Common patterns for order and metric fixed point theorems

Pawel Waszkiewicz

Jagiellonian University

Brno, VIII.2010

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

There are plenty of reasons why we can forget the distinction between order and metric fixpoint theorems.

(The usual suspects: A. Einstein or M. Twain)

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

(Knaster-Tarski) An order-preserving map on a complete lattice has the least and the greatest fixed point.

(Banach) A contraction on a complete metric space has a unique fixed point.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

(Knaster-Tarski) An order-preserving map on a complete lattice has the least and the greatest fixed point.

(Banach) A contraction on a complete metric space has a unique fixed point.

OUR GOAL: Show that both are instances of a single theorem with a constructive proof.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Order vs. metric fixpoints

(Knaster-Tarski) An order-preserving map $f: X \to X$ on a complete lattice has the least and the greatest fixed point.

Proof idea: Iterate f:

$$\perp$$
, $f(\perp)$, $f^2(\perp)$, $f^3(\perp)$, ...

and eventually you will reach the least fixed point. Flip the lattice to get the greatest one.

Order vs. metric fixpoints

(Knaster-Tarski) An order-preserving map $f: X \to X$ on a complete lattice has the least and the greatest fixed point.

Proof idea: Iterate f:

$$\perp$$
, $f(\perp)$, $f^2(\perp)$, $f^3(\perp)$, ...

and eventually you will reach the least fixed point. Flip the lattice to get the greatest one.

(Banach) A contraction $f: X \to X$ on a complete metric space has a unique fixed point.

Proof idea: Iterate f:

$$x, f(x), f^{2}(x), f^{3}(x), \ldots$$

and no matter what $x \in X$ you started with, eventually you will reach the same fixed point.

Unification

(Lawvere 1973) Orders and metric spaces are instances of quantale-enriched categories.

(Edalat & Heckmann 1998) A topology of a complete metric space is homeomorphic to a subspace Scott topology on maximal elements of a continuous directed-complete partial order.

・ロト ・ 日 ・ モート ・ 田 ・ うへの

A metric on a set X:

$$d_X:X\times X\to [0,\infty)$$

We use it as:

 $d_X(x, y), d_X(y, z), \ldots$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A metric on a set X:

$$d_X: X \times X \to [0,\infty)$$

We use it as:

 $d_X(x,y), d_X(y,z), \ldots$

A metric on a set X:

 $X: X \times X \to [0,\infty)$

We use it as:

 $X(x,y), X(y,z), \ldots$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A metric on a set X:

 $X: X \times X \to [0,\infty)$

We use it as:

 $X(x, y), X(y, z), \ldots$

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

We complete the codomain!

A metric on a set X:

 $X: X \times X \to [0,\infty)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We complete the codomain!

A metric on a set X:

 $X\colon X\times X\to [0,\infty]$

We complete the codomain!

A metric on a set X:

 $X\colon X\times X\to [0,\infty]$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X:

 $X: X \times X \to [0, \infty]$ X(x, y) = 0 iff x = yX(x, y) = X(y, x) $X(x, y) \leq X(x, z) + X(z, y)$

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X:

$$X: X \times X \to [0, \infty]$$
$$X(x, y) = X(y, x) = 0 \text{ iff } x = y$$
$$X(x, y) = X(y, x)$$
$$X(x, y) \leq X(x, z) + X(z, y)$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X:

 $X: X \times X \to [0, \infty]$ X(x, y) = X(y, x) = 0 iff x = yX(x, y) = X(y, x) $X(x, y) \leq X(x, z) + X(z, y)$

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X:

 $X : X \times X \to [0, \infty]$ X(x, y) = X(y, x) = 0 implies x = yX(x, y) = X(y, x) = 0 is implied by x = yX(x, y) = X(y, x) $X(x, y) \leq X(x, z) + X(z, y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X:

 $X : X \times X \to [0, \infty]$ X(x, y) = X(y, x) = 0 implies x = yX(x, y) = X(y, x) = 0 is implied by x = yX(x, y) = X(y, x) $X(x, y) \leq X(x, z) + X(z, y)$

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X:

 $X \colon X \times X \to [0, \infty]$ X(x, y) = X(y, x) = 0 implies x = yX(x, x) = 0X(x, y) = X(y, x) $X(x, y) \leq X(x, z) + X(z, y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X:

$$X \colon X \times X \to [0, \infty]$$
$$X(x, y) = X(y, x) = 0 \text{ implies } x = y$$
$$X(x, x) = 0$$
$$X(x, y) = X(y, x)$$
$$X(x, y) \leq X(x, z) + X(z, y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X:

 $X \colon X \times X \to [0, \infty]$ X(x, y) = X(y, x) = 0 implies x = yX(x, x) = 0X(x, y) = X(y, x) $X(x, y) \leq X(x, z) + X(z, y)$

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X:

 $X: X \times X \to [0, \infty]$ X(x, y) = X(y, x) = 0 implies x = yX(x, x) = 0X(x, y) = X(y, x) $X(x, y) \leq X(x, z) + X(z, y)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X:

