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This talk

Simpson, Plotkin gave sufficient conditions for unique
existence (in a category) of a uniform parameterized
fixpoint operators in terms of existence of bifree algebras
of certain functors

Uniformity is a strong dinaturality condition

We use a Yoneda-like lemma about initial algebras and
strong dinaturality to analyse the fine structure of their
proof



Outline

Strong dinaturality and Yoneda-like lemma for initial
algebras

Uniform parameterized fixpoint operators
what they are and their unique existence

Guarded recursion operators (only mention)



From natural to strong dinatural transformations

Dinaturality and strong dinaturality are
two generalizations of natural transformations from
covariant to mixed-variant functors
with components only defined for the diagonal of the
domain.

Correspond to the idea of polymorphic functions with
types where the universally quantified type variable may
occur both positively and negatively.



Dinatural transformations

A dinatural transformation between H , K ∈ Cop ×C→ E
is given by,
for any X ∈ |C|, a map ΘX ∈ E(H(X , X ), K (X , X )) such
that, for any f ∈ C(X , X ′), the following hexagon
commutes in E:

H(X , X )
ΘX // K(X , X )

K(X ,f )

))TTTTTT

H(X ′, X )

H(f ,X ) 55jjjjjj

H(X ′,f )
))TTTTTT K(X , X ′)

H(X ′, X ′)
ΘX ′

// K(X ′, X ′)
K(f ,X ′)

55jjjjjj

Dinaturals appear, e.g., in coend and ends.



Strong dinatural transformations

A strongly dinatural transformation between
H , K ∈ Cop × C→ E is given by,
for any X ∈ |C|, a map ΘX ∈ E(H(X , X ), K (X , X )) such
that,
for any map f ∈ C(X , X ′) and any span (W , p, p′) on
(X , X ′), if the square in the following diagram commutes
in E, then so does the hexagon:

H(X , X )
H(X ,f )

))TTTTTT
ΘX // K(X , X )

K(X ,f )

))TTTTTT

W

p 66mmmmmmm

p′ ((QQQQQQQ H(X , X ′) ⇒ K(X , X ′)

H(X ′, X ′)
H(f ,X ′)

55jjjjjj

ΘX ′
// K(X ′, X ′)

K(f ,X ′)

55jjjjjj

If E has pullbacks (e.g., Set), it suffices to require that
the outer hexagon commutes for (W , p, p′) the chosen
pullback of the cospan (H(X , X ′), H(X , f ), H(f , X ′)).



No perfect world!

Dinaturals not generally compose, so mixed-variant
functors and dinatural transformations do not form a
category.
But, if E is Cartesian closed, this “non-category” also is!

Strong dinaturals compose, mixed-variant functors from
C to E and strongly dinatural transformations form a
category. Denote it [C, E]sd.
But Cartesian closedness of E does not imply that
[C, E]sd is Cartesian closed.



Recall the Yoneda lemma

Let C be a locally small category, C ∈ |C| an object and
K ∈ C→ Set a functor.

Then
[C,Set](C(C ,−), K ) ∼= K C

Θ 7→ ΘC idC

λX λk K k x ←[ x

(so [C,Set](C(C ,−), K ) is, in fact, a set too).

This isomorphism is natural in C .



Yoneda lemma for initial algebras

Let C be a locally small category, F ∈ C→ C a functor
with an initial algebra (which we denote (µ F , inF )) and
K ∈ C→ Set a functor (whose padding into a
mixed-variant functor we denote also by K ).

Then

[C,Set]sd(C(F−,−), K ) ∼= K (µ F )
Θ 7→ Θµ F inF

λX λk K (foldF ,X k) x ←[ x

(so [C,Set]sd(C(F−,−), K ) is, in fact, a set too).

This isomorphism is natural in F to the extent that initial
algebras exist in C.



Most important special case

If KX =df C(A, X ), for A ∈ |C| an object (e.g., A =df 1),
we get

[C,Set]sd(C(F−,−), C(A,−)) ∼= C(A, µ F )
Θ 7→ Θµ F inF

λX λk K (foldF ,X k) ◦ x ←[ x

Compare this to the “impredicative encoding” of
inductive types:

∀X .(F X ⇒ X )⇒ X = µ F



Most important special case (ctd)

A strong dinatural between C(−,−) and C(A,−) is,
for any X , a function ΘX ∈ C(F X , X )→ C(A, X ), such
that, for any f ∈ C(X , X ′), if the square below
commutes, so does the triangle:

F X

F f

��

k // X

f

��

Xf

��
⇒ A

ΘX k 88pppppp

ΘX ′ k′ &&MMMMMM

F X ′ k′
// X X ′

The condition for dinaturality is weaker: for any
f ∈ C(X , X ′) and h ∈ C(FX ′, X ), if the triangles on the
left commute, then so does the triangle on the right.

F X

F f

��

k // X

f

��

Xf

��
⇒ A

ΘX k 88pppppp

ΘX ′ k′ &&MMMMMM

F X ′ k′
//

h

??���������
X X ′



Parameterized fixpoint operators

Assume given a category D with finite products.

A parameterized fixpoint-like operator on D is given by,
for any X , Y ∈ |D|, a function

fixX ,Y ∈ D(X × Y , Y )→ D(X , Y )

A parameterized fixpoint operator on D is a
parameterized fixpoint-like operator fix on D such that
– for any f ∈ D(X , X ′) and k ′ ∈ D(X ′ × Y , Y ),

fix (k ′ ◦ (f × idY )) = fix k ′ ◦ f

(naturality);
– for any k ∈ D(X × Y , Y ),

fix k = k ◦ 〈idX , fix k〉

(parameterized fixpoint property).



