := IScP+(M∼ ) of all
Boolean topological join-semilattices with 0.

Since S = ISP(M), the elements of any semilattice A ∈ S are separated by
the morphisms in S(A,M). Consequently the map e : A → MS(A,M) defined by
evaluation

∀a ∈ A ∀h ∈ S(A,M) e(a)(h) = h(a)

is an S-embedding. The natural extension of A is, by definition, the topological
closure of e(A) in the direct power M∼

S(A,M). Consider the forgetful functor [ : Z →
S that assigns to each dual D(A) the semilattice D[(A) = 〈S(A,M);∨, 0〉. Since
D[(A) is in S we may consider the semilattice D[(D[(A)). The elements of this
semilattice are all the maps from D[(A) to {0, 1} that preserve {∨, 0}. By applying
Theorem 4.3 of [2], D[(D[(A)) is the natural extension of A. Moreover, since the
variety S is the quasivariety generated by M, we know that D[(D[(A)) is also the
profinite limit of A.

Let us now investigate the canonical extension of a semilattice, viewed as a
poset. Let P be a poset. A completion C of P , via an embedding ε is compact if,
for each down-directed up-set F and each up-directed down-set I in P , the following
condition is satisfied: ∧

ε(F ) 6
∨
ε(I)⇔ F ∩ I 6= ∅

The completion is dense if its copy in C is both Σ1-dense and Π1-dense. Here a
subset Q of P is Σ1-dense if any u ∈ P is a join of meets of down-directed up-sets
of Q and, order dually, is Π1-dense if any u ∈ P is a meet of joins of up-directed
down-sets of Q.

The profinite limit Â of a semilattice A is, by virtue of its definition, a semilattice
with 0 which is closed under arbitrary joins. However it does not satisfy the required
conditions to be a canonical extension of A. Even so, the profinite limit of a
semilattice is quite ”close” to being a canonical extension.

Theorem Let A in S and let e : A → Â be the natural embedding of A into the

profinite lattice Â. Then Â is a compact and Π1-dense completion of A via the
embedding e.

In general the profinite limit Â of A is not the canonical extension of A: it may
be too big for the Σ1-density condition to be satisfied. To obtain a candidate for
the canonical extension of A we therefore restrict attention to the subset C∨(A) of

Â whose elements are joins of directed meets of elements of e(A). Note that any
such join is also a meet of joins of elements of e(A), so that the Π1-density property

will not be sacrificed by cutting down from Â to C∨(A) and that e : A→ C∨(A) is
certainly an order-embedding.

If it is to serve as a completion of A, we need C∨(A) to be a complete lattice.
First note that every directed meet of elements of e(A) is defined pointwise in the

lattice Â. Hence C∨(A), endowed with the pointwise join, forms a subsemilattice of

Â. This subsemilattice is also closed under non-empty arbitrary (pointwise) joins.
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We can now obtain a complete lattice

C∨(A) := 〈C∨(A);∨,∧, 0, 1〉

where the meet operation is obtained from ∨ as follows:

∧
(αt)t∈T :=

∨
{α ∈ C∨(A) | ∀t ∈ T α 6 αt },

for every non-empty family (αt)t∈T of elements of C∨(A). (The meet of the empty

set is the top element 1 =
∨
e(A) of Â.)

Theorem The complete lattice C∨(A) is the canonical extension of the semilattice
A with respect to the semilattice embedding e.

We shall denote the canonical extension C∨(A) of the ∨-semilattice A by Aδ
∨.

Every bounded lattice L has a reduct A in S and so, as a semilattice, is em-
beddable via e in the compact and dense complete lattice Aδ

∨. The embedding e
turns out to be a lattice homomorphism and consequently Aδ

∨ is revealed to be a
compact and dense completion of the lattice L. This leads to a theorem linking
lattice and semilattice canonical extensions.

Theorem Let L be a lattice with 0 and let A be its reduct in S. The lattice Aδ
∨ is

the canonical extension of L.

The canonical extension of a bounded distributive lattice is completely distribu-
tive. In [5] Gehrke and Harding established a restricted form of complete distribu-
tivity valid in the canonical extension of any bounded lattice; this provides an
important technical tool for the analysis of canonical extensions of lattice-based
algebras. We are able to show that Gehrke and Harding’s result extends to the
semilattice case. Specifically we prove that the canonical extension Aδ

∨ of a A ∈ S
satisfies the

∨∧
-restricted distributive law:

∨
{
∧
e(Y ) | Y ∈ Y } =

∧
{
∨
e(Z) | Z ⊆ A, ∀Y ∈ Y Z ∩ Y 6= ∅ },

where Y is a family of down-directed subsets of A. Order dually, the canonical
extension Aδ

∧ of the meet-semilattice reduct A∧ of L is, up to isomorphism, the
canonical extension of A and satisfies the

∧∨
restricted distributive law. By

considering the two semilattice reducts of a bounded lattice, we recapture Gehrke
and Harding’s result.

We have already noted that the profinite limit and the canonical extension of a
semilattice in S do not need to coincide. That is also true when the semilattice is
a reduct of a bounded lattice. However many examples can be found of (infinite)
lattices whose profinite and canonical completions do coincide. This happens in
particular for any bounded lattice that satisfying the Ascending Chain Condition
(ACC) and for any infinite chain. An infinite chain is a very special case of a
bounded distributive lattice L. Realising the canonical extension of L as the lattice
of all order-preserving maps from D(L, 2) to {0, 1}, we are able to prove that the

canonical extension Lδ is a semilattice retract of the profinite limit L̂∨. In some
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particular cases we can go further and prove that Lδ is isomorphic to L̂∨; equiva-
lently, the profinite limit of the lattice L is isomorphic to the profinite limit of its
join-semilattice reduct.

Theorem The canonical extension of a bounded distributive lattice A is iso-

morphic to the profinite limit Â∨ of its ∨-semilattice reduct A∨ whenever the poset
of prime ideals of A has finite width.

This result applies, for example, to every bounded distributive lattice with finite
width, which consequently has isomorphic profinite and canonical completions.
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Formulas of Finite Number
Propositional Variables in the

Intuitionistic Logic With the Solovay
Modality

Leo Esakia 1 , Revaz Grigolia 2

Abstract

A description of finitely generated free algebras over the variety of
Solovay algebras, as well as over its pyramid locally finite subvarieties
is given.

In [5] Robert Solovay, among other things, presented a set-theoretical
translation of modal formulas by putting 2p to mean ”p is true in every
transitive model of Zermelo-Fraenkel Set Theory ZF”. By defining an inter-
pretation as a function s sending modal formulas to sentences of ZF which
commutes with the Boolean connectives and putting s(2p) to be equal to the
statement ”s(p) is true in every transitive model of ZF”, Solovay formulated a
modal system, which we call here SOL, and announced its ZF-completeness.

SOL is the classical modal system which results from the Gödel-Löb
system GL (alias, the provability logic) by adding the formula 2(2p →
2q) ∨ 2(2q → 2p ∧ p) as a new axiom.

ZF-completeness: For any modal formula p, SOL ⊢ p iff ZF ⊢ s(p) for
any Solovay’s interpretation s. [1]

Now we shall formulate a simple system I.SOL, which is an intuitionistic
”companion” of SOL: the composition of the well-known Gödel’s modal
translation of Heyting Calculus and split-map (= splitting a formula 2p into
the formula p ∧ 2p) provides the needed embedding of I.SOL into SOL.

1Department of Mathematical Logic of A. Razmadze Mathematical Institute. e-mail:
esakia@hotmail.com

2Institute of Cybernetics, Tbilisi State University, e-mail:
grigolia@yahoo.com
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Definition 1. An intuitionistic modal system I.SOL is an extension of the
proof-intuitionistic logic KM obtained by postulating the formula (2p →
2q) ∨ (2q → p) as a new axiom.

We recall that the proof-intuitionistic logic KM (=Kuznetsov- Muravit-
sky [4]) is the Heyting propositional calculus HC enriched by 2 as Prov
modality satisfying the following conditions: p → 2p, 2p → (q ∨ (q →
p)), (2p → p) → p.

The purpose of this paper is to investigate the set of formulas of m propo-
sitional variable of the system I.SOL. The algebraic semantics for the system
I.SOL is based on the notion of Heyting algebra with an operator.

Definition 2. A Heyting algebra with an operator 2 is called Solovay algebra,
if the following conditions are satisfied: p ≤ 2p, 2p ≤ q ∨ (q → p), 2p →
p = p, (2p → 2q) ∨ (2q → p) = ⊤.

The class of all Solovay algebras forms a variety, which we denote by
SA. It is known that the variety SA is finitely approximated and that if
(H, 2) ∈ SA then the Heyting algebra H is cascade Heyting algebra [2]. A
Heyting algebra H is called a cascade Heyting algebra, if H belongs to the
variety generated by the class of all finite Boolean cascades. A finite Heyting
algebra H is a Boolean cascade, if there exist Boolean lattices B1, . . . , Bk

such that H = B1 + · · · + Bk, where each Bi is a convex sublattice of H
and Bi + Bi+1 denotes the ordinal sum of Bi and Bi+1 in which the smallest
element of Bi and the largest element of Bi+1 are identified.

• The variety of Solovay algebras is generated by cascade Heyting alge-
bras.

A topological space X with binary relation R is said to be GL-frame if:
1) X is a Stone space (i. e. 0-dimensional, Hausdorf and compact topological
space); 2) R(x) and R−1(x) are closed sets for every x ∈ X and R−1(A) is
a clopen for every clopen A of X; 3) for every clopen A of X and every
element x ∈ A there is an element y ∈ A \ R−1(A) such that either xRy or
x ∈ A \ R−1(A).

A map f : X1 → X2 from a GL-frame X1 to a GL-frame X2 is said to be
strongly isotone if f(x)R2y ⇔ (∃z ∈ X1)(xR1z&f(z) = y).

Let us denote by G the category of GL-frames and continuous strongly
isotone maps.
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An algebra (A; ∨, ∧,3,−, 0, 1) is said to be diagonalizable algebra if (A; ∨,
∧, −, 0, 1) is Boolean algebra and 3 satisfies the following conditions : (1)
3(a ∨ b) = 3(a) ∨ 3(b), (2)3(0) = 0, (3)3(a) ≤ 3(a ∨ −3(a)).

A pair (X; R) is said to be S-frame if : 1) (X; R) is GL-frame; 2)(X, R◦) is
a poset (where R◦ denotes a reflexive closure of R); 3) for every x, y, z, u ∈ X
if uRx,uRz,xRy and ¬(xRz), then zRy.

Let S be the category of S-frames and continuous strongly isotone maps.
The duality between the category of Solovay algebras and the category of
S-frames is obtained by specialization of the duality between the categories
D (diagonalizable algebras) and G on the case of Solovay algebras .

Now we describe finitely generated free Solovay algebras by means of a
description of corresponding frames using the coloring technics which is a
generalization of one-generated case, but not having such nice visualization.
We describe a frame X(n) for n > 1, corresponding to n-generated free
Solovay algebra FSA(n), by level, i. e. by the elements of fixed depth. The
set of elements of the first level (i. e. the set of elements with depth 1) X1(n)
contains 2n elements, every of which has a color p ⊂ {1, ..., n} thereby that
different elements have different colors. On X1(n) define the binary relation
R1 ⊂ X2

1 (n): xR1y is false for every x, y ∈ X1(n). It is clear that the Solovay
algebra FSA1(n) of all subsets of X1(n) is the free n-generated algebra in
SA1. Observe, that the algebra FSA1(n) is a diagonalizable algebra. Now
we represent the elements of the second level. For every element a ∈ X1(n)
there are a1, ..., ak ∈ X2(n) (= the set of all elements of the second level) with
Col(ai) ⊂ Col(a), i = 1, ..., k, such that ai is covered by only the element
a. Further, for every set {u1, ..., uk} of incomparable elements of X1(n) there
exists an element up such that p = Col(up) ⊂ ∩k

1 Col(ui) and up is covered
by only the elements u1, ..., uk. Let X ′

2(n) be the set of all elements of second
level, i. e. the elements of depth 2. Let X2(n) = X1(n) ∪ X ′

2(n) and R2

be the binary relation defined on X2(n) by the construction with xR2x for
every x ∈ X2(n). Now let us suppose that (Xm(n), Rm) is constructed and
construct (Xm+1, Rm+1) in the following way. For every element a ∈ Xm(n)
there are a1, ..., ak ∈ Xm+1(n) (= the set of all elements of the m-th level)
such that Col(ai) ⊂ Col(a), i = 1, ..., k, and ai is covered by only the
element a. For every set {u1, ..., uk} of incomparable elements of Xm(n),
such that every ui is covered by a fixed set U of elements of Xm−1(n) ,
there exists an element up such that p = Col(up) ⊂ ∩k

i=1 Col(ui) for every
i = 1, ..., k and up is covered by only the elements u1, ..., uk. Hereby become
exhausted all elements of m + 1 depth denoted by X ′

m+1(n). Let Xm+1(n) =
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Xm(n) ∪ X ′
m+1(n) and Rm+1 the binary relation defined on Xm+1(n) by this

construction with xRm+1x for every x ∈ Xm+1(n). Henceforth we suppose
that Rm (and Rm+1 as well) coincides with its transitive closure. The algebra
FSAm(n) of all upper cones of Xm(n) is a Solovay algebra from pyramid
variety SAm. Let (X(n), R) =

∪∞
i=1(Xi(n), Ri). In the Fig. 3 is depicted a

part of (X(n), R).
Notice, that the Heyting algebra of the frame R(x), for every x ∈ X(n), is

cascade Heyting algebra and, hence, it is S-frame. Let Gi = {x ∈ X(n) : i ∈
Col(x)}, i = 1, ..., n. Observe, that Gi is an upper cone of X(n). Let FSA(n)
be an algebra generated by the set {G1, ..., Gn} by operations ∪, ∩,→,2,
where 2Y = −R−1 − Y .

Theorem 3. 1) The algebra FSAm(n) is generated by {G
(m)
1 , ..., G

(m)
n }, where

G
(m)
i = Gi ∩ Xm(n).
2) The Solovay algebra FSA(n) is a subdirect product of algebras FSAm(n),

m = 1, 2, ....

Theorem 4. The algebra FSA(n) is n-generated free Solovay algebra for any
positive integer n.

One-generated free Solovay algebra is described in [3].
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CONTINUOUS METRICS

GONÇALO GUTIERRES AND DIRK HOFMANN

1. Introduction

Domain theory is generally concerned with the study of ordered sets admitting certain (typically up-
directed) suprema and a notion of approximation, here the latter amounts to saying that each element is
a (up-directed) supremum of suitably defined “finite” elements. From a different perspective, domains can
be viewed as very particular topological spaces; in fact, in his pioneering paper [5] Scott introduced the
notion of continuous lattice precisely as injective topological T0 space. This interplay between topology
and algebra is very nicely explained in [1] where, employing a particular property of monads of filters, the
authors obtain “new proofs and [. . . ] new characterizations of semantic domains and topological spaces by
injectivity”.

Since Lawvere’s ground-breaking paper [3] it is known that an individual metric spaces X can be viewed
as a category with objects the points of X, and the distance

d(x, y) ∈ [0,∞]

plays the role of the “hom-set” of x and y. More modestly, one can think of a metric d : X ×X → [0,∞]
as an order relation on X with truth-values in [0,∞] rather than in the Boolean algebra 2 = {false, true}.
In fact, writing 0 instead of true, > instead of ⇒ and additon + instead of and &, the reflexivity and
transitivity laws of an ordered set become

0 ≥ d(x, x) and d(x, y) + d(y, z) ≥ d(x, z) (x, y, z ∈ X),

and in this talk we follow Lawvere’s point of view and assume no further properties of d. As pointed out in
[3], “this connection is more fruitful than a mere analogy, because it provides a sequence of mathematical
theorems, so that enriched category theory can suggest new directions of research in metric space theory
and conversely”.

The concern of this talk is to contribute to the development of metric domain theory. Due to the many
facets of domains, this can be pursued by either

(1) formulating order-theoretic concepts in the logic of [0,∞],
(2) considering injective “[0,∞]-enriched topological spaces”, or
(3) studying the algebras of “metric filter monads”.

Inspired by [3], there is a rich literature employing the first point of view. However, in this talk we take a
different approach and concentrate on the second and third aspect above. Our aim is to connect the theory
of metric spaces with the theory of “[0,∞]-enriched topological spaces” in a similar fashion as domain
theory is supported by topology, where by “[0,∞]-enriched topological spaces” we understand Lowen’s
approach spaces [4]. Here an approach space is to a topological space what a metric space is to an ordered
set: it can be defined in terms of ultrafilter convergence where one associates to an ultrafilter x and a point
x a value of convergence a(x, x) ∈ [0,∞] rather then just saying that x converges to x or not. In particular,
injective T0 approach spaces correspond bijectively to a class of metric spaces, henceforth thought of
as “continuous metric spaces”, and we show that injective T0 approach spaces (aka “continuous metric
spaces”) can be equivalently described as continuous lattices equipped with an unitary and associative
action of the continuous lattice [0,∞].

2. Main definitions and results

2.1. Metric spaces. In this talk we consider metric spaces in a more general sense: a metric d : X×X →
[0,∞] on a set X is only required to satisfy

0 > d(x, x) and d(x, y) + d(y, z) > d(x, z).
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For convenience we often also assume d to be separated meaning that d(x, y) = 0 = d(y, x) implies x = y.
A map f : X → X ′ between metric spaces X = (X, d) and X ′ = (X ′, d′) is a metric map whenever
d(x, y) > d′(f(x), f(y)) for all x, y ∈ X. The category of metric spaces and metric maps is denoted by Met.
To every metric space X = (X, d) one associates its dual space Xop = (X, d◦) where d◦(x, y) = d(y, x), for
all x, y ∈ X.

There is a canonical forgetful functor (−)p : Met → Ord: for a metric space (X, d), put x ≤ y if 0 >
d(x, y), and every metric map preserves this order. The induced order of a metric space extends pointwise
to metric maps making Met an ordered category, which enables us to talk about adjunction. Here metric
maps f : (X, d)→ (X ′, d′) and g : (X ′, d′)→ (X, d) form an adjunction, written as f a g, if 1X ≤ g · f and
f · g ≤ 1X′ ; equivalently, f a g if and only if, for all x ∈ X and x′ ∈ X ′,

d′(f(x), x′) = d(x, g(x′)).

The category Met is complete and, for instance, the product X ×Y of metric spaces X = (X, a) and (Y, b)
is given by the Cartesian product of the sets X and Y equipped with the max-metric

d((x, y), (x′, y′)) = max(a(x, x′), b(y, y′)).

More interestingly to us is the plus-metric

d′((x, y), (x′, y′)) = a(x, x′) + b(y, y′)

on the set X × Y , we write a ⊕ b for this metric and denote the resulting metric space as X ⊕ Y . This
operation is better behaved then the product × in the sense that, for every metric space X, the functor
X ⊕− : Met→ Met has a right adjoint (−)X : Met→ Met.

In the sequel we consider the metric space [0,∞], with metric µ defined by µ(u, v) = v 	 u := max{v −
u, 0}.

A metric space X = (X, d) is called cocomplete if every “down-set”, i.e a metric map ψ : Xop → [0,∞],
has a supremum. This is the case precisely if, for all ψ ∈ [0,∞]X

op
and all x ∈ X,

d(SupX(ψ), x) = sup
y∈X

(d(y, x)	 ψ(y)) = [ψ, yX(x)];

hence X is cocomplete if and only if the Yoneda embedding yX : X → [0,∞]X
op

has a left adjoint

SupX : [0,∞]X
op → X in Met. More generally, one has:

Proposition 2.1. For a metric space X, the following conditions are equivalent.

(i) X is injective (with respect to isometries).
(ii) yX : X → [0,∞]X

op
has a left inverse.

(iii) yX has a left adjoint.
(iv) X is cocomplete.

Here a metric map i : (A, d)→ (B, d′) is called isometry if one has d(x, y) = d′(i(x), i(y)) for all x, y ∈ A,
and X is injective if, for all isometries i : A → B and all f : A → X in Met, there exists a metric map
g : B → X with g · i ' f . Dually, an infimum of an “up-set” ϕ : X → [0,∞] in X = (X, d) is an element
x0 ∈ X such that, for all x ∈ X,

d(x, x0) = sup
y∈X

(d(x, y)	 ϕ(y)).

A metric space X is complete if every “up-set” has an infimum. By definition, an infimum of ϕ : X → [0,∞]
in X is a supremum of ϕ : (Xop)op → [0,∞] in Xop, and everything said above can be repeated now in its
dual form.

We are particularly interested in those metric spaces X = (X, d) which admit suprema of metric “down-
sets” of the form ψ = d(−, x) + u where x ∈ X and u ∈ [0,∞]. We write x + u for this suprema. The
element x+ u ∈ X is characterised up to equivalence by

d(x+ u, y) = d(x, y)	 u, for all y ∈ X.

A metric map f : (X, d) → (X ′, d′) preserves the supremum of ψ = d(−, x) + u if and only if f(x + u) '
f(x) + u. Dually, an infimum of an “up-set” of the form ϕ = d(x,−) + u is denote by x 	 u, and it is
characterised up to equivalence by

d(y, x	 u) = d(y, x)	 u.
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One calls a metric space tensored if it admits all suprema x + u, and cotensored if X admits all infima
x	 u.

Theorem 2.2. Let X = (X, d) be a metric space. Then the following assertions are equivalent.

(i) X is cocomplete
(ii) X has all order-theoretic suprema and is tensored and cotensored.

(iii) X is has all (order theoretic) suprema, is tensored and, for every x ∈ X, the monotone map
d(−, x) : Xp → [0,∞] preserves suprema.

Under these conditions, the supremum of a “down-set” ψ : Xop → [0,∞] can be calculated as

Supψ = inf
x∈X

(x+ ψ(x)).

When X = (X, d) is a tensored metric space, one has a metric map

X ⊕ [0,∞]→ X, (x, u) 7→ x+ u,

and one easily verifies the following properties.

(1) For all x ∈ X, x+ 0 ' x.
(2) For all x ∈ X and all u, v ∈ [0,∞], (x+ u) + v ' x+ (u+ v).
(3) + : Xp × [0,∞]→ Xp is monotone in the first and anti-monotone in the second variable.

(4) For all x ∈ X and (ui)i∈I in [0,∞], x+ inf
i∈I

ui '
∨

i∈I
(x+ ui).

If X is separated, then the first three conditions just tell us that Xp is an algebra for the monad induced
by the monoid ([0,∞],>,+, 0) on Ordsep. Hence, X 7→ Xp defines a forgetful functor

Metsep,+ → Ord[0,∞]
sep ,

where Metsep,+ denotes the category of tensored and separated metric spaces and tensor preserving metric

maps, and Ord
[0,∞]
sep the category of separated ordered sets with an unitary and associative action of ([0,∞],>

,+, 0), [0,∞]-algebras for short, and monotone maps which preserve this action.
Conversely, let now X be a [0,∞]-algebra with action + : X × [0,∞]→ X. We define

d(x, y) = inf{u ∈ [0,∞] | x+ u ≤ y}.

Theorem 2.3. The category Metsep,+ is equivalent to the full subcategory of Ord
[0,∞]
sep defined by those

[0,∞]-algebras satisfying (4). Under this correspondence, (X, d) is a cocomplete separated metric space if
and only if the [0,∞]-algebra X has all suprema and (−)+u : X → X preserves suprema, for all u ∈ [0,∞].

2.2. Continuous metric spaces. Approach spaces [4] can be introduced in many different ways, in this
talk we think of them mainly as convergence structures, that is, as pairs (X, a) where X is a set and
a : UX ×X → [0,∞] satisfies

0 > a(
�
x, x) and Ua(X, x) + a(x, x) > a(mX(X), x),

for X ∈ UUX, x ∈ UX, x ∈ X and Ua(X, x) = supA∈X,A∈x infa∈A,x∈A a(a, x). Approach spaces and approach
maps (= convergence preserving maps) are the objects and morphisms of the category App.

By analogy with ordered sets and metric spaces, we think of an approach map ψ : (UX)op → [0,∞]
(with (UX)op suitably defined) as a “down-set” of X. A point x0 ∈ X is a supremum of ψ if

a(
�
x0, x) = sup

x∈UX
a(x, x)	 ψ(x),

for all x ∈ X. An approach map f : (X, a)→ (Y, b) preserves the supremum of ψ if

b(
�

f(x0), y) = sup
y∈UY

b(Uf(x), y)	 ψ(x).

We call an approach space X cocomplete if every “down-set” ψ : (UX)op → [0,∞] has a supremum in
X, and we call an approach space X totally cocomplete if the Yoneda embedding yX : X → PX (with

PX := [0,∞](UX)op) has a left adjoint in App. It is shown in [2] that

145



• the totally cocomplete approach spaces are precisely the injective ones, and that
• the category

ContMet

of totally cocomplete approach T0 spaces and supremum preserving (= left adjoint) approach maps
is monadic over App, Met and Set. The construction X 7→ PX is the object part of the left adjoint
P : App → ContMet of the inclusion functor ContMet → App, and the maps yX : X → PX define
the unit y of the induced monad P = (P, y ,m) on App. Composing this monad with the adjunction
(−)d a (−) : App� Set gives the corresponding monad on Set.

This resembles very much well-known properties of injective topological T0 spaces, which are known to
be the algebras for the filter monad on Top, Ord and Set. These analogies make us confident that totally
cocomplete approach T0 spaces provide an interesting metric counterpart to continuous lattices. We write
ContLat to denote the category of continuous lattices and maps preserving all infima and up-directed
suprema.

Proposition 2.4. The category ContLat admits a tensor product which represents bimorphisms. That is,
for all X,Y in ContLat, the functor

Bimorph(X × Y,−) : ContLat→ Set

is representable by some object X ⊗ Y in ContLat.

By unicity of the representing object, 1⊗X ' X ' X⊗1 and (X⊗Y )⊗Z ' X⊗(Y ⊗Z). Furthermore,
[0,∞] is actually a monoid in ContLat since + : [0,∞] × [0,∞] → [0,∞] is a bimorphism and therefore it
is a morphism + : [0,∞]⊗ [0,∞]→ [0,∞] in ContLat, and so is 1→ [0,∞], ? 7→ 0. We write

ContLat[0,∞]

for the category whose objects are continuous lattices X equipped with a unitary and associative action
+ : X ⊗ [0,∞] → X in ContLat, and whose morphisms are those ContLat-morphisms f : X → Y which
satisfy f(x+ u) = f(x) + u, for all x ∈ X and u ∈ [0,∞]. Our main result states now:

Theorem 2.5. ContMet is equivalent to ContLat[0,∞].

If an approach space (X, a) is totally cocomplete, then its underlying metric is tensored. Here, X = (X, a)

is sent to its underlying ordered set where x ≤ y ⇐⇒ a(
�
x, y) = 0 (x, y ∈ X) equipped with the tensor

product of X. A continuous lattice X with action + is sent to the approach space (X, a) induced by

the metric d and the topology α, with d(x, y) = inf{u ∈ [0,∞] | x + u ≤ y}, α(x) =
∧

A∈x

∨

x∈A
x and

a(x, x) = d(α(x), x).
Finally, note that a map f : X → Y between injective approach spaces is an approach map if and only

if f preserves down-directed suprema and, for all x ∈ X and u ∈ [0,∞], f(x) + u ≤ f(x+ u).
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METRIC COMPACT HAUSDORFF SPACES

GONÇALO GUTIERRES AND DIRK HOFMANN

1. Introduction

Motivated to the observation (due to Hausdorff, but see [5]) that a metric d : X × X → [0,∞] can
be seen as a generalised order relation where one trades the Boolean algebra 2 = {false, true} for the
quantale [0,∞], we study possible metric twins of order and domain-theoretic notions and show that
they indeed look very much alike. The class of stably compact spaces, or equivalently ordered compact
Hausdorff spaces, is the class of domains with arguably the most direct generalisation to metric spaces.
The latter were introduced by [7] as triples (X,≤,O) where (X,≤) is an ordered set (we do not assume
anti-symmetry here) and O is a compact Hausdorff topology on X so that {(x, y) | x ≤ y} is closed in
X ×X. A morphism of ordered compact Hausdorff spaces is a map f : X → Y which is both monotone
and continuous. We denote as OrdCompHaus the resulting category of ordered compact Hausdorff space
and morphisms.

In [8] it is shown that ordered compact Hausdorff spaces are precisely the Eilenberg-Moore algebras
for the ultrafilter monad U = (U, e,m) suitably defined on Ord, the category of ordered sets. Here the
functor U : Ord → Ord sends an ordered set X = (X,≤) to the set UX of all ultrafilters on the set X
equipped with the order relation

x ≤ y whenever ∀A ∈ x, B ∈ y ∃x ∈ A, y ∈ B . x ≤ y; (x, y ∈ UX)

and the maps

eX : X → UX mX : UUX → UX

x 7→ �
x := {A ⊆ X | x ∈ A} X 7→ {A ⊆ X | A# ∈ X}

(where A# := {x ∈ UX | A ∈ x}) are monotone with respect to this order relation. Then, for α : UX → X
denoting the convergence of the compact Hausdorff topologyO, (X,≤,O) is an ordered compact Hausdorff
space if and only if α : U(X,≤)→ (X,≤) is monotone.

The presentation in [8] is even more general and gives also an extension of the ultrafilter monad U to
Met. For a metric space X = (X, d) and ultrafilters x, y ∈ UX, one defines a distance

Ud(x, y) = sup
A∈x,B∈y

inf
x∈A,y∈B

d(x, y)

and turns this way UX into a metric space. Then eX : X → UX and mX : UUX → UX are metric maps
and Uf : UX → UY is a metric map if f : X → Y is so. Such a space can be described as a triple (X, d, α)
where (X, d) is a metric space and α is (the convergence relation of) a compact Hausdorff topology on
X so that α : U(X, d) → (X, d) is a metric map. We denote the category of metric compact Hausdorff
spaces and morphisms (i.e. maps which are both metric maps and continuous) as MetCompHaus.

Example 1.1. The metric space [0,∞] with metric µ(u, v) = v 	 u becomes a metric compact Haus-
dorff space with the Euclidean compact Hausdorff topology whose convergence is given by ξ(v) =
supA∈v infv∈A v, for v ∈ U [0,∞].

2. Main definitions and results

2.1. Stably compact topological spaces. Anti-symmetric ordered compact Hausdorff spaces can be
equivalently seen as special topological spaces. In fact, both structures of an ordered compact Hausdorff
space X = (X,≤,O) can be combined to form a topology on X whose opens are precisely those elements
of O which are down-sets in (X,≤). An ultrafilter x ∈ UX converges to a point x ∈ X with respect to this
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new topology if and only if α(x) ≤ x, where α : UX → X denotes the convergence of (X,O). Hence, ≤ is

just the underlying order of O (x ≤ y if
�
x→ y) and α(x) is a smallest convergence point of x ∈ UX with

respect to this order. Then, we can recover both ≤ and α from O. A T0 space X = (X,O) comes from a
anti-symmetric ordered compact Hausdorff space precisely if X is stably compact (see [4], for instance).

If we start with a metric compact Hausdorff space X = (X, d, α) instead, the construction above
produces, for every x ∈ UX and x ∈ X, the value of convergence

(∗) a(x, x) = d(α(x), x) ∈ [0,∞],

which brings us into the realm of approach spaces.

2.2. Stably compact approach spaces. An approach space [6] is defined as a pair (X, δ) consisting of
a set X and an approach distance δ on X, that is, a function δ : X × 2X → [0,∞] satisfying

(1) δ(x, {x}) = 0,
(2) δ(x,∅) =∞,
(3) δ(x,A ∪B) = min{δ(x,A), δ(x,B)},
(4) δ(x,A) 6 δ

(
x,A(ε)

)
+ ε, where A(ε) = {x ∈ X | δ(x,A) 6 ε},

for all A,B ⊆ X, x ∈ X and ε ∈ [0,∞]. A map f : (X, δ) → (Y, δ′) is an approach map if δ(x,A) >
δ′(f(x), f(A)), for every A ⊆ X and x ∈ X. Approach spaces and approach maps are the objects and
morphisms of the category App.

As in the case of topological spaces, approach spaces can be described in terms of many other concepts
such as “closed sets” or convergence. For instance, every approach distance δ : X × 2X → [0,∞] defines
a map

a : UX ×X → [0,∞], a(x, x) = sup
A∈x

δ(x,A),

and vice versa, every a : UX ×X → [0,∞] defines a function

δ : X × 2X → [0,∞], δ(x,A) = inf
A∈x

a(x, x).

Furthermore, a mapping f : X → Y between approach spaces X = (X, a) and Y = (Y, b) is an approach
map if and only if a(x, x) > b(Uf(x), f(x)), for all x ∈ UX and x ∈ X. The convergence maps ([2]) are
precisely the functions a : UX ×X → [0,∞] satisfying

0 > a(
�
x, x) and Ua(X, x) + a(x, x) > a(mX(X), x),

where X ∈ UUX, x ∈ UX, x ∈ X and

Ua(X, x) = sup
A∈X,A∈x

inf
a∈A,x∈A

a(a, x).

We can restrict a : UX ×X → [0,∞] to principal ultrafilters and obtain a metric

a0 : X ×X → [0,∞], (x, y) 7→ a(
�
x, y) = δ(y, {x})

on X. Certainly, an approach map is also a metric map, therefore this construction defines a functor from
App to Met, the category of metric spaces and non-expansive maps, and then also to Ord.

Returning to metric compact Hausdorff spaces, one easily verifies that (∗) defines an approach structure
on X (see [8], for instance). Since a homomorphism between metric compact Hausdorff spaces becomes
an approach map with respect to the corresponding approach structures, one obtains a functor

K : MetCompHaus→ App.

The underlying metric of KX is just the metric d of the metric compact Hausdorff space X = (X, d, α),
and x = α(x) is a generic convergence point of x in KX in the sense that

a(x, y) = d(x, y),

for all y ∈ X. The point x is unique up to equivalence since. We call an T0 approach space stably compact
if it is of the form KX, for some metric compact Hausdorff space X.
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Lemma 2.1. Let (X, d, α), (Y, d′, β) be metric compact Hausdorff spaces with corresponding approach
spaces (X, a) and (Y, b), and let f : X → Y be a map. Then f is an approach map f : (X, a) → (Y, b) if
and only if f : (X, d)→ (Y, d′) is a metric map and β · Uf(x) ≤ f · α(x), for all x ∈ UX.

It is an important fact that K has a left adjoint

M : App→ MetCompHaus

which can be described as follows (see [3]). For an approach space X = (X, a), MX is the metric
compact Hausdorff space with underlying set UX equipped with the compact Hausdorff convergence
mX : UUX → UX and the metric

d : UX × UX → [0,∞], (x, y) 7→ inf{ε ∈ [0,∞] | (∀A ∈ x) A(ε) ∈ y},
and Mf := Uf : UX → UY is a homomorphism between metric compact Hausdorff spaces provided that
f : X → Y is an approach map between approach spaces. The unit and the counit of this adjunction are
given by

eX : (X, a)→ (UX, d(mX(−),−)) and α : (UX, d,mX)→ (X, d, α)

respectively, for (X, a) in App and (X, d, α) in MetCompHaus.

Remark 2.2. All what was said here about metric compact Hausdorff spaces and approach space can be
repeated, mutatis mutandis, for ordered compact Hausdorff spaces and topological spaces. For instance,
the funcor K : OrdCompHaus→ Top has a left adjoint M : Top→ OrdCompHaus which sends a topological
space X to (UX,≤,mX), where

x ≤ y whenever (∀A ∈ x) A ∈ y,

for all x, y ∈ UX.

Example 2.3. The metric space [0,∞] with distance µ(x, y) = y	x equipped with the Euclidean compact
Hausdorff topology where x converges to ξ(x) := supA∈x inf A is a metric compact Hausdorff space (see
Example 1.1) which gives the “Sierpiński approach space” [0,∞] with approach convergence structure
λ(x, x) = x	 ξ(x).

As any adjunction, M a K induces a monad on App (respectively on Top). Here, for any approach
space X, the space KM(X) is the set UX of all ultrafilters on the set X equipped with an apporach
structure, and the unit and the multiplication are essentially the ones of the ultrafilter monad. Therefore
we denote this monad also as U = (U, e,m). In particular, one obtains a functor U := KM : App→ App
(respectively U := KM : Top → Top). Surprisingly or not, the categories of algebras are equivalent to
the Eilenberg–Moore categories on Ord and Met:

OrdU ' TopU and MetU ' AppU.

For any metric compact Hausdorff space (X, d, α) with corresponding approach space (X, a), α : U(X, a)→
(X, a) is an approach map; and for an approach space (X, a) with Eilenberg–Moore algebra structure
α : U(X, a) → (X, a), (X, d, α) is a metric compact Hausdorff space where d is the underlying metric of
a and a is the approach structure induced by d and α.

If X is T0, then an approach map α : UX → X is an Eilenberg–Moore algebra structure on X if and
only if α · eX = 1X . Hence, a T0 approach space X = (X, a) is a U-algebra if and only if

(1) every ultrafilter x ∈ UX has a generic convergence point α(x) meaning that a(x, x) = a0(α(x), x),
for all x ∈ X, and

(2) the map α : UX → X is an approach map.

It is observed already in [3] that the latter condition can be substituted by

(2’) X is +-exponentiable.

Finally, the former condition can be splitted into the following two conditions:

(1a) for every ultrafilter x ∈ UX, a(x,−) is an approach prime element, and
(1b) X is sober (see [1]).
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Hence, every stably compact approach space is sober. We call a +-exponentiable approach space X stable
if X satisfies the condition (1a) above, and with this nomenclature one has

Proposition 2.4. A T0 approach space X is stably compact if and only if X is sober, +-exponentiable
and stable.
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Non-associative BL-algebras and
quantum structures

Radomı́r Halaš

Various kinds of algebras have been treated in the last decades in connec-
tion with foundational questions about the formalism of quantum mechanics
[12]. Among these algebras, which are in general referred to as quantum
structures, we find for instance effect algebras [13], MV-algebras [10] and
BCK-algebras [16]. Note that effect algebras were introduced by Foulis an
Bennett in 1994 and the class of effect algebras includes orthomodular lat-
tices and a subclass equivalent to MV-algebras. In other words, they are
considered to be as an algebras of many-valued quantum logics.

On the other hand, the most celebrated fuzzy logic, Hájek’s basic logic
BL formalized by the class BL of BL-algebras, aims at formalizing in a quite
general manner statements of fuzzy nature. It is a calculus of propositions
which are true principly only to a certain degree, that is, to which in general
no sharp yes or no is assigned.

We find that BL-algebras are relatively closely related to the quantum
structures: BL-algebras generalize MV-algebras, which in turn are special
cases of effect algebras; furthermore, as shown in [17], BL-algebras can be
equivalently defined in the language of BCK-algebras.

In order to unify many-valued and quantum logics, in a recent paper [8]
a new class BA of algebras, called basic algebras, was established.
Recall that a basic algebra is an algebra A = (A;⊕,¬, 0) of type (2, 1, 0)
satisfying the following identities

(BA1) x⊕ 0 = x;

(BA2) ¬¬x = x (double negation);

(BA3) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x ( Lukasiewicz axiom);

(BA4) ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = ¬0.

We emphasize that the classes BA and BL are quite different in the
sense that each of them is not properly contained in the other one, and
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their intersection is just the class MV . Certain important subclasses of
BA have been considered, which are somewhat more convenient to handle.
The mentioned special classes play an important role in connection with the
original motivation to study quantum structures, and they naturally appear
in a different context in the context of fuzzy logic.

In [3] we offered a non-associative fuzzy logic CBA, having as an equiva-
lent algebraic semantics lattices with section antitone involutions satisfying
the contraposition law, the so-called commutative basic algebras. The class
(variety) CBA of commutative basic algebras has been intensively studied
in series of papers (see e.g. [1], [4], [5], [8], [6]) and includes the class of MV-
algebras. We have shown that the logic CBA is very close to the  Lukasiewicz
logic, both having the same finite models, and can be understood as its non-
associative generalization. CBA can be understood as the algebraic model
of a certain many-valued quantum logic, see [8].

Recently a non-associative version of BL-algebras, the so-called NABL-
algebras, being an equivalent algebraic semantics of the logic NABL, was
presented by M. Botur, see [2]: recall that
an algebra A = (A,∨,∧, ·,→, 0, 1) of type 〈2, 2, 2, 2, 0, 0〉 is a non-associative
residuated lattice if

(A1) (A,∨,∧, 0, 1) is a bounded lattice,

(A2) (A, ·, 1) is a commutative groupoid with the neutral element 1,

(A3) for any x, y, z ∈ A, x · y ≤ z if and only if x ≤ y → z (adjointness
property).

Moreover, if A = (A,∨,∧, ·,→, 0, 1) satisfies both

(x→ y) ∨ αa
b (y → x) = 1, (α-prelinearity)

(x→ y) ∨ βa
b (y → x) = 1, (β-prelinearity)

then it is called an NABL-algebra.
Botur has shown that NABL-algebras are closely related to so-called cop-

ulas. Recall that copulas are a class of aggregation operators. Formally, they
have most often been applied in probability theory where they play a cen-
tral role in the process of joining marginal probability distributions to form
multivariate probability distribution functions. Nowadays there are quite a
lot of papers being devoted to their applications in multi-valued logic. One
can mention e.g. [18], [15] etc.
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Botur has shown that it NABL forms a variety generated just by non-
associative t-norms. Consequently, the logic NABL logic is the logic of
non-associative t-norms and their residua [2].

Since the structure theory of most quantum structures is a rather difficult
matter, several of their subclasses have been considered, which are somewhat
convenient to handle. For example, the Riesz decomposition property was
introduced for effect algebras. Whereas these special properties play basi-
cally no role in connection with the original motivation to study quantum
structures, we see that they now naturally appear in a different context - in
the context of fuzzy logic.

To see that some of them are actually the characteristic properties of
NABL-algebras among certain very basic types of algebras, is the aim of our
talk. We procced as follows: NABL-algebras have a conjunction-like and
an implication-like operation, and each of these two operations is definable
from each other. We shall view them as special bounded NAGs, where NAG
means an abelian groupoid ordered in the natural manner. We consider
NABL-algebras as special bounded BCK-like-algebras. The properties which
single out NABL-algebras among both types of structures are those of the
mentioned kind: the residuation property, the Riesz decomposition property,
the strong cancellativity and the property of being mutual compatible. We
characterize to which subclasses of NAGs and of BCK-like and effect-like-
algebras certain important subvarieties of NABL-algebras correspond.
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Abstract

The graphical games of Delande and Miller [4] and Hirschowitz [5, 6] have been used in proof
search and provability. This work obtains a first proof theoretical result using them. We define
games for Multiplicative Linear Logic with units (MLL) over a set A of atomic propositions. We
then construct a category of plays G(A), using a new method based on (i) a category P containing
plays as particular morphisms, (ii) a stack (a weak variant of sheaves) of plays, with amalgamation
in the stack implementing parallel composition, (iii) a factorisation system on P, which we use to
implement hiding. We finally prove that G(A) is the free split ?-autonomous category over A [7].

1 Context

Although game semantics has been a successful source of models for proof theories and programming
languages, there is still no general, abstract account of what makes it work. A folklore intuition seems
to be that strategies are a coinductive counterpart to traditional, inductive proof trees, where inference
rules become moves. Total and finite innocent strategies should then correspond to proofs modulo cut
elimination.

However, the standard technical approach to game semantics and composition of strategies in partic-
ular is very combinatorial and low-level, and seems hard to generalise. More recent work [9, 10] attempts
to give a more abstract account of composition, by both structuring positions of the game using event
structures, and exhibiting relevant structure in strategies.

Here, we follow the same route (in the context of propositional MLL), but structuring positions
as particular graphs, and exhibiting different structure in plays. This allows us to handle both game
semantical parallel composition and hiding, in a way that seems more amenable to generalisation.

2 Game

Positions of our game are partial directed graphs E V
t

s
, where s and t are partial maps from

edges to their source and target vertices, whose edges are labelled in MLL formulas over A = {a, b, . . . },
defined by the grammar:

A,B, . . . ::= A | 1 | A⊗B
| A⊥ | ⊥ | A`B. (1)

Positions form a category P. Positions are considered equivalent modulo simultaneous linear negation

and reversal of each edge, i.e., an edge
A−→ is the same as an edge

A⊥←−−.
A morphism f : (E, V )→ (E′, V ′) of positions consists of a mapping f : E + V → E′ + V ′, such that

• vertices are mapped to vertices,

• for any edge mapped to a vertex v, its source and target, when they exist, are also mapped to v,

• for any edge mapped to an edge e′, its source and target, when they exist, are mapped to the source
and target of e′,

plus, for any edge e labelled A mapped to an edge e′ labelled B, an occurrence of A in B (taking care in
the right way of linear negation).

