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There are plentyof reasons whywe can forgetthe distinction betweenorder and metric�xpoint theorems.(The usual suspects: A. Einstein or M. Twain)



Order vs. metric �xpoints
(Knaster-Tarski) An order-preserving map on a complete lattice hasthe least and the greatest �xed point.(Banach) A contraction on a complete metric space has a unique�xed point.



Order vs. metric �xpoints
(Knaster-Tarski) An order-preserving map on a complete lattice hasthe least and the greatest �xed point.(Banach) A contraction on a complete metric space has a unique�xed point.OUR GOAL: Show that both are instances of a single theorem witha constructive proof.



Order vs. metric �xpoints(Knaster-Tarski) An order-preserving map f : X → X on a completelattice has the least and the greatest �xed point.Proof idea: Iterate f :
⊥, f (⊥), f 2(⊥), f 3(⊥), . . .and eventually you will reach the least �xed point. Flip the latticeto get the greatest one.



Order vs. metric �xpoints(Knaster-Tarski) An order-preserving map f : X → X on a completelattice has the least and the greatest �xed point.Proof idea: Iterate f :
⊥, f (⊥), f 2(⊥), f 3(⊥), . . .and eventually you will reach the least �xed point. Flip the latticeto get the greatest one.(Banach) A contraction f : X → X on a complete metric space hasa unique �xed point.Proof idea: Iterate f : x , f (x), f 2(x), f 3(x), . . .and no matter what x ∈ X you started with, eventually you willreach the same �xed point.



Uni�cation
(Lawvere 1973) Orders and metric spaces are instances ofquantale-enriched categories.(Edalat & Heckmann 1998) A topology of a complete metric spaceis homeomorphic to a subspace Scott topology on maximalelements of a continuous directed-complete partial order.



Uni�cation a la Lawvere
A bit of cleaning �rst!A metric on a set X : dX : X × X → [0,∞)We use it as: dX (x , y), dX (y , z), . . .
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Uni�cation a la Lawvere
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Uni�cation a la Lawvere: the setupLet Q be a complete lattice with + and 0.A Q-category is a set X with a structure X : X ×X → Q satisfying:X (x , y) = X (y , x) = 0 implies x = y ,X (x , x) = 0,X (x , y) 6 X (x , z) + X (z , y).For Q = 2 we recover partial orders.For Q = [0,∞] we recover metric spaces.But other choices of Q are possible too.



More on the setupA Q-functor between Q-categories is a function f : X → Ysatisfying: Y (fx , fy) 6 X (x , y).
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More on the setupA Q-functor between Q-categories is a function f : X → Ysatisfying: Y (fx , fy) 6 X (x , y).2-functors are order-preserving maps.
[0,∞]-functors are non-expansive maps between metric spaces.
Q-functors of type X → Y form a Q-category when consideredwith the structure: Y X (f , g) := supx∈X Y (fx , gx).



More on the setup
Consider a sequence (xn)n∈ω such thatfrom some N onwards, elements of the sequence arearbitrarily close to each other.
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Consider a sequence (xn)n∈ω such thatfrom some N onwards, elements of the sequence arearbitrarily close to each other.For Q = 2, (xn)n∈ω is eventually a chain.For Q = [0,∞], (xn)n∈ω is a Cauchy sequence.



More on the setup
Consider a net (xi )i∈I such thatfrom some N onwards, elements of the net are arbitrarilyclose to each other.For Q = 2, (xi )i∈I is eventually a directed set.For Q = [0,∞], (xi )i∈I is a Cauchy net.



More on the setupWe encode Cauchy nets/directed sets as maps of type X op → Q.
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φ(z) := infi∈I supk≥i X (z , xk )for some Cauchy net (xi )i∈I .
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φ(z) := infi∈I supk≥i X (z , xk )for some Cauchy net (xi )i∈I .FACT: Ideals are Q-functors from X op to Q. Hence

IX ↪→ X̂ , where X̂ := QX op
.



More on the setupWe encode Cauchy nets/directed sets as maps of type X op → Q.DEFINITION: An ideal on X is a map:
φ(z) := infi∈I supk≥i X (z , xk )for some Cauchy net (xi )i∈I .FACT: Ideals are Q-functors from X op to Q. Hence

IX ↪→ X̂ , where X̂ := QX op
.FACT: Ideals on X form a Q-category:

IX (φ,ψ) := supx∈X(ψx − φx).



Last slide about the setup
DEFINITION: A Q-category X is I-complete if there exists a map
S : IX → X with X (Sφ, x) = IX (φ,X (−, x))for all φ ∈ IX and x ∈ X .



