Common patterns for order and metric fixed point theorems

Pawel Waszkiewicz

Jagiellonian University
Brno, VIII. 2010

There are plenty
of reasons why
we can forget
the distinction between
order and metric fixpoint theorems.
(The usual suspects: A. Einstein or M. Twain)

Order vs. metric fixpoints

(Knaster-Tarski) An order-preserving map on a complete lattice has the least and the greatest fixed point.
(Banach) A contraction on a complete metric space has a unique fixed point.

Order vs. metric fixpoints

(Knaster-Tarski) An order-preserving map on a complete lattice has the least and the greatest fixed point.
(Banach) A contraction on a complete metric space has a unique fixed point.

OUR GOAL: Show that both are instances of a single theorem with a constructive proof.

Order vs. metric fixpoints

(Knaster-Tarski) An order-preserving map $f: X \rightarrow X$ on a complete lattice has the least and the greatest fixed point.

Proof idea: Iterate f :

$$
\perp, f(\perp), f^{2}(\perp), f^{3}(\perp), \ldots
$$

and eventually you will reach the least fixed point. Flip the lattice to get the greatest one.

Order vs. metric fixpoints

(Knaster-Tarski) An order-preserving map $f: X \rightarrow X$ on a complete lattice has the least and the greatest fixed point.

Proof idea: Iterate f :

$$
\perp, f(\perp), f^{2}(\perp), f^{3}(\perp), \ldots
$$

and eventually you will reach the least fixed point. Flip the lattice to get the greatest one.
(Banach) A contraction $f: X \rightarrow X$ on a complete metric space has a unique fixed point.
Proof idea: Iterate f :

$$
x, f(x), f^{2}(x), f^{3}(x), \ldots
$$

and no matter what $x \in X$ you started with, eventually you will reach the same fixed point.

Unification

(Lawvere 1973) Orders and metric spaces are instances of quantale-enriched categories.
(Edalat \& Heckmann 1998) A topology of a complete metric space is homeomorphic to a subspace Scott topology on maximal elements of a continuous directed-complete partial order.

Unification a la Lawvere

A bit of cleaning first!

A metric on a set X :

$$
d_{X}: X \times X \rightarrow[0, \infty)
$$

We use it as:

$$
d_{X}(x, y), d_{X}(y, z), \ldots
$$

Unification a la Lawvere

A bit of cleaning first!

A metric on a set X :

$$
d_{X}: X \times X \rightarrow[0, \infty)
$$

We use it as:

$$
d_{X}(x, y), d_{X}(y, z), \ldots
$$

Unification a la Lawvere

A bit of cleaning first!

A metric on a set X :

$$
X: X \times X \rightarrow[0, \infty)
$$

We use it as:

$$
X(x, y), X(y, z), \ldots
$$

Unification a la Lawvere

A bit of cleaning first!

A metric on a set X :

$$
X: X \times X \rightarrow[0, \infty)
$$

We use it as:

$$
X(x, y), X(y, z), \ldots
$$

Unification a la Lawvere

We complete the codomain!

A metric on a set X :

$$
X: X \times X \rightarrow[0, \infty)
$$

Unification a la Lawvere

We complete the codomain!

A metric on a set X :

$$
X: X \times X \rightarrow[0, \infty]
$$

Unification a la Lawvere

We complete the codomain!

A metric on a set X :

$$
X: X \times X \rightarrow[0, \infty]
$$

Unification a la Lawvere

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X :

$$
\begin{gathered}
X: X \times X \rightarrow[0, \infty] \\
X(x, y)=0 \text { iff } x=y \\
X(x, y)=X(y, x) \\
X(x, y) \leqslant X(x, z)+X(z, y)
\end{gathered}
$$

Unification a la Lawvere

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X :

$$
\begin{gathered}
X: X \times X \rightarrow[0, \infty] \\
X(x, y)=X(y, x)=0 \text { iff } x=y \\
X(x, y)=X(y, x) \\
X(x, y) \leqslant X(x, z)+X(z, y)
\end{gathered}
$$

Unification a la Lawvere

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X :

$$
\begin{gathered}
X: X \times X \rightarrow[0, \infty] \\
X(x, y)=X(y, x)=0 \text { iff } x=y \\
X(x, y)=X(y, x) \\
X(x, y) \leqslant X(x, z)+X(z, y)
\end{gathered}
$$

Unification a la Lawvere

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X :

$$
\begin{gathered}
X: X \times X \rightarrow[0, \infty] \\
X(x, y)=X(y, x)=0 \text { implies } x=y \\
X(x, y)=X(y, x)=0 \text { is implied by } x=y \\
X(x, y)=X(y, x) \\
X(x, y) \leqslant X(x, z)+X(z, y)
\end{gathered}
$$

Unification a la Lawvere

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X :

$$
\begin{gathered}
X: X \times X \rightarrow[0, \infty] \\
X(x, y)=X(y, x)=0 \text { implies } x=y \\
X(x, y)=X(y, x)=0 \text { is implied by } x=y \\
X(x, y)=X(y, x) \\
X(x, y) \leqslant X(x, z)+X(z, y)
\end{gathered}
$$

Unification a la Lawvere

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X :

$$
\begin{gathered}
X: X \times X \rightarrow[0, \infty] \\
X(x, y)=X(y, x)=0 \text { implies } x=y \\
X(x, x)=0 \\
X(x, y)=X(y, x) \\
X(x, y) \leqslant X(x, z)+X(z, y)
\end{gathered}
$$

Unification a la Lawvere

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X :

$$
\begin{gathered}
X: X \times X \rightarrow[0, \infty] \\
X(x, y)=X(y, x)=0 \text { implies } x=y \\
X(x, x)=0 \\
X(x, y)=X(y, x) \\
X(x, y) \leqslant X(x, z)+X(z, y)
\end{gathered}
$$

Unification a la Lawvere

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X :

$$
\begin{gathered}
X: X \times X \rightarrow[0, \infty] \\
X(x, y)=X(y, x)=0 \text { implies } x=y \\
X(x, x)=0 \\
X(x, y)=X(y, x) \\
X(x, y) \leqslant X(x, z)+X(z, y)
\end{gathered}
$$

Unification a la Lawvere

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X :

$$
\begin{gathered}
X: X \times X \rightarrow[0, \infty] \\
X(x, y)=X(y, x)=0 \text { implies } x=y \\
X(x, x)=0 \\
X(x, y)=X(y, x) \\
X(x, y) \leqslant X(x, z)+X(z, y)
\end{gathered}
$$

Unification a la Lawvere

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X :

$$
\begin{gathered}
X: X \times X \rightarrow[0, \infty] \\
X(x, y)=X(y, x)=0 \text { implies } x=y \\
X(x, x)=0 \\
\text { good bye! } \\
X(x, y) \leqslant X(x, z)+X(z, y)
\end{gathered}
$$

Unification a la Lawvere

SYMMETRY IS NOT TOO IMPORTANT!