In particular, edges may be collapsed to vertices.
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Moves are particular morphisms in P. An example move is the morphism:

A⊗BΓ

∆
←

A

B

Γ

∆

(2)

which corresponds to the tensor rule of MLL. (A move V  U is a morphism V ← U .) The morphism is
more than a mere relation, e.g., it associates to the A edge the “left” occurrence (denoted by 0) in A⊗B.
Moves are stable under restriction, or pullback along a subposition, e.g., the morphism

A⊗BΓ

∆
←

A

B

Γ

∆
(3)

is still a move.

3 Parallel composition as amalgamation of plays

By passing from sequential plays

U
m1

U1

m2
U2 . . . Un−1

mn
Un (4)

to plays, i.e., morphisms admitting a decomposition into moves, we obtain a stack (a weak version of
sheaves). This means that compatible plays on parts of a given position canonically amalgamate into a
play on the whole. To explain what this means, consider the positions

a⊗ 1 (a` a⊥)⊗ a
and

(a` a⊥)⊗ a a⊗ 1

which we denote by a⊗ 1 ` (a` a⊥)⊗ a and (a` a⊥)⊗ a ` a⊗ 1. Next consider the following plays from
them:

a ⊗ 1

( a ` a⊥ )⊗ a

( a ` a⊥ )⊗ a

a ⊗ 1 .

For readability, we here use a condensed semi-graphical representation of plays: the graphical part shows
the final position, and each edge connects to the textual part through its occurrence in the initial position.
It does not work in general, but does for plays on positions of the present form. For example, the left-hand
picture really denotes the morphism

From

a

a

1

a

a⊥

To a⊗ 1 (a` a⊥)⊗ a
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Amalgamating these plays along the (a` a⊥)⊗ a edge in the stack amounts to gluing them along the
corresponding edges, as in:

a ⊗ 1

( a ` a⊥ )⊗ a

a ⊗ 1 ,

 

a ⊗ 1

a ⊗ 1 ,

a

a⊥

a (5)

yielding a play p : U ′ → U over U = (a⊗ 1 ` (a` a⊥)⊗ a ` a⊗ 1), i.e.,

a⊗ 1 (a` a⊥)⊗ a a⊗ 1 . (6)

We restrict plays to an adequate notion of won plays, by asking that each vertex (also called player)
holds a won neighbourhood, i.e., one of either shape:

1

1

1 1

1

a

a

.

By quotienting won plays by isomorphism of plays, we obtain a sheaf S. Amalgamation in S corresponds
to parallel composition in game semantics.

We finally mention that the proof that plays form a stack recasts Guerrini and Masini’s [8] parsing
criterion (P) and Danos and Regnier’s [3] criterion (DR). P here appears as an obviously adequate
criterion for detecting plays, but does not mix well with parallel composition, in the sense that locally
satisfying P does not easily imply globally satisfying it. On the other hand, morphisms locally satisfying
DR easily form a stack, and turn out to also coincide with plays (by reduction to the analogous question
for proof nets).

4 Cut elimination as a factorisation system

We finally define composition by finding what corresponds to hiding, for which we use a factorisation
system. Recall the play p : U ′ → U obtained by amalgamation, and depicted in 5. First, there is
a morphism c from U to V = (a ⊗ 1 ` a ⊗ 1), which merely collapses the middle edge e (labelled
(a` a⊥)⊗ a), as in:

Γ ∆
A → Γ ∆ (7)

Our factorisation system provides the dashed arrows in

U ′ V ′

U V ,

c′

qc

p

(8)

such that c′ consists of some collapses of (non-dangling) edges, while q is a play. On our example, this
collapses all edges above e, yielding the play q:

a ⊗ 1

a ⊗ 1 .

(9)

157



This defines a category G(A), where morphisms are (isomorphism classes of) such plays, and composition
is by amalgamation + factorisation. Associativity of composition is a consequence of functoriality of
factorisation, i.e., factoring along two cuts c1, and then c2, is the same as factoring along their composition.

We then show that G(A) is proof-theoretically relevant. As is well-known, the categorical counterpart
of MLL is ?-autonomous structure [1, 2, 11]. Hughes [7] defines split ?-autonomous categories, where the
usual structural unit isomorphisms A→ A⊗ I and I ⊗A→ A are only required to have left inverses, as
opposed to two-sided inverses. He then shows that the free ?-autonomous category over A is a quotient of
the free split ?-autonomous category T (A) over A, under so-called Trimble rewiring [11]. We here show
that G(A) is isomorphic to T (A) as a split ?-autonomous category (and hence that it is free).

5 Further work

A first direction for further work is to pursue our investigation of MLL, recovering the free ?-autonomous
category. This will involve passing to (innocent) strategies, as opposed to plays. We could also consider
extending our results to MALL.

We are also considering infinite settings, i.e., those corresponding to logics with contraction.
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On l-implicative-groups and associated algebras of logic
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1 Introduction

Pseudo-MV algebras, the non-commutative generalizations of Chang’s MV algebras, were introduced in
1999 and developed in [7]. Pseudo-MV algebras are intervals [6] in l-groups and pseudo-Wajsberg algebras
are term equivalent [3], [4] to pseudo-MV algebras. Hence, pseudo-Wajsberg algebras had to be connected
to a notion that is term equivalent to the l-group. That notion was introduced and studied in [8] under
the name: the l-implicative-group.

l− implicative− group ⇐⇒ l − groups

m m
pseudo−Wajsberg algebras ⇐⇒ pseudo−MV algebras

We recall the following definitions and results from [8]:
• An implicative-group is an algebra G = (G,→,;, 0) of type (2, 2, 0) such that the following axioms

hold: for all x, y, z ∈ G,
(I1) y → z = (z → x) ; (y → x), y ; z = (z ; x)→ (y ; x),
(I2) y = (y → x) ; x, y = (y ; x)→ x,
(I3) x = y ⇐⇒ x→ y = 0⇐⇒ x; y = 0,
(I4) x→ 0 = x; 0.

The implicative-group is said to be commutative or abelian if x→ y = x; y, for all x, y ∈ G.
The groups and the implicative-groups are termwise equivalent.
• A partially-ordered implicative-group or a po-implicative-group for short is a structure G = (G,≤,→

,;, 0), where (G,→,;, 0) is an implicative-group and ≤ is a partial order on G compatible with →, ;,
i.e. we have: for all x, y, z ∈ G,
(I5) x ≤ y implies z → x ≤ z → y and z ; x ≤ z ; y.
• If the partial order relation ≤ is a lattice order relation, then G is a lattice-ordered implicative-group

or an l-implicative-group for short, denoted G = (G,∨,∧,→,;, 0).
The l-groups and the l-implicative-groups are termwise equivalent.

2 Normal filters/ideals and compatible deductive systems

2.1 po-groups (po-implicative groups) and associated algebras on G−, G+

Recall the following definition: Let Gg = (G,≤,+,−, 0) be a po-group. A convex po-subgroup S of Gg is
normal if the following condition (Ng) holds: for any g ∈ G, S + g = g + S.

We introduce now the following definition: Let Gig = (G,≤,→,;, 0) be a po-implicative-group. A
deductive system S of Gig is compatible if the following condition (Cig) holds: for any x, y ∈ G, x → y ∈
S ⇐⇒ x; y ∈ S.
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Theorem 2.1 Let Gig = (G,≤,→,;, 0) be a po-implicative-group (or let Gg = (G,≤,+,−, 0) be a po-
group). Let S be a deductive system of Gig (or, equivalently, a convex po-subgroup of Gg).
Then, S is compatible if and only if S is normal, i.e. (Cig)⇐⇒ (Ng).

We introduce now the following definition:
(1) LetML = (ML,≤,¯, 1) be a left-partially-ordered integral monoid (left-poim). A filter SL ofML

is normal if the following condition (NL) holds: for any x ∈ML, SL ¯ x = x¯ SL.
(1’) LetMR = (MR,≤,⊕, 0) be a right-poim. An ideal SR ofMR is normal if the following condition

(NR) holds: for any x ∈MR, SR ⊕ x = x⊕ SR.

Proposition 2.2 Let G = (G,≤,+,−, 0) be a po-group and S be a normal convex po-subgroup of G. Then,
(1) SL = S ∩G− is a normal filter of the left-poim G− = (G−,≤,¯ = +,1 = 0).
(1’) SR = S ∩G+ is a normal ideal of the right-poim G+ = (G+,≤,⊕ = +,0 = 0).

Recall the following definition (see [9], Definition 2.2.1):
Let AL = (AL,≤,→L,;L, 1) be a left-pseudo-BCK algebra. We say that a (→L,;L)-deductive system
SL of AL is compatible if the following condition (CL) holds:

(CL) for any x, y ∈ AL, x→L y ∈ SL ⇐⇒ x;L y ∈ SL.

2.2 l-groups (l-implicative groups) and associated algebras on G−, G+

Proposition 2.3 Let G = (G,∨,∧,→,;, 0) be an l-implicative-group and S be a compatible deductive
system of G. Then,

(1) SL = S ∩ G− is a compatible (→L,;L)-deductive system of the left-pseudo-BCK(pP) lattice
GL = (G−,∧,∨,→L,;L,1 = 0).

(1’) SR = S ∩ G+ is a compatible (→R,;R)-deductive system of the right-pseudo-BCK(pS) lattice
GR = (G+,∨,∧,→R,;R,0 = 0).

Theorem 2.4
(1) Let AL = (AL,∧,∨,→L,;L, 1) be a left-pseudo-BCK(pP) lattice verifying (pdiv) (or let AL

m =
(AL,∧,∨,¯, 1) be a left-l-rim verifying (pdiv)). Let SL be a (→L,;L)-deductive system of AL (or,
equivalently, a filter of AL

m). Then SL is compatible if and only if is normal, i.e. (CL)⇐⇒ (NL).
(1’) Let AR = (AR,∨,∧,→R,;R, 0) be a right-pseudo-BCK(pS) lattice verifying (pdivd) (or let AR

m =
(AR,∨,∧,⊕, 0) be a right-l-rim verifying (pdivd)). Let SR be a (→R,;R)-deductive system of AR (or,
equivalently, an ideal of AR

m). Then SR is compatible if and only if is normal, i.e. (CR)⇐⇒ (NR).

Theorem 2.5 Let Gig = (G,∨,∧,→,;, 0) be an l-implicative-group (or let Gg = (G,∨,∧,+,−, 0) be an
l-group). Let S be a compatible deductive system of Gig (or, equivalently, a normal convex l-subgroup of
Gg). Then,

(1) SL = S ∩G− is a compatible (→L,;L)-deductive system of the left-pseudo-BCK(pP) lattice GL =
(G−,∧,∨,→L,;L,1 = 0) (or, equivalently, SL is a normal filter of the left-l-rim GLm = (G−,∧,∨,¯ =
+,1 = 0)), and SL is compatible if and only if is normal, i.e. (CL)⇐⇒ (NL).

(1’) SR = S∩G+ is a compatible (→R,;R)-deductive system of the right-pseudo-BCK(pS) lattice GR =
(G+,∨,∧,→R,;R,0 = 0) (or, equivalently, SR is a normal ideal of the right-l-rim GRm = (G+,∨,∧,⊕ =
+,0 = 0)), and SR is compatible if and only if is normal, i.e. (CR)⇐⇒ (NR).

2.3 l-groups (l-implicative groups) and associated algebras on [u′, 0], [0, u]

We prove here that normality (compatibility) at l-group (l-implicative-group) G level is inherited by the
algebras obtained by restricting the l-group (l-implicative-group) operations to any segment [u′, 0] ⊂ G−

and to any segment [0, u] ⊂ G+. Also, that the equivalence (Cig) ⇐⇒ (Ng) (compatible if and only if
normal), existing at l-group (l-implicative-group) level, is preserved by the algebras obtained by restricting
the l-group (l-implicative-group) operations to intervals [u′, 0] and to [0, u].
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2.4 l-groups (l-implicative groups) and associated algebras on {−∞} ∪ G−,
G+ ∪ {+∞}

We prove here that normality (compatibility) at l-group (l-implicative-group) G level is inherited by the
algebras obtained by restricting the l-group (l-implicative-group) operations to G−

−∞ = {−∞} ∪G− and
to G+

+∞ = G+ ∪ {+∞}. Also, that the equivalence (Cig) ⇐⇒ (Ng) (compatible if and only if normal),
existing at l-group (l-implicative-group) level, is preserved by the algebras obtained by restricting the
l-group (l-implicative-group) operations to G−

−∞ and to G+
+∞.

3 Representability

3.1 Representable l-groups, l-implicative-groups

Putting together the results from [1], Theorem 4.1.1 and our results, we obtained the following resuming:

Theorem 3.1 Let G = (G,∨,∧,+,−, 0) be an l-group or, equivalently, let G = (G,∨,∧,→,;, 0) be an
l-implicative-group. The following are equivalent:
(a) G is representable.

(b) For all a, b ∈ G, 2(a ∧ b) = 2a ∧ 2b,
(b1) For all a, b ∈ G, (b→ a) ∧ (a; b) ≤ 0 ∧ [(b; a) ; (b→ a)],
(b2) For all a, b ∈ G, (b; a) ∧ (a→ b) ≤ 0 ∧ [(b→ a)→ (b; a)].

(bd) For all a, b ∈ G, 2(a ∨ b) = 2a ∨ 2b,
(b1d) For all a, b ∈ G, (b→ a) ∨ (a; b) ≥ 0 ∨ [(b; a) ; (b→ a)],
(b2d) For all a, b ∈ G, (b; a) ∨ (a→ b) ≥ 0 ∨ [(b→ a)→ (b; a)].

(c) For all a, b ∈ G, a ∧ (−b− a+ b) ≤ 0,
(c1) For all x, y, z, w ∈ G, (x; y) ∧ (([((y ; x) ; z) ; z]→ w)→ w) ≤ 0,
(c2) For all x, y, z, w ∈ G, (x→ y) ∧ (([((y → x)→ z)→ z] ; w) ; w) ≤ 0.

(cd) For all a, b ∈ G, a ∨ (−b− a+ b) ≥ 0,
(c1d) For all x, y, z, w ∈ G, (x; y) ∨ (([((y ; x) ; z) ; z]→ w)→ w) ≥ 0,
(c2d) For all x, y, z, w ∈ G, (x→ y) ∨ (([((y → x)→ z)→ z] ; w) ; w) ≥ 0.

(d) Each polar subgroup is normal.
(e) Each minimal prime subgroup is normal.
(f) For each a ∈ G, a > 0, a ∧ (−b+ a+ b) > 0, for all b ∈ G;
(fd) For each a ∈ G, a < 0, a ∨ (−b+ a+ b) < 0, for all b ∈ G.

3.2 Connections between the representability at l-implicative-group G level
and the representability at G−, G+ level

Recall that in the non-commutative case, a non-commutative left-residuated lattice
AL = (AL,∧,∨,¯,→L,;L, 1) or, equivalently, a left-pseudo-BCK(pP) lattice AL = (AL,∧,∨,→L,;L

, 1) (with the pseudo-product ¯) is representable if it is a subdirect product of linearly-ordered ones. C.J.
van Alten [2] proved that such non-commutative algebras are representable if and only if they satisfy the
identity:

(x;L y) ∨ (([((y ;L x) ;L z) ;L z]→L w)→L w) = 1, (1)

or the identity
(x→L y) ∨ (([((y →L x)→L z)→L z] ;L w) ;L w) = 1. (2)

Theorem 3.2 Let G = (G,∨,∧,→,;, 0) be a representable l-implicative-group. Then,
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(1) GL = (G−,∧,∨,→L,;L,1 = 0) is a representable left-pseudo-BCK(pP) lattice (with the pseudo-
product ¯ = +).

(1’) GR = (G+,∨,∧,→R,;R,0 = 0) is a representable right-pseudo-BCK(pS) lattice (with the pseudo-
sum ⊕ = +).

Theorem 3.3 Let G = (G,∨,∧,→,;, 0) be a representable l-implicative-group. Then,
(1) the left-pseudo-BCK(pP) lattice GL = (G−,∧,∨,→L,;L,1 = 0) (with the pseudo-product ¯ = +)

verifies also the following conditions: for all a, b ∈ G−,
(i) (a ∨ b)2 = a2 ∨ b2, i.e. (a ∨ b)¯ (a ∨ b) = (a¯ a) ∨ (b¯ b),
(ii) Condition (i) is equivalent with condition

[b→L (a;L (a¯ a))] ∨ [a;L (b→L (b¯ b))] = 1. (3)

(iii) (b→L a) ∨ (a;L b) = 1,
(iv) Condition (iii) implies condition (3).

(1’) the right-pseudo-BCK(pS) lattice GR = (G+,∨,∧,→R,;R,0 = 0) (with the pseudo-sum ⊕ = +)
verifies also the following conditions: for all a, b ∈ G+,
(i’) 2(a ∧ b) = 2a ∧ 2b, i.e. (a ∧ b)⊕ (a ∧ b) = (a⊕ a) ∧ (b⊕ b),
(ii’) Condition (i’) is equivalent with condition

[b→R (a;R (a⊕ a))] ∨ [a;R (b→R (b⊕ b))] = 0. (4)

(iii’) (b→R a) ∧ (a;R b) = 0,
(iv’) Condition (iii’) implies condition (4).
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On the number of extensions for fusions of modal logics above S4

Maxim Izmaylov, Moscow State University

Abstract

First, recall the definition of the fusion of logics. A fusion Λ1 ⊗ Λ2 of two
1-modal logics Λ1 and Λ2 is the least 2-modal logic, which contains axioms of
Λ1 for the first modality and axioms of Λ2 for the second.

A logic is called tabular, if it is determined with a finite Kripke frame.
Maximal logic is a maximal by inclusion consistent logic. The lattice of extensions
of a logic Λ is the set of modal logics Ext(Λ) = {Ξ|Λ ⊆ Ξ}, ordered by inclusion.
One can easily check, that it is really a lattice.

Recall, that S4 is a modal logic K + {�p → ��p} + {�p → p}, which is
determined with all reflexive transitive Kripke frames.

The main result of this work is the following theorem.

Theorem 1. For any two logics Λ1,Λ2 over S4, if Λ1 is not tabular and Λ2

is not maximal, then the power of Ext(Λ1 ⊗ Λ2) is continuum.

A logic is called pretabular, if it is not tabular, but every its extension is
tabular. So, pretabular logics are the largest non-tabular logics.

Lemma 1. Every non-tabular logic is contained in pretabular logic.

Lemma 2. Every non-maximal logic over S4 is contained in one of following
logics: Log( c- c) and Log( c-� c).

Here, Log(F ) means the logic of a Kripke frame F , all points mean to be
reflexive. Because of these two lemmas, it is enough to prove Theorem 1 only
for the case, when Λ1 is pretabular and Λ2 is of the form from lemma 2.

The rest of the proof is based on a theorem, which characterizes all pretabular
logics over S4.

Theorem 2 (L. Esakia, V. Meskhi). There are exactly five pretabular logics
in Ext(S4). They are determined by the following Kripke frames.
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Picture 1.
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Here dots and ω mean a countable amount of points. A circle means a cluster,
i.e. the equivalence class w.r.t. the relation R∩R−1. All the points are reflexive
and all the arrows are transitive.

Thus, to prove Theorem 1, we should consider 10 cases: the combinations of
5 pretabular over S4 and 2 non-maximal over S4. In each case, we will show a
continuum of extensions. To do it, we will need formulas Alt1n, bn and φn, which
are defined as follows:

Alt1n = �1p1 ∨�1(p1 → p2) ∨�1(p1 ∧ p2 → p3) ∨ ... ∨�1(p1 ∧ ... ∧ pn → pn+1)

bn =
n+1∧
i=1

♦1♦2qi ∧�1

n+1∧
i=1

¬qi → ♦1♦2
(

∨
16i<j6n+1

(qi ∧ qj)
)

φn = (�1�2)nb2(q1, q2, q3) ∨Alt1n(p1, ..., pn+1)

The validity of the formula φn in a certain point of a Kripke frame corresponds
to a quite complicated first order condition on this frame.

Lemma 3. Suppose F is a S4⊗ S4 Kripke frame. Formula φn is valid in a
point x of F if and only if one of the following conditions is true:

• for any point y, accessible from x with a composition of relations

(R1 ◦R2)n, it is trus that |R2(R1(y))−R1(y)| 6 2.

• |R1(x)| 6 n.

Then, for each case Log(Pk) ⊗ G, where Pk is from pic. 1 and G is one of
the logics Log( c- c) and Log( c-� c), we construst logics ΛI :

ΛI = Log(Pk)⊗G+ {φi|i ∈ I}, where I ⊆ N− {1, 2, 3}.

If we show that I 6= J implies ΛI 6= ΛJ , then the set {ΛI |I ⊆ N− {1, 2, 3}}
will be a continuum of extensions of a logic Log(Pk)⊗G.

Thus, we should prove the fact that I 6= J implies ΛI 6= ΛJ for all 10 cases.
Here, each case should be considered separately, but the scheme is the same.
We will construct Kripke frames Fi � Log(Pk)⊗G with a condition:

Fi 2 φi and Fi � φj when j 6= i

After we build these frames, if there exists i ∈ I − J , then Fi � ΛJ and
Fi 2 ΛI . So, ΛI 6= ΛJ .

The form is the frames Fi is slightly different for all cases. We will show this
form for a few cases. In the following pictures all the clusters mean relation 1.
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1 Introduction

Commutative partially ordered monoids will be referred to as uninorms. Our aim
is to investigate involutive uninorms. Our main question is the following: in an
involutive FLe-algebra, how far its uninorm (or its algebraic structure, in general)
is determined by its “local behavior”, i.e., its underlying t-norm and t-conorm.
An answer to this question is presented for a particular case on [0, 1] with t = f ,
which will illustrate our background idea. It says that the uninorm is determined
uniquely by any of them, i.e., either by the t-norm or by the t-conorm [4]. In
fact, the t-norm and the t-conorm are determined by each other, in this case.
Then, a natural question is how far we can extend this, and when the uninorm
is determined uniquely? Our main goal is to give an answer to this question:
Uniqueness is guaranteed and moreover, the uninorm is represented by the twin-
rotation construction whenever the algebra is conic. To have a closer look at the
situation, then we consider involutive FLe-algebras which are finite and linearly
ordered. As a byproduct it follows that the logic IUL extended by the axiom
t↔ f does not have the finite model property.

∗Supported by the OTKA-76811 grant, the SROP-4.2.1.B-10/2/KONV-2010-0002 grant, and
the MC ERG grant 267589.
†Corresponding author
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U = 〈X, ∗◦,≤, t, f〉 is called an involutive FLe-algebra if C = 〈X,≤〉 is a poset, ∗◦
is a uninorm over C with neutral element t, for every x ∈ X, x→∗◦ f = max{z ∈
X | x ∗◦ z ≤ f} exists, and for every x ∈ X, we have (x→∗◦ f)→∗◦ f = x. We will
call ∗◦ an involutive uninorm. For any uninorm ∗◦ with neutral element t on the
poset 〈X,≤〉 define its positive and the negative cones by

X+ = {x ∈ X | x ≥ t} and X− = {x ∈ X | x ≤ t},

respectively. The algebra, and as well ∗◦ is called conic if every element of X is
comparable with t, that is, if X = X+ ∪X−. A moment’s reflection shows that ∗◦
restricted to X+ (resp. X−) is a t-conorm (resp. t-norm), call them the underlying
t-conorm and t-norm of ∗◦, respectively. Thus uninorms have a block-like structure;
they have an underlying t-norm and t-conorm, that is, a t-norm and a t-conorm
act on X+ and on X−, respectively. Now two questions arise naturally.

Q1. (Structural description) Given a t-norm and a t-conorm on X+ and on X−,
respectively, how can one obtain a suitable extension on X+×X−, one which
makes the resulted operation on X+ ∪X− a conic involutive uninorm.

Q2. (Classification) Which pairs of a t-norm and a t-conorm have an appropriate
extension on X+×X− (and due to commutativity, on X−×X+) such that
the resulted operation on X+ ∪X− is a conic involutive uninorm.

In the present talk we give answers to these questions. First, we show that
for involutive, conic uninorms the extension in Q1 is unique, if exists. In other
words, the underlying t-norm and t-conorm of an involutive uninorm determines
the values of the involutive uninorm on X+×X−. This observation motivates the
introducing of the twin-rotation construction.

The same questions have been investigated in [3, 2] for involutive uninorms
under the condition that the underlying universe is a densely ordered, complete
chain and t = f . In that setting it follows that the underlying t-norm and t-
conorm uniquely determine (not only the whole uninorm operation but) one an-
other. Moreover, the classification problem (Q2) was solved for involutive uni-
norms on the real unit interval [0, 1] with t = f provided that their underlying
t-norm (or t-conorm) is continuous [4].

On finite chains a critical notion is the “rank” which measures how f differs
from t. We establish a one-to-one correspondence between positive and nega-
tive rank algebras, a connection which is somewhat similar to the well-known de
Morgan duals. This one-to-one correspondence defines what we call finite skew
dualization. Finally, we solve Q2 for a few of the smallest and the largest possible
non-positive ranks.

This research is motivated also by logic. As shown by Metcalfe and Montagna
in [6], FLe-algebras and involutive FLe-algebras are equivalent algebraic semantics
for the logics UL and IUL, respectively. They show, among other results, that
UL is standard complete, that is, it is complete with respect to FLe-algebras over
[0, 1]. In addition, it is shown in [6] that IUL is chain-complete. Since whether
IUL is standard complete remains open, the algebraic investigation of involutive
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uninorms have certain logical interest. We will show that IUL extended by the
axiom t↔ f does not have the finite model property.

As for the details we present here only the twin-rotation construction:

Definition 1 (Twin-rotation construction) Let X1 be a partially ordered
set with top element t, and and X2 be a partially ordered set with bottom element
t such that the connected ordinal sum osc〈X1, X2〉 of X1 and X2 (that is putting
X1 under X2, and identifying the top of X1 with the bottom of X2) has an order
reversing involution ′. Let ⊗ and ⊕ be commutative, residuated semigroups on
X1 and X2, respectively, both with neutral element t. Assume, in addition, that

1. in case t′ ∈ X1 we have x→⊗ t′ = x′ for all x ∈ X1, x ≥ t′, and

2. in case t′ ∈ X2 we have x→⊕ t′ = x′ for all x ∈ X2, x ≤ t′.
Denote

U⊕⊗ = 〈osc〈X1, X2〉, ∗◦,≤, t, f〉
where f = t′ and ∗◦ is defined as follows:

x ∗◦ y =





x⊗ y if x, y ∈ X1

x⊕ y if x, y ∈ X2

(x→⊕ y′)′ if x ∈ X2, y ∈ X1, and x ≤ y′
(y→⊕ x′)′ if x ∈ X1, y ∈ X2, and x ≤ y′
(y→⊗ (x′ ∧ t))′ if x ∈ X2, y ∈ X1, and x 6≤ y′
(x→⊗ (y′ ∧ t))′ if x ∈ X1, y ∈ X2, and x 6≤ y′

. (1)

Call ∗◦ (resp. U⊕⊗ ) the twin-rotation of ⊗ and ⊕ (resp. of the first and the second
partially ordered monoid).
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Abstract

In this paper we define a bi-topological space on an interval of ordinals
that is sound and complete for the closed fragment of GLB. This result
sharply contrasts the existence of topological ordinal spaces for full GLB
which is known to be independent of ZFC.

1 Introduction

The logic GLB is a normal modal logic with two modalities [0] and [1] both of
which satisfy the axioms of Gödel Löb’s logic GL together with the two axiom
schemata that relate both modalities: [0]ϕ → [1]ϕ and 〈0〉ϕ → [1]〈0〉ϕ. It is
known that GLB does not allow for Kripke semantics.

Topological semantics for GLB consists of a bi-topological space (X, τ0, τ1)
where τ0 is scattered, τ0 ⊂ τ1, and τ1 contains each of the sets d0(A) with
A ⊆ X. As usual, we denote by di is the derived set operator corresponding to
τi. The modalities 〈i〉 are interpreted by di. Dually, the [i] is interpreted by d̃i
where d̃i(A) := −di(−A). It is an easy observation that both d(A) and d̃(A)
are monotone in A.

One of the simplest and most natural examples of scattered spaces are ordinal
spaces ([1, κ], τ0) where τ0 denotes from now on the interval topology whose basis
sets are {0} and sets of the form (α, β]. Topological semantics for GLB on [1, k]
exists under an infinite collection of instances of Jenssen’s square principle which
is known to be independent of ZFC. Moreover, the existence of a Mahlo cardinal
implies non-existence of topological semantics for GLB on [1, k]. In this paper
we shall exhibit a topology τ1 so that the corresponding semantics on [1, κ] is
sound for the closed fragment of GLB and complete whenever κ ≥ ωωω

. As we
shall see, for the closed fragment we can work entirely within ZFC.

2 Related results and literature

In [4], Icard proved topological completeness for the closed fragment for all of
GLP. He also used non-standard topologies similar to the one defined here and
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all of his argument is carried out in ZFC. However, his proof makes essential use
of the existence of a universal Kripke model for the closed fragment of GLP.

The argument presented here does not hinge on such an assumption1 and
can thus be seen as a first exercise in defining topological semantics for logics2

GLPΛ where no Kripke semantics is yet known.
On the other hand, in a recent yet unpublished paper [3], Beklemishev and

Gabelaia provide topological semantics for full GLP on ordinal spaces with non-
standard topologies. Also their argument is done fully within ZFC. However,
the topologies that they provide are obtained by using Zorn’s lemma and there-
fore highly non-constructive. The topology exposed in this paper is explicitly
definable and of constructive nature.

3 Completeness

With the closed fragment, the completeness part follows easily from the sound-
ness part if an additional condition is satisfied. There is a fairly simple universal
Kripke model for GLB0. If GLB 0 ϕ for some closed formula ϕ, this is wit-
nessed by some point in that universal model. In the model 〈1〉n> → 〈0〉¬ϕ (†)
holds from some n, whence this is provable in GLB. If our topological space is
sound for GLB and for any n has points where 〈1〉n> holds, then it immediately
follows from (†) that it is also complete for GLB.

4 Soundness

There are two ideas in defining τ1. The first idea is to define τ1 as tight as
possible. For example, we want to make 〈1〉> true exactly and only in those
points where we have 〈0〉n> true for any n ∈ ω as GLB ` 〈1〉> → 〈0〉n>.

The second idea reflects on the requirement that d0(A) ∈ τ1 has to hold in
order to have the axiom 〈0〉ϕ→ [1]〈0〉ϕ valid as each set A can be defined by a
propositional variable in GLB. For the closed fragment however, it suffices to
require d0(A) ∈ τ1 for sets A definable in GLB0. We shall now show how these
two ideas become implemented and are set to work.

If α is an ordinal, by le(α) we denote the exponent of the last term in
the Cantor Normal Form (CNF) expansion with base ω of α. For example,
le(ωω + ω5) = 5. Let X denote the entire space, that is, X = [1, κ]. One can
easily proof by induction on n ∈ ω that dn0 (X) = {α | le(α) ≥ n}. However,
we can define dα(X) also for ordinals α by stipulating dλ(X) = ∩α<λdα(X) for
limits λ and the corresponding generalization is readily proved by transfinite
induction:

Lemma 4.1 dα0 (X) = {x | le(x) ≥ α}
1In Section 4 we use the existence of a universal model for GLP. However, a purely

syntactical proof can be given also.
2See [1] for a definition of the logics GLPΛ.
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Thus, for example, the first point where 〈1〉> could possibly be made true
would be the point ωω and it turns out that the smallest topology doing so
almost works for entire closed fragment of GLB. If we define τ ′1 := τ0 ∪ {{α} |
le(α) ∈ Succ} where Succ is the class of successor ordinals then we can prove
Lemma 4.2. Clearly, ωω is the first accumulation point of τ1. However, with
this definition of τ ′1 one can never prove 〈0〉α → [1]〈0〉α. The smallest possible
modification of τ ′ that leaves the accumulation points invariant works for our
construction and we define τ1 := τ0 ∪ {{ωa | a ∈ A} | A ⊆ Succ}, where Y
denotes the closure of Y in τ0.

Modal formulas that consist only of > preceded by a (possibly empty) se-
quence of consistency operators are called worms. From now on we shall often
write just binary words a0a1 . . . an instead of 〈a0〉〈a1〉 . . . 〈an〉>. The set of
worms/words is denoted by S and the empty word is denoted by ε. An order
<i on S is defined by α <i β ⇔ GLB ` β → 〈i〉α for i ∈ {0, 1}. It turns out
that, modulo provable equivalence in GLB, the order <0 defines a well-order
of type ωω. In particular, we can define an isomorphism o with the ordinal ωω

as follows: o(1n00m0 . . . 0ml1nl+1) = ωnl+1 +ml + ωnl + nl + . . .+m0 + ωn0 .
If α is some worm, we denote by d(α,X) its topological interpretation, that

is, d(ε,X) = X for the empty word ε and d(iα,X) = di(d(α,X)). Under our
choice, we can define d1 in terms of d0. For words α we define the head h(α)
and the remainder r(α) recursively: h(ε) = r(ε) = ε, h(xβ) = x and, r(xβ) = β.

Lemma 4.2 For any worm α, we have that
d(α,X) = {x ∈ X | o−1(le(x)) ≥h(α) r(α)}.
Proof. By induction on the length of α. The non-trivial induction steps are for
d(11α,X), d(10α,X), and d(01α,X). In calculating the induction steps a couple
of observations are very useful. Firstly, α ≥0 β ↔ o(α) ≥ o(β). A generalization
to the ≥1 ordering reads α ≥1 β ↔ [o(α) ≥ o(β) ∧ le(o(α)) ≥ le(o(β))]. Using
these two observations one can smoothly prove the lemma. �

Notice that our lemma yields in particular that d(0α,X) = d
o(0α)
0 (X).

Theorem 4.3 ([1, κ], τ0, τ1) is sound for GLB0.

Proof. By induction on the length of a derivation. It is known that any formula
in the closed fragment of GLB can be proved by a proof that uses closed for-
mulas only. Thus, it suffices to focus on the closed instantiations of the axioms
of GLB (Modus Ponens and Necessitation are easy).

As τ0 is scattered and τ0 ⊂ τ1, we have that τ1 is also scattered and Gl
holds for both [0] and [1]. Moreover, τ0 ⊂ τ1 enforces [0]ϕ → [1]ϕ to hold for
any ϕ. The only axiom that remains to be verified is 〈0〉ϕ→ [1]〈0〉ϕ for closed
formulas ϕ.

It is known that any such closed formula ϕ is equivalent to a Boolean com-
bination of words. It is a straightforward exercise in normal forms (a direct
consequence of Lemma 11 of [1]) to see that the 〈0〉 of any such Boolean com-
bination of words is equivalent to a disjunction of words all of which start with
a 0.
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Let us first see that for each of these disjuncts/words 0wi we have that
〈0〉wi → [1]〈0〉wi. In other words and using Lemma 4.1, we need to show that
{x | le(x) ≥ o(α) + 1} ⊆ d̃1({x | le(x) ≥ o(α) + 1}). But, any x with le(x) ≥
o(α)+1 is either isolated in τ1, in which case it is in d̃1(∅) so by the monotonicity
of d̃1 certainly in d̃1({x | le(x) ≥ o(α) + 1}), or it is an accumulation point of
points y with le(y) ≥ o(α) + 1 whence included in d̃1({x | le(x) ≥ o(α) + 1}).

Now that we have established the inclusion for one particular worm, the
disjunction of finitely many such follows easily. As for each wi we have that
v(〈0〉wi) ⊆ d̃1(v(〈0〉wi)), by the monotonicity of d̃1 we have that v(〈0〉wi) ⊆
d̃1(∪iv(〈0〉wi)) = d̃1(v(

∨
i〈0〉wi)). As this holds for any i we also have that

v(
∨
i〈0〉wi) = ∪iv(〈0〉wi) ⊆ d̃1(v(

∨
i〈0〉wi)). �

Corollary 4.4 ([1, κ], τ0, τ1) is sound and complete for GLB0 whenever κ ≥
ωω

ω

.

Proof. From the previous theorem we obtain the soundness. From our observa-
tions in Section 3 we get completeness once for any n ∈ ω there are points around

that validate 〈1〉n>. By Lemma 4.2 we know that dn1 (X) = d
o(1n)
0 (X) = dω

n

0 (X).
By Lemma 4.1 we know that points in dω

n

0 (X) should have a last term of at
least ωω

n

in their CNF. The first ordinal where these elements are around for
all n ∈ ω is ωω

ω

. �

We note that the current proof seems amenable to generalizing to GLP
once we realize that τ1 = τ0 ∪ {{α} | le(α) ∈ Succ} = τ0 ∪ {{α} | le(α) =
o(0β) for some worm β} which can be generalized in a straightforward way.

Using some independent set-theoretical assumptions, in [2] a model for full
GLB is constructed. In that construction t1 is the club topology. The current
result does not seem to say anything about the soundness of the closed fragment
of GLB when using the club topology and no further set-theoretical assumptions
and we leave that as an open question.
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On modal definability of Horn formulas

Stanislav Kikot

Abstract

In this short paper we give a criterion of modal definability of a first-order universal

Horn sentence with exactly one positive atom in terms of its graph. As a consequence we

obtain that every modal logic axiomatized by a single modal Horn formula (i.e. of the

form K + φ where φ is a modal Horn formula) is Kripke complete.

Modal definability of first-order formulas has been intensively studied in modal logic, and

even applied to automatic reasoning [9]. On the one hand, it has a nice Goldblatt-Thomason

characterization [4], on the other hand, the problem “decide whether a first-order formula is

modally definable” is in general undecidable [2]. But the cause of this undecidability is in the

undecidability of first-order logic, so when we restrict attention to a fragment with decidable

implication, we are likely to obtain an algorithmic criterion for modal definability, as in this

paper. Also this research is motivated by scrutinizing Theorem 5.9 of [3] saying that if L1

and L2 are Kripke complete and Horn axiomatizable unimodal logics, then L1 × L2 = [L1, L2]

and studying whether Horn axiomatizability implies Kripke completeness. We give the positive

answer to the last question for the case of a single universal Horn sentence with exactly one

positive atom, but in general this problem seems to be open.

Consider the classical first-order language LfΛ in the signature consisting of only binary

predicates Rλ indexed by a finite set Λ. An atom is a formula of the form xiRλxj , where xi

and xj are object variables and λ ∈ Λ. Universal Horn sentences (in short, Horn formulas)

are closed (i.e. without free variables) formulas of the form ∀x1 . . .∀xn(ψ → φ), where ψ is a

conjunction of atoms and φ is an atom. Allowing ∨ in ψ as in [3] is equivalent to considering

conjunctions of such formulas. Universal Horn sentences can be represented by tuples of the

form D = (WD, (RD
λ : λ ∈ Λ), α, β, λ0), where WD = {x1, . . . , xn} is a finite set, RD

λ are binary

relations on WD, α, β ∈ WD and λ0 ∈ Λ. Such a tuple D, called a diagram, gives rise to the

Horn formula

ED = ∀x1 . . .∀xn


 ∧

xiRD
λ xj

xiRλxj → αRλ0β


 .

For a diagram D, define its size |D| =
∑

λ∈Λ |RD
λ |, where |RD

λ | denotes the cardinality

of RD
λ . A diagram D is called minimal if there is no diagram D′ of size less than |D| such

that ED′ ≡ ED, where ≡ denotes the predicate calculus equivalence. A diagram D is called

non-trivial if ED is not equivalent to >.

We also consider the modal language MlΛ with countably many propositional variables

p1, p2, . . ., unary modalities 3λ and their duals 2λ, where λ ∈ Λ and boolean connectives

∧,∨,¬,→. A Kripke frame is an LfΛ-structure F = (W, (Rλ : λ ∈ Λ)). A valuation of

propositional variables in F is a map θ assigning to any pi a set θ(pi) ⊆ W . A Kripke model
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built on a frame F is a pair M = (F, θ) where θ is a valuation of propositional variables in F .

The truth of modal formula φ in a point x of Kripke model M is defined in the standard way.

A modal formula φ is valid on a Kripke frame F (denoted F |= φ) if φ is true in every point of

every model M built on F .

An LfΛ-sentence E is called modally definable if there exists a modal formula φ such that,

for any Kripke frame F , F |= E iff F |= φ. Here |= on the left-hand side means the classical

truth of an LfΛ-formula in LfΛ-structure, while |= on the right-hand side means the validity of

a modal formula in a Kripke frame. If this equivalence holds and, in addition, E is a universal

Horn sentence, then φ is called a modal Horn formula.

Consider a finite LfΛ-structure F = (W, (Rλ : λ ∈ Λ)), where, for all λ ∈ Λ, Rλ ⊆ W ×W .

A sequence x1, λ1, x2, λ2, . . . xn, where xi ∈ W T , λi ∈ Λ and (xi, xi+1) ∈ Rλi
for 1 ≤ i ≤ n − 1

is called a directed path from x1 to xn in F . The definition of an undirected path from x1

to xn is obtained by replacing (xi, xi+1) ∈ Rλi
with (xi, xi+1) ∈ Rλi

∪ R−1
λi

. An LfΛ-structure

F = (W, (Rλ : λ ∈ Λ)) is called a directed tree if there is a point r ∈ W such that the following

holds:

• (Rλ)
−1(r) = ∅ for all λ ∈ Λ,

• for every point x 6= r, there exists a unique directed path from r to x.

THEOREM 1. The Horn formula ED corresponding to a minimal non-trivial diagram D =

(WD, (RD
λ : λ ∈ Λ), α, β, λ0) is modally definable iff the LfΛ-structure (WD, (RD

λ : λ ∈ Λ)) is a

directed tree.

The proof of the ‘if’ direction is simple: if (WD, (RD
λ : λ ∈ Λ)) is a directed tree, then all

points xi except the root x0 have a unique predecessor xpr(i) such that xp(i)Rλ(i)xi for some

λ(i) ∈ Λ. Assuming that the x are numbered in such a way that, for all i, pr(i) < i and using

the restricted universal quantifier

(∀xi .λ xj)A ≡ ∀xi(xjRλxi → A),

we can rewrite ED as

∀x0(∀x1 .λ(1) x0)(∀x2 .λ(2) xpr(2)) . . . (∀xn .λ(n) xpr(n))(αRλ0β).

This is obviously a Kracht formula [6], [7], so it is modally definable by a Sahlqvist formula. The

proof of the ‘only if’ direction follows from lemmas 2 and 4 and the fact that all modally definable

properties are preserved under disjoint unions and bounded morphisms (e.g. [1]). Together with

the Sahlqvist completeness theorem it gives us that any modal logic axiomatizable by a single

modal Horn formula is Kripke complete. The complexity of similar logics is studied in [5].

Consider two LfΛ-structures F 1 = (W 1, (R1
λ : λ ∈ Λ)) and F 2 = (W 2, (R2

λ : λ ∈ Λ)). A

map g : W 1 → W 2 is called a homomorphism from F 1 to F 2 if, for any λ ∈ Λ and a, b ∈ W 1,

aR1
λb implies f(a)R2

λf(b). For a finite LfΛ-structure F = (W, (Rλ : λ ∈ Λ)) and a (diagram of

a) Horn formula D = (WD, (RD
λ : λ ∈ Λ), α, β, λ0) we define a Horn closure F ∗

D in the following

way. Set F 0
D = F . Let F i−1

D = (W, (Ri−1
λ : λ ∈ Λ)) be already defined. Let Gi be the set of all

homomorphisms from (WD, (RD
λ : λ ∈ Λ)) to F i−1

D . Set F i
D = (W, (Ri

λ : λ ∈ Λ)) where

Ri
λ0

= Ri−1
λ0

∪
⋃

g∈Gi

{(g(α), g(β))}
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and Ri
λ = Ri−1

λ for λ 6= λ0. Since W is finite, there exists n such that F n
D = F n+1

D = F n+2
D ,

and so on. Then we set F ∗
D = F n

D for such n. This construction generalizes the well-known

transitive and symmetric closure.

An LfΛ-structure F = (W, (Rλ : λ ∈ Λ)) and a diagramD = (F, α, β, λ) are called connected

if any two different points of W may be connected by an undirected way.

LEMMA 2. Take a minimal non-trivial diagram D = (WD, (RD
λ : λ ∈ Λ), α, β, λ0). If an

LfΛ-structure GD = (WD, (RD
λ : λ ∈ Λ)) is not connected then ED is not preserved under

disjoint unions.

Proof. First suppose that α and β belong to different connected components of GD. Then take

F = GD and its Horn closure F ∗
D. Thus we have F ∗

D |= ED but F ∗
D tF ∗

D 6|= ED, and the lemma

is proved.