 $X: X \times X \to [0, \infty]$ X(x, y) = X(y, x) = 0 implies x = yX(x, x) = 0good bye! $X(x, y) \leq X(x, z) + X(z, y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X:

$$X: X \times X \to [0, \infty]$$

 $X(x, y) = X(y, x) = 0$ implies $x = y$
 $X(x, x) = 0$

$$X(x,y) \leqslant X(x,z) + X(z,y)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A generalized metric on a set X: $X: X \times X \rightarrow [0, \infty]$ X(x, y) = X(y, x) = 0 implies x = y X(x, x) = 0 $X(x, y) \leq X(x, z) + X(z, y)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

A generalized metric on a set X:

$$X: X \times X \rightarrow [0, \infty]$$

 $X(x,y) = X(y,x) = 0$ implies $x = y$
 $X(x,x) = 0$
 $X(x,y) \leq X(x,z) + X(z,y)$

DEFINITION

$$x \leq _X y$$
 iff $X(x,y) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A generalized metric on a set X: $X: X \times X \rightarrow [0, \infty]$ X(x, y) = X(y, x) = 0 implies x = y X(x, x) = 0 $X(x, y) \leq X(x, z) + X(z, y)$

DEFINITION

 $x \leq _X y$ iff X(x, y) = 0.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

A generalized metric on a set X: $X: X \times X \rightarrow [0, \infty]$ X(x, y) = X(y, x) = 0 implies x = y X(x, x) = 0 $X(x, y) \leq X(x, z) + X(z, y)$

DEFINITION

$$x \leq _X y$$
 iff $X(x,y) = 0$.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

 $x \leqslant_X y$ and $y \leqslant_X x$ imply x = y

A generalized metric on a set X:

$$X: X \times X \rightarrow [0, \infty]$$

 $X(x,y) = X(y,x) = 0$ implies $x = y$
 $X(x,x) = 0$
 $X(x,y) \leq X(x,z) + X(z,y)$

DEFINITION

$$x \leq _X y$$
 iff $X(x,y) = 0$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 $x \leqslant_X y$ and $y \leqslant_X x$ imply x = y

A generalized metric on a set X:

$$X: X \times X \rightarrow [0, \infty]$$

 $X(x,y) = X(y,x) = 0$ implies $x = y$
 $X(x,x) = 0$
 $X(x,y) \leq X(x,z) + X(z,y)$

DEFINITION

$$x \leq _X y$$
 iff $X(x,y) = 0$.

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

 $x \leqslant_X y$ and $y \leqslant_X x$ imply x = y

A generalized metric on a set X:

$$X: X \times X \rightarrow [0, \infty]$$

 $X(x, y) = X(y, x) = 0$ implies $x = y$
 $X(x, x) = 0$
 $X(x, y) \leq X(x, z) + X(z, y)$

DEFINITION

$$x \leq _X y$$
 iff $X(x,y) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$x \leqslant_X y$$
 and $y \leqslant_X x$ imply $x = y$
 $x \leqslant_X x$

A generalized metric on a set X:

$$X: X \times X \rightarrow [0, \infty]$$

 $X(x,y) = X(y,x) = 0$ implies $x = y$
 $X(x,x) = 0$
 $X(x,y) \leq X(x,z) + X(z,y)$

DEFINITION

$$x \leq _X y$$
 iff $X(x,y) = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$x \leqslant_X y$$
 and $y \leqslant_X x$ imply $x = y$
 $x \leqslant_X x$

```
A generalized metric on a set X:

X: X \times X \rightarrow [0, \infty]

X(x, y) = X(y, x) = 0 implies x = y

X(x, x) = 0

X(x, y) \leq X(x, z) + X(z, y)
```

DEFINITION

$$x \leq _X y$$
 iff $X(x,y) = 0$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

$$x \leqslant_X y$$
 and $y \leqslant_X x$ imply $x = y$
 $x \leqslant_X x$

A generalized metric on a set X: $X: X \times X \rightarrow [0, \infty]$ X(x, y) = X(y, x) = 0 implies x = y X(x, x) = 0 $X(x, y) \leq X(x, z) + X(z, y)$

DEFINITION

$$\begin{aligned} x \leqslant_X y & \text{iff} \quad X(x,y) = \\ x \leqslant_X y & \text{and} \quad y \leqslant_X x \quad \text{imply} \quad x = y \\ x \leqslant_X x \\ x \leqslant_X z \quad \text{and} \quad z \leqslant_X y \quad \text{imply} \quad x \leqslant_X y \end{aligned}$$

0.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

A generalized metric on a set X: $X: X \times X \rightarrow [0, \infty]$ X(x, y) = X(y, x) = 0 implies x = y X(x, x) = 0 $X(x, y) \leq X(x, z) + X(z, y)$

DEFINITION

$$\begin{aligned} & x \leqslant_X y \quad \text{iff} \quad X(x,y) = \\ & x \leqslant_X y \text{ and } y \leqslant_X x \quad \text{imply} \quad x = y \\ & x \leqslant_X x \\ & x \leqslant_X z \text{ and } z \leqslant_X y \quad \text{imply} \quad x \leqslant_X y \end{aligned}$$

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ = 三 - のへで

0.