A metric on a set X :

$$
\begin{gathered}
X: X \times X \rightarrow[0, \infty] \\
X(x, y)=X(y, x)=0 \text { implies } x=y \\
X(x, x)=0 \\
X(x, y) \leqslant X(x, z)+X(z, y)
\end{gathered}
$$

Unification a la Lawvere

A generalized metric on a set X :

$$
X: X \times X \rightarrow[0, \infty]
$$

$$
X(x, y)=X(y, x)=0 \text { implies } x=y
$$

$$
X(x, x)=0
$$

$$
X(x, y) \leqslant X(x, z)+X(z, y)
$$

Unification a la Lawvere

A generalized metric on a set X :
$X: X \times X \rightarrow[0, \infty]$
$X(x, y)=X(y, x)=0$ implies $x=y$
$X(x, x)=0$
$X(x, y) \leqslant X(x, z)+X(z, y)$
DEFINITION

$$
x \leqslant x y \quad \text { iff } \quad X(x, y)=0
$$

Unification a la Lawvere

A generalized metric on a set X :
$X: X \times X \rightarrow[0, \infty]$
$X(x, y)=X(y, x)=0$ implies $x=y$
$X(x, x)=0$
$X(x, y) \leqslant X(x, z)+X(z, y)$
DEFINITION

$$
x \leqslant x y \quad \text { iff } \quad x(x, y)=0 .
$$

Unification a la Lawvere

A generalized metric on a set X :
$X: X \times X \rightarrow[0, \infty]$
$X(x, y)=X(y, x)=0$ implies $x=y$
$X(x, x)=0$
$X(x, y) \leqslant X(x, z)+X(z, y)$
DEFINITION

$$
x \leqslant x y \quad \text { iff } \quad X(x, y)=0
$$

$x \leqslant x y$ and $y \leqslant x x$ imply $x=y$

Unification a la Lawvere

A generalized metric on a set X :
$X: X \times X \rightarrow[0, \infty]$
$X(x, y)=X(y, x)=0$ implies $x=y$
$X(x, x)=0$
$X(x, y) \leqslant X(x, z)+X(z, y)$
DEFINITION

$$
x \leqslant x y \quad \text { iff } \quad X(x, y)=0
$$

$x \leqslant x y$ and $y \leqslant x x$ imply $x=y$

Unification a la Lawvere

A generalized metric on a set X :
$X: X \times X \rightarrow[0, \infty]$
$X(x, y)=X(y, x)=0$ implies $x=y$
$X(x, x)=0$
$X(x, y) \leqslant X(x, z)+X(z, y)$
DEFINITION

$$
x \leqslant x y \quad \text { iff } \quad X(x, y)=0
$$

$x \leqslant x y$ and $y \leqslant x x$ imply $x=y$

Unification a la Lawvere

A generalized metric on a set X :
$X: X \times X \rightarrow[0, \infty]$
$X(x, y)=X(y, x)=0$ implies $x=y$
$X(x, x)=0$
$X(x, y) \leqslant X(x, z)+X(z, y)$
DEFINITION

$$
x \leqslant x y \quad \text { iff } \quad X(x, y)=0
$$

$x \leqslant x y$ and $y \leqslant x x$ imply $x=y$
$x \leqslant x x$

Unification a la Lawvere

A generalized metric on a set X :
$X: X \times X \rightarrow[0, \infty]$
$X(x, y)=X(y, x)=0$ implies $x=y$
$X(x, x)=0$
$X(x, y) \leqslant X(x, z)+X(z, y)$
DEFINITION

$$
x \leqslant x y \quad \text { iff } \quad X(x, y)=0
$$

$x \leqslant x y$ and $y \leqslant x x$ imply $x=y$
$x \leqslant x x$

Unification a la Lawvere

A generalized metric on a set X :
$X: X \times X \rightarrow[0, \infty]$
$X(x, y)=X(y, x)=0$ implies $x=y$
$X(x, x)=0$
$X(x, y) \leqslant X(x, z)+X(z, y)$
DEFINITION

$$
x \leqslant x y \quad \text { iff } \quad X(x, y)=0
$$

$x \leqslant x y$ and $y \leqslant x x$ imply $x=y$
$x \leqslant x x$

Unification a la Lawvere

A generalized metric on a set X :
$X: X \times X \rightarrow[0, \infty]$
$X(x, y)=X(y, x)=0$ implies $x=y$
$X(x, x)=0$
$X(x, y) \leqslant X(x, z)+X(z, y)$
DEFINITION

$$
x \leqslant x y \quad \text { iff } \quad X(x, y)=0
$$

$x \leqslant x y$ and $y \leqslant x x$ imply $x=y$
$x \leqslant x x$
$x \leqslant x z$ and $z \leqslant x y$ imply $x \leqslant x y$

Unification a la Lawvere

A generalized metric on a set X :
$X: X \times X \rightarrow[0, \infty]$
$X(x, y)=X(y, x)=0$ implies $x=y$
$X(x, x)=0$
$X(x, y) \leqslant X(x, z)+X(z, y)$
DEFINITION

$$
x \leqslant x y \quad \text { iff } \quad X(x, y)=0
$$

$x \leqslant x y$ and $y \leqslant x x$ imply $x=y$
$x \leqslant x x$
$x \leqslant x z$ and $z \leqslant x y$ imply $x \leqslant x y$

Unification a la Lawvere

$$
\begin{aligned}
& X(x, y)=X(y, x)=0 \text { implies } x=y \\
& X(x, x)=0 \\
& X(x, y) \leqslant X(x, z)+X(z, y)
\end{aligned}
$$

$x \leqslant x y$ and $y \leqslant x x$ imply $x=y$
$x \leqslant x x$
$x \leqslant x z$ and $z \leqslant x y$ imply $x \leqslant x y$

Unification a la Lawvere

$$
\begin{aligned}
& X(x, y)=X(y, x)=0 \text { implies } x=y \\
& X(x, x)=0 \\
& X(x, y) \leqslant X(x, z)+X(z, y)
\end{aligned}
$$

$x \leqslant x y$ and $y \leqslant x x$ imply $x=y$
$x \leqslant x x$
$x \leqslant x z$ and $z \leqslant x y$ imply $x \leqslant x y$

CONCLUSION: $\leqslant x$ is a partial order.