Then consider the case where GD is split into connected components K1, . . . , Kn and α

and β belong to the same connected component, say, K1. Note that since D is minimal, there

is no homomorphism from K2 to K1, otherwise we can throw K2 out of a diagram without

affecting ED semantically. Thus we have K1 |= ED, since there is no homomorphism from GD

in K1 because of K2. Put D′ = (K1, α, β, λ0). Then (GD \ K1)
∗
D′ |= ED (since ED′ |= ED)

but K1 t (GD \ K1)
∗
D′ 6|= ED (because of the identity homomorphism of GD into itself and

non-triviality of D).

LEMMA 3. Consider two diagrams D = (WD, (RD
λ : λ ∈ Λ), α, β, λ0) and D′ = (WD′

, (RD′
λ :

λ ∈ Λ), α′, β ′, λ′
0). Put F = (WD, (RD

λ : λ ∈ Λ)). Then F ∗
D′ |= ED implies ED′ |= ED.

Proof. Take any G = (W, (Rλ : λ ∈ Λ)). Assume that G |= ED′
and prove that G |= ED. Take

a homomorphism h from F to G. Now execute the process of construction of F ∗
D′ and copy

any its step by h into G, applying G |= ED′
for each new edge. Finally we will obtain that

h(α)Rλ0h(β).

LEMMA 4. Let D be a minimal non-trivial diagram. Then if GD = (WD, (RD
λ : λ ∈ Λ))

contains a directed cycle or a point c with two incoming arrows then ED is not preserved under

bounded morphism.

Proof. First suppose that GD contains a directed cycle. Then take F = GD and it unravelling

F u = ((WD)u, ((RD)u
λ : λ ∈ Λ)), where (WD)u is the set of all directed pathes in F , with a

natural bounded morphism f : (WD)u → WD, sending each path to its last point, and (RD)u
λ

defined in a standard way: for x, y ∈ (WD)u x(RD)u
λy iff y = x, λ, f(y). Since D is non-trivial,

F 6|= ED. But F u |= ED, since there is no homomorphism from GD to the tree F u because of

a directed cycle in GD, so the lemma is proved.

Now assume that GB contains a vertex with at least two incoming edges. It means that

there exist points a, b, c ∈ WD and λ1, λ2 ∈ Λ such that (a, c) ∈ RD
λ1

and (b, c) ∈ RD
λ2

. If

λ1 6= λ2, the same argument as for the directed cycle works: a point with two incoming arrows

of different kinds cannot be embedded into the tree F u.

But if a 6= b and λ1 = λ2 it may still happen that there is a homomorphism h from GB to

F u, in this case h(a) = h(b). So we consider the set T of all directed trees T such that there

exists a surjective homomorphism from GB to T . We claim that there exists a directed tree

T0 ∈ T such that for all T ∈ T there exists a surjective homomorphism from T0 to T .

Let ∼ be the smallest equivalence relation on WD satisfying condition (cf. [8])
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if there exists a, b, c, c′ such that aRD
λ c, bR

D
λ c

′ and c ∼ c′, then a ∼ b.

Define T0 = (W 0, (R0
λ : λ ∈ Λ)) where W 0 = WD/ ∼, and for equivalence classes A,B ∈ W 0

AR0
λB iff there exist a ∈ A and b ∈ B such that aRλb. In other words, T 0 is obtained from GD

by a sequence of following reductions: if there exist a, b, c ∈ WD such that aRD
λ c and bRD

λ c,

then join a and b into one point. The main property of ∼ is that for every homomorphism g

from GD to a directed tree T a ∼ b implies g(a) = g(b), that is every such g factors through

T0.

Let h be the natural projection from GB to T0. Consider the diagram D′ =

(T0, h(α), h(β), λ0). In any case, a homomorphism from GB to T0 implies that ED |= ED′,

and a vertex with two incoming edges in GB implies that |D′| < |D|. Since D is minimal,

ED′ 6|= ED and according to Lemma 3 it follows that F ∗
D′ 6|= ED.

Now we can prove the lemma, since (F u)∗
D′ |= ED (use universal property of T0), F

∗
D′ 6|= ED

and f is a p-morphism not only from F u to F , but also from (F u)∗
D′ to F ∗

D′ .
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interest in progress.
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On interpolation in NEXT (KTB)∗

Zo�a Kostrzycka

June 10, 2011

The Brouwerian logic KTB is said to be non-transitive as it is character-
ized by the class of re�exive and symmetric (admitting non-transitive) frames.
There are also considered in literature its extensions Tn = KTB⊕(4n), with
the so called axioms of n−transitivity:

(4n) �np→ �n+1p , for each n ≥ 1

They were de�ned by I. Thomas in 1964 (see [9]). Their completeness with
respect to Kripke models was proven there.

Obviously, T1 = S5 and the following inclusions hold:

KTB ⊂ ... ⊂ Tn+1 ⊂ Tn ⊂ ... ⊂ T2 ⊂ T1 = S5.

In contrast to the logics laying in the interval S4�S5, which are very well
characterized, the logics between KTB and S5 are, in some way, neglected.
For example, it is known since the 1960's, that the logics KTB and Tn are
Kripke complete, but for many years there was not known any Kripke incom-
plete logics in NEXT (KTB). In 2006 Yutaka Miyazaki [7] constructed one
Kripke incomplete logic in NEXT (T2) and continuum Kripke incomplete
logics in NEXT (T5). Then the author de�ned in [4] and [5] appropriately
a continuum Kripke incomplete logic and one �nitely axiomatizable Kripke
incomplete logic in NEXT (T2).

The logics from NEXT (KTB) seem to be very diverse and worth study-
ing. In this talk we pay attention to the Craig interpolation property (CIP)
and Halldén completeness of the considered logics. Let us add that the logics

∗This work was supported by the State Committee for Scienti�c Research (KBN),
research grant NN 101 005238.

179



from NEXT (KTB) were not examined in this direction yet. Majority of
L. Maximova's famous results concerns logics in NEXT (S4).

Let us remind some de�nitions.

De�nition 1. A logic L has the Craig interpolation property (CIP) if for
every implication α→ β in L, there exists a formula γ (interpolant for α→ β
in L) such that α→ γ ∈ L and γ → β ∈ L and V ar(γ) ⊆ V ar(α)∩ V ar(β).

De�nition 2. A logic L is Halldén complete if

ϕ ∨ ψ ∈ L implies ϕ ∈ L or ψ ∈ L

for all ϕ and ψ containing no common variables.

Regarding (CIP), one may apply a very general method of construction
of inseparable tableaux (see i.e. [1]) and get:

Theorem 1. The logics KTB and Tn, n > 1 have (CIP).

There is an important connection between the Craig interpolation prop-
erty and Halldén completeness of modal logics. It is presented in the following
lemma due to G. F. Schumm [8]:

Lemma 1. If L has only one Post-complete extension and is Halldén-incomplete,
then interpolation fails in L.

Although it is known that KTB is Halldén complete (see [6]), there are
no results concerning this property in the case of logics Tn, n > 1. From
Theorem 2 and Lemma 1 we immediately obtain:

Corollary 1. The logics Tn, n ≥ 1 are Halldén-complete.

The next step in our investigation is to answer the question: `how many
logics in NEXT (T2) are Halldén-incomplete?'

In this case we take advantage of two constructions from [2] and [3]:
the construction of in�nite sequence of nonequivalent formulas in T2 and
the construction of continuum of normal extensions distinguishable by these
formulas.

Let us take α := p∧¬♦�p and de�ne the following sequence of formulas:
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A1 := ¬p ∧�¬α ,
A2 := ¬p ∧ ¬A1 ∧ ♦A1 ,

A3 := α ∧ ♦A2 ∧ ¬♦A1 ,

A2n := ¬p ∧ ♦A2n−1 ∧ ¬♦A2n−2 for n ≥ 2 ,

A2n+1 := α ∧ ♦A2n ∧ ¬♦A2n−1 for n ≥ 2 .

It is proven in [2], that

Lemma 2. The formulas Ai, for i ≥ 1, are not equivalent in the logic T2.

On such a base we de�ne more compound formulas:

β := ¬�p ∧ ♦�p, γ := β ∧ ♦A1 ∧ ¬♦A2 ∧ ¬♦A3,

ε := β ∧ ¬♦A1 ∧ ¬♦A2, Ck := �2[Ak−1 → ♦Ak] for k ≥ 2,

Dk := �2[(Ak ∧ ¬♦Ak+1)→ ♦ε], E := �2(�p→ ♦γ),

Gk := (�p ∧
k−1∧

i=2

Ci ∧Dk−1 ∧ E)→ ♦2Ak.

Let Prim := {n ∈ N : n+ 2 is prime ∧ n ≥ 5}. For any X ⊆ Prim we
de�ne a logic LX which is an axiomatic extension of the system T2:

LX := T2 ⊕ {Gk : k ∈ X}.

It is proven in [3] that

Lemma 3. Let X, Y ⊆ Prim and X 6= Y . Then LX 6= LY .

Obviously, card {LX : X ⊆ Prim} = c. We prove that:

Theorem 2. There are uncountably many extensions of T2, which are Halldén-
incomplete and hence - without (CIP).
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Stably supported quantales with a given
support

David Kruml
Masaryk University, Brno

In [2] P. Resende introduced a notion of stably supported quantale to de-
scribe relation between quantales and étale groupoids. One can think about
stably supported quantales like about “quantales with enough projections”.
Another view is that stably supported quantales naturally generalize quan-
tales of relations which make them interesting in other applications.

I intend to show that every frame (locale) is a support of some stably
supported quantale. Even that we can request a way how the left and right-
sided elements are multiplied. The construction of a quantale is a simple
extension of that used in [1].

Let us recall the definition of stable supported quantale and its basic
properties:

Definition 1. A supported quantale is a unital involutive quantale Q with
a specified sup-lattice endomorphism ς : Q→ Q, called support, such that

ςa ≤ e,

ςa ≤ a∗a,

ςa ≤ ςaa

for any a ∈ Q.
The support is called stable (and Q stably supported) if

ςa = e ∧ a

for every a.

1
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It follows that a sub-lattice ςQ of supported quantale Q is a frame, and if
Q is stably supported then ςQ is isomorphic to the sup-lattice of right-sided
elements.

Recall that a frame homomorphism is called open if it has a left adjoint
and satisfies the Frobenius reciprocity condition. If the homomorphism is a
subframe inclusion T ⊆ F , then we denote the left adjoin by | − | and call a
cover. Then the Frobenius reciprocity condition is of the form

|a ∧ t| = |a| ∧ t (1)

for a ∈ F, t ∈ T . At least, that provides a T -module structure on F and an
“inner product” F × F → T .

Let us recall from [1] that F, T then make a symmetric triad (F, T, F ),
thus there is an involutive quantale for which F is isomorphic to the sup-
lattice of right-sided elements and T to the sup-lattice of two-sided elelments.
It is shown in the paper that there are two extremal solutions of the triad
- the first is a tensor product Q0 = F ⊗T F , the second one Q1 consists of
pairs (f, g) of T -module endomorphisms f, g : F → F such that

|f(a) ∧ b| = |a ∧ g(b)|

for all a, b ∈ F .
In particular, (id, id) ∈ Q1, hence it is a unital quantale. Since the

elements are pairs of T -module endomorphisms, we obtain that the largest
element is (| − |, | − |). Indeed, |a ∧ |b|| = |a| ∧ |b| = ||a| ∧ b| using twice (1).
It follows that the right-sided elements are of the form (a∧ |− |, |a∧−|) and
hence every pair (a∧−, a∧−) could be a support element for Q1. Indeed, by
assigning ς(φ, ψ) the largest such element less or equal to (φ, ψ) we obtain a
well defined support on Q1. Finally, (id∧(a∧|−|))(b) ≤ id(b)∧(a∧|b|) = a∧b
proving that the support is stable. We conclude with the following theorem.

Theorem 1. Let F be a frame and T its open subframe with cover | − | :
T → F . Then there exits a stably supported quantale Q such that

(i) F is isomorphic to the sup-lattice of right-sided elements of Q,
(ii) T is isomorphic to the sup-lattice of two-sided elements of Q,
(iii) and lr = |l ∧ r| for every left-sided l and right-sided r (after the

identification provided by the two isomorphisms).
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STONE DUALITY FOR SKEW BOOLEAN ALGEBRAS

GANNA KUDRYAVTSEVA

Abstract. We present two refinements of the classical Stone duality between

generalized Boolean algebras and locally compact Boolean spaces to duali-
ties between left-handed skew Boolean algebras and étale spaces over locally

compact Boolean spaces. We also apply our results to construct a series of

adjunctions between the category of generalized Boolean algebras and the cat-
egory of left-handed skew Boolean algebras.

Introduction. Skew Boolean algebras and skew Boolean ∩-algebras are non-
commutative generalizations of Boolean algebras. They play an important role in
the study of discriminator varieties and other generalizations of Boolean behavior
both in universal algebra and in logic [2, 10, 11, 12, 13, 14].

The aim of the proposed talk is to present the results of [6, 7]. In [6] the classical
Stone duality [15, 4] between generalized Boolean algebras and locally compact
Boolean spaces is refined to the following two dualities between left-handed skew
Boolean algebras and étale spaces over locally compact Boolean spaces.

Theorem 1. The category ESLCBS of étale spaces over locally compact Boolean
spaces whose morphisms are étale space cohomomorphisms over continuous proper
maps is equivalent to the category LSBA of left-handed skew Boolean algebras whose
morphisms are proper skew Boolean algebra homomorphisms.

Theorem 2. The category ESLCBSE of étale spaces with compact clopen equaliz-
ers over locally compact Boolean spaces whose morphisms are injective étale space
cohomomorphisms over continuous proper maps is equivalent to the category LSBIA
of left-handed skew Boolean ∩-algebras whose morphisms are proper skew Boolean
∩-algebra homomorphisms.

These theorems generalize the classical Stone duality, looked at as the equivalence
between the opposite category to the category of locally compact Boolean spaces
and the category of generalized Boolean algebras.

In [7] we apply the results of [6] to construct a series of adjunctions between
the category GBA of generalized Boolean algebras and the category LSBA of left-
handed skew Boolean algebras, given by enriched Hom-functors. These adjunctions
are based on the dual nature of finite sets, that can be looked at as discrete spaces
and also as primitive skew Boolean algebras. Our construction provides the answer
to the question posed in [14] to explicitly describe the left adjoint functor to the
“twisted” functor ω.

Theorem 2 is closely related to the generalizations of Stone duality given in [5],
since finite primitive skew Boolean ∩-algebras are quasi-primal. In particular, a
partial case of Theorem 2 follows from the results of [5].

A different view of Stone duality for the category of skew Boolean ∩-algebras has
recently appeared in [1]. Another related work is [8, 9], where the classical Stone
duality is extended to non-commutative generalizations of Boolean algebras, called
Boolean inverse monoids.

All skew Boolean algebras, considered in our talk, are left-handed.
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From an étale space to a skew Boolean algebra. Recall that an étale space
over X is a triple (E, π,X), where E,X are topological spaces and π a surjective
local homeomorphism [3]. All étale spaces, considered in the sequel, are étale spaces
over locally compact Boolean spaces.

If U is a compact clopen set in X then E(U) denotes the set of all sections of
E over U . The stalks of E are the equivalence classes induced by π. If x ∈ X the
stalk S in E such that π(s) = x for all s ∈ S will be denoted by Ex. We call an
étale space (E, π,X) an étale space with compact clopen equalizers, provided that
for every U, V compact clopen in X and any A ∈ E(U), B ∈ E(V ), the intersection
A ∩ B is a section, that is there is some compact clopen set W ⊆ X such that
A ∩B ∈ E(W ). The latter definition is natural because of its connection with the
tools for studying discriminator varieties, such as Boolean products. It is easy to
see that (E, π,X) is an étale space with compact clopen equalizers if and only if E
is Hausdorff.

Let (A, g,X) and (B, h, Y ) be étale spaces and f : X → Y be a continuous
map. An f -cohomomorphism ([3, p. 14]) k : B  A is a collection of maps
kx : Bf(x) → Ax for each x ∈ X such that for every section s ∈ B(U) the function

x 7→ kx(s(f(x))) is a section of A over f−1(U).
Let X be a locally compact Boolean space and (E, f,X) be an étale space. Fix

U and V to be compact clopen sets of X and let A ∈ E(U), B ∈ E(V ). We define
the quasi-union A∪B of A and B to be the section in E(U ∪ V ) given by

(A∪B)(x) =

{
B(x), if x ∈ V,
A(x), if x ∈ U \ V,

and the quasi-intersection A∩B of A and B to be the section in F(U ∩V ) given by

(A∩B)(x) = A(x) for all x ∈ U ∩ V.
We show that (E,∪,∩,∅) (where ∅ is the section of the empty set of X) is a

left-handed Boolean skew lattice. Call (E,∪,∩, \,∅) the dual skew Boolean algebra
to the étale space E = (E, f,X) and denote it by E? = (E, f,X)?.

The D-classes of (E, f,X)? are the stalks Ex, x ∈ X. The maximal general-
ized Boolean algebra image of (E, f,X)? is isomorphic to X?, and the canonical
projection δ : (E, f,X)? → X? is given by V 7→ U , whenever V ∈ E(U), U ∈ X?.

Let (E, e,X) and (G, g, Y ) be étale spaces over X and Y , respectively, f : X → Y
be a continuous proper map and k : G  E be an f -cohomomorphism. Let
A ∈ G(U). The section k(A) is the image of the map sending x ∈ f−1(A) to
kx(A(f(x))). We show that k is a proper skew Boolean algebra homomorphism
from G? to E?.

We obtain the functor SB : ESLCBS→ LSBA given by SB(E, f,X) = (E, f,X)?

and SB(k) = k.

From a skew Boolean algebra to an étale space. Let S be a skew Boolean
algebra. Denote by α : S → S/D the canonical projection of S onto its maximal
generalized Boolean algebra image S/D. Call a nonempty subset U of S a filter
provided that:

(1) for all a, b ∈ S: a ∈ U and b ≥ a implies b ∈ U ;
(2) for all a, b ∈ S: a ∈ U and b ∈ U imply a ∧ b ∈ U .

Call a subset U of S a preprime filter if U is a filter and there is a prime filter
F of S/D such that α(U) = F . Denote by PUF the set of all preprime filters
contained in α−1(F ). Call minimal elements of the sets PUF prime filters of S.
Prime filters are exactly minimal nonempty preimages of 1 under the morphisms
S → 3. Denote the set of all prime filters U of S, such that α(U) = F , by UF . We
call prime filters of skew Boolean algebras SBA-prime filters.
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Let a ∈ S, a 6= 0, and let F be a prime filter of S/D, such that α(a) ∈ F . Then
the set

Xa,F = {s ∈ S : s ≥ t for some t ∈ α−1(F ) such that t ≤ a}
is a SBA-prime filter of S, contained in UF and containing a. Any element of UF
coincides with some Xa,F ; and for any U1, U2 ∈ UF we have either U1 = U2 or
U1 ∩ U2 = ∅.

Let S? be the set of all SBA-prime filters of S. We call it the spectrum of S.
Let f : S? → (S/D)? be the map, given by U 7→ F , whenever α(U) = F . In the
classical Stone duality it is proved that (S/D)? is a locally compact Boolean space,
whose base constitute the compact clopen sets

M ′(A) = {F : F is a prime filter of S/D and A ∈ F}, A ∈ S/D.
Let a ∈ S. We define the set

M(a) = {F : F is a SBA-prime filter of S and a ∈ F}.
We topologize S? so that the subbase of the topology is given by the sets M(a),

a ∈ S. We prove that (S?, f, (S/D)?) is an étale space and we call it the dual étale
space to the skew Boolean algebra S.

Let S, T be skew Boolean algebras, k : T → S be a proper homomorphism and k :
T/D → S/D be the induced proper homomorphism of generalized Boolean algebras.

By the classical Stone duality, k
−1

is a continuous proper map from (S/D)? to

(T/D)?. Set g = k
−1

. Let S? = (S?, f1, (S/D)?) and T ? = (T ?, f2, (T/D)?) to be
the corresponding dual étale spaces. Let F ∈ (S/D)? and V ∈ S?

F = UF . The set
k−1(V ), if nonempty, is some U ′ ∈ PUg(F ). We set kF (U) = V , provided that U

is a prime filter in T ?
g(F ) = Ug(F ), U ⊆ U ′ and k−1(V ) = U ′. In this way we have

defined a map kF from T ?
g(F ) to S?

F . The collection kF , F ∈ (S/D)?, constitutes a

k
−1

-cohomomorphism k̃ : T ?  S?.
We define the functor ES : LSBA → ESLCBS by setting ES(S) = S? and

ES(k) = k̃.

On the proofs of Theorems 1 and 2. To prove Theorem 1 we show that the
functors ES and SB establish the required equivalence of categories, where the
natural isomorphism β : 1LSBA → SB ·ES and γ : 1ESLCBS → ES · SB are given by

(1) βS(a) = M(a), S ∈ Ob(LSBA), a ∈ S;

(2) γE(A) = NA = {N ∈ E? : A ∈ N}, E ∈ Ob(ESLCBS), A ∈ E.
To prove Theorem 2 we first observe that (E, f,X) is an étale space with com-

pact clopen equalizers if and only E? has finite intersections. Let S, T be skew
Boolean ∩-algebras and k : S → T be a proper homomorphism that preserves finite
intersections. We show that k̃ : S?  T ? is injective. Conversely, given étale spaces
(E, e,X), (G, g, Y ) and k : E  G, we observe that k : E? → G? preserves finite
intersection and thus can be looked at as a skew Boolean ∩-algebra homomorphism.

Adjunctions between the categories LSBA and GBA. Let B be a generalized
Boolean algebra and X = B? be the dual locally compact Boolean space. Denote
by ωn(B), n ≥ 0, the set of all continuous maps f : X → {0, . . . , n + 1}, such
that f−1(1),. . . f−1(n + 1) are compact sets. We turn the sets ωn(B) into left-
handed skew Boolean algebras by defining the binary operations ∧, ∨ and the
nullary operation 0 as the induced operations of ∧, ∨ and 0 on the primitive left-
handed skew Boolean algebra n + 2. That is, for f, g ∈ ωn(B) and x ∈ X we set
(f ∧ g)(x) = f(x) ∧ g(x), (f ∨ g)(x) = f(x) ∨ g(x) and the zero of ωn(B) to be the
zero function on X. This gives rise to the object-part of a series of functors from
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the category GBA to the category LCBS. It is convenient to identify f ∈ ωn(B) with
the (n+1)-tuple (A1, A2, . . . , An+1), where Ai = f−1({i, . . . , n+1}), 1 ≤ i ≤ n+1.

The functor ω1 was first studied in [14], where applying the Freyd’s adjoint
functor theorem it is proved that this functor has the left adjoint, and the question
of describing this left adjoint was addressed. Below we provide the constructions
of the functors Ωn, which are enriched Hom-set functors and each Ωn is the left
adjoint to ωn.

Let S be a skew Boolean algebra and n ≥ 0. Let S̃n be the set of all non-
zero SBA-homomorphisms from S to n + 2. We establish that there is a bijective
correspondence between the elements of S̃n and the elements of the union of the
sets {1, . . . , n + 1}UF of all maps f : UF → {1, . . . , n + 1}, where F runs through

(S/D)?. We identify elements of S̃n and of ∪F∈(S/D)?{1, . . . , n + 1}UF . Note that

the sets S̃n can be looked at as skew Boolean counterparts of the spectrum B? of
a generalized Boolean algebra B.

Let x ∈ S? and let F ∈ (S/D)? be such that x ∈ UF . For 1 ≤ i ≤ n+ 1 we set

pi(x) = {f ∈ {1, . . . , n+ 1}UF : f(x) = i}.
For s ∈ S and i ∈ {1, . . . , n+ 1} we set L(s, i) = ∪x∈M(s)pi(x).

We turn S̃n into a topological space by proclaiming the sets L(s, i), s ∈ S,
1 ≤ i ≤ n + 1, to form a subbase of the topology. This topology naturally merges
the product topologies on {1, . . . , n+ 1}UF and the locally compact Boolean space

topology on (S/D)?. We prove that S̃n is a locally compact Boolean space and in

the case when (S/D)? is a Boolean space, then so is S̃n. We set Ωn(S) = (S̃n)?.

Theorem 3. Let n ≥ 0. The functor Ωn : LSBA → GBA is a left adjoint to the
functor ωn : GBA → LSBA. The unit of the adjunction η : 1LSBA → ωnΩn is given
by ηS(a) = (∪ki=1L(a, i))1≤k≤n+1, S ∈ Ob(LSBA), a ∈ S.
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A porim (partially ordered residuated integral monoid) is (i) divisible if it is naturally
ordered, in the sense that a ≤ b iff a = x · b = b · y for some x, y, and (ii) n-potent (where
n ∈ N) if it satisfies the identity xn = xn+1. Divisible porims are also known as pseudo-hoops
(see [5]), and divisible integral residuated lattices as integral GBL-algebras (see [7], [8]). We
deal with divisibility and n-potency in the setting of pseudo-BCK-algebras (or biresiduation
algebras) that are the residuation subreducts of porims (or integral residuated lattices). We
attempt to generalize some structural results proved by Blok and Ferreirim [1] for hoops, and
by Jipsen and Montagna [7], [8] for integral GBL-algebras.

By a pseudo-BCK-algebra we mean an algebra A = 〈A,→,;, 1〉 of type 〈2, 2, 0〉 together
with a partial order ≤ under which 1 is the top element, satisfying the following axioms:
(i) x → y ≤ (y → z) ; (x → z), x ; y ≤ (y ; z) → (x ; z), (ii) 1 → x = x = 1 ; x, and
(iii) x ≤ y iff x → y = 1 iff x ; y = 1. BCK-algebras coincide with pseudo-BCK-algebras
satisfying x → y = x ; y. For the original definition, see [4] or [6]. Every pseudo-BCK-
algebra can be embedded into the {→,;, 1}-reduct of an integral residuated lattice (we use
→,; to denote the residuals, so the law of residuation has the form x · y ≤ z iff x ≤ y → z
iff y ≤ x; z), hence pseudo-BCK-algebras are equivalent to biresiduation algebras (see [9]).
It is easy to show that a porim is divisible iff it satisfies the identities

(x→ y)→ (x→ z) = (y → x)→ (y → z),

(x; y) ; (x; z) = (y ; x) ; (y ; z),
(1)

and it is therefore natural to call such pseudo-BCK-algebras divisible. A seemingly stronger
version of divisibility was considered by Vetterlein [10] for pseudo-BCK-algebras that are join-
semilattices with respect to the underlying order; specifically, in addition to (1) he required
that the identities (x → y) → (x → z) = x → ((x ; y) → z) and (x ; y) ; (x ; z) =
x ; ((x → y) ; z) be satisfied, but we prove that these two equations are derivable from
(1).

A deductive system of a pseudo-BCK-algebra A is a subset X such that 1 ∈ X and, for all
a, b ∈ A, whenever a, a→ b ∈ X (or a, a; b ∈ X), then b ∈ X. If, moreover, for all a, b ∈ A
we have a → b ∈ X iff a ; b ∈ X, then we say that X is a normal deductive system. The
normal deductive systems of A are exactly the 1-classes of the relative congruences of A, i.e.
those θ for which A/θ is a pseudo-BCK-algebra. Following [8], we call a pseudo-BCK-algebra
normal when all its deductive systems are normal.

For a, b ∈ A and n ∈ N0, the expression an → b (and analogously an ; b) means:
a0 → b = b and an → b = a → (an−1 → b) if n ≥ 1. Normal pseudo-BCK-algebras can
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be characterized as follows: A is normal iff for all a, b ∈ A there exist m,n ∈ N such that
a→ b ≤ am ; b and a; b ≤ an → b.

Given n ∈ N, we say that a pseudo-BCK-algebra A is n-potent if, for all a, b ∈ A, we have

an → b = 1 iff an+1 → b = 1.

This is the same as the condition that an ; b = 1 iff an+1 ; b = 1. A porim is n-potent
exactly if it is n-potent as a pseudo-BCK-algebra. We prove that a pseudo-BCK-algebra A
is n-potent if and only if A satisfies either of the identities

xn → y = xn+1 → y, xn ; y = xn+1 ; y.

Cornish [3] studied BCK-algebras satisfying such identities. Every finite pseudo-BCK-algebra
is n-potent, for some n ∈ N, and the class of n-potent pseudo-BCK-algebras is a variety.

In accordance with the terminology that is used for BCK-algebras, by a commutative
pseudo-BCK-algebra we mean an algebra that fulfills the identity

(x→ y) ; y = (y ; x)→ x.

In this case, the underlying poset of A is a join-semilattice in which x ∨ y = (x → y) ; y
for all x, y ∈ A. Moreover, if A is both commutative and divisible, then it is a cone algebra
in the sense of Bosbach [2], i.e., A can be represented as a subalgebra of the algebra G− =
〈G−,→,;, 1〉, where G is a lattice-ordered group and G− its negative cone equipped with
the operations x → y = y · (x ∨ y)−1 and x ; y = (x ∨ y)−1 · y. Bounded cone algebras are
termwise equivalent to pseudo-MV-algebras.

For any divisible pseudo-BCK-algebra A, we prove the following: (i) If {1} and A are
the only deductive systems of A, then A is a linearly ordered cone algebra. (ii) If A is an
n-potent linearly ordered cone algebra, then it is an MV-algebra which has at most n + 1
elements. (iii) If A is n-potent, then it is normal and satisfies the identity xn → y = xn ; y.

Let A1, A2 be two pseudo-BCK-algebras such that A1 ∩ A2 = {1}. Their ordinal sum is
the pseudo-BCK-algebra A1 ⊕A2 = 〈A1 ∪A2,→,;, 1〉, where

x→ y =





x→i y if x, y ∈ Ai,
1 if x ∈ A1 \ {1} and y ∈ A2,

y if x ∈ A2 and y ∈ A1 \ {1},

and ; is defined in the same way. Obviously, both A1 and A2 are subalgebras of A1 ⊕A2,
and A1 is “below” A2, i.e., x < y for all x ∈ A1 \ {1} and y ∈ A2.

Theorem 1. Let A be a non-trivial subdirectly irreducible normal divisible pseudo-BCK-
algebra. Then A = B ⊕ C, where C is a non-trivial subdirectly irreducible linearly ordered
cone algebra.

As a corollary we obtain:

Theorem 2. Every n-potent divisible pseudo-BCK-algebra is a BCK-algebra. In particular,
every finite divisible pseudo-BCK-algebra is a BCK-algebra.
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Abstract. We prove Finite Embeddability Property (FEP) of the class of residuated groupoids
with modal operators ♦, �↓, satisfying standard S4-axioms (4, T), and distributive lattice op-
erations ∧, ∨. The key tool is an interpolation lemma in the style of Buszkowski [1],[2], adapted
to S4-systems.

1 Introduction

Farulewski [6] proves FEP of the class of all residuated groupoids, solving an open problem from
Blok and van Alten [5]. An essential tool was an interpolation lemma for a sequent system of
Nonassociative Lambek Calculus (NL), following some ideas of Buszkowski [1]. Buszkowski [2] obtains
similar results for residuated algebras, supplied with distributive lattice operations and a boolean or
Heyting negation (also see [3]). He also proves the context-freeness of the corresponding grammars.

NL can be supplied with modal operations ♦, �↓, satisfying the adjoint law: ♦A ⇒ B iff A ⇒
�↓B. Such systems were studied by e.g. Moortgat [11] and Plummer [12] in connection with Type-
Logical Grammar. Plummer [11] assumes S4-axioms ♦♦A ⇒ A, A ⇒ ♦A, replacing them by some
structural rules; his results concern the context-freeness of such systems.

In [8], we extend Plummer‘s results to NLS4 with assumptions and prove the polynomial time
decidability of the consequence relation of NLS4 and the context-freeness of the corresponding gram-
mars. In [9], we prove FEP of the class of residuated groupoids with S4-modal operations. (We also
admit an additional axiom ♦(a · b) ≤ ♦a · ♦b).

The present paper extends the latter results to S4-modal residuated groupoids with operations
of a distributive lattice, (but we omit the extra axiom ♦(a · b) ≤ ♦a ·♦b), which enables us to obtain
a simpler, more elegant form of the interpolation lemma.

We present a sequent system, complete with respect to the class of distributive lattice ordered
S4-modal residuated groupoids. This system is an extension of Full Nonassociative Lambek Calculus
(FNL). Since the distributive law A ∧ (B ∨ C) ⇒ (A ∧ B) ∨ (A ∧ C) is added as a new axiom, this
system does not admit cut-elimination (like in [2],[3]).

The proof of the interpolation lemma here is finer than in earlier papers (e.g. [8],[12]) which
yields a simpler description of the set of possible intepolants.

Our interest in modal postulates and non-logical assumptions can be partly motivated by lin-
guistics application. Firstly, Non-logical assumptions are useful in linguist, especially when we need
some sequents, which can not be derivable in the logic system. For instance, in the Lambek calculus
we can not transform (s\(s/s)) (the type of sentence conjunction) to vp\(vp/vp) (the type of verb
phrase conjunction). However, we can add the sequent (s\(s/s)) ⇒ vp\(vp/vp) as an assumption.
Secondly, S4-modalities might also be of some use for linguist purpose. There are many evidences for
the usefulness of S4-modalities with associative rule in linguistics application (see Morrill [11] and
Hepple [7]). A simple example can be found in [9]. Last but not least, although categorial grammars
with additives are not popular in the linguistic literature. There are, nonetheless, good reasons for
studying them. For example, in [12], Kanazawa proposes feature decomposition of basic categories
by using conjunction and disjunction: walks is assigned type (np ∧ sing)\s, walk type (np ∧ pl)\s,
walked type np\s, John type np ∧ sing, the Beatles type np ∧ pl, the Chinese type np ∧ (sing ∧ pl)
and became type (np\s)/(np ∨ ap), where ap stands for adjective phrase.
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2 Main definition and results

Let us recall the sequent system of NL♦. Formulae (types) are formed out of atomic types p, q, r . . .
by means of three binary operation symbols •, \, / and two unary operation symbols ♦, �↓. Formula
trees (formula-structures) are recursively defined as follow: (i) every formula is a formula-tree, (ii)
if Γ , ∆ are formula-trees, then (Γ ◦∆) is a formula-tree, (iii) if Γ is a formula-tree, then 〈Γ 〉 is a
formula-tree. Sequents are of the form Γ ⇒ A such that Γ is a formula tree and A is a formula.

One admits the axioms:
(Id) A⇒ A

and the inference rules

(\L)
∆⇒ A; Γ [B]⇒ C

Γ [∆ ◦ (A\B)]⇒ C
(\R)

A ◦ Γ ⇒ B

Γ ⇒ A\B (/L)
Γ [A]⇒ C; ∆⇒ B

Γ [(A/B) ◦∆]⇒ C
(/R)

Γ ◦B ⇒ A

Γ ⇒ A/B

(·L)
Γ [A ◦B]⇒ C

Γ [A ·B]⇒ C
(·R)

Γ ⇒ A; ∆⇒ B

Γ ◦∆⇒ A ·B (CUT)
∆⇒ A; Γ [A]⇒ B

Γ [∆]⇒ B

The following are sequent rules for the unary modalities:

(♦L)
Γ [〈A〉]⇒ B

Γ [♦A]⇒ B
(♦R)

Γ ⇒ A

〈Γ 〉 ⇒ ♦A (�↓L)
Γ [A]⇒ B

Γ [〈�↓A〉]⇒ B
(�↓R)

〈Γ 〉 ⇒ A

Γ ⇒ �↓A

Distributive Full Nonassociative Lambek Calculus enriched with unary modalities DFNL♦ employs
operations ·, \, /, ∧ and ∨. One admits the following rules

(∧L)
Γ [Ai]⇒ B

Γ [A1 ∧A2]⇒ B
(∧R)

Γ ⇒ A Γ ⇒ B

Γ ⇒ A ∧B

(∨L)
Γ [A1]⇒ B Γ [A2]⇒ B

Γ [A1 ∨A2]⇒ B
(∨R)

Γ ⇒ Ai

Γ ⇒ A1 ∨A2

and the distributive axiom: (D) A ∧ (B ∨ C)⇒ (A ∧B) ∨ (A ∧ C).
By DFNL4T, we denote the system DFNL♦ enriched with the following structural rules 4 and T

(corresponding to axioms 4, T)

(T)
Γ [〈∆〉]⇒ A

Γ [∆]⇒ A
(4)

Γ [〈∆〉]⇒ A

Γ [〈〈∆〉〉]⇒ A

Let Φ be a set of assumptions of the form A ⇒ B. Hereafter, we assume that Φ is finite. Let
T denote a set of formulas. By a T -sequent we mean a sequent such that all formulas occurring in
it belong to T . We write Φ `S Γ ⇒T A if Γ ⇒ A has a deduction from Φ (in the given calculus
S) which consists of T -sequents only (called a T -deduction). Two formulae A and B are said to be
T-equivalent in calculus S, if and only if `S A⇒T B and `S B ⇒T A.

Lemma 1 Let T be a set of formulae closed under ∨, ∧. If Φ `DFNL4T
Γ [〈∆〉] ⇒T A then there

exists a D ∈ T such that Φ `DFNL4T
〈∆〉 ⇒T D, Φ `DFNL4T

〈D〉 ⇒T D, and Φ `DFNL4T
Γ [D]⇒T A.

Lemma 2 Let T be a set of formulae closed under ∨, ∧. If Φ `DFNL4T Γ [∆]⇒T A then there exists
a D ∈ T such that Φ `DFNL4T

∆⇒T D and Φ `DFNL4T
Γ [D]⇒T A.

Lemma 3 If T is set of formulas generated from a finite set and closed under ∧, ∨, then T is finite
up to the relation of T -equivalence in DFNL4T.

A distributive lattice-ordered residuated groupoid with 4T-operators (4T-DLRG) is a structure
(G,∧,∨, ·, \, /,♦,�↓) such that (G,∧,∨) is a distributive lattice and (G, ·, \, /,♦,�↓) is a structure
such that ·, \, / and ♦, �↓ are binary and unary operations on G, respectively, satisfying the following
conditions:

a · b ≤ c iff b ≤ a\c iff a ≤ c/b (1)
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♦a ≤ b iff a ≤ �↓b (2)

4 : ♦♦a ≤ ♦a T : a ≤ ♦a (3)

for all a, b, c ∈ G, where ≤ is the lattice ordering. It is easy to prove that DFNL4T is strongly
complete with respect to 4T-DLRGs. Besides by 4T-LRG, we denote a lattice-ordered residuated
groupoid with 4T-operators. Let G be a 4T-DLRG. We recall some basic notions. A valuation µ in
G is a homomorphism from the formula algebra into G. A sequent Γ ⇒ A is true in the model (G,
µ), if µ(Γ ) ≤ µ(A). The strong completeness means the following: Φ `DFNL4T

Γ ⇒ A if and only if,
for any model (G, µ). if all sequents from Φ are true, then Γ ⇒ A is true.

By G and G, we denote a groupoid and its universe, respectively. Let G =(G, ·, �) be a groupoid,
where ♦ is a unary operation on G. On the powerset P (G) one defines operations: U � V = {a · b ∈
G : a ∈ U, b ∈ V }, ♦U = {�a ∈ G : a ∈ U}, U\V = {z ∈ G : U � {z} ⊆ V }, V/U = {z ∈
M ; {z} � U ⊆ V }, �↓U{z ∈ G : �z ∈ U}, U ∨ V = U ∪ V , U ∧ V = U ∩ V . P (G) with operations
�, ♦, \, /, �↓, ∨ and ∧ is a distributive lattice-ordered residuated groupoid satisfying (1) and (2)
(it is a complete lattice). The order is ⊆. An operator C : P (G) → P (G) is called a 4T-closure
operator (or: a 4T -nucleus) on G, if it satisfies the following conditions: (C1) U ⊆ C(U), (C2)
if U ⊆ V then C(U) ⊆ C(V ), (C3) C(C(U)) ⊆ C(U), (C4) C(U) � C(V ) ⊆ C(U � V ), (C5)
♦C(U) ⊆ C(♦U), (C6) C(♦C(♦C(U))) ⊆ C(♦U), (C7) C(U) ⊆ C(♦U). For U ⊆ P (G), U is
called C − closed if U = C(U). By C(G), we denote the family of C − closed subsets of G. Let
U ⊗ V = C(U � V ), �U = C(♦U), U ∨C V = C(U ∨ V ), and \, /, �↓, ∧, be defined as above.
By (C1)-(C5), C(G) = (C(G),∧,∨C ,⊗, \, /,�,�↓) is a complete lattice-ordered residuated groupoid
[3]; it need not be distributive. The order is ⊆. Using (C6)-(C8), it is easy to prove ��U ⊆ �U ,
U ⊆ �U . It follows that C(G) is a 4T-LRG.

Let T be a nonempty set of formulae containing all subformulae of formulae in Φ. By T ∗, we
denote the set of all formula structures form out of formulae in T . Similarly T ∗[◦] denotes the set of
all contexts in which all formulae belong to T . Let Γ [◦] ∈ T ∗ and A ∈ T , we define:

[Γ [◦], A] = {∆ : ∆ ∈ T ∗ and Φ `DFNL4T Γ [∆]⇒T A}

We define B(T ) as the family of all sets [Γ [◦], A], defined above. One defines CT as follows:

CT (U) =
⋂
{[Γ [◦], A] ∈ B(T ) : U ⊆ [Γ [◦], A]}

We prove the following proposition.

Proposition 1 CT is a 4T-modal closed operator.

T donotes a set of formulae containing all formulae in Φ, which is closed under subformulae, ∧ and ∨.
G(T ∗) = (T ∗, ◦, 〈〉) is a groupoid such that 〈〉 is an unary operation on T ∗. Accordingly, CT (G(T ∗))
is a 4T-LRG. Let µ be a valuation such that µ(p) = [p] for all propositional variables in T . The
following equations are true in C(G(T ∗)) provided that all formulas appearing in them belong to T .

[A]⊗ [B] = [A ·B], [A]\[B] = [A\B], [A]/[B] = [A/B] (4)

�[A] = [♦A] �↓[A] = [�↓A] (5)

[A] ∩ [B] = [A ∧B] [A] ∨C [B] = [A ∨B] (6)

By Lemma 3, there exists a finite set R ⊆ T such that every formula from T is T -equivalent to some
formula from R.

Lemma 4 For any U ∈ CT (G(T ∗)), there exists a formula A ∈ R such that U = [A].

Lemma 5 CT (G(T ∗)) is a 4T−DLRG.

Now we are ready to prove SFMP for DFNL4T.
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Lemma 6 T denotes a set of formulae, containing all formulae in Φ and closed under ∧, ∨, and
subformulae. Let µ be a valuation in CT (G(T ∗)) such that µ(p) = [p]. For any T -sequent Γ ⇒ A,
this sequent is true in (CT (G(T ∗)), µ) if and only if Φ `DFNL4T Γ ⇒T A.

Proof: Assume a T -sequent Γ ⇒ A be true in (C(G(T ∗)), µ). Then µ(Γ ) ⊆ µ(A). Since Γ ∈ µ(Γ ),
we get Γ ∈ µ(A) = [A]. Hence Φ `DFNL4T

Γ ⇒T A. Assume Φ `DFNL4T
Γ ⇒T A. We prove

that Γ ⇒ A is true in (C(G(T ∗)), µ), by induction on T -deductions. The axioms (Id), (D) and
the assumptions from Φ, restricted to T -sequents, are of the form E ⇒ F . By (4), (5) and (6)
, we get µ(E) = [E] and µ(F ) = [F ]. Assume ∆ ∈ [E], we get Φ `DFNL4T ∆ ⇒T E. Hence
Φ `DFNL4T

∆⇒T F , by (CUT), which yields [E] ⊆ [F ]. Since C(G(T ∗)) is a 4T-DLRG, all rules of
DFNL4T preserve the truth in (C(G(T ∗)), µ), whence Γ ⇒ A is true in C(G(T ∗)).

Theorem 7 Assume that Φ `DFNL4T
Γ ⇒ A does not hold. Then there exist a finite distributive

lattice ordered residuated groupoid with 4T-operators G and a valuation µ such that all sequents from
Φ are true but Γ ⇒ A is not true in (G, µ).

Proof: Let T be the set of all formulas appearing in Φ and Γ ⇒ A. T denote the closure of T
under ∧,∨. Hence C(G(T ∗)) is a finite distributive lattice ordered residuated groupoid, by Lemma
5. Assume Φ 6`DFNL4T Γ ⇒ A, which yields Φ 6`DFNL4T Γ ⇒T A. Let µ(p) = [p]. By lemma 6, all
sequents from Φ are true in (C(G(T ∗)), µ) but Γ ⇒ A is not true.

Corollary 8 4T−DLRGs has FEP.

