Derived Semidistributive Lattices

Luigi Santocanale^{*} Laboratoire d'Informatique Fondamentale de Marseille Université de Provence

email: luigi.santocanale@lif.univ-mrs.fr

January 25, 2007

Let $\mathbb{C}(L)$ denote the set of covers of a poset $L: \gamma \in \mathbb{C}(L)$ if and only $\gamma = (\gamma_0, \gamma_1) \in L \times L$ and the interval $\{x \mid \gamma_0 \leq x \leq \gamma_1\}$ is a two elements poset. If L is a lattice then there is a natural ordering of $\mathbb{C}(L): \gamma \leq \delta$ if and only if $\gamma_0 \leq \delta_0, \gamma_1 \not\leq \delta_0$, and $\gamma_1 \leq \delta_1$. That is, $\gamma \leq \delta$ if and only if the cover γ transposes up to δ .

For $\alpha \in \mathbb{C}(L)$ let $\mathbb{C}(L, \alpha)$ denote the component of the poset $\mathbb{C}(L)$ connected to α . For example, if L is finite join semidistributive and $\alpha = (j_*, j)$ for a join irreducible j and its unique lower cover j_* , then $\mathbb{C}(L, \alpha) = \{\beta \mid \alpha \leq \beta\}$. The main result we wish to present is the following:

Theorem 1. If L is a finite semidistributive lattice and $\alpha \in \mathbb{C}(L)$, then $\mathbb{C}(L, \alpha)$ is a semidistributive lattice.

We call $\mathbb{C}(L, \alpha)$ the semidistributive lattice derived from L and α . Theorem 1 can be lifted to bounded lattices:

Theorem 2. If L is a finite bounded lattice and $\alpha \in \mathbb{C}(L)$, then $\mathbb{C}(L, \alpha)$ is a bounded lattice.

We are interested in the explicit computation of semidistributive lattices derived from the Newman lattices of [1]. To this goal, let S_n be the permutohedron on n letters (i.e., the weak Bruhat order on permutations of n), and let T_n be the associahedron on n + 1 letters (i.e., binary trees with n + 1 leaves and ninternal nodes).

Proposition 3. Let a be an atom of S_n (resp. of T_n) and consider the cover $\alpha = (\perp, a)$. The following relations hold (up to isomorphism) for $n \geq 2$:

$$\mathbb{C}(\mathcal{S}_n, \alpha) = \mathcal{S}_{n-1}, \qquad \qquad \mathbb{C}(\mathcal{T}_n, \alpha) = \mathcal{T}_{n-1}$$

^{*}Postal Address: LIF, Centre de Mathématiques et Informatique, 39 rue Joliot-Curie - F-13453 Marseille Cedex13, France.

The Proposition above shows that $\mathbb{C}(L, \alpha)$ does not depend on the choice of the atom a for L either S_n or \mathcal{T}_n . It is possible, on the other hand, to exhibit a multinomial lattice – not a complemented lattice – and two distinct atoms giving rise to non isomorphic derived lattices.

It might be conjectured that the lattice $\mathbb{C}(L,\alpha)$ is related to the quotient lattice $L/\theta(\alpha_0, \alpha_1)$, where $\theta(\alpha_0, \alpha_1)$ is the congruence generated by the pair (α_0, α_1) . Proposition 3 shows that these lattices are not in general isomorphic. Using the characterization of the join dependency relation in permutohedra, see [8, 3.10], it is relatively easy to argue that

$$\mathcal{S}_n/\theta_i = \mathcal{S}_i \times \mathcal{S}_{n-i}$$

where i = 1, ..., n - 1 and $\theta_i = \theta(\bot, (i, i + 1))$.

These results are part of a general investigation relating rewrite systems to lattices, following [7] and [1]. The examples at hand have directed us to consider join semidistributive lattices, i.e. lattices satisfying the Horn sentence

$$x \lor y = x \lor z$$
 implies $x \lor (y \land z) = x \lor y$.

There are already many characterization of finite join semidistributive lattices, see for example [4] and [5, Theorem 2.56]. Proposition 4, which is a refinement of the latter characterization, allow us to derive Theorem 1.

To state the Proposition, remark that the projections $(\cdot)_i : \mathbb{C}(L) \longrightarrow L$, sending $\gamma \in \mathbb{C}(L)$ to γ_i , i = 0, 1, are order preserving. An order preserving function $f : P \longrightarrow Q$ is said to create pullbacks if whenever $y, z \leq w \in P$ and the meet $x = f(y) \wedge f(z)$ exists in Q, then there exists a unique $x' \in P$ such that f(x') = x, and moreover $x' = y \wedge z$.