Unification a la Lawvere

$$
\begin{aligned}
& X(x, y)=X(y, x)=0 \text { implies } x=y \\
& X(x, x)=0 \\
& X(x, y) \leqslant X(x, z)+X(z, y) \\
& \\
& x \leqslant x y \text { and } y \leqslant x x \text { imply } x=y \\
& x \leqslant x x \\
& x \leqslant x^{z} \text { and } z \leqslant x y \text { imply } x \leqslant x y
\end{aligned}
$$

CONCLUSION: $\leqslant x$ is a partial order.

BETTER CONCLUSION:
Replace $[0, \infty]$ by $\{0, \infty\}$ to switch from metrics to orders. Replace $\{0, \infty\}$ by $[0, \infty]$ to switch from orders to metrics.

Unification a la Lawvere: the setup

Let \mathcal{Q} be a complete lattice with + and 0 .
A \mathcal{Q}-category is a set X with a structure $X: X \times X \rightarrow \mathcal{Q}$ satisfying:

$$
\begin{aligned}
& X(x, y)=X(y, x)=0 \text { implies } x=y \\
& X(x, x)=0 \\
& X(x, y) \leqslant X(x, z)+X(z, y)
\end{aligned}
$$

Unification a la Lawvere: the setup

Let \mathcal{Q} be a complete lattice with + and 0 .
A \mathcal{Q}-category is a set X with a structure $X: X \times X \rightarrow \mathcal{Q}$ satisfying:

$$
\begin{aligned}
& X(x, y)=X(y, x)=0 \text { implies } x=y \\
& X(x, x)=0 \\
& X(x, y) \leqslant X(x, z)+X(z, y)
\end{aligned}
$$

For $\mathcal{Q}=\mathbf{2}$ we recover partial orders.

Unification a la Lawvere: the setup

Let \mathcal{Q} be a complete lattice with + and 0 .
A \mathcal{Q}-category is a set X with a structure $X: X \times X \rightarrow \mathcal{Q}$ satisfying:

$$
\begin{aligned}
& X(x, y)=X(y, x)=0 \text { implies } x=y \\
& X(x, x)=0 \\
& X(x, y) \leqslant X(x, z)+X(z, y)
\end{aligned}
$$

For $\mathcal{Q}=\mathbf{2}$ we recover partial orders.
For $\mathcal{Q}=[0, \infty]$ we recover metric spaces.

Unification a la Lawvere: the setup

Let \mathcal{Q} be a complete lattice with + and 0 .
A \mathcal{Q}-category is a set X with a structure $X: X \times X \rightarrow \mathcal{Q}$ satisfying:

$$
\begin{aligned}
& X(x, y)=X(y, x)=0 \text { implies } x=y \\
& X(x, x)=0 \\
& X(x, y) \leqslant X(x, z)+X(z, y)
\end{aligned}
$$

For $\mathcal{Q}=\mathbf{2}$ we recover partial orders.
For $\mathcal{Q}=[0, \infty]$ we recover metric spaces.
But other choices of \mathcal{Q} are possible too.

More on the setup

A \mathcal{Q}-functor between \mathcal{Q}-categories is a function $f: X \rightarrow Y$ satisfying:

$$
Y\left(f_{x}, f_{y}\right) \leqslant X(x, y)
$$

More on the setup

A \mathcal{Q}-functor between \mathcal{Q}-categories is a function $f: X \rightarrow Y$ satisfying:

$$
Y\left(f_{x}, f_{y}\right) \leqslant X(x, y)
$$

2-functors are order-preserving maps.

More on the setup

A \mathcal{Q}-functor between \mathcal{Q}-categories is a function $f: X \rightarrow Y$ satisfying:

$$
Y(f x, f y) \leqslant X(x, y)
$$

2-functors are order-preserving maps.
$[0, \infty]$-functors are non-expansive maps between metric spaces.

More on the setup

A \mathcal{Q}-functor between \mathcal{Q}-categories is a function $f: X \rightarrow Y$ satisfying:

$$
Y(f x, f y) \leqslant X(x, y)
$$

2-functors are order-preserving maps.
$[0, \infty]$-functors are non-expansive maps between metric spaces.
\mathcal{Q}-functors of type $X \rightarrow Y$ form a \mathcal{Q}-category when considered with the structure:

$$
Y^{X}(f, g):=\sup _{x \in X} Y\left(f_{x}, g x\right)
$$

More on the setup

Consider a sequence $\left(x_{n}\right)_{n \in \omega}$ such that
from some N onwards, elements of the sequence are arbitrarily close to each other.

More on the setup

Consider a sequence $\left(x_{n}\right)_{n \in \omega}$ such that
from some N onwards, elements of the sequence are arbitrarily close to each other.

For $\mathcal{Q}=\mathbf{2},\left(x_{n}\right)_{n \in \omega}$ is eventually a chain.

More on the setup

Consider a sequence $\left(x_{n}\right)_{n \in \omega}$ such that
from some N onwards, elements of the sequence are arbitrarily close to each other.

For $\mathcal{Q}=\mathbf{2},\left(x_{n}\right)_{n \in \omega}$ is eventually a chain.
For $\mathcal{Q}=[0, \infty],\left(x_{n}\right)_{n \in \omega}$ is a Cauchy sequence.