Unification a la Lawvere

$$\begin{array}{l} X(x,y) = X(y,x) = \ 0 \ \text{implies} \ x = y \\ X(x,x) = 0 \\ X(x,y) \leqslant X(x,z) + X(z,y) \end{array}$$

$$x \leqslant_X y$$
 and $y \leqslant_X x$ imply $x = y$
 $x \leqslant_X x$
 $x \leqslant_X z$ and $z \leqslant_X y$ imply $x \leqslant_X y$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Unification a la Lawvere

$$\begin{array}{l} X(x,y) = X(y,x) = \ 0 \ \text{implies} \ x = y \\ X(x,x) = 0 \\ X(x,y) \leqslant X(x,z) + X(z,y) \end{array}$$

$$x \leqslant_X y$$
 and $y \leqslant_X x$ imply $x = y$
 $x \leqslant_X x$
 $x \leqslant_X z$ and $z \leqslant_X y$ imply $x \leqslant_X y$

CONCLUSION: \leq_X is a partial order.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Unification a la Lawvere

$$\begin{array}{l} X(x,y) = X(y,x) = \ 0 \ \text{implies} \ x = y \\ X(x,x) = 0 \\ X(x,y) \leqslant X(x,z) + X(z,y) \end{array}$$

$$x \leqslant_X y$$
 and $y \leqslant_X x$ imply $x = y$
 $x \leqslant_X x$
 $x \leqslant_X z$ and $z \leqslant_X y$ imply $x \leqslant_X y$

CONCLUSION: \leq_X is a partial order.

BETTER CONCLUSION:

Replace $[0,\infty]$ by $\{0,\infty\}$ to switch from metrics to orders. Replace $\{0,\infty\}$ by $[0,\infty]$ to switch from orders to metrics.

Let \mathcal{Q} be a complete lattice with + and 0.

A *Q*-category is a set X with a structure $X : X \times X \rightarrow Q$ satisfying:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$egin{aligned} X(x,y) &= X(y,x) = \ 0 \ ext{implies} \ x &= y, \ X(x,x) &= 0, \ X(x,y) &\leqslant X(x,z) + X(z,y). \end{aligned}$$

Let Q be a complete lattice with + and 0.

A *Q*-category is a set X with a structure $X : X \times X \rightarrow Q$ satisfying:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$egin{aligned} X(x,y) &= X(y,x) = \ 0 \ ext{implies} \ x &= y, \ X(x,x) &= 0, \ X(x,y) &\leqslant X(x,z) + X(z,y). \end{aligned}$$

For Q = 2 we recover partial orders.

Let Q be a complete lattice with + and 0.

A *Q*-category is a set X with a structure $X : X \times X \rightarrow Q$ satisfying:

$$egin{aligned} X(x,y) &= X(y,x) = \ 0 \ ext{implies} \ x &= y, \ X(x,x) &= 0, \ X(x,y) &\leqslant X(x,z) + X(z,y). \end{aligned}$$

For Q = 2 we recover partial orders. For $Q = [0, \infty]$ we recover metric spaces.

Let Q be a complete lattice with + and 0.

A *Q*-category is a set X with a structure $X : X \times X \rightarrow Q$ satisfying:

ション ふゆ くち くち くち くち

$$egin{aligned} X(x,y) &= X(y,x) = \ 0 \ ext{implies} \ x &= y, \ X(x,x) &= 0, \ X(x,y) &\leqslant X(x,z) + X(z,y). \end{aligned}$$

For Q = 2 we recover partial orders. For $Q = [0, \infty]$ we recover metric spaces. But other choices of Q are possible too.

A Q-functor between Q-categories is a function $f: X \to Y$ satisfying:

 $Y(fx, fy) \leq X(x, y).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A Q-functor between Q-categories is a function $f: X \to Y$ satisfying:

$$Y(f_X,f_Y) \leqslant X(x,y).$$

2-functors are order-preserving maps.

A *Q*-functor between *Q*-categories is a function $f: X \to Y$ satisfying:

$$Y(fx, fy) \leqslant X(x, y).$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

2-functors are order-preserving maps.

 $[0,\infty]$ -functors are non-expansive maps between metric spaces.

A *Q*-functor between *Q*-categories is a function $f: X \rightarrow Y$ satisfying:

$$Y(fx, fy) \leqslant X(x, y).$$

2-functors are order-preserving maps. $[0, \infty]$ -functors are non-expansive maps between metric spaces.

 \mathcal{Q} -functors of type $X \to Y$ form a \mathcal{Q} -category when considered with the structure:

$$Y^X(f,g) := \sup_{x \in X} Y(f_X,g_X).$$

from some N onwards, elements of the sequence are arbitrarily close to each other.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

from some N onwards, elements of the sequence are arbitrarily close to each other.

For Q = 2, $(x_n)_{n \in \omega}$ is eventually a chain.

from some N onwards, elements of the sequence are arbitrarily close to each other.

ション ふゆ くち くち くち くち

For Q = 2, $(x_n)_{n \in \omega}$ is eventually a chain. For $Q = [0, \infty]$, $(x_n)_{n \in \omega}$ is a Cauchy sequence.

from some N onwards, elements of the sequence are arbitrarily close to each other.

ション ふゆ くち くち くち くち

For Q = 2, $(x_n)_{n \in \omega}$ is eventually a chain. For $Q = [0, \infty]$, $(x_n)_{n \in \omega}$ is a Cauchy sequence. Consider a net $(x_i)_{i \in I}$ such that

from some N onwards, elements of the net are arbitrarily close to each other.

▲日 ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ● ●

For Q = 2, $(x_i)_{i \in I}$ is eventually a directed set. For $Q = [0, \infty]$, $(x_i)_{i \in I}$ is a Cauchy net.

We encode Cauchy nets/directed sets as maps of type $X^{op} \rightarrow Q$.