This results can also be extended to boolean residuated groupoids with S5-modal operators. We
defer a detailed discussion to a forthcoming paper.
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Algebraic semantics and model completeness for Intuitionistic Public Announcement Logic
(Extended abstract)

Minghui Ma, Alessandra Palmigiano, Mehrnoosh Sadrzadeh

In this paper, we start studying epistemic updates using the standard toolkit of duality theory. We focus on public announce-
ments, which are the simplest epistemic actions, and hence on single-agent1 Public Announcement Logic (PAL) without the
common knowledge operator. As is well known, the epistemic action of publicly announcing a given proposition is seman-
tically represented as a process of relativization of the model encoding the current epistemic setup of the given agents; from
the given model to its submodel relativized to the announced proposition. We give the dual characterization of the corre-
sponding submodel-injection map, as a certain pseudo-quotient map between the complex algebras respectively associated
with the given model and with its relativized submodel. As is well known, these complex algebras are complete atomic BAOs
(Boolean algebras with operators). The dual characterization we provide naturally generalizes to much wider classes of alge-
bras, which include, but are not limited to, arbitrary BAOs and arbitrary modal expansions of Heyting algebras (HAOs). In
this way, we access the benefits and the wider scope of applications given by a point-free, intuitionistic theory of epistemic
updates. As an application of this dual characterization, we axiomatize the intuitionistic analogue of PAL, which we refer to
as IPAL, and prove soundness and completeness of IPAL w.r.t. both algebraic and relational models.

The logic of public announcements

Let AtProp be a countable set of proposition letters. The formulas of (single-agent) public announcement logic PAL are built
by the following inductive rule:

ϕ ::= p ∈ AtProp | ¬ϕ | ϕ ∨ ψ | ^ϕ | 〈α〉ϕ.

Models for PAL are Kripke models M = (W,R,V) such that R is an equivalence relation. The evaluation of the static fragment
of the language is standard. Formulas of form 〈α〉ϕ are evaluated as follows:

M,w  〈α〉ϕ iff M,w  α and Mα,w  ϕ,

where Mα = (Wα,Rα,Vα) is defined as follows: Wα = [[α]]M , Rα = R ∩ (Wα × Wα) and for every p ∈ AtProp, Vα(p) =

V(p) ∩Wα.

Proposition 1 ([1, Theorem 27]). PAL is axiomatized completely by the axioms for the modal logic S5 plus the following
axioms:

〈α〉p↔ (α ∧ p); 〈α〉¬ϕ↔ (α ∧ ¬〈α〉ϕ); 〈α〉(ϕ ∨ ψ)↔ (〈α〉ϕ ∨ 〈α〉ψ); 〈α〉^ϕ↔ (α ∧ ^(α ∧ 〈α〉ϕ)).

The intuitionistic modal logic MIPC

Introduced by Prior with the name MIPQ [5], the intuitionistic modal logic MIPC is largely considered the intuitionistic
analogue of S5. The logic MIPC has been studied by many authors, viz. [2, 3] and the references therein. In this section we
briefly review the notions and facts needed for the purposes of the present paper, and we refer to [2, 3] for their attribution.
The formulas of MIPC are built by the following inductive rule:

ϕ ::= ⊥ | p ∈ AtProp | ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ | ^ϕ | �ϕ.

Let > be defined as ⊥ → ⊥ and, for every formula ϕ, let ¬ϕ be defined as ϕ → ⊥. The logic MIPC is the minimal set of
formulas in this language which contains all the axioms of intuitionistic propositional logic, the following modal axioms:

�p→ p, p→ ^p, (�p ∧ �q)→ �(p ∧ q), ^(p ∨ q)→ (^p ∨ ^q),
^p→ �^p, ^�p→ �p, �(p→ q)→ (^p→ ^q),

1The results straightforwardly extend to the multi-agent setting.
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and is closed under substitution, modus ponens and necessitation (ϕ/�ϕ).

The relational structures for MIPC, called MIPC-frames, are triples F = (W,≤,R) such that (W,≤) is a nonempty poset
and R is a binary equivalence relation such that (R ◦ ≤) ⊆ (≤ ◦ R). MIPC-models are structures M = (F ,V) such that F is a
relational structure as specified above and V : AtProp → P↑(W) is a function mapping proposition letters to upward-closed
subsets of W2. For any such model, its associated extension map [[·]]M → P↑(W) is defined recursively as follows:

[[p]]M = V(p) [[⊥]]M = ∅
[[ϕ ∨ ψ]]M = [[ϕ]]M ∪ [[ψ]]M [[ϕ ∧ ψ]]M = [[ϕ]]M ∩ [[ψ]]M

[[^ϕ]]M = R−1[[[ϕ]]M] [[�ϕ]]M = ((≤ ◦ R)−1[[[ϕ]]c
M])c

[[ϕ→ ψ]]M = ([[ϕ]]M ∩ [[ψ]]c
M)↓c,

where (.)c is the complement operation. For any model M and any MIPC formula ϕ, we write:

M,w  ϕ if w ∈ [[ϕ]]M; M  ϕ if [[ϕ]]M = W; F  ϕ if [[ϕ]]M = W for any model M based on F .

Proposition 2. MIPC is sound and complete with respect to the class of MIPC-frames.

The algebraic semantics for MIPC is given by a variety of Heyting algebras with operators (HAOs) which are called
monadic Heyting algebras:

Definition 3. The algebra A = (A,∧,∨,→,⊥,^,�) is a monadic Heyting algebra (MHA) if (A,∧,∨,→,⊥) is a Heyting
algebra and the following inequalities hold:

�x ≤ x, x ≤ ^x; �x→ �y ≤ �(x→ y), ^(x ∨ y) ≤ (^x ∨ ^y);
^x ≤ �^x, ^�x ≤ �x; �(x→ y) ≤ ^x→ ^y.

Clearly, any formula in the language L of MIPC can be regarded as a term in the algebraic language of MHAs. Therefore,
for any MHA A and any interpretation V : AtProp→ A, an MIPC formula ϕ is true in A under the interpretation V (notation:
(A,V) |= ϕ) if the unique homomorphic extension of V , which we denote [[·]]V : L → A, maps ϕ to >A. An MIPC formula is
valid in A (notation: A |= ϕ), if (A,V) |= ϕ for every interpretation V . In the remainder, we will refer to the tuples (A,V) s.t.
A is a MHA and V is an interpretation as algebraic models.
MIPC-frames give rise to complex algebras, just as Kripke frames do: for any MIPC-frame F , the complex algebra of F is

F + = (P↑(W),∩,∪,⇒,∅, 〈R〉, [≤ ◦ R]),

where for every X,Y ∈ P↑(W),

〈R〉X = R−1[X], [≤ ◦ R]X = ((≤ ◦ R)−1[Xc])c, X ⇒ Y = (X ∩ Yc)↓c.

Clearly, given a model M = (F ,V), the extension map [[·]]M : L → F + is the unique homomorphic extension of V :
AtProp→ F +.

Proposition 4. For every MIPC-model (F ,V) and every MIPC formula ϕ,

1. (F ,V)  ϕ iff (F +,V) |= ϕ.

2. F + is a monadic Heyting algebra.

Intuitionistic PAL

Let AtProp be a countable set of propositional letters. The formulas of the (single-agent) intuitionistic public announcement
logic IPAL are built according to the following syntax rule:

2For every poset (W,≤), a subset Y of W is upward-closed if for every x, y ∈ W, if x ≤ y and x ∈ Y then y ∈ Y .
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ϕ ::= p ∈ AtProp | ⊥ | > | ϕ ∨ ψ | ϕ ∧ ψ | ϕ→ ψ | ^ϕ | �ϕ | 〈α〉ϕ | [α]ϕ.

IPAL is axiomatically defined by the axioms for MIPC plus the following axioms:

Preservation of logical constants Preservation of facts
〈α〉⊥ = ⊥ 〈α〉p = α ∧ p
[α]> = > [α]p = α→ p

Interaction with disjunction Interaction with conjunction
〈α〉(ϕ ∨ ψ) = 〈α〉ϕ ∨ 〈α〉ψ 〈α〉(ϕ ∧ ψ) = 〈α〉ϕ ∧ 〈α〉ψ
[α](ϕ ∨ ψ) = α→ (〈α〉ϕ ∨ 〈α〉ψ) [α](ϕ ∧ ψ) = [α]ϕ ∧ [α]ψ

Interaction with implication
〈α〉(ϕ→ ψ) = α ∧ (〈α〉ϕ→ 〈α〉ψ)
[α](ϕ→ ψ) = 〈α〉ϕ→ 〈α〉ψ

Interaction with ^ Interaction with �
〈α〉^ϕ = α ∧ ^〈α〉ϕ 〈α〉�ϕ = α ∧ �[α]ϕ
[α]^ϕ = α→ ^〈α〉]ϕ [α]�ϕ = α→ �[α]ϕ

Algebraic models, and updates as pseudo quotients

Definition 5. An algebraic model is a tuple M = (A,V) s.t. A is an MIPC algebra and V : AtProp→ A.

For every A and every a ∈ A, define the following equivalence relation ≡a on A: for every b, c ∈ A,

b ≡a c iff b ∧ a = c ∧ a.

Let [b]a (abbreviated as [b] when no confusion arises) be the equivalence class of b ∈ A. Let

Aa := A/≡a

denote the quotient set. Clearly, Aa is an ordered set by putting [b] ≤ [c] iff b′ ≤A c′ for some b′ ∈ [b] and some c′ ∈ [c]. Let
π = πa : A→ Aa be the canonical projection given by b 7→ [b].

Fact 6. 1. ≡a is a congruence if A is a Boolean algebra, a Heyting algebra, a bounded distributive lattice or a frame.

2. ≡a is not a congruence w.r.t. modal operators.

3. For every b ∈ A there exists a unique c ∈ A s.t. c ∈ [b]a and c ≤ a.

The fact above implies that each ≡a-equivalence class has a canonical representant, namely the only element in that class
that is less than or equal to a. Hence, the map i′ = i′a : Aa → A given by [b] 7→ b ∧ a is well defined and injective.

Fact 7. 1. π ◦ i′ = idAa .

2. If A = F + for some Kripke frame F , then i′(b) = i[b] for every b ∈ A.

Let (A,^,�) be a HAO. Define, for every b ∈ A,

^a[b] := [^(b ∧ a) ∧ a] = [^(b ∧ a)] and �a[b] := [a→ �(a→ b)] = [�(a→ b)].

(The second equality holds because of Heyting inequalities a ∧ (a → �(a → b)) ≤ �(a → b) and a ∧ �(a → b) ≤ a →
�(a→ b).)

Fact 8. For every HAO (A,^,�) and every a ∈ A,

1. ^a, �a are normal modal operators. Hence (Aa,�a,^a) is a HAO.

2. If A = F + for some Kripke frame F , then Aa �BAO F a+.
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Interpreting dynamic modalities in algebraic models

The following classical satisfaction condition for the dynamic diamond

M,w  〈α〉ϕ iff M,w  α and Mα,w  ϕ

can be equivalently written as follows:

w ∈ [[〈α〉ϕ]]M iff ∃w′ ∈ Wα s.t. i(w′) = w ∈ [[α]]M and w′ ∈ [[ϕ]]Mα .

Because the map i : Mα → M is injective, we have w′ ∈ [[ϕ]]Mα iff w = i(w′) ∈ i[[[ϕ]]Mα ]. Hence, we obtain:

w ∈ [[〈α〉ϕ]]M iff w ∈ [[α]]M ∩ i[[[ϕ]]Mα ],

from which we get that
[[〈α〉ϕ]]M = [[α]]M ∩ i[[[ϕ]]Mα ]. (1)

Reasoning analogously in the case of the dynamic box, we obtain:

[[[α]ϕ]]M = [[α]]M ⇒ i[[[ϕ]]Mα ], (2)

where the operation X ⇒ Y is defined as (W \ X) ∪ Y . The clauses (1) and (2) above, together with Fact 7.2, motivate the
following

Definition 9. For every algebraic model M = (A,V), the extension map [[·]]M : Fm→ A is defined recursively as follows:

[[p]]M = V(p) [[⊥]]M = ⊥A
[[>]]M = >A [[ϕ ∨ ψ]]M = [[ϕ]]M ∨A [[ψ]]M

[[ϕ ∧ ψ]]M = [[ϕ]]M ∧A [[ψ]]M [[ϕ→ ψ]]M = [[ϕ]]M →A [[ψ]]M
[[^ϕ]]M = ^A[[ϕ]]M [[�ϕ]]M = �A[[ϕ]]M

[[〈α〉ϕ]]M = [[α]]M ∧A i′([[ϕ]]Mα ) [[[α]ϕ]]M = [[α]]M →A i′([[ϕ]]Mα ).

Here, Mα = (Aα,Vα) s.t. Aα = A[[α]]M and Vα : AtProp→ Aα is π ◦ V , i.e. for every p ∈ AtProp,

[[p]]Mα = Vα(p) = π(V(p)) = π([[p]]M).

Soundness and completeness

Theorem 10. IPAL is complete wrt MIPC algebraic/relational models.

Proof. Completeness is analogous to the proof of completeness of classical PAL wrt Kripke models, and follows from the
reducibility of IPAL to MIPC via the interaction axioms. �
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Abstract

Extensions of the Johansson minimal logic are investigated. Repre-
sentation theorems for well-composed logics with the Graig interpolation
property CIP, restricted interpolation property IPR and projective Beth
property PBP are stated. It is proved that PBP is equivalent to IPR for
any well-composed logic, and there are only finitely many well-composed
logics with CIP, IPR or PBP.

1 Propositional J-logics

Modal and superintuitionistic (s.i.) logics, and varieties of their associated al-
gebras were at the centre of investigations by Leo Esakia [1].

In this paper we consider extensions of the Johansson minimal logic J; this
family extends the class of s.i. logics. The main variants of the interpolation
property are studied. It is known that the weak interpolation property is decid-
able over J [5]. There are only finitely many s.i.logics with CIP, IPR or PBP,
all of them are fully described [2, 4]. Here we extend these results to the class
of well-composed J-logics.

The language of J contains &,∨,→,⊥ as primitive; negation is defined by
¬A = A → ⊥. The logic J can be given by the calculus, which has the same
axiom schemes as the positive intuitionistic calculus Int+, and the only rule of
inference is modus ponens. By a J-logic we mean an arbitrary set of formulas
containing all the axioms of J and closed under modus ponens and substitution
rules. We denote

Int = J + (⊥ → A), Neg = J +⊥, Gl = J + (A ∨ ¬A),
Cl = Int + (A ∨ ¬A), JX = J + (⊥ → A) ∨ (A→ ⊥).

A J-logic is superintuitionistic if it contains the intuitionistic logic Int, and
negative if contains Neg. A J-logic is well-composed if it contains JX. For a
J-logic L, the family of J-logics containing L is denoted by E(L).

If p is a list of variables, let A(p) denote a formula whose all variables are
in p, and F(p) the set of all such formulas.

Let L be a logic. The Craig interpolation property CIP, the restricted inter-
polation property IPR and the weak interpolation property WIP are defined as
follows (where the lists p,q, r are disjoint):

∗Supported by Russian Foundation for Basic Research (project 09-01-00090a)
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CIP. If `L A(p,q) → B(p, r), then there is a formula C(p) such that `L
A(p,q)→ C(p) and `L Cp)→ B(p, r).

IPR. If A(p,q), B(p, r) `L C(p), then there exists a formula A′(p) such that
A(p,q) `L A′(p) and A′(p), B(p, r) `L C(p).

WIP. If A(p,q), B(p, r) `L ⊥, then there exists a formula A′(p) such that
A(p,q) `L A′(p) and A′(p), B(p, r) `L ⊥.

Suppose that p, q, q′ are disjoint lists of variables that do not contain x and
y, q and q′ are of the same length, and A(p,q, x) is a formula. We define the
projective Beth property:

PBP. If A(p,q, x), A(p,q′, y) `L x ↔ y, then A(p,q, x) `L x ↔ B(p) for
some B(p).

The weaker Beth property BP arises from PBP by omitting q and q′.
All J-logics satisfy BP, and for these logics the following hold:

• CIP ⇒ PBP ⇒ IPR ⇒ WIP, PBP 6⇒ CIP, WIP 6⇒ IPR.

It is proved in [5] that WIP is decidable over J, i.e. there is an algorithm
which, given a finite set Ax of axiom schemes, decides if the logic J+Ax has
WIP. The families of J-logics with WIP and of J-logics without WIP have the
continuum cardinality.

The logics J, Int, Neg, Gl, Cl and JX possess CIP and hence all other above-
mentioned properties. It is known [4] that

• IPR ⇔ PBP over Int and Neg.

It is known that there are only finitely many s.i. and negative logics with
CIP, IPR and PBP [2, 4]. Here we extend this result to all well-composed logics.
Also we prove that IPR is equivalent to PBP in any well-composed logic.

2 Algebraic interpretation

The considered properties have natural algebraic equivalents. There is a duality
between J-logics and varieties of J-algebras.

Algebraic semantics for J-logics is built via J-algebras, i.e. algebras A =<
A; &,∨,→,⊥,> > such that A is a lattice w.r.t. &,∨ with the greatest element
>, ⊥ is an arbitrary element of A, and

z ≤ x→ y ⇐⇒ z&x ≤ y.
A J-algebra A is a Heyting algebra if ⊥ is the least element of A, and a negative
algebra if ⊥ is the greatest element of A; the algebra is well-composed if every
its element is comparable with ⊥. For any well-composed J-algebra A, the set
Al = {x| x ≤ ⊥} forms a negative algebra, and the set Al = {x| x ≥ ⊥} forms
a Heyting algebra. If B is a negative algebra and C is a Heyting algebra, we
denote by B ↑ C a well-composed algebra A such that Al is isomorphic to B
and Au to C. For a negative algebra B, we denote by BΛ a J-algebra arisen
from B by adding a new greatest element >.

A J-algebra A is finitely indecomposable if for all x, y ∈ A:
x ∨ y = > ⇔ (x = > or y = >).
If A is a formula, A a J-algebra, then A is valid in A (in symbols, A |= A) if

the identity A = > is valid in A. We write A |= L instead of (∀A ∈ L)(A |= A).
Let V (L) = {A|A |= L}. Each J-logic L is characterized by the variety V (L).

We recall the definitions. A class V has Amalgamation Property if it satisfies
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AP: For each A,B,C ∈ V such that A is a common subalgebra of B and C,
there exist an algebra D in V and monomorphisms δ : B → D and ε : C → D
such that δ(x) = ε(x) for all x ∈ A.

Super-Amalgamation Property (SAP) is AP with extra conditions:

δ(x) ≤ ε(y)⇔ (∃z ∈ A)(x ≤ z and z ≤ y),

δ(x) ≥ ε(y)⇔ (∃z ∈ A)(x ≥ z and z ≥ y).

Restricted Amalgamation Property (RAP) and Weak Amalgamation Prop-
erty (WAP) are defined as follows:

RAP: for any A,B,C ∈ V such that A is a common subalgebra of B and C,
there exist an algebra D in V and homomorphisms g : B→ D and h : C→ D
such that g(x) = h(x) for all x ∈ A and the restriction of g onto A is a
monomorphism.

WAP: For each A,B,C ∈ V such that A is a common subalgebra of B
and C, there exist an algebra D in V and homomorphisms δ : B → D and
ε : C → D such that δ(x) = ε(x) for all x ∈ A, and ⊥ 6= > in D whenever
⊥ 6= > in A.

A class V has Strong Epimorphisms Surjectivity if it satisfies
SES: For each A,B in V , for every monomorphism α : A→ B and for every

x ∈ B − α(A) there exist C ∈ V and homomorphisms β : B → C, γ : B → C
such that βα = γα and β(x) 6= γ(x).

Theorem 2.1. [3] For any J-logic L:
(1) L has CIP iff V(L) has SAP iff V(L) has AP,
(2) L has IPR iff V(L) has RAP, (3) L has WIP iff V(L) has WAP,
(4) L has PBP iff V(L) has SES.

In varieties of J-algebras: SAP ⇐⇒ AP⇒ SES⇒ RAP⇒WAP.

3 Interpolation in well-composed J-logics

For L1 ∈ E(Neg), L2 ∈ E(Int) we denote by L1 ↑ L2 a logic characterized by
all algebras of the form A ↑ B, where A |= L1, B |= L2; a logic characterized
by all algebras A ↑ B, where A is a finitely decomposable algebra in V (L1) and
B ∈ V (L2), is denoted by L1 ⇑ L2.

In [3] an axiomatization was found for logics L1 ↑ L2 and L1 ⇑ L2, where
L1 is a negative and L2 an s.i. logic.

It is known that there are only finitely many s.i. and negative logics with
CIP, IPR and PBP [2, 3, 4]. We give the list of all negative logics with CIP:

Neg, NC = Neg + (p→ q) ∨ (q → p), NE = Neg + p ∨ (p→ q), For = Neg + p.

For any J-logic L define
Lneg = L+⊥.

The following theorem describes all well-composed logics with CIP.

Theorem 3.1. Let L be a well-composed logic. Then L has CIP if and only if
L coincides with one of the logics:

(1) L1 ∩ L2, where L1 = Lneg is a negative logic with CIP and L2 is a
superintuitionistic logic with CIP;
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(2) L1 ∩ (L3 ⇑ L2), where L1 = Lneg is a negative logic with CIP, L2 is a
consistent s.i. logic with CIP and L3 ∈ {Neg,NC,NE};

(3) L1 ∩ (L3 ↑ L2), where L1, L2, L3 are the same as in (2).

The following two theorems give a full description of well-composed logics
with IPR and PBP.

It is proved in [5] that WIP is decidable over J, i.e. there is an algorithm
which, given a finite set Ax of axiom schemes, decides if the logic J+Ax has
WIP. A crucial role in the description of J-logics with WIP [5] belongs to the
following list of eight logics:

SL = {For,Cl, (NE ↑ Cl), (NC ↑ Cl), (Neg ↑ Cl), (NE ⇑ Cl), (NC ⇑ Cl), (Neg ⇑ Cl)}.
Let Λ(L) = {BΛ| BΛ ∈ V (L)}.
Theorem 3.2. Let L be a well-composed logic, the logic Lneg have IPR and

L = Lneg ∩ L0 ∩ L1,

where L0 ∈ SL, Λ(L0) ⊇ Λ(L1), L1 ∈ {For, (L2 ↑ L3), (L2 ⇑ L3)}, L2 is a
negative logic with CIP, and L3 is a superintuitionistic logic with IPR. Then L
has IPR and, moreover, L has PBP.

Theorem 3.3. Let a well-composed logic L have IPR. Then the logic Lneg has
IPR, and L is representable as

L = Lneg ∩ L0 ∩ L1,

where L0 ∈ SL, Λ(L0) ⊇ Λ(L1), L1 ∈ {For, (L2 ↑ L3), (L2 ⇑ L3)}, L2 is a
negative logic with CIP, and L3 is a superintuitionistic logic with IPR.

Corollary 3.4. 1. There are only finitely many well-composed logics with
IPR; all of them are finitely axiomatizable.

2. IPR and PBP are equivalent on the class of well-composed logics.

Problem 1. How many J-logics have CIP, IPR or PBP?
Problem 2. Are IPR and PBP equivalent over J?
Problem 3. Are CIP, IPR and/or PBP decidable over J? The same question
for the class of well-composed logics.
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Towards a good notion of categories of logics
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1 Introduction

In this work we consider (finitary, propositional) logics through the original use of Category Theory: the
study of the “ sociology of mathematical objects”, aligning us with a recent, and growing, trend of study logics
through its relations with other logics (e.g., combinations of logics, fibrings, etc.). So will be objects of study the
classes of logics, i.e. categories whose objects are logical systems (i.e., a signature with a Tarskian consequence
relation) and the morphisms are related to (some concept of) translations between these systems.

The present work provides the first steps of a project of considering categories of logical systems satisfying
simultaneously certain natural requirements such as:
(i) If they represent the majority part of the usual logical systems;
(ii) If they have good categorial properties (e.g., if they are a complete and/or cocomplete category, if they are
accessible categories);
(iii) If they allow a natural notion of algebraizable logical system (as in the concept of Blok-Pigozzi algebraizable
logic ([BP]) or Czelakowski’s proto-algebraizability ([Cze]));
(iv) If they provide a satisfactory treatment of the identity problem of logical systems (when logics can be
considered ”the same”? ([Bez], [CG])).

In [AFLM] (and other works), was considered a simple (but too strict) notion of morphism of signatures,
where are founded some categories of logics that satisfy simultaneously the first three requirements, but not the
last one; here we will denote by Ss and Ls the category of signatures and of logics therein. In the papers [BCC]
and [CG] (and others), is developed a more flexible notion of morphism of signatures based on formulas as
connectives (our notation for the associated category of signatures will be Sf and Lf will denote the associated
category of logics), it encompass itens (i) and (iii) and allows some treatment of item (iv), but does not satisfy
(ii).

In what follows, X = {x0, x1, . . . , xn, . . .} will denote a fixed enumerable set (written in a fixed order).

2 Known facts about categories of signatures and of logics

2.1 The categories Ss and Ls

The category Ss is the category of signatures and strict morphisms of signatures.

The objects of S are signatures. A signature Σ is a sequence of sets Σ = (Σn)n∈ω such that Σi ∩ Σj = ∅ for
all i < j < ω . We write |Σ| := ⋃

n∈ω Σn for the support of Σ and we denote by F (Σ), the formula algebra of Σ,
i.e. the set of all (propositional) formulas built with signature Σ over the variables in the set X. For all n ∈ N
let F (Σ)[n] = {ϕ ∈ F (Σ) : var(ϕ) = {x0, x1, . . . , xn−1}}. The notion of complexity compl(ϕ) of the formula ϕ
is, as usual, the number of occurences of connectives in ϕ.

∗Research supported by FAPESP, under the Thematic Project LOGCONS: number 2010/51038-0.
†Instituto de Matemática e Estat́ıstica, University of São Paulo, Brazil. Emails: hugomar@ime.usp.br, caio.mendes@usp.br.
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If Σ,Σ′ are signatures then a strict morphism f : Σ −→ Σ′ is a sequence of functions f = (fn)n∈ω, where
fn : Σn −→ Σ′n. Composition and identities in Ss are componentwise.

For each morphism f : Σ−→Σ′ in Ss there is only one function f̂ : F (Σ)−→F (Σ′), called the extension of f ,

such that: (i) f̂(x) = x, if x ∈ X; (ii) f̂(cn(ψ0, . . . , ψn−1) = fn(cn)(f̂(ψ0), . . . , f̂(ψn−1)), if cn ∈ Σn. Then:

(0) compl(f̂(θ)) = compl(θ), for all θ ∈ F (Σ).

(1) If var(θ) ⊆ {xi0 , . . . , xin−1
}, then f̂(θ(~x)[~x | ~ψ]) = (f̂(θ(~x))[~x | f̂(~ψ)]. Moreover var(f̂(θ)) = var(θ) and

then f̂ restricts to maps f̂ �n: F (Σ)[n] −→ F (Σ′)[n], n ∈ N.
(2) The extension to formula algebras of a composition is the extension’s composition. The extension of an
identity is the identity function on the formula algebra.

Observe that Ss is equivalent to the functor category SetN, where N is the discrete category with object
class N; then S has all small limits and colimits and they are componentwise. Moreover, the category Ss is a
finitely locally presentable category, i.e., Ss is a finitely accessible category that is cocomplete and/or complete.
The finitely presentable signatures are precisely the signatures of finite support.

(Sub) For any substitution function σ : X−→F (Σ), there is only one extension σ̃ : F (Σ)−→F (Σ) such that σ̃ is an
“homomorphism”: σ̃(x) = σ(x), for all x ∈ X and σ̃(cn(ψ0, . . . , ψn−1) = cn(σ̃(ψ0)), . . . , σ̃(ψn−1)), for all cn ∈ Σn,
n ∈ N; it follows that for any θ(x0, . . . , xn−1) ∈ F (Σ) σ̃(θ(x0, . . . , xn−1)) = θ(σ(x0), . . . , σ(xn−1)). The identity
substitution induces the identity homomorphism on the formula algebra; the composition substitution of the

substitutions σ′, σ : X−→F (Σ) is the substitution σ′′ : X−→F (Σ) , σ′′ = σ′ ?σ := σ̃′ ◦σ and σ̃′′ = σ̃′ ? σ = σ̃′ ◦ σ̃.

(3) Let f : Σ−→Σ′ be a Ss-morphism. Then for any substitution σ : X−→F (Σ) there is another substitution

σ′ : X−→F (Σ′) such that σ̃′ ◦ f̂ = f̂ ◦ σ̃.

The category Ls is the category of propositional logics and strict translations as morphisms. This is a category
“built above” the category Ls, that is, there is an obvious forgetful functor Us : Ls −→ Ss.

The objects of Ls are logics. A logic is an ordered pair l = (Σ,`) where Σ is an object of Ss and ` codifies the
“consequence operator” on F (Σ) : ` is a binary relation, a subset of Parts(F (Σ))×F (Σ), such that Cons(Γ) =
{ϕ ∈ F (Σ) : Γ ` ϕ}, for all Γ⊆F (Σ), gives a structural finitary closure operator on F (Σ): (a) inflationary:
Γ⊆Cons(Γ); (b) increasing: Γ0⊆Γ1 ⇒ Cons(Γ0)⊆Cons(Γ1); (c) idempotent: Cons(Cons(Γ))⊆Cons(Γ); (d)
finitary: Cons(Γ) =

⋃{Cons(Γ′) : Γ′⊆finΓ}; (e) structural: σ̃(Cons(Γ))⊆Cons(σ̃(Γ)), for each substitution
σ : X → F (Σ).

If l = (Σ,`), l′ = (Σ′,`′) are logics then a strict translation morphism f : l−→l′ in Ls is a strict signature
morphism f : Σ−→Σ′ in Ss such that “preserves the consequence relation”, that is, for all Γ ∪ {ψ}⊆F (Σ), if

Γ ` ψ then f̂ [Γ] `′ f̂(ψ). Composition and identities are similar to Ss.
Ls has natural notions of direct and inverse image logics under a Ss-morphism and they have good properties.

The category Ls is a finitely locally presentable category, i.e., Ls is a finitely accessible category that is cocomplete
and/or complete.

2.2 The categories Sf and Lf

The category Sf is the category of signatures and flexible morphisms of signatures.

We introduce the following notations:
If Σ = (Σn)n∈N is a signature, then T (Σ) := (F (Σ)[n])n∈N is a signature too.

We have the inverse bijections (just notations): h ∈ Sf (Σ,Σ′) ! h] ∈ Ss(Σ, T (Σ′)); f ∈ Ss(Σ, T (Σ′)) !
f [ ∈ Sf (Σ,Σ′).
For each signature Σ and n ∈ N, let the function: (jΣ)n : Σn −→ F (Σ)[n] : cn 7→ cn(x0, . . . , xn−1).

For each morphism f : Σ−→Σ′ in Sf there is only one function
∨
f : F (Σ)−→F (Σ′), called the extension of

f , such that: (i)
∨
f (x) = x, if x ∈ X; (ii)

∨
f (cn(ψ0, . . . , ψn−1)) = (fn(cn)(x0, . . . , xn−1))[x0 |

∨
f (ψ0), . . . , xn−1 |

∨
f

(ψn−1)] if cn ∈ Σn. The composition in Sf is given by (f ′ •f)] := (
∨
f ′�n ◦f ]n)n∈N. The identity idΣ in Sf is given

by (idΣ)] := ((jΣ)n)n∈N.
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The notion of extension of Sf -morphism to formula algebras shares many properties with notion of extension
of Ss-morphism to formula algebras: e.g., the properties (1), (2), (3).

The category Lf is the category of propositional logics and flexible translations as morphisms. This is a
category “built above” the category Lf , that is, there is an obvious forgetful functor Uf : Lf −→ Sf .

If l = (Σ,`), l′ = (Σ′,`′) are logics then a flexible translation morphism f : l−→l′ in Lf is a flexible signature
morphism f : Σ−→Σ′ in Sf such that “preserves the consequence relation”, that is, for all Γ ∪ {ψ}⊆F (Σ), if

Γ ` ψ then
∨
f [Γ] `′

∨
f (ψ). Composition and identities are similar to Sf . It is known that Lf has weak products.

3 New results on categories of signatures and of logics

The notion of extension of Sf -morphism to formula algebras shares many properties with notion of extension
of Ss-morphism to formula algebras, however:

(0)’ If f ∈ Sf (Σ,Σ′), then: compl(
∨
f (θ)) ≥ compl(θ) , any θ ∈ F (Σ) iff f(c1) 6= x0 , all c1 ∈ Σ1.

A (non full) subcategory of Sf with the same objects has a strict initial object iff all the morphisms f : Σ−→Σ′

are such that f(c1) 6= x0 , all c1 ∈ Σ1.
Sf has weak terminal object but do not have terminal object. Sf has coproducts but it only has ”trivial”

(i.e. “almost” in Ss) coequalizers, idempotents, sections, retractions, isomorphisms.
We have the (faithful) functors:

(+) : Ss −→ Sf : (Σ
f−→ Σ′) 7→ (Σ

f]

−→ Σ′);

(−) : Sf −→ Ss : (Σ
h−→ Σ′) 7→ ((F (Σ)[n])n∈N

(
∨
h�n)

n∈N−→ (F (Σ′)[n])n∈N).

For each f ∈ Ss(Σ,Σ′), we have
∨

(f+)= f̂ ∈ Set(F (Σ), F (Σ′)).
We have the natural transformations: η : IdSs

−→ (−) ◦ (+) : (ηΣ)n := (jΣ)n ; ε : (−) ◦ (+) −→ IdSs
:

(εΣ)]n := idF (Σ)[n] and we write µ = (+)ε(−). The functor (+) is a left adjoint of (−): η and ε are, respectively,
the unit and the counit of the adjunction.

We have a (endo)functor T : Ss −→ Ss : (Σ
f−→ Σ′) 7→ ((F (Σ)[n])n∈N

( bf�n)
n∈N−→ (F (Σ′)[n])n∈N). The

functor T is faithful, reflects isomorphisms and preserves directed colimits.

We have T = (−)◦(+) : Ss −→ Ss and the monad T = (T, η, µ) associated to the adjunction (η, ε) : Ss
(+)

�
(−)
Sf

is such that Kleisli(T ) = Sf .

As in Ls, Lf has natural notions of direct and inverse image logics under a Sf -morphism and they have good
properties.

The forgetful functor UF : Lf −→Sf has left and right adjoints and if a diagram in Lf is such that, its
associated diagram by UF has a limit/colimit in Sf , then the original diagram has a limit/colimit in Lf . Then
a ”shape type”’ of limit/colimit exists in Lf iff it exists in Ss. Lf has weak terminal object but do not have
terminal object. Lf has coproducts but it only has ”trivial” (i.e. “almost” in Ls) coequalizers, idempotents,
sections, retractions, isomorphisms.

In [CG] is shown that Lf solves the identity problem for the presentations of classical logic in terms of the
(weak) concept of equipollence of logics1. But Lf does not solve problem of identity for the presentations of
classical logic in terms of Lf -isomorphisms.

We will write Qf for the quotient category of Lf by the relation of interprovability: the objects of Qf are the
logics l = (Σ,`) and Qf ((Σ,`), (Σ′,`′)) := {[f ] : f ∈ Lf ((Σ,`), (Σ′,`′))}, where [f ] := {g ∈ Lf ((Σ,`), (Σ′,`′

)) : f ∼ g} and f ∼ g iff (
∨
f /a`) = (

∨
g /a`) : F (Σ)/a` −→ F (Σ′)/a′`′}; clearly, the relation ∼ is a congruence

relation in the category Lf and we can take Qf := Lf/∼.
Qf has terminal object, coequalizers, weak products and weak coproducts. The problem of identity for the

presentations of classical logic is solved in terms of Qf -isomorphisms.

1We thank professor Marcelo Coniglio for that reference.
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4 The appropriate categories of logics

A logic (Σ,`) is congruential if, for each cn ∈ Σn and each {(ϕ0, ψ0), . . . , (ϕn−1, ψn−1)} such that ϕ0 a`
ψ0, . . . , ϕn−1 a` ψn−1, then cn(ϕ0, . . . , ϕn−1) a` cn(ψ0, . . . , ψn−1). It follows that if ϑ0, ϑ1 ∈ F (Σ) are such that

var(ϑ0) = var(ϑ1) = {xi0 , . . . , xin−1} and ϑ0 a` ϑ1 then ϑ0[~x | ~ϕ] a` ϑ1[~x | ~ψ]. Clearly, the presentations of
classical logic are congruential logics.

Denote Lc
f the full subcategory of Lf whose objects are the congruential logics. This is a reflective subcategory

i : Lc
f ↪→ Lf has a left adjoint c : Lf → Lc

f such the underlying signatures of the logics l and c(l) coincide. Lc
f

has coproducts: it is the ”congruential closure” of the coproduct in Lf of a discrete diagram in Lc
f .

If Qc
f denote the full subcategory of Qf whose objects are the congruential logics and i : Qc

f ↪→ Qf is the
inclusion functor, then i has a left adjoint c : Qf → Qc

f . As in Qf , the problem of identity for the presentations
of classical logic is solved in terms of Qc

f -isomorphisms.
Qc

f is a cocomplete category. The coproducts in Qc
f are obtained taking first a cone coproduct in Lf : the vertex

in Qc
f is the congruential closure of the vertex in Lf and the cocone arrows in Qc

f are the classes of equivalence
of the cocone arrows in Lf (the congruential property is decisive in proof of uniqueness). The coequalizers in
Qc

f are obtained taking first a cone coequalizer in Qf and then taking the induced cone in Qc
f obtained by the

reflection functor c : Qf → Qc
f .

A congruential logics (Σ,`) is of finite type if it has a finite support signature (card(
⋃

n∈N Σn) < ω) and is
the congruential closure of a consequence relation over Σ that is generated by substitutions with a finite set of
axioms and a finite set of (finitary) inference rules. There is only an enumerable set of classes of Qc

f -isomorphism
of finite type congruential logics. Any congruential logic is a colimit in Qc

f of a directed diagram of congruential
logics of finite type. In Qc

f : if a congruential logic is finitely presentable, then it is a retract of a congruential
logic of finite type.

A possible notion of (Lindenbaum) algebrized logic is given by the triples (Σ,`,∆/a`) where l = (Σ,`) is a
logic and ∆ ⊆fin F (Σ)[2] is a set of ”equivalence formulas in the Lindenbaum sense” i.e.: (a) ` ϕ∆ϕ 2; (b)
ϕ∆ψ ` ψ∆ϕ; (c) ϕ∆ψ,ψ∆ϑ ` ϕ∆ϑ; (d) ϕ0∆ψ0, . . . , ϕn−1∆ψn−1 ` cn(ϕ0, . . . , ϕn−1)∆cn(ψ0, . . . , ψn−1); (e)
ϕ a` ψ iff ` ϕ∆ψ. Clearly, the underlying logic of (l,∆/a`) is congruential.

The corresponding category A of algebrized logics has as morphims f : (l,∆/ a`) −→ (l′,∆′/ a′`′) the

Qc
f -morphisms [f ] : l−→l′ such that ∆′ `′

∨
f [∆]. Composition and identities are as in Qc

f .
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[Cze] J. Czelakowski, Protoalgebraic logic, Trends in Logic, Studia Logica Library, Kluwer Academic Publishers,
2001.

[MM1] H.L. Mariano, C.A. Mendes, Analysing categories of signatures, in preparation.

[MM2] H.L. Mariano, C.A. Mendes, Towards a good notion of categories of logics, in preparation.

2That is, if ∆ = {∆u : u < v}, then ` ϕ∆uϕ, for all u < v.

210



Modal and Intuitionistic Natural Dualities via the

Concept of Structure Dualizability

Yoshihiro Maruyama
Department of Humanistic Informatics

Graduate School of Letters
Kyoto University, Japan

maruyama@i.h.kyoto-u.ac.jp
http://researchmap.jp/ymaruyama/

Abstract Based on the concept of structure dualizability, we extend the
theory of natural dualities (see [4]) so as to encompass Jónsson-Tarski’s
topological and Kupke-Kurz-Venema’s coalgebraic dualities for all modal
algebras (see [10]), and Esakia duality for all Heyting algebras (see [5]).
Key notions are ISPM and ISRP, which allow us to generate all modal al-
gebras and all Heyting algebras respectively from a single algebra. Since
natural duality theory is closely related to many-valued logics, we provide
applications of our theory to modal and intuitionistic many-valued logics.

The theory of natural dualities The theory of natural dualities is a
general theory of Stone-type dualities based on the machinery of universal
algebra. It basically discusses duality theory for the quasi-variety ISP(M)
generated by a finite algebra M . It is useful for obtaining new dualities
and actually encompasses many known dualities, including Stone duality
for Boolean algebras (see [8]), Priestley duality for distributive lattices (see
[1]), and Cignoli duality for MVn-algebras, i.e., algebras of  Lukasiewicz n-
valued logic (see [3]), to name but a few (for more instances, see [4]).

A problem on the theory of natural dualities But natural duality
theory has not subsumed the above-mentioned dualities for all modal alge-
bras and all Heyting algebras. This seems to be mainly because the class of
all modal algebras and the class of all Heyting algebras cannot be expressed
as the quasi-variety generated by a single algebra, in contrast to the fact
that any of Boolean algebras, distributive lattices and MVn-algebras can
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be expressed as the quasi-variety generated by a single finite algebra, which
works as a so-called “schizophrenic” object.

How to generate modal algebras and Heyting algebras In this work,
we remedy the problem above by introducing new methods to generate a
class of algebras from a single algebra, namely ISPM(-) and ISRP(-) (the
definitions will be given later). Crucial facts are as follows:

• The class of all modal algebras coincides with ISPM(2) for the two-
element Boolean algebra 2;

• The class of all Heyting algebras coincides with ISRP(2) for the two-
element distributive lattice 2.

Moreover, we have the following facts: for n = {0, 1/(n−1), 2/(n−1), ..., 1}
with the usual operations of MV-algebras, ISPM(n) coincides with the class
of all algebras of  Lukasiewicz n-valued modal logic (for this logic, see [2, 13];
a similar thing holds also for algebras of a version of Fitting’s many-valued
modal logic in [11]); for n with suitable operations, ISRP(n) coincide with
the class of all algebras of  Lukasiewicz n-valued intuitionistic logic, which
is defined by n-valued Kripke semantics. Thus, the notions of ISPM(-) and
ISRP(-) are natural and useful for our goal. In order to achieve our goal, it is
enough to develop duality theory for ISPM(L) and ISRP(L) for a sufficiently
general algebra L.

The concept of structure dualizability Let L be a finite algebra. Sup-
pose that we want to obtain duality for ISP(L). Since we want L to be a
schizophrenic object in order to develop duality, we should look for a ge-
ometric structre on L that is in harmony with the algebraic structure of
L. Our definition of harmony is as follows. Let X be given topological and
relational structures on L (relations may not be binary). We say that L is
dualizable with respect to X iff, for any n ∈ ω,

HomAlg(Ln, L) = HomSp(Ln, L)

where HomAlg(Ln, L) is the set of homomorphisms, and HomSp(Ln, L) is
the set of maps preserving the topological and relational structures. From
this point of view, developing a duality for ISP(L) amounts to discovering a
suitable structure X on L such that L is dualizable with respect to X. The
concept of structure dualizability is due to us, but similar notions have been
known among duality theorists (see [4, 6]). For example, primality (see [7];
this is functional completeness in algebraic terms) can be seen as a special
instance of structure dualizability.
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Duality for ISPM(L) We first define ISPM(L). For simplicity, we assume
that L has a bounded lattice reduct. For a Kripke frame (S, R), a modal
power of L with respect to (S, R) is defined as LS ∈ ISP(L) equipped with
a unary operation �R on LS defined by

(�Rf)(w) =
∧

{f(w′) ; wRw′}

where f ∈ LS and w ∈ S. Then, a modal power of L is defined as a
modal power of L with respect to (S,R) for a Kripke frame (S,R). ISPM(L)
denotes the class of all isomorphic copies of subalgebras of modal powers of
L. ISPM(2) is the class of all modal algebras (2 is the two-element Boolean
algebra). We can obtain duality for ISPM(L) in the following way.

We assume: L is dualizable with respect to {M | M is a subalgebra of L}
where note that M is a unary relation on L. Then, Keimel-Werner’s duality
theorem (see [9]) gives us a topological duality for ISP(L). We can then show
that the duality for ISP(L) is lifted to a topological duality for ISPM(L). The
topological duality for ISPM(L) can also be formulated in coalgebraic terms
via the Vietoris space construction.

These results extend both Jónsson-Tarski’s topological and Kupke-Kurz-
Venema’s coalgebraic dualities for all modal algebras, and also imply new
coalgebraic dualities for algebras of  Lukasiewicz n-valued modal logic and
algebras of Fitting’s many-valued modal logic as well as known topological
dualities for them in [13, 11]. The details of the results can be found in [12].