More on the setup

Consider a sequence $\left(x_{n}\right)_{n \in \omega}$ such that
from some N onwards, elements of the sequence are arbitrarily close to each other.

For $\mathcal{Q}=\mathbf{2},\left(x_{n}\right)_{n \in \omega}$ is eventually a chain.
For $\mathcal{Q}=[0, \infty],\left(x_{n}\right)_{n \in \omega}$ is a Cauchy sequence.

More on the setup

Consider a net $\left(x_{i}\right)_{i \in I}$ such that from some N onwards, elements of the net are arbitrarily close to each other.

For $\mathcal{Q}=\mathbf{2},\left(x_{i}\right)_{i \in I}$ is eventually a directed set.
For $\mathcal{Q}=[0, \infty],\left(x_{i}\right)_{i \in I}$ is a Cauchy net.

More on the setup

We encode Cauchy nets/directed sets as maps of type $X^{o p} \rightarrow \mathcal{Q}$.

More on the setup

We encode Cauchy nets/directed sets as maps of type $X^{o p} \rightarrow \mathcal{Q}$.
DEFINITION: An ideal on X is a map:

$$
\phi(z):=\inf _{i \in I} \sup _{k \geq i} X\left(z, x_{k}\right)
$$

for some Cauchy net $\left(x_{i}\right)_{i \in I}$.

More on the setup

We encode Cauchy nets/directed sets as maps of type $X^{o p} \rightarrow \mathcal{Q}$.
DEFINITION: An ideal on X is a map:

$$
\phi(z):=\inf _{i \in I} \sup _{k \geq i} X\left(z, x_{k}\right)
$$

for some Cauchy net $\left(x_{i}\right)_{i \in I}$.
FACT: Ideals are \mathcal{Q}-functors from $X^{o p}$ to \mathcal{Q}. Hence

$$
\mathbb{I} X \hookrightarrow \widehat{X}, \quad \text { where } \hat{X}:=\mathcal{Q}^{X^{o p}}
$$

More on the setup

We encode Cauchy nets/directed sets as maps of type $X^{o p} \rightarrow \mathcal{Q}$.
DEFINITION: An ideal on X is a map:

$$
\phi(z):=\inf _{i \in I} \sup _{k \geq i} X\left(z, x_{k}\right)
$$

for some Cauchy net $\left(x_{i}\right)_{i \in I}$.
FACT: Ideals are \mathcal{Q}-functors from $X^{o p}$ to \mathcal{Q}. Hence

$$
\mathbb{I} X \hookrightarrow \widehat{X}, \quad \text { where } \hat{X}:=\mathcal{Q}^{X^{o p}}
$$

FACT: Ideals on X form a \mathcal{Q}-category:

$$
\mathbb{I} X(\phi, \psi):=\sup _{x \in X}(\psi x-\phi x)
$$

Last slide about the setup

DEFINITION: A \mathcal{Q}-category X is \mathbb{I}-complete if there exists a map $\mathcal{S}: \mathbb{I} X \rightarrow X$ with

$$
X(\mathcal{S} \phi, x)=\mathbb{I} X(\phi, X(-, x))
$$

for all $\phi \in \mathbb{I} X$ and $x \in X$.

Last slide about the setup

DEFINITION: A \mathcal{Q}-category X is \mathbb{I}-complete if there exists a map $\mathcal{S}: \mathbb{I} X \rightarrow X$ with

$$
X(\mathcal{S} \phi, x)=\mathbb{I} X(\phi, X(-, x))
$$

for all $\phi \in \mathbb{I} X$ and $x \in X$.
IMPORTANT:
Replacing \mathbb{I} by $\widehat{(\cdot)}$ we have a notion of $\widehat{(\cdot)}$-completeness. Replacing \mathbb{I} by any suitable J we have a notion of J-completeness.

What we gained

\mathbb{I}-complete 2-categories are directed-complete posets.

What we gained

\mathbb{I}-complete 2-categories are directed-complete posets.
$\widehat{(\cdot)}$-complete 2 -categories are complete lattices.

What we gained

\mathbb{I}-complete 2-categories are directed-complete posets.
(•)-complete 2 -categories are complete lattices.
\mathbb{I}-complete symmetric $[0, \infty]$-categories are complete metric spaces.

What we gained

\mathbb{I}-complete 2-categories are directed-complete posets.
(•)-complete 2 -categories are complete lattices.
\mathbb{I}-complete symmetric $[0, \infty]$-categories are complete metric spaces.
$\widehat{(\cdot)}$-complete symmetric $[0, \infty]$-categories are complete metric spaces.

What we gained

\mathbb{I}-complete 2-categories are directed-complete posets.
(•)-complete 2 -categories are complete lattices.
\mathbb{I}-complete symmetric $[0, \infty]$-categories are complete metric spaces.
$\widehat{(\cdot)}$-complete symmetric $[0, \infty]$-categories are complete metric spaces.

Still we have other choices of J and \mathcal{Q} !

Fixpoints again

(Knaster-Tarski) An order-preserving map on a complete lattice has the least and the greatest fixed point.
(Banach) A contraction on a complete metric space has a unique fixed point.

Fixpoints again

(Knaster-Tarski) An order-preserving map on a complete lattice has the least and the greatest fixed point.
(Banach) A contraction on a complete metric space has a unique fixed point.

OUR GOAL: Show that both are instances of a single theorem with a constructive proof.

Fixpoints again

(Knaster-Tarski) A 2-functor on a $\widehat{(\cdot)}$-complete 2-category has the least and the greatest fixed point.
(Banach) A contraction on a \mathbb{I}-complete $[0, \infty]$-category has a unique fixed point.

Fixpoints again

(Knaster-Tarski) A 2-functor on a (•)-complete 2-category has the least and the greatest fixed point.
(Banach) A contraction on a \mathbb{I}-complete $[0, \infty]$-category has a unique fixed point.

BOTH FOLLOW FROM: A \mathcal{Q}-functor $f: X \rightarrow X$ on a J-complete \mathcal{Q}-category has a fixed point, providing the direct image \mathcal{Q}-functor

$$
\begin{gathered}
f^{*}: J X \rightarrow J X \\
f^{*}(\phi):=\inf _{z \in X}(\phi(z)+X(-, f z))
\end{gathered}
$$

has a fixed point.