We encode Cauchy nets/directed sets as maps of type $X^{op} \rightarrow Q$. DEFINITION: An *ideal* on X is a map:

$$\phi(z) := \inf_{i \in I} \sup_{k \ge i} X(z, x_k)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

for some Cauchy net $(x_i)_{i \in I}$.

We encode Cauchy nets/directed sets as maps of type $X^{op} \rightarrow Q$. DEFINITION: An *ideal* on X is a map:

$$\phi(z) := \inf_{i \in I} \sup_{k \ge i} X(z, x_k)$$

for some Cauchy net $(x_i)_{i \in I}$.

FACT: Ideals are Q-functors from X^{op} to Q. Hence

$$\mathbb{I} X \hookrightarrow \widehat{X}, \quad ext{where} \quad \widehat{X} := \mathcal{Q}^{X^{op}}.$$

We encode Cauchy nets/directed sets as maps of type $X^{op} \rightarrow Q$. DEFINITION: An *ideal* on X is a map:

$$\phi(z) := \inf_{i \in I} \sup_{k \ge i} X(z, x_k)$$

for some Cauchy net $(x_i)_{i \in I}$.

FACT: Ideals are Q-functors from X^{op} to Q. Hence

$$\mathbb{I} X \hookrightarrow \widehat{X}, \quad ext{where} \quad \widehat{X} := \mathcal{Q}^{X^{op}}.$$

FACT: Ideals on X form a Q-category:

$$\mathbb{I}X(\phi,\psi) := \sup_{x \in X} (\psi x - \phi x).$$

Last slide about the setup

DEFINITION: A Q-category X is \mathbb{I} -complete if there exists a map $S \colon \mathbb{I}X \to X$ with

$$X(\mathcal{S}\phi, x) = \mathbb{I}X(\phi, X(-, x))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

for all $\phi \in \mathbb{I}X$ and $x \in X$.

DEFINITION: A Q-category X is \mathbb{I} -complete if there exists a map $S \colon \mathbb{I}X \to X$ with

$$X(\mathcal{S}\phi,x) = \mathbb{I}X(\phi,X(-,x))$$

for all $\phi \in \mathbb{I}X$ and $x \in X$.

IMPORTANT: Replacing I by $\widehat{(\cdot)}$ we have a notion of $\widehat{(\cdot)}$ -completeness. Replacing I by any suitable J we have a notion of J-completeness.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

I-complete 2-categories are directed-complete posets.

 $\mathbb{I}\text{-complete}$ 2-categories are directed-complete posets. $\widehat{(\cdot)}\text{-complete}$ 2-categories are complete lattices.

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

I-complete 2-categories are directed-complete posets. $\widehat{(\cdot)}$ -complete 2-categories are complete lattices. I-complete symmetric $[0, \infty]$ -categories are complete metric spaces.

・ロト ・ 日 ・ モート ・ 田 ・ うへの

I-complete 2-categories are directed-complete posets. $\widehat{(\cdot)}$ -complete 2-categories are complete lattices. I-complete symmetric $[0, \infty]$ -categories are complete metric spaces. $\widehat{(\cdot)}$ -complete symmetric $[0, \infty]$ -categories are complete metric spaces.

ション ふゆ くち くち くち くち

 $\label{eq:linear_line$

ション ふゆ くち くち くち くち

Still we have other choices of J and Q!

(Knaster-Tarski) An order-preserving map on a complete lattice has the least and the greatest fixed point.

(Banach) A contraction on a complete metric space has a unique fixed point.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

(Knaster-Tarski) An order-preserving map on a complete lattice has the least and the greatest fixed point.

(Banach) A contraction on a complete metric space has a unique fixed point.

OUR GOAL: Show that both are instances of a single theorem with a constructive proof.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Fixpoints again

(Knaster-Tarski) A 2-functor on a $(\widehat{\cdot})$ -complete 2-category has the least and the greatest fixed point.

(Banach) A contraction on a \mathbb{I} -complete $[0,\infty]$ -category has a unique fixed point.

Fixpoints again

(Knaster-Tarski) A 2-functor on a (\cdot) -complete 2-category has the least and the greatest fixed point.

(Banach) A contraction on a \mathbb{I} -complete $[0,\infty]$ -category has a unique fixed point.

BOTH FOLLOW FROM: A Q-functor $f: X \to X$ on a J-complete Q-category has a fixed point, providing the direct image Q-functor

 $f^*: JX \to JX$

$$f^*(\phi) := \inf_{z \in X} (\phi(z) + X(-, fz))$$

ション ふゆ くち くち くち くち

has a fixed point.

THEOREM A Q-functor $f: X \to X$ on a *J*-complete Q-category has a fixed point, providing that $f^*: JX \to JX$ has a fixed point ϕ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

THEOREM A Q-functor $f: X \to X$ on a *J*-complete Q-category has a fixed point, providing that $f^*: JX \to JX$ has a fixed point ϕ .

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Proof:

1. X is J-complete implies (X, \leq_X) is a dcpo.

THEOREM A Q-functor $f: X \to X$ on a *J*-complete Q-category has a fixed point, providing that $f^*: JX \to JX$ has a fixed point ϕ .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Proof:

- 1. X is J-complete implies (X, \leq_X) is a dcpo.
- 2. f is a Q-functor implies f is \leq_X -preserving.

