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3 can be interpreted as the closure operator C of a topological
space X:

valuation v(ϕ) ⊆ X;
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i 1 = 1,
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These were considered by Rasiowa and Sikorski under the
name of topological Boolean algebras; Blok used the term
interior algebra which is mostly used nowadays along with
S4-algebra.
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Every topology has its derivative operator — for A ⊆ X,

δA := {x ∈ X | every neighborhood of x meets A \ {x}}.

For every topology, the corresponding δ satisfies

δ∅ = ∅,
δ(A ∪B) = δA ∪ δB,
δδA ⊆ A ∪ δA.
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one has τA = IA ∪ Isol(X −A),
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induced from X).
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The intuitionistic side
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Let us now consider the intuitionistic counterparts of these
systems.

For a closure algebra (B, c), the subset
H = i(B) = {i b | b ∈ B} = Fix(i) = {h ∈ B | ih = h} is a
sublattice of B;

it is a Heyting algebra with respect to the implication

h −→
H

h′ := i(h→ h′)

and is thus an algebraic model of the Heyting propositional
Calculus HC.

Obviously, i itself disappears from sight in H;

also in general c does not leave any manageable “trace” on H.
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The situation is more interesting with the (co)derivative
semantics.

Note that when (B, c) = (P(X),C) for a topological space X,
the corresponding H is the Heyting algebra O(X) of all open
sets of X.

In terms of the coderivative, a subset U ⊆ X is open if and only
if U ⊆ τU .

More generally, for a (co)derivative algebra (B, τ ) one gets the
Heyting algebra H := {h ∈ B | h 6 τ h}.
And now, τ restricts to H in a nontrivial way:

since τ is obviously monotone, h 6 τ h implies τ h 6 τ τ h, i. e.
τ |H ⊆ H.
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algebra H = {h ∈ B | h 6 τ h} equipped with an operator
τ = τ |H : H → H.

Then obviously
τ 1 = 1,
τ (h ∧ h′) = τ h ∧ τ h′

on H.
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The intuitionistic side
mHC

We thus arrive at an intuitionistic modal system mHC, with
topological semantics given by valuations via open sets of a
space and the modality 2 interpreted as the coderivative
restricted to open sets.

It is given by adding to the axioms of HC the axioms
2(p→ q)→ (2p→ 2q),
p→ 2p,
2p→ (q ∨ (q → p)).

NB The second axiom might look sort of “wrong way” for a
modal logician, as for multiplicative operators implication
usually goes in the opposite direction.
However in intuitionistic modal systems such things happen.
E. g. for those familiar with nuclei — a nucleus is an inflationary
multiplicative idempotent operator.
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Algebraic models of mHC are thus of the form (H, τ ) where H
is a Heyting algebra and τ : H → H satisfies

h 6 τ h,
τ (h ∧ h′) = τ h ∧ τ h′,
τ h 6 h′ ∨ (h′ → h).



Back to the classics
K4.Grz

Moreover one has

Theorem. For every mHC-algebra (H, τ ) there exists a
coderivative algebra (B(H), τ ) such that
H = {h ∈ B(H) | h 6 τ h} and τ |H = τ .

Here B(H) is the free Boolean extension of H, so that every
element of B(H) is a finite meet of elements of the form ¬h′ ∨ h
for some h, h′ ∈ H. One defines

τ (¬h′ ∨ h) := h′ −→
H

h

and then extends to the whole B(H) by multiplicativity
(correctness must be ensured).
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It turns out that actually the coderivative algebras of the above
form (B(H), τ ) land in a proper subvariety: they all are
K4-algebras, i. e. satisfy τ b 6 τ τ b; moreover they satisfy the
identity

τ (τ (b→ τ b)→ b) = τ b.

This enabled Esakia to construct a translation # of mHC into
the corresponding modal system K4.Grz.

His # is defined on propositional variables p by #p := p ∧2p,
commutes with ∧, ∨, ⊥, 2 and moreover

#(ϕ→ ψ) := (#ϕ→ #ψ) ∧2(#ϕ→ #ψ).
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The Kuznetsov-Muravitsky calculus KM may be defined as the
result of adding to mHC the axiom

(2p→ p)→ p.

This system relates to GL in the same way as mHC to K4.Grz:
the Kuznetsov-Muravitsky theorem states that the lattice of all
extensions of KM is isomorphic to the lattice of all normal
extensions of GL.

From the point of view of topological/algebraic semantics, this
system is interesting in that in its models, the coderivative
operator is in fact uniquely determined.
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system is interesting in that in its models, the coderivative
operator is in fact uniquely determined.
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For H of the form O(X) for a space X, there is a canonical
choice of the “correct” τ .