Proof idea

THEOREM A \mathcal{Q}-functor $f: X \rightarrow X$ on a J-complete \mathcal{Q}-category has a fixed point, providing that $f^{*}: J X \rightarrow J X$ has a fixed point ϕ.

Proof idea

THEOREM A \mathcal{Q}-functor $f: X \rightarrow X$ on a J-complete \mathcal{Q}-category has a fixed point, providing that $f^{*}: J X \rightarrow J X$ has a fixed point ϕ.

Proof:

1. X is J-complete implies $(X, \leqslant x)$ is a dcpo.

Proof idea

THEOREM A \mathcal{Q}-functor $f: X \rightarrow X$ on a J-complete \mathcal{Q}-category has a fixed point, providing that $f^{*}: J X \rightarrow J X$ has a fixed point ϕ.

Proof:

1. X is J-complete implies $(X, \leqslant x)$ is a dcpo.
2. f is a \mathcal{Q}-functor implies f is $\leqslant x$-preserving.

Proof idea

THEOREM A \mathcal{Q}-functor $f: X \rightarrow X$ on a J-complete \mathcal{Q}-category has a fixed point, providing that $f^{*}: J X \rightarrow J X$ has a fixed point ϕ.

Proof:

1. X is J-complete implies $(X, \leqslant x)$ is a dcpo.
2. f is a \mathcal{Q}-functor implies f is $\leqslant x$-preserving.
3. f^{*} has a fixpoint ϕ, implies $\mathcal{S} \phi=\mathcal{S} f^{*}(\phi) \leqslant x f(\mathcal{S} \phi)$.

Proof idea

THEOREM A \mathcal{Q}-functor $f: X \rightarrow X$ on a J-complete \mathcal{Q}-category has a fixed point, providing that $f^{*}: J X \rightarrow J X$ has a fixed point ϕ.

Proof:

1. X is J-complete implies $(X, \leqslant x)$ is a dcpo.
2. f is a \mathcal{Q}-functor implies f is $\leqslant x$-preserving.
3. f^{*} has a fixpoint ϕ, implies $\mathcal{S} \phi=\mathcal{S} f^{*}(\phi) \leqslant x f(\mathcal{S} \phi)$.
4. Then we use Pataraia's proof of the fact that an order-preserving map on a dcpo has a least fixed point. QED.

How to obtain classic fixed point theorems

THEOREM A \mathcal{Q}-functor $f: X \rightarrow X$ on a J-complete \mathcal{Q}-category has a fixed point, providing that $f^{*}: J X \rightarrow J X$ has a fixed point ϕ.

How to obtain classic fixed point theorems

THEOREM A \mathcal{Q}-functor $f: X \rightarrow X$ on a J-complete \mathcal{Q}-category has a fixed point, providing that $f^{*}: J X \rightarrow J X$ has a fixed point ϕ.

- (Banach) Take $J=\mathbb{I}$ and $\phi=\inf _{n} \sup _{m \geq n} X\left(-, f^{m} x_{0}\right)$. Any choice of x_{0} gives the same ϕ, hence the fixed point is unique.

How to obtain classic fixed point theorems

THEOREM A \mathcal{Q}-functor $f: X \rightarrow X$ on a J-complete \mathcal{Q}-category has a fixed point, providing that $f^{*}: J X \rightarrow J X$ has a fixed point ϕ.

- (Banach) Take $J=\mathbb{I}$ and $\phi=\inf _{n} \sup _{m \geq n} X\left(-, f^{m} x_{0}\right)$. Any choice of x_{0} gives the same ϕ, hence the fixed point is unique.
- (Knaster-Tarski) take $J=\widehat{X}$.

How to obtain classic fixed point theorems

THEOREM A \mathcal{Q}-functor $f: X \rightarrow X$ on a J-complete \mathcal{Q}-category has a fixed point, providing that $f^{*}: J X \rightarrow J X$ has a fixed point ϕ.

- (Banach) Take $J=\mathbb{I}$ and $\phi=\inf _{n} \sup _{m \geq n} X\left(-, f^{m} x_{0}\right)$. Any choice of x_{0} gives the same ϕ, hence the fixed point is unique.
- (Knaster-Tarski) take $J=\widehat{X}$. Since X is a complete lattice in the induced order, it has \perp. Then take $\phi=\inf \sup X\left(-, f^{m} \perp\right)$ and get the least point of f.

How to obtain classic fixed point theorems

THEOREM A \mathcal{Q}-functor $f: X \rightarrow X$ on a J-complete \mathcal{Q}-category has a fixed point, providing that $f^{*}: J X \rightarrow J X$ has a fixed point ϕ.

- (Banach) Take $J=\mathbb{I}$ and $\phi=\inf _{n} \sup _{m \geq n} X\left(-, f^{m} x_{0}\right)$. Any choice of x_{0} gives the same ϕ, hence the fixed point is unique.
- (Knaster-Tarski) take $J=\widehat{X}$. Since X is a complete lattice in the induced order, it has \perp. Then take $\phi=\inf \sup X\left(-, f^{m} \perp\right)$ and get the least point of f. Repeat the same proof for $X^{o p}$ to obtain the greatest fixed point of f.

More fixpoints

(Bourbaki-Witt) An expanding map $f: X \rightarrow X$ on a dcpo X has a fixed point. (James Caristi, 1976) Let $f: X \rightarrow X$ be an arbitrary map on a complete metric space. If there exists a I.s.c. map $\varphi: X \rightarrow[0, \infty)$ such that:

$$
(*) \quad X\left(x, f_{x}\right)+\varphi\left(f_{x}\right) \leqslant \phi(x)
$$

then f has a fixed point.
Remark: $f: X \rightarrow X$ is expanding iff $\forall x \in X(x \leqslant f x)$.

More fixpoints

(Bourbaki-Witt) An expanding map $f: X \rightarrow X$ on a dcpo X has a fixed point.
(James Caristi, 1976) Let $f: X \rightarrow X$ be an arbitrary map on a complete metric space. If there exists a I.s.c. map φ : $X \rightarrow[0, \infty)$ such that:

$$
(*) \quad X\left(x, f_{x}\right)+\varphi\left(f_{x}\right) \leqslant \phi(x)
$$

then f has a fixed point.
Remark: $f: X \rightarrow X$ is expanding iff $\forall x \in X(x \leqslant f x)$.
OUR GOAL: Show that both are instances of a single theorem that can have no constructive proof.