THEOREM A Q-functor $f: X \to X$ on a *J*-complete Q-category has a fixed point, providing that $f^*: JX \to JX$ has a fixed point ϕ .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Proof:

- 1. X is J-complete implies (X, \leq_X) is a dcpo.
- 2. f is a Q-functor implies f is \leq_X -preserving.
- 3. f^* has a fixpoint ϕ , implies $\mathcal{S}\phi = \mathcal{S}f^*(\phi) \leqslant_X f(\mathcal{S}\phi)$.

THEOREM A Q-functor $f: X \to X$ on a *J*-complete Q-category has a fixed point, providing that $f^*: JX \to JX$ has a fixed point ϕ .

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Proof:

- 1. X is J-complete implies (X, \leq_X) is a dcpo.
- 2. f is a Q-functor implies f is \leq_X -preserving.
- 3. f^* has a fixpoint ϕ , implies $\mathcal{S}\phi = \mathcal{S}f^*(\phi) \leqslant_X f(\mathcal{S}\phi)$.
- Then we use Pataraia's proof of the fact that an order-preserving map on a dcpo has a least fixed point. QED.

THEOREM A Q-functor $f: X \to X$ on a *J*-complete Q-category has a fixed point, providing that $f^*: JX \to JX$ has a fixed point ϕ .

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

THEOREM A Q-functor $f: X \to X$ on a *J*-complete Q-category has a fixed point, providing that $f^*: JX \to JX$ has a fixed point ϕ .

► (Banach) Take J = I and φ = inf_n sup_{m≥n} X(-, f^mx₀). Any choice of x₀ gives the same φ, hence the fixed point is unique.

ション ふゆ くち くち くち くち

THEOREM A Q-functor $f: X \to X$ on a *J*-complete Q-category has a fixed point, providing that $f^*: JX \to JX$ has a fixed point ϕ .

(Banach) Take J = I and φ = inf_n sup_{m≥n} X(-, f^mx₀). Any choice of x₀ gives the same φ, hence the fixed point is unique.
 (Knaster-Tarski) take J = X.

ション ふゆ くち くち くち くち

THEOREM A Q-functor $f: X \to X$ on a *J*-complete Q-category has a fixed point, providing that $f^*: JX \to JX$ has a fixed point ϕ .

- ► (Banach) Take J = I and φ = inf_n sup_{m≥n} X(-, f^mx₀). Any choice of x₀ gives the same φ, hence the fixed point is unique.
- (Knaster-Tarski) take J = X̂. Since X is a complete lattice in the induced order, it has ⊥. Then take φ = inf sup X(-, f^m⊥) and get the least point of f.

THEOREM A Q-functor $f: X \to X$ on a *J*-complete Q-category has a fixed point, providing that $f^*: JX \to JX$ has a fixed point ϕ .

- ► (Banach) Take J = I and φ = inf_n sup_{m≥n} X(-, f^mx₀). Any choice of x₀ gives the same φ, hence the fixed point is unique.
- (Knaster-Tarski) take J = X̂. Since X is a complete lattice in the induced order, it has ⊥. Then take φ = inf sup X(-, f^m⊥) and get the least point of f. Repeat the same proof for X^{op} to obtain the greatest fixed point of f.

More fixpoints

(Bourbaki-Witt) An expanding map $f: X \to X$ on a dcpo X has a fixed point.

(James Caristi, 1976) Let $f: X \to X$ be an arbitrary map on a complete metric space. If there exists a l.s.c. map $\varphi: X \to [0, \infty)$ such that:

(*)
$$X(x, fx) + \varphi(fx) \leq \phi(x),$$

then f has a fixed point.

Remark: $f: X \to X$ is expanding iff $\forall x \in X \ (x \leq fx)$.

More fixpoints

(Bourbaki-Witt) An expanding map $f: X \to X$ on a dcpo X has a fixed point.

(James Caristi, 1976) Let $f: X \to X$ be an arbitrary map on a complete metric space. If there exists a l.s.c. map $\varphi: X \to [0, \infty)$ such that:

(*)
$$X(x, fx) + \varphi(fx) \leq \phi(x),$$

then f has a fixed point.

Remark: $f: X \to X$ is expanding iff $\forall x \in X \ (x \leq fx)$.

OUR GOAL: Show that both are instances of a single theorem that can have no constructive proof.

Unification a la Edalat & Heckmann

Edalat, A. and Heckmann, R. (1998) A computational model for metric spaces. *Theoretical Computer Science* **193**(1–2), pp. 53–73.

 $\begin{aligned} \mathbf{B}X &:= \{ \langle x, r \rangle \mid x \in X \text{ and } r \ge 0 \} \subseteq X \times \mathbb{R}_+ \\ \langle x, r \rangle \leqslant \langle y, s \rangle \quad \text{iff} \quad X(x, y) + s \leqslant r \\ X &\cong \{ \langle x, 0 \rangle \mid x \in X \} (= \max(\mathbf{B}X) \text{ providing } X \text{ is } T_1). \end{aligned}$

Unification a la Edalat & Heckmann

Edalat and Heckmann's construction works the same for \mathcal{Q} -categories. Therefore:

THEOREM

X is an I-complete Q-category iff $(\mathbf{B}X, \leqslant)$ is a dcpo.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ の Q @

(Nonsymmetric Caristi) Let $f: X \to X$ be an arbitrary map on a \mathbb{I} -complete $[0, \infty]$ -category. If there exists a l.s.c. map $\varphi: X \to [0, \infty)$ such that:

(*)
$$X(x, fx) + \varphi(fx) \leq \phi(x),$$

then f has a fixed point.