Last slide about the setup
DEFINITION: A Q-category X is I-complete if there exists a map
S : IX → X with X (Sφ, x) = IX (φ,X (−, x))for all φ ∈ IX and x ∈ X .IMPORTANT:Replacing I by (̂·) we have a notion of (̂·)-completeness.Replacing I by any suitable J we have a notion of J-completeness.
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What we gained
I-complete 2-categories are directed-complete posets.
(̂·)-complete 2-categories are complete lattices.
I-complete symmetric [0,∞]-categories are complete metric spaces.
(̂·)-complete symmetric [0,∞]-categories are complete metricspaces.Still we have other choices of J and Q!
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(Knaster-Tarski) An order-preserving map on a complete lattice hasthe least and the greatest �xed point.(Banach) A contraction on a complete metric space has a unique�xed point.
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Fixpoints again(Knaster-Tarski) A 2-functor on a (̂·)-complete 2-category has theleast and the greatest �xed point.(Banach) A contraction on a I-complete [0,∞]-category has aunique �xed point.



Fixpoints again(Knaster-Tarski) A 2-functor on a (̂·)-complete 2-category has theleast and the greatest �xed point.(Banach) A contraction on a I-complete [0,∞]-category has aunique �xed point.BOTH FOLLOW FROM: A Q-functor f : X → X on a J-complete
Q-category has a �xed point, providing the direct image Q-functorf ∗ : JX → JXf ∗(φ) := infz∈X(φ(z) + X (−, fz))has a �xed point.
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Proof ideaTHEOREM A Q-functor f : X → X on a J-complete Q-categoryhas a �xed point, providing that f ∗ : JX → JX has a �xed point φ.Proof:1. X is J-complete implies (X ,6X ) is a dcpo.2. f is a Q-functor implies f is 6X -preserving.3. f ∗ has a �xpoint φ, implies Sφ = Sf ∗(φ) 6X f (Sφ).4. Then we use Pataraia's proof of the fact that anorder-preserving map on a dcpo has a least �xedpoint. QED.
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I (Knaster-Tarski) take J = X̂ . Since X is a complete lattice inthe induced order, it has ⊥. Then take φ = inf supX (−, f m⊥)and get the least point of f .



How to obtain classic �xed point theoremsTHEOREM A Q-functor f : X → X on a J-complete Q-categoryhas a �xed point, providing that f ∗ : JX → JX has a �xed point φ.
I (Banach) Take J = I and φ = infn supm≥n X (−, f mx0). Anychoice of x0 gives the same φ, hence the �xed point is unique.
I (Knaster-Tarski) take J = X̂ . Since X is a complete lattice inthe induced order, it has ⊥. Then take φ = inf supX (−, f m⊥)and get the least point of f . Repeat the same proof for X op toobtain the greatest �xed point of f .



More �xpoints(Bourbaki-Witt) An expanding map f : X → X on a dcpo X hasa �xed point.(James Caristi, 1976) Let f : X → X be an arbitrary map on acomplete metric space. If there exists a l.s.c. map ϕ : X → [0,∞)such that:
(∗) X (x , fx) + ϕ(fx) 6 φ(x),then f has a �xed point.Remark: f : X → X is expanding i� ∀x ∈ X (x 6 fx).



More �xpoints(Bourbaki-Witt) An expanding map f : X → X on a dcpo X hasa �xed point.(James Caristi, 1976) Let f : X → X be an arbitrary map on acomplete metric space. If there exists a l.s.c. map ϕ : X → [0,∞)such that:
(∗) X (x , fx) + ϕ(fx) 6 φ(x),then f has a �xed point.Remark: f : X → X is expanding i� ∀x ∈ X (x 6 fx).OUR GOAL: Show that both are instances of a single theorem thatcan have no constructive proof.



Uni�cation a la Edalat & HeckmannEdalat, A. and Heckmann, R. (1998) A computational model for metricspaces. Theoretical Computer Science 193(1�2), pp. 53�73.
x ry s

BX := {〈x , r〉 | x ∈ X and r > 0} ⊆ X × R+

〈x , r〉 6 〈y , s〉 i� X (x , y) + s 6 rX ∼= {〈x , 0〉 | x ∈ X}(= max(BX ) providing X is T1).



Uni�cation a la Edalat & Heckmann
Edalat and Heckmann's construction works the same for
Q-categories. Therefore:THEOREMX is an I-complete Q-category i� (BX ,6) is a dcpo.
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But...
... maybe (Caristi) has a constructive proof?NO.The proof idea is due to Hannes Diener.



Hannes Diener (photo by Andrej Bauer)
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