Unification a la Edalat \& Heckmann

Edalat, A. and Heckmann, R. (1998) A computational model for metric spaces. Theoretical Computer Science 193(1-2), pp. 53-73.

$$
\begin{gathered}
\mathbf{B} X:=\{\langle x, r\rangle \mid x \in X \text { and } r \geqslant 0\} \subseteq X \times \mathbb{R}_{+} \\
\langle x, r\rangle \leqslant\langle y, s\rangle \text { iff } X(x, y)+s \leqslant r \\
X \cong\{\langle x, 0\rangle \mid x \in X\}\left(=\max (\mathbf{B} X) \text { providing } X \text { is } T_{1}\right) .
\end{gathered}
$$

Unification a la Edalat \& Heckmann

Edalat and Heckmann's construction works the same for \mathcal{Q}-categories. Therefore:

THEOREM
X is an \mathbb{I}-complete \mathcal{Q}-category iff $(\mathrm{B} X, \leqslant)$ is a dcpo.

Analysis of Caristi's Theorem

(Nonsymmetric Caristi) Let $f: X \rightarrow X$ be an arbitrary map on a \mathbb{I}-complete $[0, \infty]$-category. If there exists a l.s.c. map $\varphi: X \rightarrow[0, \infty)$ such that:

$$
(*) \quad X(x, f x)+\varphi(f x) \leqslant \phi(x)
$$

then f has a fixed point.

Analysis of Caristi's Theorem

(Nonsymmetric Caristi) Let $f: X \rightarrow X$ be an arbitrary map on a \mathbb{I}-complete $[0, \infty]$-category. If there exists a l.s.c. map $\varphi: X \rightarrow[0, \infty)$ such that:

$$
(*) \quad X\left(x, f_{x}\right)+\varphi\left(f_{x}\right) \leqslant \phi(x)
$$

then f has a fixed point.

1. φ is l.s.c. iff $Z:=\{\langle x, \varphi x\rangle \mid x \in X\} \subseteq \mathbf{B} X$ is a dcpo.

Analysis of Caristi's Theorem

(Nonsymmetric Caristi) Let $f: X \rightarrow X$ be an arbitrary map on a \mathbb{I}-complete $[0, \infty]$-category. If there exists a I.s.c. map $\varphi: X \rightarrow[0, \infty)$ such that:

$$
(*) \quad X\left(x, f_{x}\right)+\varphi\left(f_{x}\right) \leqslant \phi(x)
$$

then f has a fixed point.

1. φ is l.s.c. iff $Z:=\{\langle x, \varphi x\rangle \mid x \in X\} \subseteq \mathbf{B} X$ is a dcpo.
2. Moreover, (*) iff $\langle x, \varphi x\rangle \leqslant\left\langle T_{x}, \varphi\left(T_{x}\right)\right\rangle$ in BX.

Analysis of Caristi's Theorem

(Nonsymmetric Caristi) Let $f: X \rightarrow X$ be an arbitrary map on a \mathbb{I}-complete $[0, \infty]$-category. If there exists a l.s.c. map $\varphi: X \rightarrow[0, \infty)$ such that:

$$
(*) \quad X(x, f x)+\varphi(f x) \leqslant \phi(x)
$$

then f has a fixed point.

1. φ is l.s.c. iff $Z:=\{\langle x, \varphi x\rangle \mid x \in X\} \subseteq \mathbf{B} X$ is a dcpo.
2. Moreover, $\left(^{*}\right)$ iff $\langle x, \varphi x\rangle \leqslant\left\langle T_{x}, \varphi\left(T_{x}\right)\right\rangle$ in BX.
3. Hence (*) iff the map $\langle x, \varphi x\rangle \mapsto\left\langle T x, \varphi\left(T_{x}\right)\right\rangle$ is expanding.

Analysis of Caristi's Theorem

(Nonsymmetric Caristi) Let $f: X \rightarrow X$ be an arbitrary map on a \mathbb{I}-complete $[0, \infty]$-category. If there exists a l.s.c. map $\varphi: X \rightarrow[0, \infty)$ such that:

$$
(*) \quad X(x, f x)+\varphi(f x) \leqslant \phi(x)
$$

then f has a fixed point.

1. φ is l.s.c. iff $Z:=\{\langle x, \varphi x\rangle \mid x \in X\} \subseteq \mathbf{B} X$ is a dcpo.
2. Moreover, $\left(^{*}\right)$ iff $\langle x, \varphi x\rangle \leqslant\langle T x, \varphi(T x)\rangle$ in BX.
3. Hence (*) iff the map $\langle x, \varphi x\rangle \mapsto\langle T x, \varphi(T x)\rangle$ is expanding.
4. Hence (Nonsymmetric Caristi) iff (Bourbaki-Witt).

Analysis of Caristi's Theorem

(Nonsymmetric Caristi) Let $f: X \rightarrow X$ be an arbitrary map on a \mathbb{I}-complete $[0, \infty]$-category. If there exists a I.s.c. map $\varphi: X \rightarrow[0, \infty)$ such that:

$$
(*) \quad X\left(x, f_{x}\right)+\varphi\left(f_{x}\right) \leqslant \phi(x)
$$

then f has a fixed point.

1. φ is l.s.c. iff $Z:=\{\langle x, \varphi x\rangle \mid x \in X\} \subseteq \mathbf{B} X$ is a dcpo.
2. Moreover, (*) iff $\langle x, \varphi x\rangle \leqslant\langle T x, \varphi(T x)\rangle$ in BX.
3. Hence $\left(^{*}\right)$ iff the map $\langle x, \varphi x\rangle \mapsto\left\langle T x, \varphi\left(T_{x}\right)\right\rangle$ is expanding.
4. Hence (Nonsymmetric Caristi) iff (Bourbaki-Witt).
5. Moreover, Andrej Bauer proved that (Bourbaki-Witt) has no constructive proof.