(Nonsymmetric Caristi) Let $f: X \to X$ be an arbitrary map on a \mathbb{I} -complete $[0, \infty]$ -category. If there exists a l.s.c. map $\varphi: X \to [0, \infty)$ such that:

(*)
$$X(x, fx) + \varphi(fx) \leq \phi(x),$$

then f has a fixed point.

1. φ is l.s.c. iff $Z := \{ \langle x, \varphi x \rangle \mid x \in X \} \subseteq \mathbf{B}X$ is a dcpo.

(Nonsymmetric Caristi) Let $f: X \to X$ be an arbitrary map on a \mathbb{I} -complete $[0, \infty]$ -category. If there exists a l.s.c. map $\varphi: X \to [0, \infty)$ such that:

(*)
$$X(x, fx) + \varphi(fx) \leq \phi(x),$$

ション ふゆ くち くち くち くち

then f has a fixed point.

1. φ is l.s.c. iff $Z := \{ \langle x, \varphi x \rangle \mid x \in X \} \subseteq \mathbf{B}X$ is a dcpo. 2. Moreover, (*) iff $\langle x, \varphi x \rangle \leq \langle Tx, \varphi(Tx) \rangle$ in BX.

(Nonsymmetric Caristi) Let $f: X \to X$ be an arbitrary map on a \mathbb{I} -complete $[0, \infty]$ -category. If there exists a l.s.c. map $\varphi: X \to [0, \infty)$ such that:

(*)
$$X(x, fx) + \varphi(fx) \leq \phi(x),$$

then f has a fixed point.

- 1. φ is l.s.c. iff $Z := \{ \langle x, \varphi x \rangle \mid x \in X \} \subseteq \mathbf{B}X$ is a dcpo.
- 2. Moreover, (*) iff $\langle x, \varphi x \rangle \leq \langle Tx, \varphi(Tx) \rangle$ in BX.
- 3. Hence (*) iff the map $\langle x, \varphi x \rangle \mapsto \langle Tx, \varphi(Tx) \rangle$ is expanding.

ション ふゆ くち くち くち くち

(Nonsymmetric Caristi) Let $f: X \to X$ be an arbitrary map on a \mathbb{I} -complete $[0, \infty]$ -category. If there exists a l.s.c. map $\varphi: X \to [0, \infty)$ such that:

(*)
$$X(x, fx) + \varphi(fx) \leq \phi(x),$$

then f has a fixed point.

- 1. φ is l.s.c. iff $Z := \{ \langle x, \varphi x \rangle \mid x \in X \} \subseteq \mathbf{B}X$ is a dcpo.
- 2. Moreover, (*) iff $\langle x, \varphi x \rangle \leq \langle Tx, \varphi(Tx) \rangle$ in BX.
- 3. Hence (*) iff the map $\langle x, \varphi x \rangle \mapsto \langle Tx, \varphi(Tx) \rangle$ is expanding.

4. Hence (Nonsymmetric Caristi) iff (Bourbaki-Witt).

(Nonsymmetric Caristi) Let $f: X \to X$ be an arbitrary map on a \mathbb{I} -complete $[0, \infty]$ -category. If there exists a l.s.c. map $\varphi: X \to [0, \infty)$ such that:

(*)
$$X(x, fx) + \varphi(fx) \leq \phi(x),$$

then f has a fixed point.

- 1. φ is l.s.c. iff $Z := \{ \langle x, \varphi x \rangle \mid x \in X \} \subseteq \mathbf{B}X$ is a dcpo.
- 2. Moreover, (*) iff $\langle x, \varphi x \rangle \leq \langle Tx, \varphi(Tx) \rangle$ in BX.
- 3. Hence (*) iff the map $\langle x, \varphi x \rangle \mapsto \langle Tx, \varphi(Tx) \rangle$ is expanding.
- 4. Hence (Nonsymmetric Caristi) iff (Bourbaki-Witt).
- 5. Moreover, Andrej Bauer proved that (Bourbaki-Witt) has no constructive proof.

(Nonsymmetric Caristi) Let $f: X \to X$ be an arbitrary map on a \mathbb{I} -complete $[0, \infty]$ -category. If there exists a l.s.c. map $\varphi: X \to [0, \infty)$ such that:

(*)
$$X(x, fx) + \varphi(fx) \leq \phi(x),$$

then f has a fixed point.

- 1. φ is l.s.c. iff $Z := \{ \langle x, \varphi x \rangle \mid x \in X \} \subseteq \mathbf{B}X$ is a dcpo.
- 2. Moreover, (*) iff $\langle x, \varphi x \rangle \leq \langle Tx, \varphi(Tx) \rangle$ in BX.
- 3. Hence (*) iff the map $\langle x, \varphi x \rangle \mapsto \langle Tx, \varphi(Tx) \rangle$ is expanding.
- 4. Hence (Nonsymmetric Caristi) iff (Bourbaki-Witt).
- 5. Moreover, Andrej Bauer proved that (Bourbaki-Witt) has no constructive proof.
- 6. Hence (Nonsymmetric Caristi) has no constructive proof either.

... maybe (Caristi) has a constructive proof?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

NO. The proof idea is due to Hannes Diener.