Duality for ISRP(L) We first define ISRP(L). Assume that L has a
bounded lattice reduct and has a binary operation ∗. For an ordered algebra
A with a binary operation ∗, A is called ∗-residuated iff, for all x, y ∈ A,

{z ∈ A | x ∗ z ≤ y}

has a greatest element, which is denoted by x → y. Then, ISRP(L) is
defined as the class of all isomorphic copies of ∗-residuated subalgebras of
direct powers of L. ISRP(2) is the class of all Heyting algebras if ∗ above is
∧ (2 is the two-element distributive lattice).

We assume that L is dualizable with respect to the Alexandrov topology
(this is intuitionistic primality in some sense). Then we can show that
ISP(L) is dually equivalent to coherent spaces in the sense of [8] (or spectral
spaces or Esakia spaces). If L is the two-element distributive lattice, this
is Stone (or Priestley) duality for distributive lattices. By restriction, we
can obtain a duality for ISRP(L) from the duality for ISP(L). If L is the
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two-element distributive lattice, this is Esakia duality for Heyting algebras.
The duality for ISRP(L) may be seen as an intuitionistic analogue of Hu’s
primal duality theorem (see [7]).

The duality for ISRP(L) implies that if L and L′ satisfy the assumptions
of the duality, then ISRP(L) and ISRP(L′) are categorically equivalent, which
seems to contradict our intuition. We can define  Lukasiewicz n-valued intu-
itionistic logic via n-valued Kripke semantics, and then a duality for algebras
of the logic follows from the above-mentioned duality for ISRP(L).
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Introduction We attempt to reveal the mathematical relationships between two aspects of the
notion of space, namely ontological and epistemological aspects of it. On the one hand, there
are set-theoretic, point-based concepts of space (e.g., topological space, convexity space [8], and
measurable space), which we consider represents the ontological aspect of the notion of space. On
the other hand, there are algebraic, point-free concepts of space (e.g., frame [4], continuous lattice
[7], and σ-complete Boolean algebra), which we consider represents the epistemological aspect of
the notion of space. Point-free and point-set spaces are often related in a dual way, and thus, in
this work, we focus on the dual relationships between them.

We first develop a moderately general theory of dual adjunctions, then apply it to the case of
Scott’s continuous lattices and convexity spaces, and analyze in detail the resulting dual adjunction
between them to obtain deeper insights that cannot be derived from a neat, general theory. In the
process, we exploit the concrete-categorical concepts of a functor-structured category and topologi-
cal axioms in it (see [1]) in order to obtain a general concept of a point-set space. A general concept
of a point-free space is defined as an algebra for an endofunctor on Sets or an Eilenberg-Moore
algebra of a monad on Sets.

In our theory of dual adjunctions, we intend to capture the practice of duality theory for point-
free and point-set spaces, and so we stick to concrete ideas applied in practice rather than high-level
abstractions (especially, we equip Hom-sets in an algebraic category with generalized topologies
similar to Stone and Zariski topologies; Hom-sets in a topological category are endowed with
pointwise operations). Our theory is not fully general for this reason. Nevertheless, most structures
of our interest fall into the concrete Sets-based framework, including the above-mentioned ones.
Moreover, the concrete features of our theory weaken relevant assumptions and make results more
effective in practice. We also note that our result can be expressed without any category theory. In
our theory of dual adjunctions, the category of “algebras” and the category of “spaces” involved are
non-symmetric, while they are symmetric in some categorical developments of duality theory (see,
e.g., [6]). We consider that they should not be symmetric, since they are indeed non-symmetric
in practice. In practice, one category is of algebraic nature, and the other category is of spatial
nature. We make explicit the difference between the two categories in this work (this also simplifies
assumptions).

We see continuous lattices as point-free convexity spaces, since continuous lattices coincide with
meet-complete posets with directed joins distributing over arbitrary meets (see [2, Theorem I-2.7]),
where recall that a convexity space is a set equipped with a collection of subsets of it that is closed
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under arbitrary intersections and directed unions (see [8]). Our theory of dual adjunctions gives us
a dual adjunction between continuous lattices and convexity spaces. We can refine this into a dual
equivalence between “spatial” continuous lattices and “sober” convexity spaces (in fact, there is
another duality between continuous lattices and convexity spaces that remedies a certain deficiency
of this duality). The notion of polytope plays an important role in defining sober convexity spaces
(some familiar convexity spaces such as R are not sober in contrast to the situation in topology).
These results on continuous lattices are reformulations of results in the author’s previous work [5].
We hope that these results lead us to interactions between domain theory and convex geometry
(for instance, we can show that the concept of compactness in domain theory coincides with the
concept of polytope in convex geometry).

Dual Adjunction via Harmony Condition We refer to [1] for the definitions of a functor-
(co)structured category Spa(U) and topological (co)axiom in it where U is a faithful functor from
a category to Sets. Given topological (co)axioms in a functor-(co)structured category, we can
consider a full subcategory of the functor-(co)structured category that is definable by the topological
(co)axioms. It is known that we can obtain almost all topological categories in this way (see [1]).

We introduce a new concept of Boolean topological coaxioms in Spa(U)op. A Boolean topolog-
ical coaxiom in (Spa(U))op is defined as a topological coaxiom p : (C, O) → (C ′, O′) in (Spa(U))op

such that

• Any element of O \ O′ can be expressed as a (possibly infinitary) Boolean combination of
elements of O′.

Let Q denote the contravariant powerset functor on Sets. Then:

• Any of the category of topological spaces, the category of convexity spaces, and the category
of measurable spaces can be expressed as a full subcategory of Spa(Q)op that is definable by
a class of Boolean topological coaxioms.

Hence, we consider such a category as a general concept of point-set spaces.
Let Alg denote a full subcategory of Alg(T ) for an endofunctor T on Sets (we later consider the

case that T is a monad and Alg is the Eilenberg-Moore category of T ), and Spa a full subcategory
of (Spa(Q))op that is definable by a class of Boolean topological coaxioms in (Spa(Q))op. We
assume the following.

• there is an object Ω in both Alg and Spa, i.e., there is Ω ∈ Sets both with a structure map
hΩ : T (Ω) → Ω such that (Ω, hΩ) ∈ Alg and with a “generalized topology” OΩ ⊂ Q(Ω) such
that (Ω, OΩ) ∈ Spa;

• (Alg,Spa, Ω) satisfies the following harmony condition.

(Alg,Spa,Ω) is said to satisfy the harmony condition iff, for each S ∈ Spa,

( HomSpa(S, Ω), hS : T (HomSpa(S, Ω)) → HomSpa(S, Ω) )

is an object in Alg such that, for any s ∈ S (let ps be the corresponding projection from
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HomSpa(S, Ω) to Ω), the following diagram commutes:

.

T (HomSpa(S, Ω)) HomSpa(S, Ω)

T (Ω) Ω

?

T (ps)

-
hS

?

ps

-
hΩ

We have to equip HomSpa(S, Ω) with an algebraic structure and HomAlg(A,Ω) with a geometric
structure in order to make Hom-functors available. The algebraic structure of HomSpa(S, Ω) is
provided by hS above. The geometric structure of HomAlg(A,Ω) can be provided in the following
way. We can equip HomAlg(A,Ω) with the generalized topology generated in Spa by

{〈a〉O ; a ∈ A and O ∈ OΩ}

where
〈a〉O := {v ∈ HomAlg(A,Ω) ; v(a) ∈ O},

which is intuitively the region of the spectrum HomAlg(A,Ω) of valuations in which the truth value
of a formula a is in a generalized open set O. The induced contravariant Hom-functors

HomAlg(-, Ω) : Alg → Spa and HomSpa(-,Ω) : Spa → Alg

can be shown to be well defined and form a dual adjunction between categories Alg and Spa. If
T is a monad and Alg is the Eilenberg-Moore category of T , then we do not need the assumption
that hS is in Alg. In this case, it suffices to verify only that the diagram above commutes.

We emphasize that the harmony condition is easy to verify in concrete cases as we can see in
the example of continuous lattices and convexity spaces (in a similar way, we can also obtain a dual
adjunction between σ-complete Boolean algebras and measurable spaces). Stone-type adjunctions
in many-valued logics follow from this adjunction theorem as well as those in classical logics.

Dual adjunction theorem in [6] is described in a more abstract setting, and is more general than
ours. In [6], the key assumptions for proving adjointness are the two initial lifting conditions on the
two categories concerned. Our theory is more involved in the mechanism of how the initial liftings
become possible. Although the two initial lifting conditions are symmetric in [6], in practice, the
initial lifting on the algebraic side and the initial lifting on the topological side can be seen as based
on different mechanisms, which are clarified in our adjunction theorem. Thus, although the scope is
more limited, our theorem contains more details and is more effective in certain specific situations,
including the following case of continuous lattices and convexity spaces.

Duality between Scott’s Continuous Lattices and Convexity Spaces We first recall that
a morphism of convexity spaces is defined like a continuous map, i.e., it is a map such that the
inverse image of a convex set under it is also convex. A homomorphism of continuous lattices is
defined as a map preserving arbitrary meets and directed joins.

The category of continuous lattices is the Eilenberg-Moore category of the filter monad on Sets.
The category of convexity spaces can be expressed as a full subcategory of Spa(Q)op that is definable
by suitable Boolean topological coaxioms. 2 (= {0, 1}) can be naturally seen as both a continuous
lattice (with the obvious lattice operations) and a convexity space (with the convexity {∅, {1},2}).
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The harmony condition just means that the lattice of convex sets is closed under intersections and
directed unions, and forms a continuous lattice, which is trivial. Thus, the general theory above
gives us a dual adjunction between continuous lattices and convexity spaces.

The dual adjunction is refined into a dual equivalence as follows. We say that a continuous
lattice is spatial iff it has enough principal Scott-open filters and that a convexity space is sober
iff any polytope of the space (i.e., the convex hull of finitely many points) can be generated by
a unique point. Then we obtain a dual equivalence between spatial continuous lattices and sober
convexity spaces. Note that spatial continuous lattices coincide with algebraic lattices. This gives
the convexity-theoretic understanding of Hofmann-Mislove-Stralka duality in [3].

A problem of the duality is that some familiar convexity space such as R are not sober, in
contrast to the case of topology, and do not fall into the scope of the duality. In other words, we
cannot recover the points of those spaces from their lattices of convex sets according to the duality.
But this never means that the points of those spaces cannot be recovered in any way. Indeed, it is
easy to recover the points of R from the lattice of convex sets of it.

This point of view leads us to a dual equivalence between the category of m-spatial contin-
uous lattices and m-homomorphisms and the category of T1 convexity spaces and morphisms of
convexity spaces. Here, m-spatiality means having enough maximal meet-complete filters, and an
m-homomorphisms is a homomorphism such that the inverse image of a maximal meet-complete
filter under it is also a maximal meet-complete filter. A convexity space is T1 iff any singleton
is convex. The problem of the duality above is remedied in this duality, since familiar convexity
spaces (including vector spaces over R, n-spheres, real projective spaces, etc.) are usually T1. At
the same time, however, there seems to be no proper adjunction behind this duality, in contrast to
the case of the former duality.

Thus we may say that there are two dualities between continuous lattices and convexity spaces
and that each duality has its own advantage over the other.
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Abstract. We give a categorical axiomatization of cut elimination in
classical logic, interpreting proofs in a hyperdoctrine-like framework in
which the fibres are Führmann and Pym’s classical categories: categories
enriched with a partial order structure interpreting cut-elimination in
propositional classical logic

One approach to understanding the identity of proofs (when two syntactic
proofs are essentially the same) is to consider interpretations of proofs in a cat-
egory C (where formulae are interpreted by objects and a proofs by arrows). For
example, if we interpret natural deduction proofs in a cartesian-closed category,
we obtain a theory on those proofs extending beta-eta equivalence. However,
näıvely extending that result to classical logic, by adding a dualizing object to
the cartesian-closed category, is fruitless: every such category is a poset. Pym
and Führmann have defined Classical categories, which are order-enriched cat-
egories in which one can interpret classical proofs. The interpretation is sound
with respect to cut-elimination: whenever a proof Φ cut-reduces to Ψ , we have
that the interpretation of Φ is smaller than the interpretation of Ψ .

To obtain an axiomatization of classical categories, one starts with a model
of multiplicative linear logic: a ∗-autonomous category. This is a symmetric
monoidal category (C, 1,⊗) together with a functor (−)∗ : Cop → C such that
A∗∗ = A and there is a natural isomorphism

Hom(A⊗B,C∗) ∼= Hom(A, (B ⊗ C)∗).

A classical category has in addition, for each object A, a commutative comonoid
structure, with structure morphisms

∆A : A→ A⊗A 〈 〉A : A→ 1.

We also assume that C has comonoids: the structure morphisms on A ⊗ B are
built from those on A and those on B. The structure morphisms cannot natural:
this would also lead to a collapse. If we assume instead that they are lax -natural
with respect to the ordering on the hom-sets:

∆ ◦ f ≤ (f ⊗ f) ◦∆ 〈 〉 ◦ f ≤ 〈 〉.

and if the monoidal and closed structure of C preserves the order on hom-sets,
then C is a classical category. Classical categories provide a setting for interpret-
ing proofs in the multiplicatively formulated sequent calculus for propositional
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classical logic: the ordering on hom-sets interprets cut-reduction as formulated
by Gentzen: if a proof Φ cut-reduces to a proof Ψ , then the interpretation of Φ
in any classical category is smaller (in the hom-set ordering) than Ψ .

The work described in this abstract concerns an extension of these results
to first-order classical logic. There is a standard approach for providing models
of first-order logics from the propositional fragment, called the hyperdoctrine
construction: a hyperdoctrine is an indexed category D : Bop → Cat in which
B is a category representing the first-order terms of the logic; an object of B is
a sequence of free variables, and a morphism of B is a term. For a sequence x̄
of variables, D(x̄) is a category modelling the propositional logic: in our case, a
classical category.

The operations of substitution and quantification arise in this setting as
functors between the fibres. For example, the image t∗ of a term t under D
is a functor representing the substitution of that term t. The interesting fact
about hyperdoctrines for intuitionistic logic (noticed first by Lawvere) is that
the quantifiers are adjoint to the substitutions arising from projections in the
base category B: the existential quantifier emerges as the left adjoint, and the
universal as the right adjoint.

We can immediately begin to formulate an axiomatization of the universal
quantifier in classical logic: it should be a monoidal functor Π (the notion of
structure-preserving functor for ∗-autonomous categories) which, in addition,
preserves the comonoids interpreting the structural rules, and the order inter-
preting cut-reduction. The functor interpreting the existential quantifier will the
arise from by duality. Rather than adjunctions, we will require that the quan-
tifiers are related to substitution by “lax” adjunctions, in which the units and
co-units are not natural transformations, but are lax in the same sense as the
morphisms interpreting the structural rules.

One nice property of hyperdoctrines for natural deduction is that one can im-
mediately infer that, since the existential quantifier is a left adjoint, it preserves
coproducts, which model disjunctions, and similarly for the universal quantifier
and products. We can find partial analogue of that result in this setting: by mak-
ing some assumptions on the the partial order on hom-sets, we can derive that
Π is monoidal from the fact that the lift of the projection is strong monoidal.

This setting actually stronger than what is needed to capture cut-reduction
in first-order logic. The original definition of classical categories started, not from
∗-autonomous categories, but from the equivalent symmetric linearly distributive
categories (SLDCs) with negation. The difference between the two axiomatiza-
tions is a categorical analogue of two different ways to present the negation of
a formula in logic: either as a connective, or as a defined operation using De
Morgan duality. In an SLDC, there are two monoidal structures ⊗ and O, and
a natural transformation

δ : A⊗ (BOC)→ (A⊗B)OC
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mediating them (plus some coherence conditions). Such a category has negation
if, for each object A, we have an object Ā with morphisms we have morphisms

γ : A⊗ Ā→ 0 τ : 1→ A⊕ Ā,

with appropriate commuting diagrams. The notion of structure preserving func-
tor for SLDCs is that of a linear functor : a pair of functors (F,G), with F
monoidal wrt ⊗ and G comonoidal wrt O, with coherence conditions that G is
the dual of F in the corresponding ∗-autonomous category. In this setting, we
can axiomatize the quantifiers without the assumption that they arise as duals,
and study conditions forcing them to be dual.

The basic notion of Classical Doctrine, axiomatized using linearly distributive
categories, is the following

(a) A classical doctrine is an indexed category C : Bop → CAT in which the base
has finite products and each fibre is a classical category, such that:

(b) The functor a∗ (defined for each morphism a in the base category) defines a
linear functor (a∗, a∗): that is, a∗ is self-dual.

(c) There exists, for each projection π in B , a lax left adjoint Σπ, and a right
oplax-adjoint Ππ, to a∗;

(d) Σa is comonoidal w.r.t. ⊕ and Πa is monoidal w.r.t ⊗ and the above lax
adjunctions is symmetric monoidal in both tensors;

(e) The linear distributivity δ is strong with respect to the units and co-units
of both adjunctions: the relevant naturality diagrams hold up to equality.

(f) Beck condition
if

A
t - B

C

r

? u - D

s

?

is a pullback in B, and Σs, Σr are lax left adjoints to s∗ and r∗ respectively,
the diagram

CA � t∗ CB

CC

Σr

?
� u∗ CD

Σs

?

commutes;
(g) Frobenius strengths The morphism

(id⊗ εΣa

B ) ◦ µΣa

A,a∗B : Σa(A⊗ a∗B)→ ΣA⊗B
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has a left adjoint frobΣa

A,B such that

(id⊗ εΣa

B ) ◦ µΣa

A,a∗B ◦ frobΣa

A,B = id

and
frobΣa

A,B ◦ (id⊗ εΣa

B ) ◦ µΣa

A,a∗B ≤ id

and the morphism

µΠa

A,a∗B ◦ (id⊗ ηΠa

B ) : ΠaAOB → Πa(AOa∗B)

has a right adjoint frobΠa

A,B , such that

µΠa

A,a∗B ◦ (id⊗ ηΠa

B ) ◦ frobΠa

A,B ≤ id

and
frobΠa

A,B ◦ µΠa

A,a∗B ◦ (id⊗ ηΠa

B ) = id

This is enough to obtain the following theorem:

Theorem 1. If b−c is an interpretation of proofs into a classical doctrine C,
and Φ cut reduces to Ψ , then bΦc ≤ bΨc.

In the talk, we will give some flavour of how this result is obtained, and
additionally describe how, by considering the structure of proofs from ∃x.(A∨B)
to ∃x.A∨∃x.B, from ∃x.(A∧B) to ∃x.A∧∃x.B, and from ∀x.A to ∃x.A, we can
find sufficient conditions for the pair (Σ,Π) of functors to be a linear functor:
i.e. Σ arises as the dual of Π.
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The admissible rules of a logic (understood as a consequence relation) are
the rules that can be added to the logic without producing any new theorems
(see [8] for a comprehensive study). In algebraic terms, the admissible rules
of a quasivariety Q (which may correspond to a logic via algebraizability) are
the quasiequations that hold in FQ, the free algebra of Q on countably many
generators. Moreover, Q is structurally complete (which for a logic means that
every admissible rule is derivable) if for all finite sets of equations Σ ∪ {s ≈ t}
in the language of Q:

Σ �Q s ≈ t ⇔ Σ �FQ s ≈ t.

That is,Q is structurally complete if and only ifQ is generated as a quasivariety
by FQ: in symbols, Q = Q(FQ). Equivalently, Q is structurally complete if
every proper subquasivariety of Q generates a proper subvariety of the variety
generated by Q (see [1] for details). For example, the classes of Boolean al-
gebras, lattice-ordered abelian groups, and Gödel algebras (semilinear Heyting
algebras) are structurally complete, but the classes of lattices, MV-algebras, and
Heyting algebras are not (see, e.g., [8, 7, 2]).

In this work, we investigate a broader notion of admissibility encompassing
multiple-conclusion rules, understood algebraically as ordered pairs of finite
sets of equations, and written Σ ⇒ ∆. Let us write Σ |=K ∆ (or Σ |=A ∆
when K = {A}) to denote that the universal formula

∧
Σ → ∨

∆ holds in all
members of a class of algebras K in the same language. Then the rule Σ ⇒ ∆
is said to be admissible in a quasivarietyQ if Σ |=FQ ∆. Moreover, we will say
that Q is universally complete if

Σ �Q ∆ ⇔ Σ �FQ ∆.

That is, Q is universally complete if and only if Q is generated as a universal
class by FQ: in symbols, Q = U(FQ).

Let us illustrate the relevance of multiple-conclusion rules (investigated from
a logical perspective by Shoesmith and Smiley in [9]) with some examples. Ob-
serve first that important properties of a logic or quasivariety may be formulated

223



as the admissibility of a multiple-conclusion rule; e.g., the following rule corre-
sponding to the disjunction property is admissible in Heyting algebras:

{x ∨ y ≈ >} ⇒ {x ≈ >, y ≈ >}.

Similarly, in MV-algebras, the following rule, expressing a weaker disjunction
property, is admissible:

{x ∨ ¬x ≈ >} ⇒ {x ≈ >, x ≈ ⊥}.

Multiple-conclusion rules often provide a more natural and flexible framework
for obtaining axiomatizations for the admissible rules of logics or quasivarieties,
facilitating the derivation of more complicated axiomatizations using single-
conclusion rules (e.g., for modal logics [4], MV-algebras [5], fragments of in-
termediate logics [3]). Indeed, a basis is defined in [6] for De Morgan algebras
that makes use of the disjunction property rule {x∨y ≈ >} ⇒ {x ≈ >, y ≈ >}
where no (finite) single-conclusion axiomatization has yet been obtained.

We remark also that multiple-conclusion rules (or universal formulas) play
a fundamental role in the investigation of free algebras of certain classes of
algebras. Notably, “Whitman’s condition”

{x ∧ y ≤ z ∨ w} ⇒ {x ≤ z ∨ w, y ≤ z ∨ w, x ∧ y ≤ z, x ∧ y ≤ w}

is admissible in the variety of lattices (i.e., holds in all free lattices) [10].
A key aim of the work reported here is to obtain (syntactic or algebraic)

characterizations of admissible (multiple-conclusion) rules and the notions of
structural completeness and universal completeness. Let us first consider the
following helpful lemma, which relates the structural completeness of a quasi-
variety to the existence of certain embeddings into the free algebra on countably
many generators.

Lemma 1 ([2]). Let K be a class of algebras in the same language. If each
A ∈ K embeds into FQ(K), then Q(K) is structurally complete.

This lemma (and variants thereof) are used to establish structural completeness
results for various (fragments of) logics and quasivarieties in [2], including the
varieties of product algebras, cancellative hoops, and implicational subreducts
of MV-algebras and BL-algebras. Let us consider here, however, a simple ex-
ample from [6] based on Kleene algebras (in a language with binary connectives
∧ and ∨, a unary connective ¬, and constants ⊥ and >):

C3 = 〈{−1, 0, 1},min,max,−,−1, 1〉
C4 = 〈{−2,−1, 1, 2},min,max,−,−2, 2〉.
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It is well known that C3 generates the class of Kleene algebras KA as a quasiva-
riety; i.e., KA = Q(C3). However, this quasivariety is not structurally complete,
since the rule (or quasiequation)

{x ≈ ¬x} ⇒ {x ≈ y}

is admissible (there is no term t such that t ≈ ¬t holds in all Kleene algebras),
but fails in C3. On the other hand, the quasivariety Q(C4) is structurally com-
plete. By Lemma 1, it is enough to observe that e : C4 → FQ(C4) is an embed-
ding where g(1) = [x∨¬x], g(−1) = [x∧¬x], g(2) = [>], and g(−2) = [⊥].
Moreover, since Q(C4) is axiomatized relative to KA by the admissible (in KA)
quasiequation

{¬x ≤ x, x ∧ ¬y ≤ ¬x ∨ y} ⇒ {¬y ≈ y}

we obtain an axiomatization of the admissible rules of KA. Moreover, following
a similar strategy, we obtain an axiomatization of the admissible rules of De
Morgan lattices that makes use of the additional rule {x ≈ ¬x} ⇒ {x ≈ y}.

Lemma 1 suggests a close connection between structural completeness and
the existence of certain embeddings. Indeed, restricting to quasivarieties gener-
ated by a single finite algebra, we obtain the following general characterization:

Theorem 1. The following are equivalent for any finite algebra A:

(1) Q(A) is structurally complete.
(2) Each finite B ∈ Q(A) embeds into a product of FQ(A).

An obvious question that arises is whether the converse of Lemma 1 holds (at
least) when K contains just one finite algebra A. In other words, can we restrict
condition (2) in the previous theorem to embeddings into FQ(A)? To see that this
is not the case, consider an algebra A = 〈{a, b, c, d}, f〉 with the unary function
f defined by f(a) = f(c) = f(d) = b, f(b) = a. Then (easily) there cannot
exist an embedding of A into FQ(A) since there is no element in FQ(A) which
is the f -image of three different elements. On the other hand, the map e : A→
FQ(A) × FQ(A) given by e(a) = 〈f(f(x)), f(f(x))〉; e(b) = 〈f(x), f(x)〉;
e(c) = 〈x, f(f(x))〉; e(d) = 〈f(f(x)), x〉 is an embedding. So by the previous
theorem, Q(A) is structurally complete.

However, Q(A) is not universally complete. The multiple-conclusion rule

{f(x) ≈ f(y)} ⇒ {x ≈ y, f(f(x)) ≈ y, f(f(y)) ≈ x}

is admissible in Q(A) (holds in FQ(A)) but does not hold in Q(A). Indeed, for
universal completeness, we obtain a stronger correspondence:
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Theorem 2. The following are equivalent for any finite algebra A:

(1) Q(A) is universally complete.
(2) Each finite B ∈ Q(A) embeds into FQ(A).

We also consider extensions of the latter theorem to arbitrary quasivarieties via
the notion of partial embeddability and investigate the relationship between em-
beddings into free algebras and projective (finitely presented) algebras.

References

1. C. Bergman, Structural completeness in algebra and logic, In H. Andréka, J. Monk, I. Nemeti
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1 Logic KM and KM-algebras

In what follows we discuss an algebraic aspect of logic KM. This logic was
formulated as calculus IM by A.V. Kuznetsov in [3, 4], but it had appeared
earlier in [5], (see a footnote on p. 224) as the variety of M-pseudoboolean
algebras, i.e., Heyting algebras enriched with a unary operation M. Namely
from that observation one could see a possibility of an embedding of KM into
provability logic GL, which was confirmed and further developed in [7, 9].

We define KM in the monomodal propositional language with the infinite set
of propositional variables p, q, . . . (with or without indices) and the connectives:
∧ (conjunction), ∨ (disjunction), → (conditional), ¬ (negation) – assertoric
connectives – and 2 (necessity, if you wish). Arbitrary formulas of the assertoric
fragment of this language are denoted by letters A,B, . . ..

Then, KM is axiomatized via the two rules of inference, substitution and
detachment (modus ponens), the axioms of intuitionistic propositional calculus,
Int, and the following modal formulas:

(a) p→ 2p,
(b) (2p→ p)→ p,
(c) 2p→ (q ∨ (q → p)).

In [4], Kuznetsov formulated the theorem:

For any assertoric formulas A and B,

Int +A ` B ⇔ KM +A ` B. (Kuznetsov’s Theorem)

Although a sketch of the proof was given in the Kuznetsov’s paper, a detailed
proof of this theorem has been remaining unknown. Also, there remains open
the direct proof of the following corollary of the theorem, which is actually
equivalent to the theorem.

Any Heyting algebra is embedded into the Heyting reduct of such
a KM-algebra that the latter Heyting algebra and the initial one
generate the same variety. (Cf. [4], Corollary 1.)

227



It is clear that the last statement consists of the two parts: 1) the first part
states that given a Heyting algebra A, there are a KM-algebra A′ and a Heyting
embedding of the former into the latter; 2) the second part claims that that the
former algebra and the Heyting reduct of the latter generate individually the
same variety.

Although the first part, regardless of the second, had been proved long ago
in [8], it has still been unclear, whether the construction defined there is suitable
for the second part. However, this construction in conjunction with a property
explained below allows one to arrive at the following conclusion: Given a Heyting
algebra A, there is, in a sense, a “largest” and “smallest” algebra, both of which
contain A as their subalgebra and both have a designated element of A enriched
in the sense of modal KM-axioms or the identities (a)− (b) below.

Definition 1.1 1 An algebra (A,∧,∨,→ ¬,0,1,2) is called a KM-algebra
if its assertoric reduct A = (A,∧,∨,→ ¬,0,1) is a Heyting algebra and a unary
operation 2 is subject to the following inequalities:

(a) x ≤ 2x,
(b) 2x→ x ≤ x,
(c) 2x ≤ y ∨ (y → x).

A KM-algebra is called a KM-expansion of its assertoric (or Heyting) reduct.

Given two algebras A and B of the same type, we write A 4 B if A is a
subalgebra of B. We write A - B to say that A, not necessarily an algebra, is
a relative subalgebra of algebra B in the sense of [2].

2 Relation E, enriched elements

Definition 2.1 (E-pair, enriched element, relation E) Let A be a Heyting
algebra. Given two elements a, a∗ ∈ A, the pair (a, a∗) is called an E-pair of/in
A, if the following holds:

(1) a ≤ a∗;
(2) a∗ → a = a;
(3) a∗ ≤ x ∨ (x→ a), for all x ∈ A.

An element a ∈ A is called enriched by an element a∗ ∈ A if (a, a∗) is an
E-pair in A.

Then, we define

E = {(a, a∗) | (a, a∗) is an E-pair in A}.

Where necessary, we will write EA to emphasize that relation E is associated
with algebra A.

1The term KM-algebra is due Esakia [1]. It replaces the old term, M-pseudoboolean alge-
bra, [6].
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We note that for any Heyting algebra, its relation E is never empty, for
(1,1) is an E-pair. Also, if ω is the pre-top element of a subdirectly irreducible
algebra, then (ω,1) is an E-pair of this algebra.

It follows from [8] that an element a ∈ A can be enriched by only one, if any,
element a∗ ∈ A.

We will be focusing on a possibility to enrich only one element of a Heyting
algebra. For this purpose, a given Heyting algebra A, we select an element
a ∈ A and introduce it into the signature as a 0-ary operation τ . Thus we will
be working with algebras (A, τ), where A is a Heyting algebra.

3 Main results

Definition 3.1 We say that algebra (A, τ) is packed in (B, τ) if (A, τ) - (B, τ),
the element τ is enriched by an element τ∗ in (B, τ) and algebra B is generated
by A ∪ {τ∗}.

We use constructions of [8] and [2], §28, to prove the following.

Theorem 3.1 Given an algebra (A, τ), there is an algebra (A0, τ) such that
(A, τ) is packed in the former and if (A, τ) is packed in (B, τ), then there is a
surjective homomorphism φ : (A0, τ)→ (B, τ) which is an isomorphism on the
elements of A.

Now consider the following abstract class of algebras:

S = {(Ai, τ) | (A, τ) is packed in (Ai, τ)}

and define the following relation on S:

(Ai, τ) ≤ (Aj , τ) ⇔ there is a surjective homomorphism of the latter onto
the former, which is determined by the homomorphisms
φk : (A0, τ)→ (Ak, τ), k ∈ {i, j}, of Theorem 3.1.

Theorem 3.2 (S,≤) is a well-founded partially ordered set with the top element
(A0, τ).

We conclude with the following comments.
Suppose algebra (A, τ) is packed in (B, τ) so that (τ, τ∗) is an E-pair in

B. Now if a formula A is invalid on B, a substitution instance of it, A′, takes
a value unequal to 1B (= 1A), when we assign elements a1, . . . , ak ∈ A and
τ∗ to the variables of A′, i.e., A′[a1, . . . , ak, τ∗] 6= 1A. For the second part of
the corollary above, we need to refute A′ on A, while dealing with a particular
algebra (C, τ) which (A, τ) is also packed in, for the direct limit construction
of [8], where (C, τ) is a resulting algebra obtained in the first step of a transfinite
induction, allows to vary τ to obtain an embedding of any Heyting algebra into
an enrichable one.
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Theorem 3.1 shows that if we are able to shift down a refutation of A′ from
(A0, τ) to (A, τ) then all first components in S generate the same variety as
algebra A does. Otherwise, as Theorem 3.2 witnesses, it would be difficult to find
a needed algebra in S where the refutation can be conducted with embedding
of this algebra into a fully enrichable one. Here the problem is that (S,≤) is
not necessarily a downward direct family. So there may exist infinitely many
minimal algebras with respect to ≤, in each of which (A, τ) is packed.
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Abstract

Generalizations of Boolean algebras as carriers of probability measures are (lattice)
effect algebras. They are a common generalization of MV-algebras and orthomod-
ular lattices ([1], [2], [3], [8]). In the present paper, we continue the study of
homogeneous effect algebras started in [6]. This class of effect algebras includes
orthoalgebras, lattice ordered effect algebras and effect algebras satisfying the Riesz
decomposition property.

In [6] it was proved that every homogeneous effect algebra is a union of its blocks,
which are defined as maximal sub-effect algebras satisfying the Riesz decomposition
property. In [9] Tkadlec introduced the so-called property (W+) as a common
generalization of orthocomplete and lattice effect algebras.

The aim of our paper is to show that every block of an Archimedean homoge-
neous effect algebra satisfying the property (W+) is lattice ordered. Therefore, any
Archimedean homogeneous effect algebra satisfying the property (W+) is covered
by MV-algebras. As a corollary, this yields that every block of a homogeneous
orthocomplete effect algebra is lattice ordered.

As a by-product of our study we extend the results on sharp and meager elements
of [7] into the realm of Archimedean homogeneous effect algebras satisfying the
property (W+).

List of selected results and definitions

Definition 1. A partial algebra (E;⊕, 0, 1) is called an effect algebra if 0, 1 are
two distinct elements, called the zero and the unit element, and ⊕ is a partially
defined binary operation called the orthosummation on E which satisfy the following
conditions for any x, y, z ∈ E:

(Ei) x⊕ y = y ⊕ x if x⊕ y is defined,

∗Financial Support of the Ministry of Education of the Czech Republic under the project
MSM0021622409 is gratefully acknowledged.
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(Eii) (x⊕ y)⊕ z = x⊕ (y ⊕ z) if one side is defined,

(Eiii) for every x ∈ E there exists a unique y ∈ E such that x ⊕ y = 1 (we put
x′ = y),

(Eiv) if 1⊕ x is defined then x = 0.

A subset Q ⊆ E is called a sub-effect algebra of E if

(i) 1 ∈ Q

(ii) if out of elements x, y, z ∈ E with x⊕ y = z two are in Q, then x, y, z ∈ Q.

(E;⊕, 0, 1) is called an orthoalgebra if x⊕ x exists implies that x = 0 .
An effect algebra E satisfies the Riesz decomposition property (or RDP) if, for

all u, v1, v2 ∈ E such that u ≤ v1 ⊕ v2, there are u1, u2 such that u1 ≤ v1, u2 ≤ v2

and u = u1 ⊕ u2.
An effect algebra E is called homogeneous if, for all u, v1, v2 ∈ E such that

u ≤ v1 ⊕ v2 ≤ u′, there are u1, u2 such that u1 ≤ v1, u2 ≤ v2 and u = u1 ⊕ u2 (see
[6]).

A subset B of E is called a block of E if B is a maximal sub-effect algebra of E
with the Riesz decomposition property.

An element x of an effect algebra E is called

1. sharp if x ∧ x′ = 0. The set S(E) = {x ∈ E | x ∧ x′ = 0} is called a set of all
sharp elements of E (see [5]).

2. principal, if y ⊕ z ≤ x for every y, z ∈ E such that y, z ≤ x and y ⊕ z exists.

3. central, if x and x′ are principal and, for every y ∈ E there are y1, y2 ∈ E
such that y1 ≤ x, y2 ≤ x′, and y = y1 ⊕ y2 (see [4]). The center C(E) of E is
the set of all central elements of E.

In what follows set (see [7])

M(E) = {x ∈ E | if v ∈ S(E) satisfies v ≤ x then v = 0}.

We also define

HM(E) = {x ∈ E | there is y ∈ E such that x ≤ y and x ≤ y′}
and

UM(E) = {x ∈ E | for every y ∈ S(E) such that x ≤ y it holds x ≤ y ª x}.

An element x ∈ HM(E) is called hypermeager, an element x ∈ UM(E) is called
ultrameager.

Lemma 2. Let E be an effect algebra. Then UM(E) ⊆ HM(E) ⊆ M(E). Moreover,
for all x ∈ E, x ∈ HM(E) iff x ⊕ x exists and, for all y ∈ M(E), y 6= 0 there is
h ∈ HM(E), h 6= 0 such that h ≤ y.

Example 3. In the following non-homogeneous finite effect algebra, M(E) =
HM(E) 6= UM(E). Sharp elements are denoted in black. One can easily check
that E is a sub-effect algebra of the MV-effect algebra [0, 1] × [0, 1] such that
a 7→ ( 3

4 , 0), b 7→ ( 1
4 ,

1
4 ), c 7→ (0, 3

4 ). Moreover, since a ⊕ c 6∈ S(E) we obtain that
S(E) is not a sub-effect algebra of E.
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a

a⊕ b

a

0

b

2b

3b = a⊕ c

1 = 4b = a⊕ b⊕ c

c

b⊕ c

¾ M(E) = HM(E)

UM(E)

Definition 4. For an element x of an effect algebra E we write ord(x) = ∞ if
nx = x ⊕ x ⊕ · · · ⊕ x (n-times) exists for every positive integer n and we write
ord(x) = nx if nx is the greatest positive integer such that nxx exists in E. An
effect algebra E is Archimedean if ord(x) <∞ for all x ∈ E.

We say that a finite system F = (xk)nk=1 of not necessarily different elements of

an effect algebra E is orthogonal if x1⊕x2⊕· · ·⊕xn (written
n⊕
k=1

xk or
⊕
F ) exists

in E. Here we define x1 ⊕ x2 ⊕ · · · ⊕ xn = (x1 ⊕ x2 ⊕ · · · ⊕ xn−1) ⊕ xn supposing

that
n−1⊕
k=1

xk is defined and (
n−1⊕
k=1

xk) ⊕ xn exists. We also define
⊕ ∅ = 0. An

arbitrary system G = (xκ)κ∈H of not necessarily different elements of E is called
orthogonal if

⊕
K exists for every finite K ⊆ G. We say that for a orthogonal

system G = (xκ)κ∈H the element
⊕
G exists iff

∨{⊕K | K ⊆ G is finite} exists
in E and then we put

⊕
G =

∨{⊕K | K ⊆ G is finite}. We say that
⊕
G is the

orthogonal sum of G and G is orthosummable. (Here we write G1 ⊆ G iff there is
H1 ⊆ H such that G1 = (xκ)κ∈H1). We denote G⊕ := {⊕K | K ⊆ G is finite}.

E is called orthocomplete if every orthogonal system is orthosummable. E fulfills
the condition (W+) [9] if for each orthogonal subset A ⊆ E and each two upper
bounds u, v of A⊕ there exists an upper bound w of A⊕ below u, v.

Every orthocomplete effect algebra is Archimedean.

Statement 5. [9, Theorem 2.2] Lattice effect algebras and orthocomplete effect
algebras fulfill the condition (W+).

Proposition 6. Let E be an Archimedean effect algebra fulfilling the condition
(W+). Then every meager element of E is the orthosum of a system of hypermeager
elements.

Lemma 7. Let E be an Archimedean effect algebra fulfilling the condition (W+),
let u, v ∈ E, and let a, b be two maximal lower bounds of u, v. There exist elements
y, z for which y ≤ u, z ≤ v, a, b are maximal lower bounds of y, z and y, z are
minimal upper bounds of a, b.

Lemma 8 (Shifting lemma). Let E be an Archimedean effect algebra fulfilling the
condition (W+), let u, v ∈ E, and let a1, b1 be two maximal lower bounds of u, v.
There exist elements y, z and two maximal lower bounds a, b of y, z for which y ≤ u,
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z ≤ v, a ≤ a1, b ≤ b1, a ∧ b = 0, a, b are maximal lower bounds of y, z and y, z are
minimal upper bounds of a, b. Furthemore, (yªa)∧(zªa) = 0, (yªb)∧(zªb) = 0,
(y ª a) ∧ (y ª b) = 0, (z ª a) ∧ (z ª b) = 0.

The Shifting lemma provides the following minimax structure.

a

y

u

b

z

v

0
Proposition 9. Let E be an Archimedean homogeneous effect algebra fulfilling the
condition (W+). Every two hypermeager elements u, v possess u ∧ v.

Proposition 10. Let E be an Archimedean homogeneous effect algebra fulfilling
the condition (W+). For every orthogonal elements u, v, u∧ v and u∨[0,u⊕v] v exist
and [0, u ∧ v] ⊆ B for every block B containing u or v.

Corollary 11. Let E be an Archimedean homogeneous effect algebra fulfilling the
condition (W+). For every element u, u ∧ u′ and u ∨ u′ exist and [0, u ∧ u′] ⊆ B
for every block B containing u.

Corollary 12. Let E be an Archimedean homogeneous effect algebra fulfilling the
condition (W+). For any block B and every elements u, v ∈ B for which u∧B v = 0,
u ∧ v = 0.

Theorem 13. Let E be an Archimedean homogeneous effect algebra fulfilling the
condition (W+). Then every block in E is a lattice and E can be covered by MV-
algebras, i.e., E is a union of maximal sub-effect algebras of E with the Riesz
decomposition property that are lattice ordered.

Corollary 14. Let E be an orthocomplete homogeneous effect algebra. Then E can
be covered by MV-algebras.
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The semantics of proofs for classical logic is a very
recent discipline; the construction of proofs semantics
that are completely faithful to the natural symmetries
of classical logic is even more recent. In this paper we
present a theory of proof nets which is related to those
in [LS05,Hyl04,FP05], but which differs from them in its
ability to take account of resources, in the sense of linear
logic. It also has the interesting property (like [Hyl04])
of being based on a topological foundation.

This work originated as an investigation in the deno-
tational semantics of classical logic [LN09], furthering
the work in [Lam07]. As it often happens here, it in-
volved the construction of bialgebras, in this particular
case in the category of posets and bimodules. The fact
that these bialgebras were actually Frobenius algebras
was noticed, but it took some time for the extreme in-
terest of this property to sink in.

Definition 1 (Frobenius algebra). Let (C,⊗,1) be
a symmetric monoidal category (SMC), and A an object
of it. A Frobenius algebra is a sextuple (A,∆,Π,∇,q)
where (A,∇,q) is a commutative monoid, (A,∆,Π) a
co-commutative comonoid, where the following diagram
commutes:

A⊗A
∆⊗Id

��

A⊗A
∇

��

A⊗A
Id⊗∆

��
A⊗A⊗A
Id⊗∇

��

A

∆
��

A⊗A⊗A
∇⊗Id

��
A⊗A A⊗A A⊗A

A Frobenius algebra is thin if Π ◦ q is the identity.

The following is well-known.

Proposition 1. The tensor of two Frobenius algebras
is also a Frobenius algebra, where the monoid and
comonoid operations are defined as usual in an SMC.
It is thin if both factors are.

Definition 2. A Frobenius category C is a sym-
metrical monoidal category where every object A
is equipped with a thin Frobenius algebra structure
(A,∇A,ΠA,∆A,q) and such that the algebra on the
tensor of two objects is the usual tensor algebra, as
above.

Frobenius algebras have gained a lot of attention after
they were found to be closely related to 2-dimensional
Topologica Quantum Field Theories (TQFTs). The

main result was achieved by several people indepen-
dently [Dij89,Koc04], and can be stated as follows. We
present a slightly modified version of the standard re-
sult, which better fits our purposes and is an easy corol-
lary of it.

Theorem 1. The free Frobenius category F on one ob-
ject generator is equivalent to the two following cate-
gories.

1. Take finite disjoint unions of m circles as an ob-
ject m. A map m → n is a Riemann surface (with
boundary) whose boundary is the disjoint sum m+n
(and would be orientable if the circles were extended
to discs), such that every connected component has
a nonempty boundary, where two surfaces are iden-
tified modulo homeomorphism. Composition of two
maps m→ n, n→ p is gluing, forgetting the bound-
aries in the middle, and dropping the components
that do not touch the resulting boundary m+ p.

2. Take finite sets [m] = {0, 1, . . . ,m − 1} as objects,
seen as discrete topological spaces. A map [m]→ [n]
is a topological graph G (i.e. a CW-complex of di-
mension one), equipped with an injective function
[m + n] → G such that every connected compo-
nents of G is in the image of that function, with two
graphs being identified if they are equivalent modulo
homology. Composition is also gluing and dropping
the components that are left out of the resulting set
of endpoints.

Fig 1. A map 2→ 3 shown in the two equivalent characterizations
of the free Frobenius category. Objects are seen as distinguished
end-points in the left or as circles to the right. One of the connected
components has genus 1, the other 0. In both cases the map is de-
termined by grouping of the atoms in a partition and an assignment
of genera to the classes of the partition.