Analysis of Caristi's Theorem

(Nonsymmetric Caristi) Let $f: X \rightarrow X$ be an arbitrary map on a \mathbb{I}-complete $[0, \infty]$-category. If there exists a l.s.c. map $\varphi: X \rightarrow[0, \infty)$ such that:

$$
(*) \quad X(x, f x)+\varphi(f x) \leqslant \phi(x)
$$

then f has a fixed point.

1. φ is l.s.c. iff $Z:=\{\langle x, \varphi x\rangle \mid x \in X\} \subseteq \mathbf{B} X$ is a dcpo.
2. Moreover, $\left(^{*}\right)$ iff $\langle x, \varphi x\rangle \leqslant\langle T x, \varphi(T x)\rangle$ in BX.
3. Hence $\left(^{*}\right)$ iff the map $\langle x, \varphi x\rangle \mapsto\left\langle T x, \varphi\left(T_{x}\right)\right\rangle$ is expanding.
4. Hence (Nonsymmetric Caristi) iff (Bourbaki-Witt).
5. Moreover, Andrej Bauer proved that (Bourbaki-Witt) has no constructive proof.
6. Hence (Nonsymmetric Caristi) has no constructive proof either.

But...

... maybe (Caristi) has a constructive proof?

NO.
The proof idea is due to Hannes Diener.

Hannes Diener (photo by Andrej Bauer)

Hannes' proof

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \wedge b \neq 0)$, we have either $a=0$ or $b=0$.

Hannes' proof

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \wedge b \neq 0)$, we have either $a=0$ or $b=0$.
Proof: Let a, b satisfy $\neg(a \neq 0 \wedge b \neq 0)$.

Hannes' proof

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \wedge b \neq 0)$, we have either $a=0$ or $b=0$.
Proof: Let a, b satisfy $\neg(a \neq 0 \wedge b \neq 0)$. Wlog $a, b \leqslant \frac{1}{2}$.

Hannes' proof

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \wedge b \neq 0)$, we have either $a=0$ or $b=0$.
Proof: Let a, b satisfy $\neg(a \neq 0 \wedge b \neq 0)$. Wlog $a, b \leqslant \frac{1}{2}$. Define $f:[0,1] \rightarrow[0,1]$ by

$$
f(x):=a(1-x)-b x+x
$$

Hannes' proof

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \wedge b \neq 0)$, we have either $a=0$ or $b=0$.
Proof: Let a, b satisfy $\neg(a \neq 0 \wedge b \neq 0)$. Wlog $a, b \leqslant \frac{1}{2}$. Define $f:[0,1] \rightarrow[0,1]$ by

$$
f(x):=a(1-x)-b x+x
$$

If $a \neq 0$, then $b=0$ and the graph of f lies above the diagonal, and has a unique fixpoint at 1 .

Hannes' proof

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \wedge b \neq 0)$, we have either $a=0$ or $b=0$.
Proof: Let a, b satisfy $\neg(a \neq 0 \wedge b \neq 0)$. Wlog $a, b \leqslant \frac{1}{2}$. Define $f:[0,1] \rightarrow[0,1]$ by

$$
f(x):=a(1-x)-b x+x
$$

If $a \neq 0$, then $b=0$ and the graph of f lies above the diagonal, and has a unique fixpoint at 1 . Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0 .

Hannes' proof

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \wedge b \neq 0)$, we have either $a=0$ or $b=0$.
Proof: Let a, b satisfy $\neg(a \neq 0 \wedge b \neq 0)$. Wlog $a, b \leqslant \frac{1}{2}$. Define $f:[0,1] \rightarrow[0,1]$ by

$$
f(x):=a(1-x)-b x+x
$$

If $a \neq 0$, then $b=0$ and the graph of f lies above the diagonal, and has a unique fixpoint at 1 . Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0 . If both a and b are zero, f is the identity.

Hannes' proof

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \wedge b \neq 0)$, we have either $a=0$ or $b=0$.
Proof: Let a, b satisfy $\neg(a \neq 0 \wedge b \neq 0)$. Wlog $a, b \leqslant \frac{1}{2}$. Define $f:[0,1] \rightarrow[0,1]$ by

$$
f(x):=a(1-x)-b x+x
$$

If $a \neq 0$, then $b=0$ and the graph of f lies above the diagonal, and has a unique fixpoint at 1 . Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0 . If both a and b are zero, f is the identity. Now define $\varphi:[0,1] \rightarrow[0, \infty)$ by $\varphi(x)=1-x$.

Hannes' proof

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \wedge b \neq 0)$, we have either $a=0$ or $b=0$.
Proof: Let a, b satisfy $\neg(a \neq 0 \wedge b \neq 0)$. Wlog $a, b \leqslant \frac{1}{2}$. Define $f:[0,1] \rightarrow[0,1]$ by

$$
f(x):=a(1-x)-b x+x
$$

If $a \neq 0$, then $b=0$ and the graph of f lies above the diagonal, and has a unique fixpoint at 1 . Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0 . If both a and b are zero, f is the identity. Now define $\varphi:[0,1] \rightarrow[0, \infty)$ by $\varphi(x)=1-x$. If we could prove (Caristi), f would have a fixpoint x_{0}.

Hannes' proof

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \wedge b \neq 0)$, we have either $a=0$ or $b=0$.
Proof: Let a, b satisfy $\neg(a \neq 0 \wedge b \neq 0)$. Wlog $a, b \leqslant \frac{1}{2}$. Define $f:[0,1] \rightarrow[0,1]$ by

$$
f(x):=a(1-x)-b x+x
$$

If $a \neq 0$, then $b=0$ and the graph of f lies above the diagonal, and has a unique fixpoint at 1 . Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0 . If both a and b are zero, f is the identity. Now define $\varphi:[0,1] \rightarrow[0, \infty)$ by $\varphi(x)=1-x$. If we could prove (Caristi), f would have a fixpoint x_{0}. By considering an appropriate approximation we can decide whether $x_{0}>0$ or $x_{0}<1$.