Hannes Diener (photo by Andrej Bauer)

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \land b \neq 0)$, we have either a = 0 or b = 0.

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \land b \neq 0)$, we have either a = 0 or b = 0.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Proof: Let a, b satisfy $\neg(a \neq 0 \land b \neq 0)$.

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \land b \neq 0)$, we have either a = 0 or b = 0.

Proof: Let a, b satisfy $\neg(a \neq 0 \land b \neq 0)$. Wlog $a, b \leq \frac{1}{2}$.

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \land b \neq 0)$, we have either a = 0 or b = 0.

Proof: Let a, b satisfy $\neg(a \neq 0 \land b \neq 0)$. Wlog $a, b \leq \frac{1}{2}$. Define $f: [0, 1] \rightarrow [0, 1]$ by

$$f(x) := a(1-x) - bx + x.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \land b \neq 0)$, we have either a = 0 or b = 0.

Proof: Let a, b satisfy $\neg(a \neq 0 \land b \neq 0)$. Wlog $a, b \leq \frac{1}{2}$. Define $f: [0, 1] \rightarrow [0, 1]$ by

$$f(x) := a(1-x) - bx + x.$$

If $a \neq 0$, then b = 0 and the graph of f lies above the diagonal, and has a unique fixpoint at 1.

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \land b \neq 0)$, we have either a = 0 or b = 0.

Proof: Let a, b satisfy $\neg(a \neq 0 \land b \neq 0)$. Wlog $a, b \leq \frac{1}{2}$. Define $f: [0, 1] \rightarrow [0, 1]$ by

$$f(x) := a(1-x) - bx + x.$$

If $a \neq 0$, then b = 0 and the graph of f lies above the diagonal, and has a unique fixpoint at 1. Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0.

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \land b \neq 0)$, we have either a = 0 or b = 0.

Proof: Let a, b satisfy $\neg(a \neq 0 \land b \neq 0)$. Wlog $a, b \leq \frac{1}{2}$. Define $f: [0, 1] \rightarrow [0, 1]$ by

$$f(x) := a(1-x) - bx + x.$$

If $a \neq 0$, then b = 0 and the graph of f lies above the diagonal, and has a unique fixpoint at 1. Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0. If both aand b are zero, f is the identity.

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \land b \neq 0)$, we have either a = 0 or b = 0.

Proof: Let a, b satisfy $\neg(a \neq 0 \land b \neq 0)$. Wlog $a, b \leq \frac{1}{2}$. Define $f: [0, 1] \rightarrow [0, 1]$ by

$$f(x) := a(1-x) - bx + x.$$

If $a \neq 0$, then b = 0 and the graph of f lies above the diagonal, and has a unique fixpoint at 1. Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0. If both aand b are zero, f is the identity. Now define $\varphi : [0, 1] \rightarrow [0, \infty)$ by $\varphi(x) = 1 - x$.

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \land b \neq 0)$, we have either a = 0 or b = 0.

Proof: Let a, b satisfy $\neg(a \neq 0 \land b \neq 0)$. Wlog $a, b \leq \frac{1}{2}$. Define $f: [0, 1] \rightarrow [0, 1]$ by

$$f(x) := a(1-x) - bx + x.$$

If $a \neq 0$, then b = 0 and the graph of f lies above the diagonal, and has a unique fixpoint at 1. Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0. If both aand b are zero, f is the identity. Now define $\varphi : [0, 1] \rightarrow [0, \infty)$ by $\varphi(x) = 1 - x$. If we could prove (Caristi), f would have a fixpoint x_0 .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \land b \neq 0)$, we have either a = 0 or b = 0.

Proof: Let a, b satisfy $\neg(a \neq 0 \land b \neq 0)$. Wlog $a, b \leq \frac{1}{2}$. Define $f: [0, 1] \rightarrow [0, 1]$ by

$$f(x) := a(1-x) - bx + x.$$

If $a \neq 0$, then b = 0 and the graph of f lies above the diagonal, and has a unique fixpoint at 1. Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0. If both aand b are zero, f is the identity. Now define $\varphi : [0,1] \rightarrow [0,\infty)$ by $\varphi(x) = 1 - x$. If we could prove (Caristi), f would have a fixpoint x_0 . By considering an appropriate approximation we can decide whether $x_0 > 0$ or $x_0 < 1$.

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \land b \neq 0)$, we have either a = 0 or b = 0.

Proof: Let a, b satisfy $\neg(a \neq 0 \land b \neq 0)$. Wlog $a, b \leq \frac{1}{2}$. Define $f: [0, 1] \rightarrow [0, 1]$ by

$$f(x) := a(1-x) - bx + x.$$

If $a \neq 0$, then b = 0 and the graph of f lies above the diagonal, and has a unique fixpoint at 1. Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0. If both aand b are zero, f is the identity. Now define $\varphi : [0,1] \rightarrow [0,\infty)$ by $\varphi(x) = 1 - x$. If we could prove (Caristi), f would have a fixpoint x_0 . By considering an appropriate approximation we can decide whether $x_0 > 0$ or $x_0 < 1$. In the first case it is impossible that $b \neq 0$, since then, as mentioned above, f would have a unique fixpoint at 0; thus b = 0.

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \land b \neq 0)$, we have either a = 0 or b = 0.