However for general Heyting algebras
H there might be several operators τ satisfying the above
identities. For example, τ h ≡ h would always do.
Whereas if (H, τ ) happens to be a model of KM, i. e. τ h→ h
is equal to h for all h ∈ H, then in addition to
τ h 6 h′ ∨ (h′ → h), also τ h itself is of the form h′ ∨ (h′ → h) for
some h′ (in fact for h′ = τ h).
Thus τ h is the smallest element of the set
{h′ ∨ (h′ → h) | h′ ∈ H}, and this property makes it uniquely
determined.
An algebra of the form (O(X), τ) is a model of KM iff the space
X is scattered (every nonempty subspace has an isolated
point).
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Canonical choices of the modality
QHC

Another way to ensure the preferred choice of τ is to enrich the
syntax.

Note that whenever H is a complete Heyting algebra, it comes
with the “correct” τ , viz.

τ h :=
∧{

h′ ∨ (h′ → h) | h′ ∈ H
}
.

One way to do this syntactically is to enrich the language with
propositional quantifiers.
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Canonical choices of the modality
QHC

The calculus QHC is obtained from HC by adding operators ∀p,
one for each propositional variable p.

In QHC, one has axioms (∀pϕ)→ ϕ|ψ←p and inference rules

ψ → ϕ

ψ → ∀pϕ

whenever p does not occur freely in ψ (here ϕ|ψ←p is the result
of substituting ψ for p everywhere in ϕ).
It is then easy to see that the modality 2 given by

2ϕ := ∀p(p ∨ (p→ ϕ)),

for any p which does not occur freely in ϕ, satisfies all axioms of
mHC.
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Canonical choices of the modality
Q+HC

The natural question arises — which conditions on ∀p would
ensure KM for this 2?

The corresponding system Q+HC is given by adding to QHC
the Casari schema

∀p((ϕ→ ∀pϕ)→ ∀pϕ)→ ∀pϕ.
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Canonical choices of the modality
Kripke-Joyal semantics

Naturally defined propositional quantifiers are readily available
in the topos semantics.

If a Heyting algebra H happens to be the algebra of all
subobjects of some object in an elementary topos, it comes
equipped with such quantifiers.

In particular, on the subobject classifier Ω one has the
corresponding operator τ : Ω→ Ω given, in the Kripke-Joyal
semantics, by

τ(u) = ∀p(p ∨ (p→ u)).

Thus τ classifies the Higgs subobject {µ ∈ Ω | {>} ∪ ↓µ = Ω}
of Ω.
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Canonical choices of the modality
Scattered toposes

Call a topos scattered if this τ satisfies

(τ(u)→ u)→ u.

Note that this identity may be viewed as a kind of induction
principle: the Higgs object contains the top together with its
immediate predecessor, if any.

Then the identity says that if we want to prove some statement
u, we might as well assume that it is (either the top or) the
immediate predecessor of the top.

There are non-Boolean scattered toposes — e. g. the sheaves
on any scattered space form a scattered topos.
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Canonical choices of the modality
Scattered toposes

Theorem. For an elementary topos E , the following are
equivalent:

(i) E is scattered, i. e. (τp→ p)→ p holds in E ;
(ii) The Casari schema ∀p((ϕ→ ∀pϕ)→ ∀pϕ)→ ∀pϕ holds in

E ;
(iii) (∀x¬¬ϕ(x))→ ¬¬∀xϕ(x) holds in every closed subtopos of

E .



Temporal intuitionistic logic
tHC

The temporal Heyting Calculus tHC results from adding to
mHC one more modal operator 3, with additional axioms

p→ 23p;
32p→ p;
3(p ∨ q)→ (3p ∨3q);
3⊥ → ⊥

and an additional rule
p→ q

3p→ 3q
.



Temporal intuitionistic logic
tHC

In the algebraic semantics, this corresponds to having a left
adjoint to τ : H → H.

That is, an operator τ: H → H such that h 6 τ h′ if and only if

τh 6 h′.

If such an adjoint exists on a coderivative algebra (P(X), τ )
corresponding to a space X, then one can show that the
topology on X is the Alexandroff topology for some preorder on
X (namely, for the specialization preorder).

For (O(X), τ ) existence of the adjoint is less stringent. There
are “almost Alexandroff” spaces with this property which are
not Alexandroff.
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Temporal intuitionistic logic
tHC

A simple example: the real line R with the topology for which
the only open sets are the open rays (r,∞) for −∞ 6 r 6∞.

More generally, if H is a complete bi-Heyting algebra then its
canonical coderivative operator τH given by

τH(h) =
∧{

h′ ∨ (h′ → h) | h′ ∈ H
}

has a left adjoint τH◦ , where H◦ is H with the order reversed.
There are still more general spaces with this property. The
(probably) simplest Heyting algebra which is not bi-Heyting is
given by > = a0 > a1 > a2 > a3 > ... and
b0 > b1 > b2 > b3 > ... > ⊥, with an > bn for each n. It is the
algebra of open sets of a space, so has a canonical
coderivative operator τ . The left adjoint τto τ is given by

τan = τbn = bn+1.
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