Since we are dealing with the universal algebra of cat-
egories, a free Frobenius category is defined only up to
equivalence of categories, with the standard universal
property associated to that situation. The two charac-
terizations in Theorem 1 happen to be skeletal cate-
gories and are isomorphic. Our nonstandard notion of
Frobenius category requires thinness; maps in the stan-
dard, non-thin free Frobenius category can contain sev-
eral ”floating” components that do not touch the bor-
der.

Since homology is much more technical than homo-
topy, we prefer to replace the second result above with:

2’. Objects are sets of the form [m]. A map [m] → [n]
is a topological graph G equipped with an injective
function [m + n] → G that touches all connected
components of G, where two such things are identi-
fied if they are homotopy equivalent in the co-slice
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category (m+n)/Top, where homotopies are defined
to be constant on the base [m+ n].

This allows for a treatment which is at the same time
well-formalized and accessible to many more readers.

Theorem 2. Every map in F can be represented by a
graph G of the following form, where every connected
component is a “star” whose central node has n loops
attached to it, with n > 0.

•

•

•

•

•

•

•

•

•

•

•

•
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.

.
m

.

.

.
n

This prompts the following definition

Definition 3 (Linking). We define a linking to be a
triple

P = (P, CompP ,GenP )

where

– P is a finite set
– CompP is the set of classes of a partition of the set
P . Its elements are called components.

– the function GenP : CompP → N (called genus)
assigns a natural number to each component in
CompP

Notice the abuse of notation, where a single letter P
can be the full thing above or just its underlying set.

It should be obvious that a map m → n in F can
be described as a linking on the set m+ n. Naturally a
formal definition of composition in terms of linkings is
a bit trickier.
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Fig. 2. Maps in a free Frobenius category (drawn horizontally)
seen as topological graphs with object generators for nodes, and the
bouquet of circles determining the genus. Composition of the maps
amounts to glueing of graphs along nodes, and is determined by the
homotopy type of the new graph as depicted.

Proposition 2. The category F is compact-closed, the
dual of an object being itself.

This is easy to see, since given a map m → n stuff in
m can be transfered to the right side by a purely for-
mal manipulation, and vice-versa. More generally, any
Frobenius category is compact-closed, but a proof of
this requires some real algebra.

The relevance of the “Frobenius equations” for proof
theory is due to the fact that they address the
contraction-against-contraction case in cut elimination,
seen for example in the proof to the right in Figure 3.

` a, a
Ax ` a, a

Ax

` a, a, a, a
Mix

` a, a, a
Contr

` a, a
Ax ` a, a

Ax

` a, a, a, a
Mix

` a, a, a
Contr

` a, a, a, a
Cut

` a, a
Ax ` a, a

Ax

` a, a, a, a
Mix

` a, a, a
Contr ` a, a

Ax

` a, a, a, a, a
Mix

` a, a, a, a
Contr

Fig. 3. Two proofs identified by Frobenius equations

We introduce a standard language for classical proposi-
tional logic, with atoms a,b, c, . . . , negatoms a,b, c, . . .
and conjunction ∧, disjunction ∨. We call something
which is either an atom ot a negatom a literal. Nega-
tion of a compound formula is defined by de Morgan
duality. Sequents are defined as usual, and given a for-
mula A or a sequent Γ we denote by Lit(A), Lit(Γ)
their sets of occurences of literals.

Definition 4 (F-prenet). We define an F-prenet to
be a pair

P . Γ

consisting of a sequent Γ, and a linking
(P, CompP ,GenP ) where the underlying set P is
Lit(Γ), and every class in CompP contains only atoms
of the same type and their negation.

When we say that P “is” the set of literal occurences of
Γ, we mean actually that P is an arbitrary set, equipped
with a bijection with the actual literal occurences in Γ.
The point is that this bijection never has to be made
explicit in practice, while working directly with atom
occurences would force ugly contortions.

Several deductive systems can be used with F-
prenets. The first one is just the ordinary one-sided
sequent calculus for classical logic, with the Mix rule
(of linear logic) added. It is presented in full in [LS05],
under the name CL. In general, a sequent calculus can
be used to define a theory of proof nets is every n-ary
introduction rule of the calculus

` Γ1 ` Γ2 · · · ` Γn

` Γ

can be transformed into a family of n morphisms Pi .
Γi → Q . Γ in the following syntactic category.

Definition 5 (Syntactic Category). Let FSynt
have F-prenets for objects, where a map

f : P . Γ→ Q . ∆

is given by an ordinary function on the underlying set
of literals

f : P → Q
(
= Lit(Γ)→ Lit(∆)

)

such that

1. for every formula A, f maps Lit(A) to a subset of
Lit(∆) which defines a subformula of a formula in
∆, while preserving the syntactic left-right order on
literals.

236



2. for every C ∈ CompP , one has that f(C) ⊆ Lit(∆)
is contained in a component C ′ ∈ CompQ, with
GenP (C) ≤ GenQ(C ′).

The procedure to obtain an F-prenet P . Γ from a proof
of a sequent ` Γ is absolutely straightforward. The cases
that are worth mentioning specifically are Weakening
and Contraction. Assuming we have constructed P .
Γ from a proof, then adding the formula A through
weakening gives us a linking on the disjoint union P ]
Lit(A) where every added component is a singleton with
associated genus 0. For contraction, if the two visible
occurences of A in P . Γ,A,A are contracted, we get an
F-prenet P (A � A) . Γ,A by connecting the ith literal
of the first instance of A and the ith literal in the second
instance to a single “terminal”, where i ranges over the
number of literals in A.

This (− � −) operation can be iterated, and can be
applied to subformulas and subsequents as well as for-
mulas. In what follows we use superscripts to disam-
biguate occurences when we feel it is useful.

Definition 6. In the category FSynt, we define the
families of cospans Mix and ∧ to be

Pl . Γ
Mix : l

**TTTTTTT Pr . Γ
Mix : r
ttjjjjjjj

Pl ] Pr(Γ � Γ) . Γ

and

Pl . Γ,A1 ∧ B1,A2

∧ : l
**TTTTTT Pr . B2,A3 ∧ B3,Γ

∧ : r
ttjjjjjj

Q . Γ,A ∧ B

where Q is Pl ] Pr

(
Γ � Γ, (A1 � A2) � A3, (B1 � B2) �

B3
)
.

Definition 7. An anodyne map P . Γ //	 Q . ∆
is a syntactic map that can be decomposed

P . Γ
∼ // Q . ∆1

∨ // · · · ∨ // Q . ∆n = ∆

as an isomorphism followed by a sequence of ∨-
introduction maps (which do not affect the linking, only
the sequent).

There is an important anodyne map, which corre-
sponds to the removal of all outer disjuctions: We write

[P . Γ] //� P . Γ

to denote the anodyne map whose domain is the sequent
where all outer disjunctions have been removed.

Definition 8 (Correct F-nets). An F-prenet P . Γ
is a CL-correct F-net, (or simply an F-net) if it is at
the root of a correctness diagram T → FSynt, meaning
a diagram for which:

1. T is a poset which is an inverted tree (i.e. the root
is the top, the leaves are minimal), with P . Γ at
its root;

2. maps of the diagram T are either anodyne, or belong
to a ∧- or Mix-cospan;

3. the only branchings are ∧- and Mix-cospans ;
4. every leaf of the tree is an F-prenet Q . ∆

with CompQ = {{a, a}, {x1}, . . . , {xm}} and a map
GenQ which is 0 everywhere, i.e, an axiom with
weakenings.

This can be strengthened by forcing the anodyne maps
always to be �-maps, and to have an alternation be-
tween these and maps from cospans. We show

Theorem 3 (Sequentialization). Correct F-nets are
precisely those F-prenets that come from CL without
Cut.

Given a linking P let |P | be stand for the size of
its underlying set, |CompP | for the number of compo-
nents, and |GenP | for the sum of all genera in P , i.e.
|GenP | =

∑
C∈CompP

GenP (C). The following observa-
tion is crucial to the proof:

Lemma 1 (Counting axiom links in an F-
prenet). If an F-prenet P . Γ corresponds to a CL
proof, then

|Ax |= |P | − |CompP |+ |GenP |,

where |Ax | is the number of axioms in the proof (corol-
lary: any correctness diagram for this proof will have
the same number of leaves).

This lemma, along with some additional analysis of
proofs guarantees finiteness of the search space:

Theorem 4. Given an F-prenet, its CL-correctness
(CL-sequentializability) can be checked in finite time,
i.e. the CL-correctness criterion yields a decision pro-
cedure for CL-correct F-nets.

We have strong evidence that the procedure is NP-
complete, actually.

When Cut comes into play, things change a bit. First
of all, we define a cut formula to be A �A, where − �−
is a new binary connective that is only allowed to appear
as a root in a sequent.

Our original goal is to normalize these prenets with
cuts by means of composition in F (remember it is
compact-closed). This use of Frobenius algebras in clas-
sical logic is quite different from the one proposed by
Hyland [Hyl04]. It more resembles the work in [LS05],
where the equivalent to the category F there is obtained
from an “interaction category” construction [Hyl04,
Section 3] on sets and relations, where composition is
defined by the means of a trace operator.

Cut elimination defined that way immediately causes
problems. Look at the right part of Figure 4. For the
resulting F-prenet to come from a proof we need the
singleton component to come from a weakening, but this
cannot happen according to our interpretation since its
genus is > 0.
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Fig. 4. Left: Graphical representation of a F-prenet. Right: Cut
elimination performed on two CL-correct F-nets that results in a
F-prenet not corresponding to a CL proof.

These issues can be dealt with by changing the deduc-
tive system and we define a new sound and complete
calculus for classical logic, FL.

` a, a ;
Ax ` Γ ; ∆

` Γ ; ∆, a, a, . . . , a, a, a, . . . , a
MulWeak

` Γ,A,B ; ∆

` Γ,A ∨ B ; ∆
∨l

` Γ,A ; ∆,B

` Γ,A ∨ B ; ∆
∨c

` Γ ; ∆,A,B

` Γ ; ∆,A ∨ B
∨r

` Γ1,A ; ∆1 ` B,Γ2 ; ∆2

` Γ1,A ∧ B,Γ2 ; ∆1,∆2

∧l
` Γ ; ∆,A,B

` Γ ; ∆,A ∧ B
∧r

` Γ1,A ; ∆1 ` Γ2 ; B,∆2

` Γ2 ; A ∧ B,Γ1,∆1,∆2

∧c

` Γ,A,A ; ∆

` Γ,A ; ∆
Contrl

` Γ ; ∆,A,A

` Γ ; ∆,A
Contrr

` Γ,A ; ∆,A

` Γ,A ; ∆
Contrc

` Γ ; ∆1 ` ∆ ; ∆2

` Γ,∆ ; ∆1,∆2
Mix

` Γ,A ; ∆1 ` A,∆ ; ∆2

` Γ,∆ ; ∆1,∆2
Cutl

` Γ ; ∆,AA

` Γ ; ∆
Cutr

` Γ,A ; ∆1 ` ∆ ; A,∆2

` ∆ ; Γ,∆1,∆2
Cutc

Fig. 5. System FL.

The purpose of the stoup is to keep track the
part that is sure to come from weakening, and
also to allow the introduction of arbitrary linking
configurations through weakening. This is because
MulWeak is interpreted by adding to the linking a set
{a, a, . . . , a, a, a, . . . , a}, which contains a single compo-
nent of genus zero. The definition of correctness for FL
needing to accommodate the new connective for cut, we
introduce another cospan in the syntactic category of F-
prenets FSynt. We also relax the definition of anodyne
map to allow functions that are injective but not bijec-
tive, to take account of the new Weakening rule. With
these modifications, Theorem 3 and Theorem 4 can be
restated, with one marked difference: this time, for FL-
correct net we have |Ax| ≤ |P | − |CompP |+ |GenP |.

While problems like the counterexample above are
solved, in general we still cannot eliminate the cuts on
an FL-correct net and always get one which is also FL-
correct. Thus we still do not have a category. This calls
for a little more analysis. First notice that F-prenets do
form a category themselves. It is easy to see that this
category is equivalent to the free Frobenius category

generated by the set of literal types (where an atom
and its negation have the same “type”). And thus we
can consider FL-correct (and CL-correct) nets to be a
class of maps in that category, which is not closed under
composition. But this large category (as usual objects
are formulas and a map A → B is a P . A,B) has two
order enrichments.

Definition 9. Let P . Γ, Q . Γ be two linkings over
the same sequent. We write

– P 6 Q if CompP = CompQ and GenP 6 GenQ, i.e,
the genus functions are ordered pointwise.

– P � Q if CompP is a finer partition than CompQ
and the genus of every component in CompQ is
greater than the sum of the genera of the compo-
nents of CompP it contains.

These order structures do define enrichments when they
are considered as being defined on morphisms, as above.
Both have their interests, but we don’t have much space
left. So we just state one of several corollarie of that
analysis:

Theorem 5. Let P . Γ be the result of eliminating
the cuts on an FL-correct net. Then there exists an FL-
correct linking Q > P .

So we can obtain a category by cheating on our original
goal and define a composition that “fattens” the one
given by ordinary Frobenius categories, which we will
describe in the full paper.
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There are many ways how to define algebras with underlying objects on
a general category. However, the usual concepts are not general enough.
Categories of algebras for a monad involve existence of free objects, which
may not occur in general, while f-algebraic categories (categories of algebras
for an endofunctor) are not strong enough to describe varieties. There is
a concept (see [1]) of varieties which avoid these restrictions but it needs
colimits for the constructions. The concept of algebraic categories introduced
in [5] involving proper classes of operation symbols is applicable on every
category. The question of coherence with functor algebras was discussed and
finally solved by Reiterman, but his result was not published in full generality.

The author’s concept of l-algebraic categories ([3]) provide another option
of approach. While l-algebraic categories are kind of Beck categories where an
existence of some Kan extensions enables to define monadicity, its subfamily
of polymeric categories is shown in [4] to be sufficient to cover many natural
examples of algebraic structures. Moreover, if the category is cocomplete,
each variety can be described as an ordinal limit of polymeric categories.

In this framework, we extend the Reiterman isomorphism onto all poly-
meric categories. This will provide an important step for the proof of alge-
braicity of all varieties which may be helpful to establish a counterpart for
the equational logic such as injectivity logic by Adámek, Hébert and Sousa.

L-algebraic and Polymeric Categories

Given a base category C, l-algebraic categories are C-concrete limits of f-
algebraic categories. Many natural examples of categories are l-algebraic
(e.g. all monadic, f-algebraic categories, varieties etc.). Among them, a
special role is played by polymeric categories (introduced in [4]), which we
will focus on. One can show that every l-algebraic category is Beck, i.e. its
forgetful U functor creates limits and U -absolute coequalizers.

Let (A,α) be an F -algebra. Given n ∈ ω, a n-polymer of an algebra
(A,α) is the morphism α(n) : F n(A) → A in C defined recursively:

α(0) = idA, α
(n+1) = α ◦ Fα(n).
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Let n ∈ N and G be an endofunctor on C. A natural transformation
ϕ : G → F n is called n-ary polymeric G-term in category of F -algebras.
A pair (ϕ, ψ)p of polymeric G-terms of arities m,n, respectively, is called
polymeric identity. Moreover, for an F -algebra (A,α), we define

(A,α) |= (ϕ, ψ)p
def⇔ α(m) ◦ ϕA = α(n) ◦ ψA,

and we say that the F -algebra (A,α) satisfies the polymeric identity (ϕ, ψ)p.
For a class I of polymeric identities we define a polymeric variety of

F -algebras as the class of all algebras satisfying all (ϕ, ψ)p ∈ I. The cor-
responding subcategory of Alg F is denoted by Alg (F, I). Each category
concretely isomorphic to a polymeric variety is called polymeric.

It is easy to show the relations: monadic ⇒ polymeric ⇒ l-algebraic.

Algebraic Categories

Given a category C and a class Ω of operation symbols, a type on C with the
domain Ω is a mapping t : Ω → (ObC)2. Given σ ∈ Ω, t(σ) = (t0(σ), t1(σ))
is called an arity-pair for Ω.

An algebra for a type t is a pair (A, S) made up of a C-object A and a map-
ping S : Ω → MorphSet such that S(σ) : hom(t0(σ), A) → hom(t1(σ), A)
for each σ ∈ Ω. A morphism of t-algebras f : (A, S) → (B, T ) is a mor-
phism f : A → B such that, for every σ ∈ Ω and m : t0(σ) → A,
f ◦ S(σ)(m) = T (σ)(f ◦m). The metacategory of t-algebras and their mor-
phisms will be denoted by t−alg.

The t-terms and their arity-pairs are defined recursively. Each σ ∈ Ω
is a term of arity-pair t(σ), there is a term f of arity-pair (cod(f), dom(f))
for every C-morphism f and, for terms q, p of arity-pairs (Z, Y ) and (Y,X),
respectively, by p · q we denote another term of arity-pair (Z,X). The pairs
of terms f · g and g ◦ f are considered equal for every pair of composable
morphisms g, f .

The class of all terms of type t will be denoted by T (t). By (X,Y )-
ary t-equation we mean a pair of t-terms of the arity-pair (X,Y ). Given
a type t : Ω → (ObC)2 then there is a universal h : Ω → T (t) such that
for each algebra (A, S), the mapping S : Ω → MorphC induces a partial-
algebra homomorphism S : T (t) → MorphC such that SS ◦ h = S. This
mapping is called an evaluation of terms on (A, S). For each term p of
arity-pair (X, Y ), the evaluation on an algebra (A, S) defines a mapping
SS(p) : hom(X,A) → hom(Y,A).

Given a t-equation (p, q), we say that (A, S) satisfies the (p, q) if SS(p) =
SS(q). Then we write (A, S) |= (p, q).
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For a class I of t-equations, the pair (t, I) is called an equational theory
over C. The corresponding category will be denoted by (t, I)−alg. A category
will be called algebraic, if it is isomorphic to (t, I)−alg for some equational
theory (t, I).

L-algebraic vs. Algebraic Categories

Author proved in [3] that every l-algebraic category with codensity monad is
monadic and that if C has copowers, then every algebraic category over C is
l-algebraic. Now we can show an algebraic category which is not l-algebraic.

Example 1 Consider the category C = 2 + 2 consisting of objects 0, 1, 0′, 1′

and morphisms ι : 0 → 1, ι′ : 0′ → 1′ and identities. Let A = 1 + 1 and
U : A → C be the inclusion of {0, 0′}. Then (A, U) is algebraic: the type is
t : {ρ, σ} → (ObC)2, t(ρ) = (1, 0′), t(σ) = (1′, 0) and t−alg ∼=C A. Moreover
(A, U) is not l-algebraic since it has a codensity monad (the trivial monad)
but U does not have an adjoint (1 does not have an universal arrow).

Reiterman Conversion

We ask whether every l-algebraic category is algebraic. We are not able to
answer this generally, but we can prove the algebraicity for all polymeric
categories. First we focus on f-algebraic categories. J. Reiterman proved,
but did not publish, the following result:

Theorem 2 (Reiterman theorem)
Every f-algebraic category is algebraic.

The paper of Kurz and Rosický [2] presents its proof for coalgebras on Set.
In general let F : C → C be a functor, Ω contain symbols σX of arity-pair
(X,FX) for every object X in C and I be the closure of a class of equations

(Ff · σX , σY · f)

labeled by all morphisms f : Y → X in C. We have a Reiterman theory
(t, I). Given X ∈ ObC, F -algebra (A,α) and a morphism h : X → A we set

Rα(σX)(h) = α ◦ Fh.

Now we have an assignment R : Alg F → (t, I)−alg (Reiterman isomor-
phism) given by (A,α) 7→ (A,Rα). It is straightforward to show that it is
a functor and (A,Rα) |= (Ff · σX , σY · f) for every X. The inverse functor
S : (t, I)−alg → Alg F is defined by (A,H) 7→ (A,H(σA)(idA)). Since it is
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defined on algebras satisfying all equations from I, it is easy to show that S
is in fact the inverse functor for R.

We may use this isomorphism even to classify some other l-algebraic cat-
egories. If we modify the Reiterman theory for a set of C-endofunctors, we
may redefine the Reiterman isomorphism even for some non-homogenous l-
algebraic categories such as products of f-algebraic categories. To prove the
algebraicity for polymeric categories, let F be an endofunctor on C.

Definition 3 Given an object X in C and k ∈ ω, then we define k-polymeric
tF -term τ

(k)
X by: τ

(0)
X = idX and τ

(n+1)
X = σF nX · τ (n)

X for n ∈ ω.

Observe that the terms τ
(k)
X have arity pairs of (X,F kX). Let (A,α) ∈ AlgF

and h : X → A be a morphism. By induction we can show for every k ∈ ω

Rα(τ
(k)
X )(h) = α(k) ◦ F kh.

Let G : C → C be a functor. For a natural transformation ϕ : G → F k,

Rα(ϕX · τ (k)
X )(h) = α(k) ◦ ϕA ◦Gh.

Hence for an (m,n)-ary polymeric G-identity (ϕ, ψ)p,

(A,α) |= (ϕ, ψ)p ⇔ (∀X ∈ ObC) (A,Rα) |= (ϕX · τ (m)
X , ψX · τ (n)

X ).

This, together with the Reiterman theorem, yields

Proposition 4 Every polymeric category is algebraic.
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[1] J. Adámek, H. Porst: From Varieties of Algebras to Covarieties of Coal-
gebras, Electronic Notes in Theoretical Computer Science (2001)
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TWO RESULTS ON COMPACT CONGRUENCES

MIROSLAV PLOŠČICA

For a class K of algebras we denote ConK the class of all lattices isomorphic to
Con(A) (the congruence lattice of an algebra A) for some A ∈ K. There are many
papers investigating ConK for various classes K. However, the full description of
ConK has proved to be a very difficult (and probably intractable) problem, even
for the most common classes of algebras, like groups or lattices. A recent evidence
of this is the solution of the Congruence Lattice Problem (CLP) by F. Wehrung [6].

The lattice Con(A) is algebraic for every algebra A. The subset Conc(A) ⊆
Con(A) of all compact (finitely generated) congruences is closed under finite joins
(thus forming a join-subsemilattice), but, in general, not closed under meets. This
fact seems to be a major obstacle in the description of the class Con(K). In the few
relevant cases when the class ConK is well understood, the crucial assumptions are
that

(i) class K is a congruence-distributive variety (equational class) of algebras;
(ii) for every A ∈ K the set Conc(A) is closed under intersection.

There is also a considerable evidence that (ii) makes the study of congruence
lattices easier even without the assumption (i). (See, for instance [5].)

Our first result is the characterization of locally finite congruence-distributive
varieties satisfying (ii). Actually, we provide two such characterizations. One of
them connects (ii) with a structure of subdirectly irreducible members of K, another
is formulated in the language of morphisms between congruence lattices.

Actually, this result is not completely new, as the equivalence of the first two
conditions was proved in [1] using the concept of equationally definable principal
meets. However, we provide a direct proof which does not refer to polynomials and,
we believe, provides an insight helpful in describing ConK for classes K satisfying
(i) and (ii).

For every homomorphism f : A→ B we define the mapping Conc(f) : Conc(A)→
Conc(B) by the rule that Conc(f)(α) is the congruence generated by the set
{(f(x), f(y)) | (x, y) ∈ α}, for every α ∈ Conc(A). The mapping Conc(f) always
preserves joins, but not necessarily meets. (Even if Conc(A) is a lattice.)

Theorem 1. Let K be a locally finite congruence-distributive variety. The following
conditions are equivalent.

(1) For every A ∈ K the set Conc(A) is closed under intersection.
(2) Every finite subalgebra of a subdirectly irreducible algebra in K is itself sub-

directly irreducible.
(3) For every embedding f : A→ B of algebras in K with A finite, the mapping

Conc(f) preserves meets.

This theorem is a generalization of the result from [4], which says that if every
subdirectly irreducible algebra in K is simple, then (1) is satisfied.
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As an example, consider the varieties of distributive pseudocomplemented lat-
tices. Let Bn be the variety generated by the pseudocomplemented lattice (the
ordinal sum) Bn = 2n ⊕ 1. (See the picture of B3 below.)
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So, B0 is the variety of Boolean algebras, B1 is known as the variety of Stone
algebras. The complete list of subdirectly irreducible algebras in Bn and their sub-
algebras (up to an isomorphism) is {B0, B1, . . . , Bn}. Hence the condition (2) of our
theorem is satisfied. (The congruence lattices of distributive pseudocomplemented
lattices have been investigated in [2] and elsewhere.)

There is also another way how to construct examples of varieties satisfying the
conditions of the theorem. Take any finite, subdirectly irreducible algebra A, gen-
erating a congruence-distributive variety. Enhance the type of A by taking all
elements of A as constants (nullary operations). Then the resulting algebra A∗

generates a variety satisfying (2).
Using the above result, we are able to prove several general theorems about

ConK for some varieties K.
Our second result is a solution of the following problem formulated at the problem

session at Novi Sad Algebraic Conference 2003 ([3]).

Problem 2. If an infinite algebra A belongs to a finitely generated congruence
distributive variety, is it true that |ConcA| = |A|?

Since every compact congruence is generated by a finite subset of A2, the in-
equality |ConcA| ≤ |A| is clear. Without any assumptions the inverse inequality is
false. (There are simple algebras of any cardinality.) However, the assumptions of
the above Problem imply that A is a subdirect product of finite algebras and hence
has infinitely many congruences. (Namely, the kernels of the natural projections.)

Our result is as follows.

Theorem 3. Let A be an infinite subalgebra of the direct product Πi∈IAi. Suppose
that there exists a natural number n such that |Ai| ≤ n for every i ∈ I. Then
|ConcA| = |A|.

This theorem answers Problem 2 affirmatively. Notice however, that the theorem
is more general, for instance it does not assume the congruence distributivity.

The common finite bound on the cardinalities of Ai is necessary. The ring of
p-adic integers is a subdirect product of finite rings, its cardinality is continuum,
but it has only countably many congruences.

Our proof is based on the following combinatorial assertion.
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Lemma 4. Let n be a natural number, X an infinite set and F ⊆ {0, . . . , n− 1}X .
Suppose that D(x, y) = {f ∈ F | f(x) 6= f(y)} is nonempty for every x, y ∈ X.
Then there are |X| mutually different sets of the form D(x, y).
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Bilattices are algebraic structures introduced in 1988 by Matthew Ginsberg [7] as a uniform framework
for inference in Artificial Intelligence. The main idea behind bilattices is to consider two different orders
on truth values, one for the “degree of truth” and the other for the “degree of information” associated with
a sentence. This approach turned out to be very flexible and useful in AI and computer science, as it allows
to deal with partial as well as inconsistent data, also unifying several inference mechanisms used in default
and non-monotonic reasoning (see especially the works of Ginsberg, O. Arieli & A. Avron and, for logic
programming applications, of M. Fitting).

The bilattice formalism is also appealing from a purely mathematical point of view, as it constitutes
a natural generalization of lattices (see for instance [9]) and was used to define natural (i.e., semantically
motivated) examples of so-called non-protoalgebraic logics, a class of logics that has a particular interest
within the theory of algebraization of deductive systems (see [2, 3]). An up-to-date review of the applica-
tions of this formalism and also of the motivation behind its study can be found in the dissertation [11].

In the present work we develop a Priestley-style duality theory for bilattices and some related algebras.
This topic has already been investigated by Mobasher et al. [9] but only from an abstract category-theoretic
point of view (see below for details). Here instead we are interested in a concrete study of the topological
spaces that correspond to the these algebraic structures. We think that such study is interesting not only
because it provides a deeper insight into the structure of bilattices, but also because it contains some ideas
on how to develop a bitopological generalization of Priestley duality theory in the direction indicated in
[8].

We recall the main definitions appearing in this framework. By a (bounded) pre-bilattice we mean
an algebra 〈B,∧,∨,⊗,⊕, f, t,⊥,>〉 such that 〈B,≤t ,∧,∨, f, t〉 and 〈B,≤k,⊗,⊕,⊥,>〉 are both bounded
lattices. By a bilattice we mean an algebra 〈B,∧,∨,⊗,⊕,¬, f, t,⊥,>〉 such that 〈B,∧,∨,⊗,⊕, f, t,⊥,>〉 is
a pre-bilattice and the negation ¬ is a unary operation satisfying, for every a,b ∈ B,

(neg 1) if a≤t b, then ¬b≤t ¬a

(neg 2) if a≤k b, then ¬a≤k ¬b

(neg 3) a = ¬¬a.

A (pre-)bilattice is distributive when all possible distributive laws concerning {∧,∨,⊗,⊕}, i.e., all identi-
ties of the following form, hold: x◦ (y• z) = (x◦y)• (x◦ z) for every ◦,• ∈ {∧,∨,⊗,⊕}. A (pre-)bilattice
is interlaced when all four lattice operations are monotone w.r.t. both lattice orders. It is easy to prove that
distributive (pre-)bilattices form a proper subclass of the interlaced ones.

∗Submission to the conference on Topology, Algebra and Categories in Logic (TACL 2011), to be held in Marseille (France),
on July 26-30, 2011. The corresponding author is the second one.
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We also consider some expansions of the standard bilattice language, for example bilattices with con-
flation [5], obtained by adding a kind of dual of the bilattice negation (an involutive unary operator that is
monotone w.r.t. ≤t and antimonotone w.r.t. ≤k), and Brouwerian bilattices [2].

A Brouwerian bilattice is an algebra 〈B,∧,∨,⊗,⊕,⊃,¬〉 such that the reduct 〈B,∧,∨,⊗,⊕,¬〉 is a
bilattice and the following equations are satisfied:

(B1) (x⊃ x)⊃ y = y

(B2) x⊃ (y⊃ z) = (x∧ y)⊃ z = (x⊗ y)⊃ z

(B4) (x∨ y)⊃ z = (x⊃ z)∧ (y⊃ z) = (x⊕ y)⊃ z

(B4) x∧ ((x⊃ y)⊃ (x⊗ y)) = x

(B5) ¬(x⊃ y)⊃ z = (x∧¬y)⊃ z.

Let us note that the bilattice reduct of any Brouwerian bilattice is distributive.
One of the key results for the study of bilattices is a representation theorem stating that any interlaced

pre-bilattice is isomorphic to a certain product (similar to a direct product) of two lattices. An analogous
theorem holds for bilattices: in this case we have that any interlaced bilattice is isomorphic to a product
of two copies of the same lattice. These results were proved by Avron [1] for bounded interlaced (pre-)-
bilattices, then generalized in [3] to the unbounded case. In [9] they are formulated in categorical terms,
as follows: the category of bounded interlaced pre-bilattices is equivalent to the product of the category
of bounded lattices (whose objects are pairs of bounded lattices) with itself, and the category of bounded
interlaced bilattices is equivalent to the category of bounded lattices.

In [2] analogous representation theorems are proved for bilattices with conflation and Brouwerian
bilattices, showing that every category of (pre-)bilattices on the left column of Table 2 is equivalent to the
corresponding category of lattices on the right (all categories have as objects the corresponding algebras
and as morphisms algebraic homomorphisms).

interlaced pre-bilattices product of the category of lattices
with itself

distributive pre-bilattices product of the category of distributive
lattices with itself

interlaced bilattices lattices
distributive bilattices distributive lattices
commutative interlaced bilattices lattices with involution
with conflation
commutative distributive bilattices De Morgan lattices
with conflation
Kleene bilattices with conflation Kleene lattices
classical bilattices with conflation Boolean lattices
Brouwerian bilattices Brouwerian lattices

Table 1: Categorical equivalences

Using these results, it is immediate to conclude that, for instance, the category of bounded distribu-
tive bilattices is equivalent to the category of Priestley spaces. Given a bounded distributive bilattice, one
constructs the lattice associated with it, then considers the Priestley space corresponding to this lattice.
Conversely, for any Priestley space, one considers the distributive lattice associated with it and then con-
structs the corresponding bilattice. This is the approach taken in [9]. As mentioned above, we follow
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a different strategy, which has, in our opinion, the advantage of relating directly bilattices with Priestley
spaces. Instead of focusing on the lattice factor(s) of (pre-)bilattice (as given by the above-mentioned repre-
sentation theorems), we will focus on one of its lattice reducts. To do this, we use the fact that any bounded
distributive pre-bilattice 〈B,∧,∨,⊗,⊕, f, t,⊥,>〉 can be seen as a bounded distributive lattice 〈B,∧,∨, f, t〉
having two extra constants⊥,> that are complement of each other, i.e., such that⊥∧>= f and⊥∨>= t.
The two presentations are equivalent up to algebraic language (we express this saying that the two classes
of algebras are termwise equivalent). The other two lattice operations can be recovered defining, for all
a,b ∈ B,

a⊗b := (a∧⊥)∨ (b∧⊥)∨ (a∧b)

a⊕b := (a∧>)∨ (b∧>)∨ (a∧b)

This result, sometimes called the 90-degree lemma (see [8]), can be extended even to interlaced (not nec-
essarily distributive) pre-bilattices if we add some extra assumptions on ⊥ and > (see [1, Theorem 5.3]).
It is not difficult to see that it can also be extended to bilattices with negation, bilattices with conflation
and Brouwerian bilattices. In these cases, instead of a bounded distributive lattices with two additional
constants, we have a bounded distributive lattice with two additional constants plus operations for negation
(¬), conflation (−) and implication (⊃). Some of these algebras have been studied in the literature and
corresponding duality theories have been developed. For instance, distributive lattices with an involutive
negation are known as De Morgan lattices (see [6]; a duality theory for De Morgan lattices is developed
in [4]), while De Morgan lattices with implication are known as N4-lattices (a duality theory for these
structures is developed in [10]).

Our idea is to use the 90-degree lemma to extend the known duality results on these algebras to the study
of spaces corresponding to bilattices and related structures, exploiting the following termwise equivalences:

bounded distributive pre-bilattices bounded distributive lattices
with extra constants ⊥,>

bounded distributive bilattices De Morgan algebras
with extra constants ⊥,>

bounded distributive bilattices double De Morgan algebras
with conflation with extra constants ⊥,>
bounded Brouwerian bilattices bounded N-4 lattices

with extra constants ⊥,>

Table 2: Termwise equivalences

In this way we obtain direct Priestley-style duality results for the above-mentioned classes of bilattices.
We have, for instance, that bounded distributive pre-bilattices correspond to pre-bilattice spaces, which

we define as tuples 〈X ,τ,≤,X1,X2〉 such that 〈X ,τ,≤〉 is a Priestley space and X1, X2 ⊆ X are clopen up-
sets satisfying that X1∩X2 = /0 and X1∪X2 = X . We define a pre-bilattice function to be a function f : X→
Y between two pre-bilattice spaces 〈X ,X1,X2,τ,≤〉 and 〈Y,Y 1,Y 2,τ ′,≤′〉 that is monotone, continuous and
such that f (X1)⊆Y 1 and f (X2)⊆Y 2. In this way we obtain a categorical equivalence between the category
of bounded distributive pre-bilattices with algebraic {∧,∨, f, t,⊥,>}-homomorphisms as morphisms and
the category of pre-bilattice spaces with pre-bilattice functions as morphisms.

A De Morgan space [4] is a tuple 〈X ,τ,⊆,g〉 such that 〈X ,τ,≤〉 is a Priestley space and g : X → X
is an order-reversing homeomorphism such that g2 = idX . Given two De Morgan spaces 〈X ,τ,≤〉 and
〈X ′,τ ′,≤′〉, a De Morgan function is defined as an order-preserving continuous function f : X → X ′ such
that f g = g′ f . It is proved in [4] that the category of De Morgan algebras with algebraic homomorphisms
as morphisms is equivalent to the category of De Morgan spaces with De Morgan functions as morphisms.
We prove a similar result for bilattices defining a bilattice space to be a tuple 〈X ,τ,≤,g,X1,X2〉 such that
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〈X ,τ,≤,g〉 is a De Morgan space, 〈X ,τ,≤,X1,X2〉 is a pre-bilattice space and g(X1) = X2. A bilattice
function is defined as a function that is both a pre-bilattice function and a De Morgan function. We prove
then that the category of bounded distributive bilattices with algebraic {∧,∨,¬, f, t,⊥,>}-homomorphisms
as morphisms is equivalent to the category of bilattice spaces with bilattice functions as morphisms.

A similar result may be obtained for bounded distributive bilattices with conflation and the correspond-
ing spaces, using the fact that that a bilattice with conflation can be defined as a structure 〈B,∧,∨,⊗,⊕,¬,−〉
such that both 〈B,∧,∨,¬〉 and 〈B,⊗,⊕,−〉 are De Morgan lattices.

A Brouwerian bilattice space 〈X ,τ,≤,g,X1,X2〉 is a bilattice space such that X1 with the induced
topology is an Esakia space (i.e. a Priestley space where the down-set of any open set is open). A Brouw-
erian bilattice function is a function f : X → Y ′ between two Brouwerian bilattice spaces 〈X ,X1,τ,≤,g〉
and 〈Y,Y 1,τ ′,≤′,g′〉 if f is a De Morgan function from 〈X ,τ,≤,g〉 to 〈Y,τ ′,≤′,g′〉 such that f (X1) ⊆ Y 1

and f : X1→ Y is an Esakia function, i.e. for any open O ∈ τ ′,

f−1((O∩Y 1])∩X1 = ( f−1(O∩Y 1)]∩X1.

Since the {∧,∨,⊃,¬}-reduct of any Brouwerian bilattice is an N4-lattice, we can exploit the duality
theory for N4-lattices developed in [10] to prove that the category of Brouwerian bilattices with alge-
braic {∧,∨,⊃,¬, f, t}-homomorphisms as morphisms is equivalent to the category of Brouwerian bilattice
spaces with Brouwerian bilattice functions as morphisms.
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AN EXTENSION OF STONE DUALITY TO FUZZY

TOPOLOGIES AND MV-ALGEBRAS

CIRO RUSSO

Based on [3]

1. Introduction

In 1965, Zadeh [4] introduced the concept of fuzzy subset of a given set
X by means of membership (or characteristic) functions defined on X and
taking values in the real unit interval [0, 1], the value of such functions at a
given point x representing the degree of membership of x to the fuzzy subset.

After Zadeh’s paper, fuzzy sets and fuzzy logic have been deeply studied
both from a strictly mathematical and foundational viewpoint (mainly in
connection with many-valued logics, whose introduction came far before the
one of fuzzy sets) and as a tool for applications to many areas, especially of
Computer Science.

As a matter of fact, all the (propositional) many-valued logics which
are standard complete with respect to some algebraic structure defined on
[0, 1] are worthy candidates for being a proper logical setting for fuzzy sets.
Nonetheless, if we look at the crisp and fuzzy powersets of a given set X as,
respectively, {0, 1}X and [0, 1]X , it is undoubtable that, among the various
fuzzy logics and corresponding algebraic semantics,  Lukasiewicz logic and
MV-algebras are the ones that best succeed in both having a rich expressive
power and preserving many properties of symmetry that are inborn qualities
of Boolean algebras.

The introduction of several concepts of “fuzzy topology” came a few years
after Zadeh’s paper, and their study has been pursued for many years. Our
aim is to use MV-algebras as a framework for fuzzy topology which, on the
one hand, is sufficiently rich and complex and, on the other hand, reflects
(up to a suitable reformulation) as many properties of classical topology
as possible. For this reason we introduce the concept of MV-topology, a
generalization of general topology whose main features can be summarized
as follows.

• The Boolean algebra of the subsets of the universe is replaced by the
MV-algebra of the fuzzy subsets.
• Classical topological spaces are examples of MV-topological spaces.
• The algebraic structure of the family of open (fuzzy) subsets has a

quantale reduct 〈Ω,∨,⊕,0〉, which replaces the classical sup-lattice
〈Ω,∨,0〉, and an idempotent semiring one 〈Ω,∧,�,1〉 in place of
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the classical meet-semilattice 〈Ω,∧,1〉. Moreover, the lattice reduct
〈Ω,∨,∧,0,1〉 maintains the property of being a frame.
• The MV-algebraic negation ∗ is, in the aforementioned classes of

algebras, an isomorphism between the various structures of open
subsets and the corresponding ones of closed subsets.
• A classical topology — called the shadow topology — is canonically

associated to each MV-topology: it is obtained simply by restricting
the family of open subsets to the crisp ones.

For notions and results on MV-algebras we refer the reader to [1].

2. Basic definitions

Throughout the paper, both crisp and fuzzy subsets of a given set will
be identified with their membership functions and usually denoted by lower
case latin or greek letters. In particular, for any set X, we shall use also
1 and 0 for denoting, respectively, X and ∅. In some cases, we shall use
capital letters in order to emphasize that the subset we are dealing with is
crisp.

Definition 2.1. Let X be a set, A the MV-algebra [0, 1]X and Ω ⊆ A.
We say that 〈X,Ω〉 is an MV-topological space if Ω is a subuniverse both
of the quantale 〈[0, 1]X ,

∨
,⊕,0〉 and of the semiring 〈[0, 1]X ,∧,�,1〉. More

explicitly, 〈X,Ω〉 is an MV-topological space if

(i) 0,1 ∈ Ω,
(ii) for any family {oi}i∈I of elements of Ω,

∨
i∈I oi ∈ Ω,

and, for all o1, o2 ∈ Ω and • ∈ {�,⊕,∧},
(iii) o1 • o2 ∈ Ω,

Ω is also called an MV-topology on X and the elements of Ω are the open
MV-subsets of X. The set Ξ = {o∗ | o ∈ Ω} is easily seen to be a subuniverse
both of the quantale 〈[0, 1]X ,

∧
,�,1〉 and of the semiring 〈[0, 1]X ,∨,⊕,0〉.

Recalling that, for any MV-algebra A, the set B(A) = {a ∈ A | a⊕a = a}
forms a Boolean algebra, we can set the following

Definition 2.2. If 〈X,Ω〉 is an MV-topology, then 〈X,B(Ω)〉 — where
B(Ω) := Ω ∩ {0, 1}X = Ω ∩ B([0, 1]X) — is both an MV-topology and a
topology in the classical sense. The topological space 〈X,B(Ω)〉 will be said
the shadow space of 〈X,Ω〉.

Let X and Y be sets. Any function f : X −→ Y naturally defines a map
f

 

: α ∈ [0, 1]Y −→ α ◦ f ∈ [0, 1]X .
Let 〈X,ΩX〉 and 〈Y,ΩY 〉 be two MV-topological spaces. A map f :

X −→ Y is said to be continuous if f

 

[ΩY ] ⊆ ΩX . It is called an MV-
homeomorphism if it is bijective and bi-continuous.

As in classical topology, we say that, given an MV-topological space T =
〈X,Ω〉, a subset ∆ of [0, 1]X is called a base for T if ∆ ⊆ Ω and every open
set of T is a join of elements of ∆.
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A covering of X is any subset Γ of [0, 1]X such that
∨

Γ = 1, while an
additive covering (⊕-covering, for short) is a finite subset {α1, . . . , αn} ⊆
[0, 1]X , n ∈ ω, such that α1 ⊕ · · · ⊕ αn = 1.

The presence of strong and weak conjunctions and disjunction, in the
structure of open sets of an MV-topology, naturally suggests different fuzzy
versions (weaker or stronger) of most of the classical topological concepts
(separation axioms, compactness etc.). However, we shall limit our attention
to the ones that serve the scope of this paper, namely compactness and
Hausdorff (or T2) separation axiom.

Definition 2.3. An MV-topological space T = 〈X,Ω〉 is said to be compact
if any open covering of X contains an additive covering; it is called strongly
compact if any open covering contains a finite covering.

T is called an Hausdorff (or separated) space if, for any x 6= y ∈ X, there
exist ox, oy ∈ Ω such that

(i) ox(x) = 1 = oy(y),
(ii) ox(y) = oy(x) = 0,
(iii) ox � oy = 0;

T is said to be strongly Hausdorff (or strongly separated) if there exist
ox, oy ∈ Ω satisfying (i) and

(iv) ox ∧ oy = 0.

It is obvious that strong compactness implies compactness and, in the
case of classical topologies, the two notions collapse to the usual one; for the
same reason, the shadow spaces of both compact and strongly compact MV-
spaces are compact. Analogously, it is self-evident that strong separation
implies separation, they both coincide with the classical T2 property on
crisp topologies, and they both imply that the corresponding shadow space
is Hausdorff in the classical sense.

3. The extension of Stone Duality

In this section we shall see that Stone duality can be extended to semisim-
ple MV-algebras and compact separated MV-topological spaces having a
base of clopens. Before the duality theorem, we recall that an algebra in a
variety is called semisimple if it is a subdirect product of simple algebras.
For any MV-algebra A, let MaxA be the set of its maximal ideals; it is
well-known that

A is semisimple iff
⋂

MaxA = {0} iff A ↪→ [0, 1]MaxA.