Conway operators

A Conway operator on D is a parameterized fixpoint
operator fix on D with the further properties that
– for any f ∈ D(X × Y , Y ′) and h ∈ D(X × Y ′, Y ),

f ◦ 〈idX , fix (h ◦ 〈fst, f 〉)〉 = fix (f ◦ 〈fst, h〉)

(parameterized dinaturality);
– for any k ∈ D((X × Y )× Y , Y ),

fix (k ◦ 〈idX×Y , sndX ,Y 〉) = fix (fix k)

(diagonal property).

Parameterized dinaturality implies the parameterized
fixpoint property, so the latter condition becomes
redundant for Conway operators.



Uniformity

Assume also given
a category C with finite products and the same objects as
D
together with an identity-on-objects functor J ∈ C→ D
preserving the finite products of C strictly.

A parameterized fixpoint-like operator fix on D is said to
be uniform wrt. J , if
– for any f ∈ C(Y , Y ′), k ∈ D(X × Y , Y ) and
k ′ ∈ D(X × Y ′, Y ′),

J f ◦ k = k ′ ◦ (idX × J f ) ⇒ J f ◦ fix k = fix k ′

.



A specific concrete situation of interest

Assume D arising as the coKleisli category of some
comonad (D, ε, (−)†) on C.

We can then use as J the right adjoint in its coKleisli
setting.

Example:
– C =df Cppo⊥ (ω-complete pointed partial orders and
strict ω-continuous functions)
– D =df (−)⊥ (the lifting functor)
– D ∼= Cppo (ω-complete pointed partial orders and all
ω-continuous functions)



Uniform fixpoint-like operators, equivalently

In terms of C, a parameterized fixpoint-like operator is
now, for any X , Y ∈ |C|, a function

fixX ,Y ∈ C(D (X × Y ), Y )→ C(D X , Y )

Uniformity means that,
for any f ∈ C(Y , Y ′), k ∈ C(D (X × Y ), Y ) and
k ′ ∈ C(D (X × Y ′), Y ′),

f ◦ k = k ′ ◦ D (idX × f ) ⇒ f ◦ fix k = fix k ′

This the strong dinaturality condition of fix!

Therefore, by Yoneda, if all functors D (X ×−) have
initial algebras,
a uniform param. fixp.-like operator fix is the same as,
for any X ∈ |C|, a map

fixX ∈ C(DX , µ(D (X ×−)))



Uniform param. fixpoint operators, equivalently
In terms of C, the conditions on param. fixp. oper.s are:

for any f ∈ C(D X ,X ′) and k ′ ∈ C(D(X ′ × Y ),Y ),

fix (k ′ ◦ 〈f ◦ D fst, εY ◦ D snd〉†) = fix k ′ ◦ f †

for any k ∈ C(D (X × Y ),Y ),

fix k = k ◦ 〈εX , fix k〉†

If all functors D (X ×−) ∈ C→ C have initial algebras,
a uniform param. fixpoint operator fix is the same as,
for any X ∈ |C|, a map fixX ∈ C(DX , µ(D (X ×−))) s.t.

for any f ∈ C(D X ,X ′),

µ(〈f ◦ D fst, ε− ◦ D snd〉†) ◦ fixX = fixX ′ ◦ f †

for any X ∈ |C|,

fixX = inD (X×−) ◦ 〈εX , fixX 〉†



Some intuition (?)

D (X × D X )

D (X×fixX )

��

D X

fixX

��

〈εX ,idD X 〉†oo

D (X × µ(D (X ×−))) in //

D (X×fold k)
��

µ(D (X ×−))

fold k

��
D (X × Y )

k
// Y



Conway operators, equivalently

In terms of C, the conditions on Conway operators are:
for any f ∈ C(D (X × Y ),Y ′), h ∈ C(D (X × Y ′),Y ),

f ◦〈εX , fix (h◦〈εX ◦D fst, f 〉†)〉† = fix (f ◦〈εX ◦D fst, h〉†)
for any k ∈ C(D ((X × Y )× Y ),Y ),

fix (k ◦ D 〈idX×Y , sndX ,Y 〉) = fix (fix k)

If all functors D (X ×−), D (X × D (X ×−)),
D ((X ×−)×−) ∈ C→ C have initial algebras,
a uniform Conway operator is the same as,
for any X ∈ |C|, a map fixX ∈ C(DX , µ(D (X ×−)))
satisfying the conditions of the previous slide, but also:

for any X ∈ |C|,
in◦〈εX , fold (〈εX◦D fst, in〉†)◦fix〉† = fold (in◦〈εX◦D fst, id〉†)◦fix

for any X ∈ |C|,
fold (in ◦ D 〈id, snd〉) ◦ fix = fold (fold in ◦ fix) ◦ fix



Unique existence conditions

If every functor D(X ×−) ∈ C→ C has a bifree algebra,
then D has a unique uniform wrt. J parameterized
fixpoint operator.

If all functors
D (X×−), D (X×D (X×−)), D ((X×−)×−) ∈ C→ C
have bifree algebras, then D has a unique uniform wrt. J
Conway operator.



Conclusion

Same technique applies to guarded recursion operators.

The Yoneda-like lemma stages the invocations of the
initial algebra resp. bifree algebra existence assumptions
in Simpson and Plotkin’s theorems:
initial algebra existence – equivalent formulation
bifree algebra existence – the equivalent map exists
uniquely