Proposition 4. A finite lattice is join semidistributive if and only if the projection $(\cdot)_0 : \mathbb{C}(L) \longrightarrow L$ creates pullbacks.

Consideration of pullbacks, i.e. meets of the form $x \wedge y$ where x, y have an upper bound, is suggested by recent work on Cayley lattices of Coxeter groups. We derive Theorem 2 by means of a new characterization – Proposition 6 – of finite lower bounded lattices. The characterization relies on the tools used in [2] to prove that \mathcal{HH} lattices are bounded.

A hat in a finite lattice L is a triple $(x, \delta_1, \delta_0) \in L^3$ such that $x \neq \delta_0$ and $(x, \delta_1), (\delta_0, \delta_1) \in \mathbb{C}(L)$. If L is join semidistributive, then there exists a unique $\gamma_1 \in L$ such that $x \wedge \delta_0 \prec \gamma_1 \leq x$. Let $\gamma = (x \wedge \delta_0, \gamma_1)$ and $\delta = (\delta_0, \delta_1)$, we denote this relation by $\gamma \prec^x \delta$, since the covers of the poset $\mathbb{C}(L)$ have exactly this form (provided L is join semidistributive). Note also that γ_0 is the pullback of the hat (x, δ_1, δ_0) .

Dually, an *antihat* is a triple $(x, \gamma_0, \gamma_1) \in L^3$ such that $(\gamma_0, x), (\gamma_0, \gamma_1) \in \mathbb{C}(L)$ and $x \neq \gamma_1$. If L is join semidistributive, then there exists a unique $\delta_0 \in L$ such that $x \leq \delta_0 \prec x \lor \gamma_1$. Let $\gamma = (\gamma_0, \gamma_1)$ and $\delta = (\delta_0, x \lor \gamma_1)$, and note this relation by $\gamma \xrightarrow{x} \delta$. Observe that $\gamma \xrightarrow{x} \delta$ implies $\gamma < \delta$ but this might not be a cover.

A facet is an interval of the form $[\gamma_0, \delta_1]$, where $\gamma \prec^x \delta$ or $\gamma \xrightarrow{x} \delta$.

Definition 5. Let *L* be a finite join semidistributive lattice. A function $f : \mathbb{C}(L) \longrightarrow \mathbb{N}$ is:

- (i) a strict lower facet labeling if $f(\delta) = f(\gamma) < f(\epsilon)$ whenever $\gamma \prec^x \delta$ and $\gamma_1 \leq \epsilon_0 \prec \epsilon_1 \leq x$.
- (ii) a strict upper facet labeling if $f(\delta) = f(\gamma) < f(\epsilon)$ whenever $\gamma \xrightarrow{x} \delta$ and $x \leq \epsilon_0 \prec \epsilon_1 \leq \delta_0$.
- (iii) a *strict facet labeling* if it is both a strict lower facet labeling and a strict upper facet labeling.

Proposition 6. A finite join semidistributive lattice is lower bounded if and only if it has a strict facet labeling.

Among the existing characterizations of finite lower bounded lattices, see for example [5, Corollary 2.39, Theorem 2.43] or [6, I.2], Proposition 6 has already shown its use for lattices of combinatorial presentation [2, 3] and, we recall, it is the tool by which Theorem 2 is derived.

References

- M. K. Bennett and G. Birkhoff. Two families of Newman lattices. Algebra Universalis, 32(1):115–144, 1994.
- [2] N. Caspard, C. Le Conte de Poly-Barbut, and M. Morvan. Cayley lattices of finite Coxeter groups are bounded. Adv. in Appl. Math., 33(1):71–94, 2004.
- [3] N. Caspard and C. Le Conte Poly-Barbut. Tamari lattices are bounded: a new proof. Technical Report TR-2004-03, LACL, Université Paris XII, 2004.
- [4] B. A. Davey, W. Poguntke, and I. Rival. A characterization of semidistributivity. Algebra Universalis, 5:72–75, 1975.
- [5] R. Freese, J. Ježek, and J. B. Nation. Free lattices, volume 42 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1995.
- [6] G. Grätzer and F. Wehrung. A survey of tensor products and related constructions in two lectures. Algebra Universalis, 45:117–134, 2001.
- [7] M. H. A. Newman. On theories with a combinatorial definition of "equivalence". Ann. of Math. (2), 43:223–243, 1942.
- [8] L. Santocanale. Congruences of multinomial lattices. arXiv:math. CO/0510098, October 2005.