We shall denote by MVss the full subcategory of MV whose objects are
semisimple MV-algebras, by MVT op the category of MV-topological spaces
and MV-continuous functions and by MVStone its full subcategory whose
objects are Stone MV-spaces, i.e., compact, separated MV-topological spaces
having a base of clopen sets (zero-dimensional).
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Theorem 3.1 (Duality theorem). The mappings

(1)
Φ : T ∈ MVT op 7−→ Clop T ∈ MVss

Ψ : A ∈ MVss 7−→ 〈MaxA,ΩA〉 ∈ MVT op

define two contravariant functors. They form a duality between MVss and
MVStone.

Moreover, the restriction of such a duality to Boolean algebras and crisp
topologies coincide with the classical Stone duality.

Theorem 3.2. For any Stone MV-space T, its shadow space is a Stone
space and its image under Φ is precisely the Boolean center of ΦT.

Conversely, for any semisimple MV-algebra A, Ψ B(A) coincide with the
shadow topology of ΨA.

It is immediate to verify that

B : A ∈ MV 7−→ B(A) ∈ Boole
Sh : 〈X,Ω〉 ∈ MVT op 7−→ 〈X,B(Ω)〉 ∈ T op

are functors; they are, in fact, the left-inverses of the inclusion functors.
Then Theorem 3.2 (together with last part of Theorem 3.1) can be reformu-
lated as follows.

Corollary 3.3. Φ� ◦ Sh = B ◦Φ and Ψ� ◦ B = Sh ◦Ψ.

Then we have the following commutative diagram of functors, where hor-
izontal arrows are equivalences and vertical ones are inclusions of full sub-
categories and their respective left-inverses.

MVss
Ψ //

B

��

MVStoneop

Sh

��

Φ
oo

Boole

⊆

OO

Ψ�
// Stoneop

⊆

OO

Φ�oo

Corollary 3.4. Stone MV-spaces which are strongly separated are dual to
hyperarchimedean MV-algebras.
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THE CONTINUOUS WEAK BRUHAT ORDER

LUIGI SANTOCANALE

Abstract. Lattices of multipermutations L(v), v ∈ Nd, generalize the weak

Bruhat order on permutations.

For d0 fixed, lattices L(v) with v ∈ Nd0 form a directed system, and can be
glued into their colimit.

We give an explicit description of the Dedekind-MacNeille completion of

this colimit, for each d ≥ 2.

Lattices of Multipermutations

Lattices of multipermutations L(v) – see [1, 3] – generalize lattices of permuta-
tions (permutohedra, the weak Bruhat order on permutations) in a straightforward
way. For a vector v = (v1, . . . , vd) ∈ Nd, elements of L(v) are words w on a linearly
ordered alphabet { a1, . . . , ad } such that the number of occurrences of the letter ai
in w equals vi, for i = 1, . . . , d. The order on words is the transitive closure of the
covering relation ≺ defined by

w0aiajw1 ≺ w0ajaiw1 , whenever i < j.

We can argue that L(v) is a lattice by embedding this poset as a principal ideal of

the lattice of permutations P(k) with k =
∑d

i=1 vi.

For v, u ∈ Nd, we can transform a word w ∈ L(v) into a word fu(w) ∈ L(v · u):
this is done by replacing each occurrence of the letter ai by ui occurrences of the
same letter, for each i = 1, . . . , d. The functions fu give rise to a direct system in
the category of lattices; let us denote by

⋃
v∈Nd L(v) its colimit. We deal with the

following problem:

Problem. Provide an explicit characterization of the Dedekind-MacNeille comple-
tions of the lattices

⋃
v∈Nd L(v), for d ≥ 2.

As we shall see in the next section, the problem has a rather intuitive solution if
d, the dimension, equals 2. The geometrical flavor of this solution has stimulated
us to look for a generalization to higher dimensions, with in mind that we could
improve our understanding of the weak Bruhat order through geometry.

Among the lattices L(v), those of the form L(n,m) play a special role. Let us
remark that they are distributive, while this is not the case if v ∈ Nd with d ≥ 3. For
1 ≤ i < j ≤ d we have projection maps πi,j : L(v)→ L(vi, vj), obtained by erasing
from a word all the letters distinct from ai, aj . The map π = 〈πi,j | 1 ≤ i < j ≤ d 〉,
from L(v) to

∏
i<j L(vi, vj), is an order embedding; this means that we can identify

L(v) with a sub-order of
∏

i<j L(vi, vj). For u = {ui,j } ∈
∏

L(vi, vj) we can ask

whether u is in the image of L(v); this is answered as follows. For 1 ≤ i < j ≤ d,
1 ≤ x ≤ vi and 1 ≤ y ≤ vj , write (j, y) <u (i, x) if the y-th occurrence of aj occurs
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before x-th occurrence of ai in ui,j ; write (i, x) <u (j, y) otherwise. We say that u
is closed if

(k, z) <u (j, y) <u (i, x) implies (k, z) <u (i, y) , i < j < k ,

and that u is open if

(i, x) <u (j, y) <u (k, z) implies (i, x) <u (k, z) , i < j < k .

Lemma. A tuple u lies in the image of π if and only if u is open and closed.

The representation of L(v) as a subset of tuples is quite handy, for example it can
be used to argue that L(v) is a lattice. As closed tuples are closed under meets and
open tuples are stable under joins, we obtain a closure operator cl and an interior
operator int on

∏
i<j L(vi, vj). As moreover the closure of an open tuple is open

and the interior of a closed tuple is closed, we obtain formulas for computing meets
and joins in L(v) given its representation as a subset of tuples:

u ∧L(v) u′ = int(u ∧∏
i<j L(vi,vj) u

′) , u ∨L(v) u′ = cl(u ∧∏
i<j L(vi,vj) u

′) .

Meet-Continuous Functions on the Unit Interval

We denote by I the unit interval [0, 1]. A monotone function f : I → I is meet-
continuous if

f(
∧
X) =

∧
f(X) ,

for every X ⊆ I. We denote L(I2) the poset of meet-continuous functions with the
pointwise ordering. L(I2) is complete, and it is a sub-lattice of the product lattice
II (notice however that the inclusion does not preserves the bottom element); it is
therefore a distributive lattice.

Define a subdivision as a finite sequence { (xi, yi) ∈ I2 | i = 0, . . . , n } such
that the xi, yi are rational numbers, 0 = x0 < x1 < . . . < xn = 1, and y0 ≤
y1 ≤ . . . ≤ yn = 1. The rational step function associated to the subdivision
S = { (xi, yi) | i = 0, . . . , n } is defined by the formula

fS(x) = yi if x ∈ [xi, xi+1) for some i < n, and fS(x) = 1 if x = 1.

Rational step functions form a sublattice of L(I2) isomorphic to
⋃

v∈N2 L(v).

Proposition. Every meet-continuous function is an infinite join and an infinite
meet of rational step functions. Therefore L(I2) is the Dedekind-MacNeille comple-
tion of

⋃
v∈N2 L(v).

Let us observe that elements of L(I2) are in bijection with other kind of geometric
objects. By a path in I2 we mean the image of a bicontinuous (meet- and join-
continuous) function π : I → I2. Paths can be characterized as dense chains of I2
that are sub-complete-lattices of I2. Elements of L(I2) are in bijection with paths.
Of course, paths are also in bijection with join-continuous functions on the unit
interval – let us denote by L∨(I2) the collection of those functions. Next, consider
that:

(a) the function ` : L(I2) → L∨(I2), mapping f to its left adjoint, is an order-
reversing bijection,

(b) the function ( · )∗ : L∨(I2) → L(I2), mapping f to f∗ defined by f∗(x) =∧
x<x′ f(x′), is an order-preserving bijection.
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By composing these bijections, we obtain the following order-reversing operator on
L(I2):

( · )⊥ : L(I2)
`−−→ L∨(I2)

( · )∗−−−→ L(I2) .

This operator, which actually is an involution, shall be needed next to define the
weak Bruhat order in higher dimensions.

The Continuous Weak Bruhat Order

To construct something analogous to L(I2) in higher dimensions, we mimic the
construction of L(v) as a suborder of

∏
i<j L(vi, vj). For f = { fi,j } ∈

∏
1≤i<j≤d L(I2),

1 ≤ i < j ≤ d, and x, y ∈ I, write:

(j, y) <f (i, x) if y < fi,j(x) , (i, x) <f (j, y) if x < f⊥i,j(y) .

We remark that, contrary to the discrete case, (j, y) 6<f (i, x) does not imply
(j, y) <f (i, x). We say that f is closed if

(k, z) <f (j, y) <f (i, x) implies (k, z) <f (i, x) , i < j < k ,

and that f is open if

(i, x) <f (j, y) <f (k, z) implies (i, x) <f (k, z) , i < j < k .

Proposition. The following statements hold:

(i) closed tuples are stable under arbitrary intersections, and open tuples are stable
under arbitrary unions,

(ii) the closure of an open tuple is open, and the interior of a closed tuple is closed,
(iii) the collection L(Id) of tuples that are both open and closed is a complete lattice
where meets and joins are given by the formulas:

∧
L(Id)F = int(

∧
∏

i<j L(I2)F ) ,
∨

L(Id) F = cl(
∨

∏
L(I2) F ) .

Let ii,j : L(vi, vj) → L(I2) be the canonical inclusion. By taking the product of
these maps, we obtain a map i :

∏
i<j L(vi, vj)→

∏
i<j L(I2) which has the property

that i(cl(f)) = cl(i(f)); in particular i sends closed tuples to closed tuples; dually, i
sends open tuples to open tuples. We obtain therefore families of monomorphisms

iv : L(v)→ L(Id)

forming a cocone w.r.t. the directed diagram of the L(v). Therefore an entire copy
of the colimit

⋃
v∈Nd L(v) resides inside L(Id).

Theorem. The lattice L(Id) is the Dedekind-MacNeille completion of the lattice⋃
v∈Nd L(v).

Lattices and Discrete Geometry

A main motivation to develop this work came from discrete geometry. In this
context, the Christoffel word [2] of type n,m, noted Cn,m, is the best lower approx-
imation of straight line from (0, 0) to the point (n,m) by a discrete path on the
plane (usually n and m are chosen to be coprime integers). Figure 1 illustrates this
with the Christoffel word C4,3 = xxyxyxy.
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Figure 1. The Christoffel C4,3

We can rephrase such a definition in a purely lattice-theoretic way, by saying
that

Cn,m = ρn,m(∆) ,

where ρn,m is right adjoint to the inclusion in,m : L(n,m) → L(I2), and ∆ is the
identity.

Our work allows to propose a definition of Christoffel words in higher dimension,
in a similar way. Indeed, every image of a bicontinuous map π : I→ Id gives rise to
an open-closed tuple in L(I) – we do not know yet whether this is a bijection. By
taking the diagonal as π, the corresponding tuple, noted ∆, is made up of identities.
We can then define Cv, the Christoffel word associated to the vector v ∈ Nd, by
the following formula

Cv = ρv(∆) ,

where now ρv is the right adjoint to the inclusion iv : L(v)→ L(Id).
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On Ultra�lter Extensions of Models
Denis I. Saveliev

We present a new area in model theory, concerning ultra�lter extensions
of arbitrary models. Given a model A = (X;F; : : : ; P; : : :), we extend it, in
a canonical way, to a model ��A = (��X; ~F ; : : : ; ~P; : : :), where the underlying
set ��X consists of all ultra�lters over X and carries the standard compact
Hausdor� topology. The extension lifts homomorphisms between models:
continuous extensions of homomorphisms of A into B are homomorphisms
of ��A into ��B. Moreover, if a model C carries a compact Hausdor� topology
which is compatible with its structure (like the topology and the structure
of ��A), then continuous extensions of homomorphisms of A into C are homo-
morphisms of ��A into C. These statements remain true for embeddings and
other relationships between models. Thus the construction provides a right
generalization of the Stone{�Cech (or Wallman) compacti�cation of a discrete
space X to the case when X carries a �rst-order structure.

The construction, together with the mentioned basic results, appeared
very recently in [1]. For algebras, ultra�lter extensions were independently
discovered in [2]. A particular case, when algebras are semigroups, is known
from 70s and used as a powerful tool in number theory, algebra, topological
dynamics, and ergodic theory, see [3, 4]. There is also another construction
of ultra�lter extensions, which came from modal logic, see [2, 5, 6, 7]. These
extensions deal with relational structures and coincide with our extensions
only for unary relations; we briey discuss the connection.

Further, we present several new (yet unpublished) results from [8, 9]. We
show that certain ultra�lters form submodels: given any in�nite cardinal �,
the set of �-complete ultra�lters over X forms a submodel of ��A, and under
certain circumstances the set of �-uniform ultra�lters over X forms a closed
submodel of ��A. Although in simplest cases ultra�lter extensions can be
elementary, in general they are highly complicated objects and their equa-
tional theories quite di�er from the equational theories of extended models.
We describe atomic formulas that are preserved under ultra�lter extensions.
Finally, we mention some applications of these results in algebra.
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Finite model property of pretransitive analogs of S5∗

Andrey Kudinov†, Ilya Shapirovsky†

We consider propositional normal unimodal pretransitive logics, i.e., logics with
expressible ‘transitive’ modality. There is a long-standing open problem about the
finite model property (fmp) and decidability of pretransitive logics, in particular – for
the logics Km

n = K +�mp→ �np, n > m > 1.
A pretransitive logic L has the fmp or is decidable, only if these properties hold for

the logic L.sym∗, which is the extension of L with the symmetry axiom for ‘transitive’
modality: like S5 can be embedded into S4, L.sym∗ can be embedded into L.

We show that for all n > m ≥ 1, the logics Km
n .sym∗ have the fmp.

Pretransitive logics.

Definition 1 ([2]). A logic L is called pretransitive (according to [2] – conically expres-
sive), if there exists a formula χ(p) with a single variable p such that for any Kripke
model M with M � L and for any w in M we have:

M, w � χ(p)⇔ ∀u(wR∗u⇒ M, u � p),

where R∗ is the transitive closure of the acceptability relation on M.

To give a syntactic description of pretransitive logics, put �≤nϕ =
∧n

i=0�iϕ, where
�0ϕ = ϕ, �i+1ϕ = ��iϕ.

Lemma 2 (Shehtman, 2010). L is pretransitive iff L ` �≤mp → �≤m+1p for some
m ≥ 1.

By this lemma, for any pretransitive logic there exists the least m such that the
formula �∗p = �≤mp plays the role of χ(p) from Definition 1. Let ♦∗ϕ = ¬�∗¬ϕ.

Consider the logics Km
n = K+ Am

n , where Am
n = �mp→ �np, n > m ≥ 1. For any

m,n, Am
n is a Sahlqvist formula, which corresponds to the property Rn ⊆ Rm; so all Km

n

are canonical, elementary and Kripke-complete pretransitive logics. If m = 1, n = 2,
we obtain the well-known logic K4, which has the fmp. In fact, due to [1], all logics K1

n

have the fmp. Logics with m > 1 were also considered (to our knowledge, K2
3 appears

already in the 1960s in papers by Segerberg and Sobociński); nevertheless, no results
about the fmp or decidability for these logics are known yet.

Logics with the symmetry axiom for �∗. For a pretransitive logic L, put

L.sym∗ = L + (p→ �∗♦∗p).

(In [3], logics of this kind were considered in the particular case where
L = K +�≤mp→ �≤m+1p.) It is well-known that for any formula ϕ, S5 ` ϕ ⇔
S4 ` ♦�ϕ ([4]). The following is a generalization of this fact.

∗The authors acknowledges the support of grant 11-01-00958-a of Russian Foundation for Basic
Research
†Institute for Information Transmission Problems, Moscow, Russia
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Theorem 3. If L is a pretransitive logic, then for any formula ϕ we have

L.sym∗ ` ϕ⇔ L ` ♦∗�∗ϕ.

Before we prove this theorem, we formulate two simple corollaries of Lemma 2.

Proposition 4. For a pretransitive L and a point generated L-frame F = (W,R),
F � L.sym∗ iff R∗ is the universal relation on W .

Proposition 5. For a pretransitive L and a formula ϕ, let ϕ∗ be the formula ob-
tained from ϕ by replacing � with �∗ and ♦ with ♦∗. Then for any ϕ we have:
S4 ` ϕ⇒ L ` ϕ∗, S5 ` ϕ⇒ L.sym∗ ` ϕ∗.

Proof of Theorem 3. If L ` ♦∗�∗ϕ, then L.sym∗ ` ♦∗�∗ϕ. S5 ` (♦�p→ p), so using
the above proposition, we have L ` ϕ.

To prove the converse direction, we proceed by induction on a derivation of ϕ.
Suppose ϕ = p → �∗♦∗p. Since S4 ` ♦�(p → ♦�p), by the above proposition

L ` ♦∗�∗ϕ.
Suppose L.sym∗ ` ψ1, L.sym∗ ` ψ1 → ϕ. By the induction hypothesis, L ` ♦∗�∗ψ1,

L ` ♦∗�∗(ψ1 → ϕ). Then L ` �∗♦∗�∗ψ1, L ` �∗♦∗�∗(ψ1 → ϕ) (using �-rule, one
can easily show that �∗-rule is admissible in L). S4 ` �♦�p ∧ �♦�(p → q) → ♦�q,
since this formula is valid in any finite S4-frames. So using Proposition 5, we have
♦∗�∗ϕ.

The case when ϕ is obtained by the substitution rule is trivial.
Suppose ϕ = �ψ, L.sym∗ ` ψ. It is easy to check (e.g., using the completeness

of the logics K+�≤mp → �≤m+1p) that L ` ♦∗�∗p → ♦∗�∗�p. By the induction
hypothesis, L ` ♦∗�∗ψ, so L ` ♦∗�∗ϕ.

Corollary 6. If L has the fmp, then L.sym∗ also has the fmp.

Proof. If a formula ϕ is L.sym∗-consistent then �∗♦∗ϕ is satisfiable in a finite L-frame
(W,R). It follows that ϕ is satisfiable in a maximal R∗-cluster, which is an L.sym∗-
frame.

Thus, for a pretransitive L, any negative result about decidability or the fmp for
L.sym∗ transfers to L. At the same time, the authors do not know any examples of
such L.sym∗. Moreover, next we prove that Km

n .sym∗ have the fmp for all n > m ≥ 1.

Finite model property. By Sahlqvist’s Theorem, all logics Km
n .sym∗ are canonical

and elementary. The class of all Km
n .sym∗-frames can be easily characterized in terms

of paths and cycles. By an R-path Σ in (W,R) we mean a finite sequence of at least
two (not necessary distinct) points (x0, x1, . . . , xl), such that xiRxi+1 for all i < l; we
say that Σ connects x0 and xl. l is the length of Σ (notation: [Σ]). If xl = x0 then Σ
is an R-cycle.

Proposition 7. Suppose n > m ≥ 1, F is a point generated frame which is not an
irreflexive singleton. Then F � Km

n .sym∗ iff any two points in W belong to an R-cycle,
and for any w, u, if w, u are connected by an R-path with the length n, then w, u are
connected by an R-path with the length m.

Proposition 8. For any s, r ≥ 0, Km
n ` ♦m+(n−m)q+rp→ ♦m+rp.

Proof. By an easy induction on q.

Proposition 9. All logics Km
n .sym∗ are different.
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Proof. Let L1 = Km
n .sym∗ and L2 = Ks

t .sym∗. First, we assume that s < m, then we
consider the following frame

F = (W,R), W = {0, 1, . . . ,m} , xRy ⇔ y = x or y ≡ x+ 1 (mod m+ 1).

It is easy to check that F |= L1 and F 6|= L2.
Now assume that s = m and t < n. Put k = n−m,

F′ = (W ′, R′), W ′ = {0, 1, . . . , k − 1} , xR′y ⇔ y ≡ x+ 1 (mod k).

It is also easy to see that F′ |= L1 and F′ 6|= L2.

Theorem 10. The logics Km
n .sym∗ have the fmp for all n > m ≥ 1.

If m = 1, the statement of the theorem immediately follows from [1] and Corollary
6. Also, for the case m = n+1, this theorem can be easily proved by the straightforward
filtration argument (the same reasoning works if we consider K + �≤mp → �p≤m+1

instead of Km
m+1, [3]). Nevertheless, the standard filtration argument does not work for

the arbitrary case: to preserve validity of Am
n , we have to construct a countermodel in

a more subtle way. First, we need the following slightly modified version of filtration.

Definition 11. Let M = (W,R, θ) be a model, ϕ be a formula, ∼ be an equivalence
relation on W . For u, v ∈W , we define

u ∼ϕ v iff u ∼ x and M,u � ψ ⇔M, v � ψ for every subformula ψ of ϕ.

Let W = W/ ∼ϕ, uRv ⇔ ∃u′ ∈ u ∃v′ ∈ v(u′Rv′), θ(p) = {u |u ∈ θ(p)} for all variables
of ϕ (and put θ(p) = ∅ for other variables). The model (W,R, θ) is called the (minimal)
∼-filtration of M through ϕ.

Note that in the case when ∼ is the universal relation, the ∼-filtration is the stan-
dard minimal filtration. Clearly, ∼-filtrations preserve truth of subformulas of ϕ. Also,
if W/ ∼ is finite, then W/ ∼ϕ is finite too.

Proposition 12. Let (W,R, θ) be a ∼-filtration of (W,R, θ).

• For any l > 0, xRly implies xR
l
y.

• If R∗ is universal on W , then R
∗

is universal on W .

The proof of the above proposition is straightforward. The main difficulty in the
proof of the theorem is to find an appropriate equivalence relation to make sure that
Am

n is valid in the resulting frame.
For a set of integers I, let gcd(I) denotes its greatest common devisor.

Proof of Theorem 10. Let L = Km
n .sym∗, k = m − n. Consider an infinite rooted

L-frame F = (W,R), and suppose that M = (W,R, θ), x � ϕ. We construct a finite
L-frame F = (W,R) where ϕ is satisfiable.

For a positive integer d, consider the relation ∼d on W : u ∼d w iff there exists an
R-path Γ from u to w such that d divides [Γ].

Claim 1. If d divides the length of any R-cycle in F, then ∼d is an equivalence
relation and W/∼d is finite.

Clearly, ∼d is transitive. ∼d is reflexive, since for any w ∈W there exists an R-path
from w to w. If u ∼d w, then d divides [Γ↑] for some R-path Γ↑ from u to w. Let Γ↓

be an R-path from w to u. Then d divides [Γ↑] + [Γ↓], so d divides [Γ↓], and w ∼d u.
To show that W/∼d is finite, take points w1Rw2R . . . Rwd (we can choose these

points because F is serial). If u ∈W , then some Γ connects wd and u. Then wd−r ∼d u,
where r is the remainder of the division [Γ] by d.
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To illustrate the following construction, first we consider the simplest case when k
is a prime number or k = 1. In this case, we have two possibilities:
(a) there exists an R-cycle Γ0 such that gcd([Γ0], k) = 1;
(b) k divides the length of any R-cycle in F.

Suppose (a). Let us show that wRlu for any l ≥ m, w, u ∈W . Let v be the starting
point of Γ0, Γ1 be an R-path from w to v, and Γ2 be an R-path from v to u. For some
r < k we have l + [Γ1] + [Γ2] ≡ r (mod k). Consider the path Γ = Γ1Γl+k−r

0 Γ2 (that
is, Γ goes along Γ1 then l+ k− r times along Γ0 and then along Γ2). Thus Γ connects
w and u, and [Γ] = l + qk for some q > 0. By Proposition 8, wRlu.

Let (F, θ) be the minimal filtration of M through ϕ. By Proposition 12, between
any two point in W there exists an R-path with the length m, so F � L.

Suppose (b). In this case, ∼k is an equivalence relation on W . Let (W,R, θ) be
the ∼k-filtration of M through ϕ. Let us show that (W,R) � Am

n . Suppose that
xR

n
y. It means that we have for some x0, x

′
0, . . . , xn, x

′
n: x0 = x, x′n = y, and

xi ∼d x
′
i & x′iRxi+1 for all i < n. Now, since xi ∼d x

′
i implies xiR

qikx′i (for some qi),
there is an R-path Γ from x to y with [Γ] = n + qk, q =

∑
qi. Thus, xRm+(q+1)ky,

and xRmy (Proposition 8), and so xR
m
y (Proposition 12). Hence F � L.

Now we extend the above construction for arbitrary k. In this case, we need a
combination of reasonings from (a) and (b).

Let D =
{
gcd([Γ], k) | Γ is an R-cycle in W

}
, and let d be the greatest common

devisor of D. Let us assume that D = {d1, . . . , ds}.
Claim 2. There exists positive integers a1, . . . , as and R-cycles Γ1, . . . ,Γs such that

a1[Γ1] + · · ·+ as[Γs] ≡ d (mod k).

To prove this claim, note that for every di there exists an R-cycle Γi and a positive
integer li, such that

[Γi] = lidi and li ≡ 1 (mod k).

By the Euclidean algorithm, we have
∑s

i=1 bidi = d for some integers bi, therefore∑s
i=1 aidi ≡ d (mod k) for some ai > 0. Since li ≡ 1 (mod d),

∑s
i=1 ailidi ≡ d (mod k),

which proves the claim.

By Claim 1, ∼d is an equivalence on W . Let (W,R, θ) be the ∼d-filtration of M
through ϕ. Similarly to the case (b), we obtain that if uR

n
w, then u ∈ Rn+drw for

some r ≥ 0. By Proposition 8, we may assume that r < k.
Let vi denote the starting point of Γi, ∆↑i be an R-path from w to vi, ∆↓i – from

vi to w. Let Σi = ∆↑i
k−1

∆↓i
k−1

∆↑i Γ
(k−r)ai

i ∆↓i . So Σi is an R-path from w to w and
[Σi] ≡ (k − r)ai[Γi] (mod k). Let Γ = Σ0Σ1 . . .Σs, where Σ0 is an R-path from u to
w with the length n + dr. By Claim 2, [Γ] ≡ m (mod k). Thus, uRmw, uR

m
w and

F � Am
n .
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Hybrid products of modal logics

Valentin Shehtman
Institute for Information Transmission Problems, Moscow, Russia

1. In this talk we consider normal polymodal propositional logics. Stan-
dard n-modal formulas are built from a countable set PV of propositional vari-
ables using the classical connectives →,⊥ and the unary modal connectives
¤1, . . . ,¤n. Closed formulas do not contain propositional variables. An n-
modal logic is a set of n-modal formulas containing the minimal logic Kn and
closed under the standard rules (Modus Ponens, Necessitation, and Substitu-
tion). Λ+S denotes the smallest modal logic containing the modal logic Λ and
a set of modal formulas S.

An n-frame has n accessibility relations: F = (W,R1, ..., Rn). The logic
L(F ) is the set of all n-modal formulas valid in F ; for an n-modal logic Λ,
V(Λ) denotes the class of all n-frames validating Λ (Λ-frames).

Recall that the product of an n-frame F = (W,R1, ..., Rn) and an m-frame
G = (V, S1, ..., Sm) is the (n+m)-frame

F ×G = (W × V,R11, . . . , Rn1, S12, . . . , Sm2),

where

(x, y)Ri1(x′, y′)⇔ xRix
′ & y = y′; (x, y)Sj2(x′, y′)⇔ x = x′ & ySjy

′.

For n-modal logic L1 and an m-modal logic L2, with V(L1),V(L2) 6= ∅,
the product is the (n+m)-modal logic

L1 × L2 := L({F1 × F2 | F1 ² L1, F2 ² L2}.

The commutative join of an n-modal logic L1 and an m-modal logic L2 is
defined as follows:

[L1, L2] := L1∗L2+{Comij | 1 ≤ i ≤ n, 1 ≤ j ≤ m}+{CRij | 1 ≤ i ≤ n, 1 ≤ j ≤ m},

where L1 ∗ L2 is the fusion,

Comij := (¤i¤n+jp↔¤n+j¤ip), CRij := (3i¤n+jp→ ¤n+j3ip).

The logics L1, L2 are called product matching if L1 × L2 = [L1, L2].

Definition 1 A modal formula A is Horn if the class of its frames V(A) is
axiomatized by a first-order Horn sentence. A modal logic is Horn axiomatizable
if it can be axiomatized by a set of modal formulas that are Horn or closed.
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The proof of the following result can be found in :

Theorem 2 (cf. [3], [4]) Every two Horn axiomatizable modal logics are prod-
uct matching.

2. The hybrid modal language H(E)m,n contains the same symbols as the
standard (n + m)-modal language (we use the symbols ¥i rather than ¤n+i)
and also the countable set of nominals (propositional constants) Nom and the
universal modality [∀] (which may be regarded as ¥m+1).

These hybrid modal formulas are interpreted in hybrid Kripke models (F, θ),
where F = (W1, R1, . . . , Rn) × (W2,W2 × W2, S1, ...Sm) and θ is a function
defined on Nom∪PV such that θ(q) ⊆W1×W2 for q ∈ PV and θ(c) ∈W2 for
c ∈ Nom. The truth definition (M,x ² A) for M = (F, θ) and A ∈ H(E)m,n is
quite standard, with

• M, (x, y) ² q iff (x, y) ∈ θ(q); M, (x, y) ² c iff y = θ(c);

• M, (x, y) ² [∀]A iff ∀z ∈W2 M, (x, z) ² A;

• M, (x, y) ² ¤iA iff ∀z ∈ Ri(x) M, (z, y) ² A;

• M, (x, y) ² ¥jA iff ∀z ∈ Sj(y) M, (x, z) ² A.

The validity in F is defined as the truth in all hybrid models over F . The
hybrid modal logic LH(F ) of F is defined as the set of all H(E)m,n-formulas
valid in F .

Definition 3 Let L1, L2 be (usual) propositional modal logics. Their hybrid
product is

(L1 × L2)H :=
⋂
{LH(F1 × F2) | F1 ² L1, F2 ² L2}.

It is obvious that LH(F ) is conservative over L(F ), so the hybrid product is
conservative over the usual product.

Definition 4 Let L1, L2 be (usual) propositional modal logics. Their hybrid
commutative join is the hybrid modal logic (in H(E)m,n) obtained by extending
[L1, L2] with the following axioms (where q ∈ PV , c ∈ Nom)

(1) S5-axioms for [∀], (2) [∀]q → ¥jq, (3) [∃]c,

(4) [∃](c ∧ q)→ [∀](c→ q), (5) c→ ¤ic, (6) 3ic→ c

and the rules

R1
A

;
[∀]A

(R2)
[∃](c ∧A)

A
(if c does not occur in A);

R3
[∃](c ∧ ¨jd)→ [∃](d ∧A)

[∃](c ∧¥jA)
(if c 6= d and d does not occur in A).
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Recall that a modal logic Λ is called r-persistent if the validity of Λ is
transferred from any refined general frame to the underlying Kripke frame. In
particular, every logic Λ ⊇ K4, with universally first-order definable V(Λ), is
r-persistent [2]; every tabular logic is r-persistent [5].

Theorem 5 If the logics L1, L2 are r-persistent, then they are hybrid product
matching:

(L1 × L2)H = [L1, L2]H

Note that L1, L2 may be hybrid product matching, while L1, L2 are not
product matching. In these cases [L1, L2]H is not conservative over [L1, L2].

Remark 6 One of the anonymous referees has pointed out that Theorem 5
follows from a stronger result by Katsuhiko Sano [6]. Sano considers a more
general type of hybrid product using both horizontal and vertical nominals.
Instead of the universal modalities he uses @-operators, which does not matter
for the axiomatization result, but may be essential for the decision problem (see
below).

3. The translation of H(E)m,n-formulas into predicate modal formulas is
defined by induction:

• p]i(y) := Pi(y), ⊥](y) := ⊥, (A→ B)](y) := A](y)→ B](y),

• (¤iA)](y) := ¤iA
](y), ([∀]A)](y) := ∀yA](y),

• (¥jA)](y) := ∀z(Sj(y, z)→ A](z))

• c](y) := (y = c).

Now suppose L1 is conically expressive [5], i.e., in L1 there is a derived modal
operator ¤∗ corresponding to the reflexive transitive closure of R1 ∪ · · · ∪ Rn.
The following modal first-order formulas are called the rigidity axioms:

Rig∗k := ¤∗∀y∀z((Sk(y, z)→ ¤iSk(y, z)) ∧ (¬Sk(y, z)→ ¤i¬Sk(y, z)),

where 1 ≤ k ≤ m.
Let L1 be an n-modal logic, CK(L1) the class of all predicate Kripke frames

with constant domains based on L1-frames. Let L(CK(L1)) be the correspond-
ing modal predicate logic, i.e., the set of all n-modal predicate formulas valid in
these frames.

Let L2 be an n-modal logic such that the class V(L2) is first-order definable
by a sentence ϕ (involving binary predicate letters S1, . . . , Sm).

Proposition 7 Under the above assumptions, for any H(E)m,n-formula A,

(L1 × L2)H ` A iff L(CK(L1)) ` ¤∗ϕ ∧
m∧

k=1

Rig∗k → ∀yA](y).
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So hybrid products can be regarded as fragments of modal predicate logics
with constant domains.

4. The general problem about decidability of hybrid products from Theorem
5 is open. In some cases they are undecidable, because the standard products
are undecidable; this happens e.g. in the case of S4.3×S4.3 [3]. In other cases
(like (S5×S5)H) the answer is probably positive. But in the interesting case of
the minimal hybrid product (K×K)H we have obtained only a partial result.

Definition 8 A @-formula is an H(E)m,n-formula built from propositional vari-
ables and nominals using classical connectives, the modalities ¥i, ¤j and @c for
each nominal c, where @cA := [∃](c ∧A) ([∀] is not allowed).

Theorem 9 (Kn ×Kn)H has the finite model property for @-formulas.

The proof is by the “filtration through bisimulation” method from [7].
Hence by the finite axiomatizability (Theorem 5), we obtain

Corollary 10 The @-fragment of (Kn ×Kn)H is decidable.

However the problem about decidability of Sano’s minimal product [K+
H(@),K

+
H(@)]

remains open.

This work was supported by Russian Foundation for Basic Research, projects
11-01-00958-a, 11-01-00281-a. I would like to thank the anonymous referee, from
whom I have learned about Sano’s work.
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Morphisms of quantum triads

Radek Šlesinger

The concept of quantum triad was introduced by D. Kruml in [3], which
provides a base for this submission, as a means to reconstruct a quantale
acting on a couple of modules equipped with a “bilinear form” into another
quantale. In the model case, quantales were built from a pair of quantale
modules, yet the triad construction can be performed for some other algebraic
structures as well, including non-ordered ones. We will look at morphisms
appearing in triads in more detail to obtain additional information on their
behaviour.

Just recall that a sup-lattice stands for a complete join-semilattice, and
sup-lattice homomorphisms are mappings that preserve arbitrary joins. A
(unital) quantale is a sup-lattice endowed with an associative binary opera-
tion (with unit) which distributes over arbitrary joins on both sides. Quantale
homomorphisms are supposed to preserve both joins and multiplication. Fi-
nally, a right (left) module over a quantale Q is a sup-lattice L equipped with
a right (left) action of the quantale that distributes over joins on both the
module and the quantale side and satisfies the associativity LQQ (QQL).
A module over a unital quantale is called unital if the quantale unit acts as
identity. Module homomorphisms are sup-lattice homomorphisms preserving
the action of the quantale. For quantales Q and R, a (Q,R)-bimodule stands
for a sup-lattice L which is both a left Q-module and a right R-module, and
the associativity QLR holds. For a right Q-module R and a left Q-module
L, a map f : L × R → Q is a bimorphism if f(l,−) and f(−, r) are module
homomorphisms. A sup-lattice R⊗QL can be constructed by analogy to the
tensor product of a right and a left module over a ring. For more information
on quantales and quantale modules, please refer to [4, 6, 7].

Definition. Let T be a quantale, L be a left T -module, and R be a right
T -module. The triple (L, T,R) is called a triad if there exists a (T, T )-
bimorphism L×R→ T making respective combinations with quantale actions
(TLR, LRT ) associative. Since the bimorphism usually does not have to be
distinguished, we shall write simply lr.

Quantum triads can be viewed as a generalization of sup-lattice 2-forms
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introduced in [5]. The 2-forms represent the case where T is fixed to be the
2-element frame.

Definition. A quantale Q is called a solution of the triad if L is a (T,Q)-
bimodule, R is a (Q, T )-bimodule, and there is a bimorphism R × L → Q
(again written just rl) associating with admissible actions (QRL, RLQ,
RTL, LQR, LRL, RLR).

For every triad there are two special solutions, called simply 0-solution
and 1-solution here, with multiplication and actions on L,R given as follows:

• Q0 = R⊗TL

◦ (r1⊗ l1) · (r2⊗ l2) = r1(l1r2)⊗ l2
◦ l′(r ⊗ l) = (l′r)l

◦ (r ⊗ l)r′ = r(lr′)

• Q1 = {(α, β) ∈ End(L)× End(R) | α(l)r = lβ(r) for any l ∈ L, r ∈ R}

◦ (α1, β1) · (α2, β2) = (α2 ◦ α1, β1 ◦ β2)
◦ l′(α, β) = α(l′)

◦ (α, β)r′ = β(r′)

These two solutions form a so-called couple [1]. In general, a couple con-
sists of two quantales Q0 and Q1 and a coupling map (which is a quantale
homomorphism) φ : Q0 → Q1 satisfying that Q0 is a (Q1, Q1)-bimodule with
φ(q)r = qr = qφ(r) for any q, r ∈ Q0. In the case of triads, the coupling
homomorphism is φ : (r⊗ l) 7→ ((−· r)l, r(l ·−)). All solutions Q of (L, T,R)
then correspond exactly to factorizations of the couple Q0 → Q1, i.e. quan-
tale homomorphisms φ0 : Q0 → Q and φ1 : Q→ Q1 satisfying:

• φ1 ◦ φ0 = φ,

• φ0(φ1(k)q) = kφ0(q) and φo(qφ1(k)) = φ0(q)k (so φ0 becomes a cou-
pling map under scalar restriction over φ1).

Definition. Let (L, T,R) and (L, T,R) be triads over the same quantale
T , and ϕL : L → L and ϕR : R → R be module homomorphisms satisfying
lr = ϕL(l)ϕR(r) for any l ∈ L, r ∈ R. The pair (ϕL, ϕR) is then called a
morphism of triads.
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When related to the setting of sup-lattice 2-forms, triad morphisms gen-
eralize orthomorphisms of 2-forms.

One of possible directions in the study of quantum triads is to apply
existing results from the theory of quantales and quantale modules to get
new information on the triad structure and to investigate how the solutions
change along with the initial structures. For instance, one can start with the
following easy result.

A right Q-module M is called flat if the functor M ⊗Q− which maps left
Q-modules to sup-lattices preserves injective homomorphisms.

Proposition. Let (ϕL, ϕR) : (L, T,R) → (L, T,R) be a triad morphism. It
induces a sup-lattice homomorphism ϕR⊗T ϕL : R ⊗T L → R ⊗T L between
the 0-solutions. Following from the definition of triad morphism, ϕR⊗T ϕL

is also a quantale homomorphism, which simply implies that

1. if both ϕL and ϕR are surjections, Q0 is a quantale quotient of Q0,

2. if ϕL and ϕR are injections and R and L (or L and R) are flat, Q0 is
isomorphic to a subquantale of Q0.

Note that, for quantale modules, flatness is equivalent to projectivity (this
can be shown in the same way as a specific case in [2]). Characterization of
projective quantale modules is available for modules generated by a suitable
set of elements [8].

References

[1] J. M. Egger and D. Kruml, Girard couples of quantales, Applied
Categorical Structures, 18 (2010), pp. 123–133.

[2] A. Joyal and M. Tierney, An extension of the Galois theory of
Grothendieck, American Mathematical Society, Providence, Rhodes Is-
land, USA, 1984.

[3] D. Kruml, Quantum triads: an algebraic approach.
http://arxiv.org/abs/0801.0504.

[4] D. Kruml and J. Paseka, Algebraic and categorical aspects of quan-
tales, in Handbook of Algebra, vol. 5, North-Holland, 2008, pp. 323–362.

[5] P. Resende, Sup-lattice 2-forms and quantales, Journal of Algebra, 276
(2004), pp. 143–167.

271



[6] K. I. Rosenthal, Quantales and their applications, Pitman Research
Notes in Mathematics, Longman Scientific & Technical, New York, 1990.

[7] S. A. Solovyov, On the category Q-Mod, Algebra universalis, 58 (2008),
pp. 35–58.
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Abstract. This paper shows that a concrete category is fibre-small and
topological iff it is concretely isomorphic to a subcategory of some cat-
egory Top(T ) of categorically-algebraic topological structures that is
definable by topological co-axioms in Top(T ).

1 Introduction

Motivated by the considerable diversification in the approaches to lattice-valued
topology, we introduced in [6] a common framework for the majority of them,
aimed to provide the means of interaction between different topological set-
tings. The new approach is based in category theory and universal algebra, and,
therefore, is called categorically-algebraic (catalg) topology. It originates in topo-
logical theories of J. Adámek, H. Herrlich, G. E. Strecker [1] (originally, due to
O. Wyler [10]) and S. E. Rodabaugh [5]. While the latter approach fits easily into
the catalg framework, up to now, there has been no explicit elaboration of rela-
tionships between catalg topology and topological theories of J. Adámek et al.
These theories are briefly touched in [5], which claims to resolve completely the
relationships between them and those of [5]. Since the claimed resolution is nei-
ther complete nor error-free, we decided to consider a more general question
on relations between universal topology [1] (the term is due to H. Herrlich [3])
and catalg topology. As the main result of the study, it appears that a concrete
category is fibre-small and topological iff it is isomorphic to a full subcategory
of some category Top(T ) of catalg topological structures that is definable by
topological co-axioms in Top(T ) (in the sense of [1, 3]).

Since catalg topology is implicitly fuzzy topology, the achievement can be
interpreted as a general fuzzification procedure for the objects of fibre-small
topological categories (in the sense of, e.g., fuzzy theories of E. G. Manes [4]).

2 Preliminaries

This section provides the theoretical background for the results of the paper.

? This research was supported by ESF Project of the University of Latvia No.
2009/0223/1DP/1.1.1.2.0/09/APIA/VIAA/008.
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2.1 Catalg topology

Definition 1. 1. A catalg backward powerset theory ( cabp-theory) in a cat-

egory X is a functor X
P−→ Aop to the dual category of some variety A.

2. Let X be a category and let T = (P, (‖ − ‖,B)) comprise a cabp-theory

X
P−→ Aop and a reduct (‖ − ‖,B) of A. A catalg topological theory ( cat-

theory) in X induced by T is the functor X
T−→ Bop = X

P−→ Aop ‖−‖op−−−−→ Bop.
3. Let T be a cat-theory in a category X. Top(T ) is the concrete category

over X, whose objects ( catalg topological spaces or T -spaces) are pairs
(X, τ), where X is an X-object and τ is a subalgebra of TX ( catalg topol-
ogy or T -topology on X), and whose morphisms ( catalg continuous or T -

continuous X-morphisms) (X, τ)
f−→ (Y, σ) are X-morphisms X

f−→ Y such
that (Tf)

op
(α) ∈ τ for every α ∈ σ ( catalg continuity or T -continuity).

The following is one of the main results of the emerging theory (see also [8]).

Theorem 1. Every category Top(T ) is fibre-small and topological over X.

2.2 Universal topology

Definition 2. 1. A topological theory in a category X is a functor X
T−→

CSLat(
∨

), where CSLat(
∨

) is the variety of
∨

-semilattices.
2. Let T be a topological theory in a category X. TTTop(T) is the concrete category

over X, whose objects (T-models) are pairs (X, t), where X is an X-object

and t ∈ TX, and whose morphisms (T-morphisms) (X, t)
f−→ (Y, s) are X-

morphisms X
f−→ Y such that Tf(t) 6 s.

One of the main results in the theory is given by the so-called fibre-functor.

Theorem 2. For every fibre-small topological category (M, | − |) over X, there
is a topological theory T such that (M, | − |) is concretely isomorphic to TTTop(T).

3 Catalg topology versus universal topology

This section clarifies the relationships between catalg and universal topologies.

3.1 From universal topology to catalg topology

Following the idea of [5, Lemma 3.30(1)], we obtain the next result.

Lemma 1. 1. There exists a functor CSLat(
∨

)
(−)`−−−→ CSLat(

∨
)
op

defined

by (A1
ϕ−→ A2)` = Ad

1

(ϕ`)
op

−−−−→ Ad
2, where Ad

i has the dual partial order of Ai

and ϕ` is the upper adjoint of ϕ in the sense of partially ordered sets [2].
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2. Every topological theory X
T−→ CSLat(

∨
) provides the cat-theory X

TT−−→
CSLat(

∨
)
op

= X
T−→ CSLat(

∨
)

(−)`−−−→ CSLat(
∨

)
op

.

Lemma 1 helps to clarify the relationships between the categories TTTop(T) and
Top(TT) (the first item, apart from fullness, is due to [5, Theorem 3.31(1)]).