Proof: Let a, b satisfy $\neg(a \neq 0 \land b \neq 0)$. Wlog $a, b \leq \frac{1}{2}$. Define $f: [0, 1] \rightarrow [0, 1]$ by

$$f(x) := a(1-x) - bx + x.$$

If $a \neq 0$, then b = 0 and the graph of f lies above the diagonal, and has a unique fixpoint at 1. Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0. If both a and b are zero, f is the identity. Now define $\varphi: [0,1] \to [0,\infty)$ by $\varphi(x) = 1 - x$. If we could prove (Caristi), f would have a fixpoint x_0 . By considering an appropriate approximation we can decide whether $x_0 > 0$ or $x_0 < 1$. In the first case it is impossible that $b \neq 0$, since then, as mentioned above, f would have a unique fixpoint at 0; thus b = 0. Analogously in the second case we would get a = 0. QED.

Conclusion

 I have argued that theorems of Knaster-Tarski and Banach are in essence 'the same' — by forgetting the distinction between order and metric.

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

Conclusion

- I have argued that theorems of Knaster-Tarski and Banach are in essence 'the same' — by forgetting the distinction between order and metric.
- I have argued that theorems of Bourbaki-Witt and Caristi are in essence 'the same' — by switching from a metric space X to its formal ball model BX.

Conclusion

- I have argued that theorems of Knaster-Tarski and Banach are in essence 'the same' — by forgetting the distinction between order and metric.
- I have argued that theorems of Bourbaki-Witt and Caristi are in essence 'the same' — by switching from a metric space X to its formal ball model BX.
- 3. In fact, (Nonsymmetric Caristi) can be further generalized to become a source theorem for both classic results mentioned in 2.

ション ふゆ くち くち くち くち

THEOREM. A monotone map $f: X \to X$ on a pointed dcpo X has a least fixed point. Proof:

THEOREM. A monotone map $f: X \to X$ on a pointed dcpo X has a least fixed point. Proof:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

1. A subset
$$Y := \{y \in X \mid y \leq fy\}$$

(a) contains \bot , (b) is closed under f , (c) is a subdcpo.

THEOREM. A monotone map $f: X \to X$ on a pointed dcpo X has a least fixed point. Proof:

- 1. A subset $Y := \{y \in X \mid y \leq fy\}$ (a) contains \bot , (b) is closed under f, (c) is a subdcpo.
- Let C be the intersection of all subsets of X with (a)-(c). It satisfies (a)-(c) as well.

THEOREM. A monotone map $f: X \to X$ on a pointed dcpo X has a least fixed point. Proof:

1. A subset
$$Y := \{y \in X \mid y \leq fy\}$$

(a) contains \bot , (b) is closed under f , (c) is a subdcpo.

- Let C be the intersection of all subsets of X with (a)-(c). It satisfies (a)-(c) as well.
- 3. Hence $f: C \to C$ is an order-preserving and expanding map on a pointed dcpo. The set of all such maps E(X) is a dcpo in the pointwise order.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

THEOREM. A monotone map $f: X \rightarrow X$ on a pointed dcpo X has a least fixed point. Proof:

1. A subset
$$Y := \{y \in X \mid y \leq fy\}$$

(a) contains \bot , (b) is closed under f , (c) is a subdcpo.

- Let C be the intersection of all subsets of X with (a)-(c). It satisfies (a)-(c) as well.
- 3. Hence $f: C \to C$ is an order-preserving and expanding map on a pointed dcpo. The set of all such maps E(X) is a dcpo in the pointwise order.
- 4. But since $f, g \leq f \circ g$ and $f, g \leq g \circ f$ for any maps f, g in E(X), the dcpo E(X) is itself directed.

THEOREM. A monotone map $f: X \rightarrow X$ on a pointed dcpo X has a least fixed point. Proof:

- 1. A subset $Y := \{y \in X \mid y \leq fy\}$ (a) contains \bot , (b) is closed under f, (c) is a subdcpo.
- Let C be the intersection of all subsets of X with (a)-(c). It satisfies (a)-(c) as well.
- 3. Hence $f: C \to C$ is an order-preserving and expanding map on a pointed dcpo. The set of all such maps E(X) is a dcpo in the pointwise order.
- 4. But since $f, g \leq f \circ g$ and $f, g \leq g \circ f$ for any maps f, g in E(X), the dcpo E(X) is itself directed.
- 5. Therefore E(X) has a top element \top . We have $f \circ \top = \top$.

THEOREM. A monotone map $f: X \to X$ on a pointed dcpo X has a least fixed point. Proof:

- 1. A subset $Y := \{y \in X \mid y \leq fy\}$ (a) contains \bot , (b) is closed under f, (c) is a subdcpo.
- Let C be the intersection of all subsets of X with (a)-(c). It satisfies (a)-(c) as well.
- 3. Hence $f: C \to C$ is an order-preserving and expanding map on a pointed dcpo. The set of all such maps E(X) is a dcpo in the pointwise order.
- 4. But since $f, g \leq f \circ g$ and $f, g \leq g \circ f$ for any maps f, g in E(X), the dcpo E(X) is itself directed.
- 5. Therefore E(X) has a top element \top . We have $f \circ \top = \top$.
- Hence f(⊤(⊥)) = ⊤(⊥), and for any other fixpoint x ∈ X, the set ↓ x satisfies (a)-(c), and thus ⊤(⊥) ∈ C ⊆↓ x. QED.