Theorem 3. 1. There is a full concrete embedding TTTop(T)
� � F // Top(TT)

defined by F ((X, t)
f−→ (Y, s)) = (X, ↓d t) f−→ (Y, ↓d s), where ↓d (−) is the

lower set in the dual partial order.

2. There exists a concrete functor Top(TT)
G−→ TTTop(T) defined by G((X, τ)

f−→
(Y, σ)) = (X,

∧
τ)

f−→ (Y,
∧
σ).

3. F is a left-adjoint-right-inverse to G, the respective co-universal arrows given

by FG(X, τ)
1X−−→ (X, τ).

4. TTTop(T) is concretely isomorphic to a full concretely coreflective subcategory
of Top(TT).

The last item of Theorem 3 induces the main result of this paper.

Theorem 4. For a concrete category (M, | − |), the following are equivalent:

1. (M, | − |) is fibre-small and topological;
2. (M, |− |) is concretely isomorphic to a subcategory of some category Top(T )

that is definable by topological co-axioms in Top(T ).

Proof. Use Theorem 2, Theorem 3(4) and the following two facts: (1) every
full concretely coreflective subcategory of Top(T ) is finally closed in Top(T )
(and, therefore, is topological); (2) a full subcategory of Top(T ) is concretely
coreflective in Top(T ) iff it is definable by topological co-axioms in Top(T ). ut

3.2 From catalg topology to universal topology

Lemma 2. 1. Given a variety A, there exists a functor Aop (−)"−−−→ CSLat(
∨

)

defined by (A1
ϕ−→ A2)" = (Sub(A1))d

(ϕop)←−−−−−→ (Sub(A2))d, where Sub(Ai)
is the

∧
-semilattice of subalgebras of Ai.

2. Every cat-theory X
T−→ Aop gives the topological theory X

TT−−→ CSLat(
∨

) =

X
T−→ Aop (−)"−−−→ CSLat(

∨
).

Notice that S. E. Rodabaugh [5, Lemma 3.30(2)] considered the variety
SQuant of semi-quantales and used the non-dual order on their sub(semi-
quantales), mistakenly claiming that their joins coincide with the unions. The
flaw made him to consider the category TTTopalt(T) instead of TTTop(T), in which the
morphism condition is changed from “Tf(t) 6 s” to “Tf(t) > s” (Definition 2).

Lemma 2 provides the second important result of this paper.

Theorem 5. The categories Top(T ) and TTTop(TT ) are equal.

Since every category of the form TTTop(T) is topological [1], Theorem 5 provides
another proof of Theorem 1.
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4 Conclusion

This paper clarified the relationships between two different approaches to topol-
ogy. Following the discussion of [5, Remark 3.32(6)], one could ask which of them
is more general. In case of semi-quantales, S. E. Rodabaugh was confronted with
a mixed situation, having constructed just the embedding of Theorem 3(1) and
an erroneous version of Theorem 5, for the particular case of semi-quantales and
a modification (due to the error) of the categories TTTop(T). The variety-based
case of this paper suggests that universal topology is more general than catalg
topology, in the sense that every category of the form Top(T ) can be recon-
structed completely through a suitable category of the form TTTop(T), whereas
the converse way requires the application of some topological co-axioms, whose
ultimate description in each case can be problematic. On the other hand, in
concrete applications, the catalg setting is more suitable, since it provides the
underlying algebraic structures of the topological structures in question, whereas
universal topology contains the information on their ground category only.

Recently [7], we showed that given a cat-theory T , the category Top(T ) can
be fully embedded into the category TopSys(T ) of catalg topological systems
(in the sense of S. Vickers [9]), which is (essentially) algebraic over its ground
category, under reasonable requirements on the theory T . In view of the fact,
the main result of this paper (Theorem 4) says that every fibre-small topological
category can be fully embedded into a (potentially) algebraic category, which
ultimately determines the degree of algebraicity of the topological category in
question. As a consequence, we provide another answer to the problem, posed by
S. E. Rodabaugh [5] on the extent to which (lattice-valued) topology is algebraic.
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The Modal Logic of the Bi-topological Rational
Plane?
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Abstract. We introduce the multi-modal logicKD4⊕KD4. As a main
result we prove that in derived set interpretation of modalitiesKD4⊕KD4
is the modal logic of bi-topological rational plane Q×Q with horizontal
and vertical topologies.

1 Introduction

Topological semantics for modal logic starts with McKinsey and Tarski [9] and
their celebrated completeness result that S4 is a complete and sound modal
logic of a real line. The semantics they use in this result is called C-semantics
because the diamond modality is interpreted as a closure operator of a given
topological space. Nevertheless much more attention has been attracted to the
C-semantics [2],[1], [5] the derived set interpretation of the diamond modality,
so called d-semantics is proven to be more expressive and in some situations
gives more elegant characterization of properties of topological spaces [4], [3].
This direction was extensively studied by Esakia [6],[7] who introduced wK4,
the modal logic of all topological spaces, with the desired (derivative operator)
interpretation of the ♦-modality. K4 is a logic over wK4 and is characterized
in this semantics by the class of all TD-spaces whereas adding axiom D amounts
to requiring that the space is dense-in-itself [3].

In the beginning of 80s Shehtman proved the analogous results to [9]. In his
PhD thesis he presented modal logics of the rational line Q and the real line
R in d-semantics. Different from C-semantics, d-semantics can distinguish these
two topological spaces and therefore the logics are not the same. It turned out
that the modal logic of rational line is KD4. Quite recently this completeness
result was reproved [8]. The new proof is much simpler and uses a new technique
of obtaining rational line from ω-branching tree. In this paper we will make use
of the technique from [8] and generalise the result to the fusion of KD4 with
itself i.e., we have two modalities, where each modality satisfies K,4 and D
axioms. Following standard notations we call this logic KD4⊕KD4. As a main
result, we prove that KD4⊕KD4 is sound and complete with respect to the

? This work was supported in part by the Spanish Ministry of Science and Innovation
through the projects AT (Grant CONSOLIDER CSD2007-0022, INGENIO 2010)
and MICINN project TiN2009-14562-CO5.
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bi-topological space (Q×Q, τv, τh) where τh, τv are respectively horizontal and
vertical topologies on the rational plane.

The paper is organised in the following way. In section 2 we introduce the
modal logic KD4⊕KD4, recall the Kripke semantics and present the com-
pleteness proof which is a direct generalisation of a standard proof for KD4. In
section 3 we show that KD4⊕KD4 is the modal logic of (ω, ω)-branching tree
Tω,ω. This result is an easy generalisation of the result from [8]. In section 4 we
present the topological d-semantics and show the main result of the paper that
in this semantic the modal logic of Q×Q with horizontal and vertical topologies
is KD4⊕KD4.

2 Kripke Semantics

The normal modal logic KD4⊕KD4 is defined in a modal language with in-
finite set Prop of propositional letters and connectives ∧,¬,�1,�2. The set of
formulas Form is constructed in a standard way: Prop ⊆ Form, If α, β ∈ Form
then ¬α, α ∧ β,�1α,�2α,∈ Form. We will use standard abbreviations for dis-
junction and implication, α ∨ β ≡ ¬(¬α ∧ ¬β) and α→ β ≡ ¬α ∨ β.

• The axioms are all classical tautologies, each box satisfies all KD4 axioms
i.e., for each i ∈ {1, 2} we have:

(K) �i(p→ q)→ (�ip→ �iq),
(D) �ip→ ♦ip,
(4) �ip→ �i�ip,
• The rules of inference are: Modus-Ponens, Substitution, Necessitation.

The Kripke semantics for the modal logic KD4⊕KD4 is provided by the
transitive and serial, bi-relational Kripke frames.

Definition 1 The relation R ⊆W ×W is:
serial if - (∀x)(∃y)(xRy),
transitive if - (∀x, y, z)(xRy ∧ yRz ⇒ xRz).

The triple (W,R1, R2), with W an arbitrary set and Ri ⊆ W ×W where
i ∈ {1, 2}, is a transitive and serial bi-relational Kripke frame if both R1 and
R2 are transitive and serial relations. A quadruple (W,R1, R2, V ) is a transitive
and serial bi-relational Kripke model if (W,R1, R2) is a transitive and serial
bi-relational Kripke frame and V : Prop→ P (W ) is a valuation function.

Definition 2 For a given transitive and serial bi-relational Kripke model M =
(W,R1, R2, V ) the satisfaction of a formula at a point w ∈ W is defined induc-
tively as follows:
w  p iff w ∈ V (p),
w  α ∧ β iff w  α and w  β,
w  ¬α iff w 1 α,
w  �iφ iff (∀v)(wRiv ⇒ v  φ),

The validity of a formula in a model, frame or class of frames is defined in
a standard way.
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Proposition 3 (Completeness) Modal logic KD4⊕KD4 is sound and com-
plete with respect to the class of all finite, transitive and serial bi-relational
Kripke frames.

3 Tω,ω

We borrow the ideas from [8] and [1] and introduce Tω,ω, infinitely branching
irreflexive tree. Let N = ω − {0} where τ denotes the least infinite ordinal. Let
α ∈ N ∪ {ω}. The infinite (α, α)-ary tree is defined as follows. The set of worlds
is denoted by Tα,α and each world is called a node. The set of nodes of Tα,α
satisfies the defining properties:

∀t ∈ Tα,α, t is parent to exactly 4× α many nodes in Tα,α,

∃r ∈ Tα,α, r is the root of Tα,α and it is unique,

∀t ∈ Tα,α, if t is not the root, then t has a unique parent.

The main result for this section states that infinitely branching tree captures
the fusion logic.

Theorem 4 The fusion KD4⊕KD4 is sound and complete w.r.t. Tω,ω.

4 Topological Semantics

The derived set topological semantics for KD4⊕KD4 is provided by the class
of all bi-topological spaces. As a main result we prove the soundness and com-
pleteness of the logic KD4⊕KD4 with respect to the rational plane Q × Q
with horisontal and vertical topologies. We start with the basic definitions.

Definition 5 A pair (X, τ) is called a topological space if X is a set and τ is a
collection of subsets of X with the following properties: 1) X,∅ ∈ τ , 2) A,B ∈ τ
implies A ∩B ∈ τ , 3) Ai ∈ τ implies

⋃
Ai ∈ τ .

Now we define the set of all colimits of a given topological space. An operator
which assigns to a set, the set of all its colimits is called colimit operator. Colimit
operator is central for defining satisfaction relation in a derived set semantics.

Definition 6 Given a topological space (X, τ) and a set A ⊆ X we will say that
x ∈ X is a colimit point of A if there exists an open neighborhood Ux of x such
that Ux − {x} ⊆ A. The set of all colimit points of A will be denoted by col(A)
and will be called colimit set of A.

Colimit set serves for giving semantics of box modality, consequently seman-
tics for diamond is provided by the dual of colimit set, which is called derived set.
The derived set of A is denoted by der(A). So we have col(A) = X−der(X−A).
Below we give the definition of the satisfaction of modal formulas in a derived
set topological semantics.
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Definition 7 The satisfaction of a modal formula on a bi-topological model
(M) = (W, τ1, τ2, V ) at a point w ∈W is defined in the following way:
w  p iff w ∈ V (p),
w  α ∧ β iff w  α and w  β,
w  ¬α iff w 1 α,
w  �iφ iff w ∈ coli(V (φ)), where coli is a colimit operator of τi, i ∈ {1, 2}.

Now let us define the desired bi-topological space (Q × Q, τh, τv). The un-
derline set is Q × Q i.e., consists of all pares of rational numbers. As for the
topologies we have U ∈ τh iff for every element (x, y) ∈ U there exists an open
interval I ⊆ Q such that I × {y} ∈ U . Analogously V ∈ τv iff for every element
(x, y) ∈ V there exists an open interval I ⊆ Q such that {x} × I ∈ U . The
following lemma serves as a main intermediate step towards a proof of the main
result.

Lemma 1. For every formula α in the fusion language KD4⊕KD4 the fol-
lowing holds: If Tω,ω 1 α then (Q×Q, τh, τv) 1 α.

Now we are ready to prove the main result of the paper.

Theorem 8 KD4⊕KD4 is sound and complete with respect to (Q×Q, τh, τv).
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Abstract

Finiteness spaces were introduced by Ehrhard as a model of linear logic, which relied
on a �nitess property of the standard relational interpretation and allowed to reformulate
Girard's quantitative semantics in a simple, linear algebraic setting.

We review recent results obtained in a joint work with Christine Tasson, providing a
very simple and generic construction of �niteness spaces: basically, one can transport a
�niteness structure along any relation mapping �nite sets to �nite sets. Moreover, this
construction is functorial under mild hypotheses, satis�ed by the interpretations of all the
positive connectives of linear logic.

Recalling that the de�nition of �niteness spaces follows a standard orthogonality tech-
nique, �tting in the categorical framework established by Hyland and Schalk, the question
of the possible generalization of transport to a wider setting is quite natural. We argue
that the features of transport do not stand on the same level as the orthogonality category
construction; rather, they provide a simpler and more direct characterization of the obtained
structure, in a webbed setting.

1 Finiteness spaces and �nitary relations

Sets and relations. We write P (A) for the powerset of A, Pf (A) for the set of all �nite
subsets of A and !A for the set of all �nite multisets of elements of A.

Let A and B be sets and f be a relation from A to B: f ⊆ A × B. We then write tf for
the transpose relation {(β, α) ∈ B ×A; (α, β) ∈ f}. For all subset a ⊆ A, we write f · a for the
direct image of a by f : f · a = {β ∈ B; ∃α ∈ a, (α, β) ∈ f}. If α ∈ A, we will also write f · α
for f · {α}. We say that a relation f is quasi-functional if f · α is �nite for all α. If b ⊆ B, we
de�ne the division of b by f as f \ b = {α ∈ A; f · α ⊆ b}. Notice that in general f · (f \ b) may
be a strict subset of b, and f \ (f · a) may be a strict superset of a.

We write Rel for the category of sets and relations. It is a very simple model of linear logic:
multiplicatives are given by the compact closed structure associated with cartesian products of
sets (linear negation is then the transposition of relations, which is also a dagger); additives are
modelled by disjoint union of sets, which gives a biproduct; the exponential modality is that of
�nite multisets.

Let T and U be two endofunctors of Rel, and let f be the data of a relation fA (which we
may also write f) from TA to UA for all set A: we say f is a lax natural transformation from
T to U if, for all relation g from A to B, fB ◦ (Tg) ⊆ (Ug) ◦ fA. As an example, consider the
�nite multiset functor !, and for all A, let σA be the only relation from !A to A such that for all
α ∈ !A, σA ·α is the support set of α. This de�nes a quasi-functional lax natural transformation
from ! to the identity functor: notice that in that case, the inclusion σ ◦ !g ⊆ g ◦σ may be strict.

Finiteness spaces. We brie�y recall the basic de�nition of �niteness spaces as given by
Ehrhard [Ehr05]. Let A and B be sets, we write A ⊥f B if A ∩ B is �nite. If A ⊆ P (A),
we de�ne the predual of A on A as A⊥ = {a′ ⊆ A; ∀a ∈ A, a ⊥f a

′}. A �niteness structure on A
is a set A of subsets of A such that A⊥⊥ = A. A �niteness space is then a pair A = (|A| ,F (A))
where |A| is the underlying set, called the web of A, and F (A) is a �niteness structure on |A|.
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We write A⊥ for the dual �niteness space:
∣∣A⊥∣∣ = |A| and F

(
A⊥) = F (A)⊥. The elements of

F (A) are called the �nitary subsets of A. Standard arguments on closure operators de�ned by
orthogonality apply and in particular A⊥ = A⊥⊥⊥, for all A ⊆ P (A); hence �niteness structures
are exactly preduals. More speci�c to the orthogonality ⊥f , for all �niteness structure A on A,
we obtain:

(1) A is downwards closed for inclusion, i.e. a ⊆ a′ ∈ A implies a ∈ A;

(2) Pf (A) ⊆ A and A is closed under �nite unions, i.e. a, a′ ∈ A implies a ∪ a′ ∈ A.

The �rst property is similar to the one for coherence spaces. The second one is distinctive of
�niteness spaces, and is a non-uniformity property: union of �nitary subsets models some form of
computational non-determinism, which is crucial to interpret the di�erential λ-calculus [ER03].

Finitary relations. Let A and B be two �niteness spaces: we say a relation f from |A| to |B|
is �nitary from A to B if: for all a ∈ F (A), f ·a ∈ F (B), and for all b′ ∈ F

(
B⊥
)
, tf · b′ ∈ F

(
A⊥).

The identity relation is �nitary from A to itself, and �nitary relations compose: this de�nes the
category Fin whose objects are �niteness spaces and morphisms are �nitary relations.

Finitary relations form a �niteness structure: remark that f ⊆ |A| × |B| is �nitary i� f ∈{
a× b′; a ∈ F (A) and b′ ∈ F

(
B⊥
)}⊥

. This re�ects the ∗-autonomous structure of Fin, with ten-

sor product given by |A ⊗ B| = |A| × |B| and F (A⊗ B) = {a× b; a ∈ F (A) and b ∈ F (B)}⊥⊥,
and ∗-functor given by duality on �niteness spaces and transposition on �nitary relations:
f ∈ Fin(A,B) 7→ tf ∈ Fin(B⊥,A⊥).

2 Transport

Transport of �niteness structures In the following, we present the basic results obtained
in recent work with Tasson [TV11]. The starting point is the following lemma, which allows to
generate a �niteness structure on a set A, by transporting that of a �niteness space B along any
relation f from A to |B|, provided f maps �nite subsets of A to �nitary subsets of B.

Lemma 2.1 (Transport). Let A be a set, B a �niteness space and f a relation from A to |B|
such that f · α ∈ F (B) for all α ∈ A. Then F = {a ⊆ A; f · a ∈ F (B)} is a �niteness structure

on A and, more precisely, F = {f \ b; b ∈ F (B)}⊥⊥.

The proof of this transport lemma [TV11, Lemma 3.4] is very similar to that of the char-
acterization of the exponential modality, given in Ehrhard's paper [Ehr05, Lemma 4]. Actu-
ally, we obtain this characterization as a straightforward application of transport, through the
support relation, which is quasi-functional: if A is a �niteness space, then for all α ∈ ! |A|,
σ · α ∈ Pf (A) ⊆ F (A); moreover, if a ⊆ |A|, then σ \ a = !a. We thus obtain a �niteness space
!A such that |!A| = ! |A| and F (!A) = {a ⊆ !|A|; σ · a ∈ F (A)} = {!a; a ∈ F (A)}⊥⊥ .

Corollary 2.2. Let A be a set, (Bi)i∈I a family of �niteness spaces and (fi)i∈I a family of rela-

tions such that, for all α ∈ A and all i ∈ I, fi·α ∈ F (Bi). Then F = {a ⊆ A; ∀i ∈ I, fi · a ∈ F (Bi)}
is a �niteness structure on A and, more precisely, F =

{⋂
i∈I (fi \ bi); ∀i ∈ I, bi ∈ F (Bi)

}⊥⊥
.

Again, we obtain the following characterization of the tensor product, by applying this gen-
eralized transport lemma: denoting π1 and π2 the two obvious projection relations we obtain
F (A⊗ B) = {c ⊆ |A| × |B| ; π1 · c ∈ F (A) and π2 · c ∈ F (B)}. Similarly, the direct product of
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an arbitrary family of �niteness spaces is given by
∣∣˘

i∈I Ai
∣∣ =

⊎
i∈I |Ai| =

⋃
i∈I {i} × |A|i and

F
(˘

i∈I Ai
)

=
{⊎

i∈I ai; ∀i ∈ I, ai ∈ F (Ai)
}
: this is otained by transport through the restric-

tions ρi = {((i, α), α); α ∈ |Ai|}. It turns out that the transport lemma is very versatile: for
any sensible notion of datatype (lists, trees, graphs, etc.), it allows to form a �niteness spaces of
such objects, with �niteness given by that of the elements (or nodes), possibly with an additional
�niteness condition on the shape (e.g., bounded length).

Transport functors. We say an endofunctor T of Fin has a web if there exists an endofunctor
T of Rel, such that |T A| = T |A| for all �niteness space A, and T f = Tf for all f ∈ Fin (A,B) ⊆
Rel (|A| , |B|). We then say T is the web of T and write T = |T |. Notice that in that case, if
f ⊆ A×B, Tf must be �nitary from T (A,A) to T (B,B) for all �niteness structures A and B
making f �nitary from (A,A) to (B,B). We show that, under mild hypotheses, the transport
lemma allows to de�ne such functors.

Let T be a functor in Rel. We call ownership relation on T the data of a quasi-functional lax
natural transformation ε from T to the identity functor. Given such an ownership relation, we
can transport the �niteness structure of any space A to the web T |A|: indeed, ε|A| then satis�es
the condition of Lemma 2.1 because it is quasi-functional and �nite subsets are always �nitary.
In such a situation, we write TεA for the �niteness space (T |A| , {ã ⊆ T |A| ; ε · ã ∈ F (A)}). If
f ∈ Rel(|A| , |B|), we also write Tεf = Tf : then Tε de�nes a functor on Fin (with web T ) i� Tf
is �nitary from TεA to TεB as soon as f is �nitary from A to B. In that case, we say Tε is the
transport functor deduced from the transport situation (T, ε).

We now provide su�cient conditions for a transport situation to give rise to a transport
functor. A shape relation on (T, ε) is the data of a �xed set M of shapes and a quasi-functional
lax natural transformation µ from T to the constant functor which sends every set to M and
every relation to the identity, subject to the following additional condition: for all ã ⊆ TA, if
µ · ã and ε · ã are both �nite, then ã is �nite.

Lemma 2.3. Let (T, ε) be a transport situation. If T is symmetric (i.e. t(Tf) = T tf for all f)
and there exists a shape relation on (T, ε), then Tε is an endofunctor in Fin.

The symmetry of T is essential in the proof, since it allows ε and µ to interact with tTf as
well as with Tf (the de�nition of �nitary relations is related with both directions). Moreover, the
existence of a shape relation is also crucial, since some transport situations on symmetric functors
do not preserve �nitary relations. This is in particular the case of a would-be in�nitary tensor:
although we can apply the transport lemma to de�ne

⊗
i∈I Ai for all family (Ai)i∈I of �niteness

spaces (consider the projections (πi)i∈I), the tensor of �nitary relations is not necessarily �nitary.
It is however important to note that the shape relation plays no rôle in the de�nition of Tε: its
existence is a mere side condition ensuring functoriality.

A direct consequence is the functoriality of the exponential !: the shape of a �nite multiset is
its size. Lemma 2.3 is easily generalized to functors of arbitrary arity, such as the direct product
of �niteness spaces, given by disjoint union of webs and �nitary subsets: the shape of an element
(j, α) ∈ ⊎i∈I |Ai| is the index j. The functoriality of binary tensor product also follows, this
time with no need of an additional shape relation: the binary cartesian product of �nite sets is
always �nite.

The properties of transport functors are further studied in [TV11]: we show that, under
additional hypotheses, transport functors are Scott-continuous, which allows to take �xed points
of such; this is put to use by giving an account of recursive algebraic datatypes in Fin.
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3 On possible generalizations of transport

The orthogonality category of �niteness spaces. The category Fin is the tight orthog-
onality category associated with ⊥f on Rel, following the theory of Hyland and Schalk [HS03].
The transport lemma can be used to establish the self-stability of ⊥f easily. More generally, it
provides simple and concrete characterizations of the abstract structure generated by double-
glueing. In fact, the very merit of transport lies precisely in making the bidual closure typical of
the orthogonality construction almost trivial, since it simply amounts to the downwards closure
for inclusion.

This di�erence in approach shows in the formulation of transport. Key ingredients seem
to rely strongly on the fact that we consider a webbed model (interpretations of proofs are
particular subsets of their types), and in particular on the order enrichment of the category given
by inclusion of relations. We can only remark that the condition �f sends �nite subsets to �nitary
subsets� can be rephrased as f being negative from (A,P (A) ,Pf (A)) to (|B| ,F (B) ,F

(
B⊥
)
).

The possible generalization of transport to a wider setting is nonetheless an appealing perspective.
As a �rst step, we turn our attention to other models of linear logic related with the relational
model.

Transport in other webbed models. Recall that a coherence space A is the data of a set |A|
and a re�exive binary relation ¨A on |A| (its coherence). Equivalently, A can be characterized
by the set C (A) ⊆ P (|A|) of its cliques, i.e. sets of pairwise coherent elements. A relation
f ⊆ |A| × |B| is said to be linear if, for all a ∈ C (A), f · a ∈ C (B) and for all b′ ∈ C (B)⊥,
tf · b′ ∈ C (A)⊥, where C (A)⊥ denotes the dual for the partial orthogonality : a ⊥p a

′ i� a ∩ a′
has at most one element.

The transport lemma is easily adapted to coherence spaces: just replace ��niteness structure�
with �clique�, and observe that, if f · α is always a clique, then f · a is a clique i� f · {α, α′} is
a clique for all α, α′ ∈ a, which de�nes a new coherence. The technique we used to establish
the functoriality of transport, however, does not apply directly: if (T, ε) is a transport situation
and f ∈ C (A( B), then Tf sends cliques to cliques by lax-naturality of ε, but establishing the
reverse direction (inverse images of anticliques are anticliques) will require to tweak the notion
of shape relation to accomodate coherence rather than �niteness. This is the subject of ongoing
work.

Transport does not seem to be meaningful for the webbed model obtained from the total

orthogonality : a ⊥t a
′ i� a ∩ a′ is a singleton. This de�nes Loader's totality spaces: intuitively,

total subsets represent maximal cliques. This maximality property is not compatible with the fact
that, by construction, the structures obtained by transport are downwards closed for inclusion.
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1 Introduction
We introduce a goal-oriented graphical calculus for relational inclusions.1

Graphs and diagrams provide convenient visualization in many areas and their heuristic appeal is evident.
Venn diagrams, for instance, may be very helpful in visualizing connections between sets. They are not,
however, accepted as proofs: one has to embellish the connections discovered in terms of standard methods
of reasoning. This is not the case with our graph calculus: there is no need to compile the steps into standard
reasoning. Graph manipulations, as they have precise syntax and semantics, are proof methods.
Formulas are traditionally written down on a single line [5]. A basic idea behind graph calculi is a
two-dimensional representation. Using drawings for relations is a very natural idea: represent the fact that a
is related to b via relation r by an arrow a r→ b. Then, some operations on relations correspond to simple
manipulations on arrows (e.g. transposal amounts to arrow reversal, intersection to parallel arcs and relative
product to consecutive arcs); so one can reason about relations by manipulating their representations. This is
the basic idea of graph methods for reasoning about relations [4, 5, 7, 8, 9, 10]. Some relational operations
(like complementation) are not so easy to handle. (It can be introduced by definition, if one can reason from
hypotheses [8], or it may be handled via arcs labeled by boxes [10].)
Here, we introduce a sound and complete goal-oriented graph calculus for relational inclusions. It is
conceptually simpler and easier to use than the usual ones. Also, it can handle hypotheses, as well.

2 Basic Ideas
We now examine the basic ideas behind our graph calculus for relational inclusions.
We wish to establish inclusions between relational terms. Relational terms are expression like r, s, rus and
r^;(r ; s). The relational terms are generated from relation names by relational constants and operations.
We employ the RelMiCs notation [1]. A relation name corresponds to an arbitrary binary relation. The
constants I⊥, I>, II and ID denote respectively the empty relation, the universal relation, the identity relation
and the diversity relation. Unary operations and ^ stand for complementation ˜and transposition T.
Operations u and t stand for Boolean intersection ∩ and union ∪, respectively, while operations ; and †
stand for relative product | and sum |, respectively.
A graph is a finite set of alternative slices. A slice consists of finite sets of nodes and labeled arcs together
with 2 distinguished nodes. We have two kinds of rules: reduction rules (to obtain reduced graphs) and an
expansion rule (creating alternative instances). To prove an inclusion Pv Q we start with the slice
corresponding to PuQ and apply the rules so that one obtains a graph whose slices are inconsistent.
We now examine some examples illustrating our graph methods (cf. Sections 3 and 4).
∗Research partly sponsored by the Brazilian agencies CNPq and FAPERJ.
1Helpful discussions with Petrucio Viana and Renata de Freitas are gratefully acknowledged.
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Given a relational term R, to establish R^^ v R, we show R^^uRv I⊥. We form the slice with 2 parallel

arcs →x R^^

−→ y→ and →x R→ y→. We can reverse the arrow of a ^-arc, thus converting arc →x R^^

−→ y→ to

→x R^

←− y→ and then to →x R→ y→. So, we obtain a slice S with 2 parallel arcs →x R→ y→ and →x R→ y→,
which is inconsistent.

To establish R;IIv R, we show (R;II)uRv I⊥; form the slice with 2 parallel arcs →x
R;II−→ y→ and →x R→ y→.

We can enlarge a ;-arc by a new node, thus converting arc →x
R;II−→ y→ to consecutive arcs →x R→ z II→ y→.

So, we obtain slice T with 3 arcs →x R→ z, z II→ y→ and →x R→ y→, namely →x

zR 44jjjjjjj y→
II

**TTTTTTT

R
// . We

can eliminate the II-arc by renaming z to y, thus obtaining the above slice S.

Now, to establish Rv R;I>, we show RuR;I>v I⊥. We form the slice with 2 parallel arcs →x R→ y→ and

→x
R;I>−→ y→. We can replace label R;I> by the 2-arc slice L: →x′ R→ z′ I>→ y′ →, which can be converted to the

2-arc slice L′: →x′ R→ z′ y′ → We thus reduce arc →x
R;I>−→ y→ to arc →x L′→ y→, and slice DS(R\R;I>) to a

slice S′ with 2 parallel arcs →x R→ y→ and →x L′→ y→. Now, consider the node mapping given by x′ 7→ x and

y′,z′ 7→ y, it maps arc x′ R→ z′ of L′ to arc x R→ y of S′; so slice S′ is inconsistent.
To establish r;(s†t)v (r;s)†t, as before, we form the slice DS(r;(s†t)\ (r;s)†t) with 2 parallel arcs

→x
r;(s†t)−→ y→ and →x

(r;s)†t−→ y→. We can convert it to a slice S′ (with complemented slices as arc labels):

→x r→ u

→x2
r→ w2

s→ y2→
↓ ↓ →u3

→u4
s→ z4→
−→ v3

→z5
t→ y4→
−→ y3→

v
→v1

t−→ y1→
−→ y→

This slice S′ is not yet inconsistent. But, we can expand it to a graph G consisting of 2 alternative slices S+

and S−, where slice S+ is as follows

→x r→ u

→x2
r→ w2

s→ y2→
↓

s
↙ ↓ →u3

→u4
s→ z4→
−→ v3

→z5
t→ y4→
−→ y3→

v
→v1

t−→ y1→
−→ y→

and slice S− is as follows

→x r→ u

→x2
r→ w2

s→ y2→
↓

→u5
s→ v5→

↙ ↓ →u3

→u4
s→ z4→
−→ v3

→z5
t→ y4→
−→ y3→

v
→v1

t−→ y1→
−→ y→
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Now, both slices S+ and S− represent inconsistent situations. Therefore, we have established the inclusion
DS(r;(s†t)\ (r;s)†t)v I⊥, whence also r;(s†t)v (r;s)†t.

3 Graph Language
We now introduce our graph language. We will consider two fixed denumerably infinite sets: set Rn of
relation names (r,s, t, . . . ) and set INd of (individual) nodes (in alphabetical order: x,y,z, . . . ).
We first introduce the syntax of our graph language (by mutual recursion). Labels are obtained from relation
names, slices and graphs (see below), by relational operations. An arc is a triple uLv, where u,v are nodes
and L is a label. A sketch consists of sets and of arcs. A draft is a sketch with finite sets of nodes and of arcs.
A slice S consists of a draft S (its underlying draft) together with a pair of nodes xS,yS (its input and output
nodes). A graph is a finite set of alternative slices. An inclusion is a pair of labels, noted Lv K. The
difference slice of a pair of labels L and K is the 2-arc slice DS(L\K) := 〈{x,y},{xLy,xKy} : x,y〉.
We use models for semantics. A model is a structure M = 〈M,(rM)r∈Rn〉, consisting of a set M and a binary
relation rM ⊆M2 (where M2 := M×M) for each relation name r ∈ Rn. We introduce the semantics of our
graph language (by mutual recursion). Given a model M, the relation of a label is the relation [L]M ⊆M2

obtained by extending those of the relation names ([r]M := rM) by means of the concrete versions of the
operations: e.g. [I⊥]M := /0, [I>]M := M2, [II]M := IM , [L^]M := [L]M

T, [LuK]M := [L]M∩ [K]M,
[L;K]M := [L]M | [K]M; for a slice or a graph, [S]M := [[S]]M and [G]M := [[G]]M. Given an assignment g
into M, g satisfies arc uLv (in M) iff (ug,vg) ∈ [L]M and g satisfies a sketch (in M) iff it satisfies all its arcs.
The extension of a slice S = 〈S : xS,yS〉 is the binary relation [[S]]M consisting of the pair of values of xS and
yS for the assignments satisfying S. The extension of a graph is given by [[G]]M :=

⋃
S∈G [[S]]M.

An inclusion Lv K holds in model M iff [L]M ⊆ [K]M. Call an inclusion valid iff it holds in every model.
Call labels L and K equivalent (L≡K) iff both inclusions LvK and Kv L are valid. Call a label null when
it is equivalent to I⊥. The empty graph { } (with no slices) is null.
Our reduction is guaranteed by the fact that an inclusion Lv K holds in a model M iff the difference slice
DS(L\K) has empty extension in M.
Given sketches Σ′ and Σ′′, a morphism θ : Σ′ 99K Σ′′ is a node renaming function that preserves arcs,
mapping each arc uLv of Σ′ to an arc uθ Lvθ of Σ′′.
Morphisms transfer satisfying assignments by composition: given a morphism θ : Σ′ 99K Σ′′ and a model M,
for every assignment g satisfying Σ′′ (in M), the composite assignment g ·θ satisfies Σ′ (in M).
A sketch Σ is zero iff, for some slice T = 〈T : xT,yT〉, there exists a morphism θ : T 99K Σ, such that
xTθTyTθ is an arc of Σ. Clearly, no assignment can satisfy a zero sketch. A slice is zero iff its underlying
draft is zero. A zero graph is a graph consisting of zero slices.
The category of sketches and morphisms has co-limits. In particular, the pushout of drafts gives a draft.
Consider a slice T. Given a draft D = 〈N,A〉 and nodes (u,v) ∈ N2, the glued draft D u

vT is the pushout of
drafts D and T over the arcless draft 〈{x,y}, /0〉 and natural morphisms. Given a slice S, we obtain the glued
slice S u

vT by transferring the input and output nodes of S to the glued draft S u
vT. Also, we glue a graph

naturally by gluing its slices: S u
vH := {S u

vT/T ∈ H}.
We define reduced labels, arcs, sketches, slices and graphs by mutual recursion. A label L is reduced iff it is
a relation name or T, where T is a reduced slice (see below). An arc uLv is reduced iff its label L is
reduced. A sketch is reduced iff all its arcs are reduced arcs. A slice S is reduced iff its underlying draft S is
a reduced sketch. A graph is reduced iff all its slices are reduced slices.

4 Graph Calculus
We now introduce the rules of our graph calculus: reduction and expansion.
The reduction rules are will be of two kinds: operational and structural.
The operational rules come from labels that are equivalent to graphs. For the constants, I⊥ is equivalent to the
null graph { }, I> and II are equivalent to graphs with a single arcless slice, namely →x y→ and →x→; also,
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ID≡ {→x →x→−→ y→}. For the operations, L^ ≡ {→x L← y→}, LuK is equivalent to the graph whose single

slice consists of the 2 parallel arcs →x L→ y→ and →x K→ y→, LtK≡ {→x L→ y→,→x K→ y→},

L;K≡ {→x L→ z K→ y→} and L†K≡ {→x M→ y→}, where M :=→x L→ z K→ y→. We have no such rule for
complementation, but we do have L≡ L By applying the operational rules in any context, we can eliminate
all relational operations but complement. We can however obtain graphs and their complements as labels.

(For instance r;(stt)B(;) {→x r→ z stt→ y→}B(t)

{

→x r→ z
{→x s→ y→,→x t→ y→}−→ y→

}
= G′.)

The structural rules address such cases. We can replace a graph-label by glued slices, as (using ‘+’ for

addition of an arc) {S + uHv} ≡ S u
vH. (So, G′B{→x r→ z s→ y→,→x r→ z t→ y→}.) Also, we can replace

a label that is a complemented graph by a slice, since G≡ {{→x S→ y→/S ∈ G}}. For a small slice, we can
replace the complemented slice by a graph, moving complement inside. An I-O arc of S is an arc uLv with
{u,v} ⊆ {xS,yS}. The transformed of I-O arc a = uLv is the arc atr obtained by replacing xS by x, yS by y
and label L by L. Now, the graph of slice S is the graph Gr(S) with a single-arc slice 〈{x,y},{atr} : x,y〉, for
each I-O arc a of S. Call a slice S small iff N = {xS,yS}. For a small slice S, {S} ≡ Gr(S). Finally, we can

replace a label r, with r ∈ INd, by →x r→ y→ (as L≡→x L→ y→).
Thus, we can convert every label to an equivalent reduced graph. To establish that a reduced graph is null,
we try to obtain a zero graph by applying the expansion rule. The expansion rule replaces a single-slice
graph {S} by a two-slice graph {S u

vT,S + uTv}, where u and v are nodes of S.
Soundness in not difficult to see. For completeness, consider a reduced graph G such that H is not zero,
whenever G `(Exp) H. We can then obtain a family R of non-zero reduced slices (whose underlying drafts
are connected by morphisms), which is saturated by applications of the expansion rule. This family can be
used to obtain a co-limit sketch, which gives rise to a canonical counter model C: [[G]]C 6= /0.
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Švrček. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
Tanaka . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Tishkovsky . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Uridia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
van Gool. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33,111
Vaux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
Veloso, P. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285

289



Veloso, S. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .285
Vincekova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Vosmaer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Wehrung. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
Wolter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Zakharyaschev . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

290


	Preface
	Table of contents
	A session in honour of Leo Esakia
	Guram Bezhanishvili, Scientific legacy of Leo Esakia
	Mamuka Jibladze, Intuitionistic modalities in topology and algebra
	David Gabelaia, Topological semantics of modal logic
	Lev Beklemishev, Topological semantics of polymodal provability logic 

	Invited talks
	Steve Awodey, Homotopy Type Theory
	Nikolaos Galatos, Relativizing the substructural hierarchy
	Pierre Gillibert, The possible values of critical points between varieties of algebras
	Jean Goubault-Larrecq, A Few Pearls in the Theory of Quasi-Metric Spaces
	Vincenzo Marra, Through the looking-glass: unification, projectivity, and duality
	Thomas Streicher, A Categorical Account of Krivine's Classical Realizability

	Featured presentations
	Peter Aczel, Generalised type setups for dependently sorted logic
	Hajnal Andreka, Szabolcs Mikulas and Istvan Nemeti, The Equational Theory of Kleene Lattices
	Olivia Caramello, A topos-theoretic approach to Stone-type dualities
	Willem Conradie and Alessandra Palmigiano, Algorithmic correspondence and canonicity for non-distributive logics
	Dion Coumans, Canonical extension of coherent categories
	Andrew Craig, Mai Gehrke and Sam van Gool, Topological duality for arbitrary lattices via the canonical extension
	Zoltan Esik, Residuated Park Theories
	Christophe Fouquere, Virgile Mogbil and Gabriele Pulcini, Substructural Logic for Orientable and Non-Orientable Surfaces
	Zuzana Haniková, On varieties generated by standard BL-algebras
	Agi Kurucz, Yoshihito Tanaka, Frank Wolter and Michael Zakharyaschev, Conservativity of Boolean algebras with operators over semilattices with operators
	Luca Spada and Vincenzo Marra, The unification type of Lukasiewicz logic and MV-algebras is nullary
	Friedrich Wehrung and Luigi Santocanale, Sublattices of associahedra and permutohedra

	Standard presentations
	Kira Adaricheva, J.B. Nation and Robert Rand, Ordered direct implicational basis of a finite closure system
	Kira Adaricheva and Maurice Pouzet, On scattered convex geometries
	Regis Alenda, Nicola Olivetti, Camilla Schwind and Dmitry Tishkovsky, Preferential Semantics for the Logic of Comparative Concepts Similarity
	Peter Arndt, Homotopical Fibring
	Philippe Balbiani, The word problem in semiconcept algebras
	Stefano Berardi and Ugo De Liguoro, Knowledge Spaces and Interactive Realizers
	Nick Bezhanishvili and Ian Hodkinson, Sahlqvist preservation for modal mu-algebras
	Michal Botur, Basic pseudo hoops and normal valued basic pseudo hoops
	Leonardo Manuel Cabrer and Simone Bova, Classifying Unification Problems in Distributive Lattices and Kleene Algebras
	Ivan Chajda, Basic algebras and their applications
	Ivan Chajda, Miroslav Kolarík and Filip Švrcek, Properties of relatively pseudocomplemented directoids
	Liang-Ting Chen, A final Vietoris coalgebra beyond compact spaces and a generalized Jónsson-Tarski duality
	Petr Cintula and Carles Noguera, Almost (MP)-based substructural logics
	Dion Coumans and Sam van Gool, Free algebras via a functor on partial algebras
	Mustafa Demirci, On augmented posets and (Z1,Z2)-complete posets
	Rob Egrot, Robin Hirsch and Szabolcs Mikulas, Ordered Domain Algebras
	David Fernández, On the modal definability of topological simulation
	David J. Foulis, Sylvia Pulmannova and Elena Vincekova, Lattice pseudoeffect algebras as double residuated structures
	Mai Gehrke and Jacob Vosmaer, Canonical extensions and universal properties
	Maria João Gouveia and Hilary Priestley, Completions of semilattices
	Revaz Grigolia, Formulas of Finite number Propositional Variables in the Intuitionistic Logic with the Solovay Modality
	Gonçalo Gutierres and Dirk Hofmann, Continuous metrics
	Gonçalo Gutierres and Dirk Hofmann, Metric compact Hausdorff spaces
	Radomir Halaš, Non-associative BL-algebras and quantum structures
	Florian Hatat and Tom Hirschowitz, A Graphical Game Semantics for MLL
	Afrodita Iorgulescu, On l-implicative-groups and associated algebras of logic
	Maxim Izmaylov, Continuum of extensions of the fusion of non-tabular and non-maximal modal logics over S4
	Sándor Jenei and Hiroakira Ono, On Involutive FLe-algebras
	Joost Joosten, Ordinal spaces for GLB0
	Stanislav Kikot, On modal definability of Horn formulas
	Zofia Kostrzycka, On interpolation in NEXT(KTB)
	David Kruml, Stably supported quantales with a given support
	Ganna Kudryavtseva, Stone duality for skew Boolean algebras
	Jan Kühr, On n-potent and divisible pseudo-BCK-algebras
	Lin Zhe, Finite Embeddability Property of Distributive Lattice-ordered Residuated Groupoids with Modal Operators
	Minghui Ma, Alessandra Palmigiano and Mehrnoosh Sadrzadeh, Algebraic Semantics and Model Completeness for Intuitionistic Public Announcement Logic
	Larisa Maksimova, Well-composed J-logics and interpolation
	Hugo Luiz Mariano and Caio Andrade Mendes, Towards a good notion of categories of logics
	Yoshihiro Maruyama, Modal and Intuitionistic Natural Dualities via the Concept of Structure Dualizability
	Yoshihiro Maruyama, Categorical Duality between Point-Free and Point-Set Spaces
	Richard Mckinley, Categorically axiomatizing the classical quantifiers
	George Metcalfe and Christoph Roethlisberger, Admissible Multiple-Conclusion Rules
	Alexei Muravitsky, Enrichable elements in Heyting algebras
	Josef Niederle and Jan Paseka, Homogeneous orthocomplete effect algebras are covered by MV-algebras
	Novak Novakovic and Francois Lamarche, Frobenius Algebras and Classical Proof nets
	Jan Pavlik, On Reiterman Conversion
	Miroslav Plošcica, Two results on compact congruences
	Umberto Rivieccio and Achim Jung, Priestley Duality for Bilattices
	Ciro Russo, An extension of Stone duality to fuzzy topologies and MV-algebras
	Luigi Santocanale, The continuous weak Bruhat order 
	Denis I. Saveliev, On Ultrafilter Extensions of Models
	Ilya Shapirovsky and Andrey Kudinov, Finite model property of pretransitive analogs of S5
	Valentin Shehtman, Hybrid products of modal logics
	Radek Šlesinger, Morphisms of quantum triads
	Sergejs Solovjovs, Topological categories versus categorically-algebraic topology
	Levan Uridia, The Modal Logic of Bi-topological Rational Plane
	Lionel Vaux, On the transport of finiteness structures
	Paulo Veloso and Sheila Veloso, A Goal-oriented Graph Calculus for Relations

	Index of authors