Hannes' proof

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \wedge b \neq 0)$, we have either $a=0$ or $b=0$.
Proof: Let a, b satisfy $\neg(a \neq 0 \wedge b \neq 0)$. Wlog $a, b \leqslant \frac{1}{2}$. Define $f:[0,1] \rightarrow[0,1]$ by

$$
f(x):=a(1-x)-b x+x
$$

If $a \neq 0$, then $b=0$ and the graph of f lies above the diagonal, and has a unique fixpoint at 1 . Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0 . If both a and b are zero, f is the identity. Now define $\varphi:[0,1] \rightarrow[0, \infty)$ by $\varphi(x)=1-x$. If we could prove (Caristi), f would have a fixpoint x_{0}. By considering an appropriate approximation we can decide whether $x_{0}>0$ or $x_{0}<1$. In the first case it is impossible that $b \neq 0$, since then, as mentioned above, f would have a unique fixpoint at 0 ; thus $b=0$.

Hannes' proof

Let $a, b \in \mathbb{R}$ be We will show that (Caristi) implies that for any two non-negative reals a, b such that $\neg(a \neq 0 \wedge b \neq 0)$, we have either $a=0$ or $b=0$.
Proof: Let a, b satisfy $\neg(a \neq 0 \wedge b \neq 0)$. Wlog $a, b \leqslant \frac{1}{2}$. Define $f:[0,1] \rightarrow[0,1]$ by

$$
f(x):=a(1-x)-b x+x
$$

If $a \neq 0$, then $b=0$ and the graph of f lies above the diagonal, and has a unique fixpoint at 1 . Similarly if $b \neq 0$ then the graph lies below the diagonal and has a unique fixpoint at 0 . If both a and b are zero, f is the identity. Now define $\varphi:[0,1] \rightarrow[0, \infty)$ by $\varphi(x)=1-x$. If we could prove (Caristi), f would have a fixpoint x_{0}. By considering an appropriate approximation we can decide whether $x_{0}>0$ or $x_{0}<1$. In the first case it is impossible that $b \neq 0$, since then, as mentioned above, f would have a unique fixpoint at 0 ; thus $b=0$. Analogously in the second case we would get $a=0$. QED.

Conclusion

1. I have argued that theorems of Knaster-Tarski and Banach are in essence 'the same' - by forgetting the distinction between order and metric.

Conclusion

1. I have argued that theorems of Knaster-Tarski and Banach are in essence 'the same' - by forgetting the distinction between order and metric.
2. I have argued that theorems of Bourbaki-Witt and Caristi are in essence 'the same' - by switching from a metric space X to its formal ball model $\mathrm{B} X$.

Conclusion

1. I have argued that theorems of Knaster-Tarski and Banach are in essence 'the same' - by forgetting the distinction between order and metric.
2. I have argued that theorems of Bourbaki-Witt and Caristi are in essence 'the same' - by switching from a metric space X to its formal ball model $\mathrm{B} X$.
3. In fact, (Nonsymmetric Caristi) can be further generalized to become a source theorem for both classic results mentioned in 2.

APPENDIX: Pataraia's construction

THEOREM. A monotone map $f: X \rightarrow X$ on a pointed dcpo X has a least fixed point. Proof:

APPENDIX: Pataraia's construction

THEOREM. A monotone map $f: X \rightarrow X$ on a pointed dcpo X has a least fixed point. Proof:

1. A subset $Y:=\{y \in X \mid y \leqslant f y\}$
(a) contains \perp, (b) is closed under f, (c) is a subdcpo.

APPENDIX: Pataraia's construction

THEOREM. A monotone map $f: X \rightarrow X$ on a pointed dcpo X has a least fixed point. Proof:

1. A subset $Y:=\{y \in X \mid y \leqslant f y\}$
(a) contains \perp, (b) is closed under f, (c) is a subdcpo.
2. Let C be the intersection of all subsets of X with (a)-(c). It satisfies (a)-(c) as well.

APPENDIX: Pataraia's construction

THEOREM. A monotone map $f: X \rightarrow X$ on a pointed dcpo X has a least fixed point. Proof:

1. A subset $Y:=\{y \in X \mid y \leqslant f y\}$
(a) contains \perp, (b) is closed under f, (c) is a subdcpo.
2. Let C be the intersection of all subsets of X with (a)-(c). It satisfies (a)-(c) as well.
3. Hence $f: C \rightarrow C$ is an order-preserving and expanding map on a pointed dcpo. The set of all such maps $E(X)$ is a dcpo in the pointwise order.

APPENDIX: Pataraia's construction

THEOREM. A monotone map $f: X \rightarrow X$ on a pointed dcpo X has a least fixed point. Proof:

1. A subset $Y:=\{y \in X \mid y \leqslant f y\}$
(a) contains \perp, (b) is closed under f, (c) is a subdcpo.
2. Let C be the intersection of all subsets of X with (a)-(c). It satisfies (a)-(c) as well.
3. Hence $f: C \rightarrow C$ is an order-preserving and expanding map on a pointed dcpo. The set of all such maps $E(X)$ is a dcpo in the pointwise order.
4. But since $f, g \leqslant f \circ g$ and $f, g \leqslant g \circ f$ for any maps f, g in $E(X)$, the dсро $E(X)$ is itself directed.

APPENDIX: Pataraia's construction

THEOREM. A monotone map $f: X \rightarrow X$ on a pointed dcpo X has a least fixed point. Proof:

1. A subset $Y:=\{y \in X \mid y \leqslant f y\}$
(a) contains \perp, (b) is closed under f, (c) is a subdcpo.
2. Let C be the intersection of all subsets of X with (a)-(c). It satisfies (a)-(c) as well.
3. Hence $f: C \rightarrow C$ is an order-preserving and expanding map on a pointed dcpo. The set of all such maps $E(X)$ is a dcpo in the pointwise order.
4. But since $f, g \leqslant f \circ g$ and $f, g \leqslant g \circ f$ for any maps f, g in $E(X)$, the dcpo $E(X)$ is itself directed.
5. Therefore $E(X)$ has a top element T. We have $f \circ T=T$.

APPENDIX: Pataraia's construction

THEOREM. A monotone map $f: X \rightarrow X$ on a pointed dcpo X has a least fixed point. Proof:

1. A subset $Y:=\{y \in X \mid y \leqslant f y\}$
(a) contains \perp, (b) is closed under f, (c) is a subdcpo.
2. Let C be the intersection of all subsets of X with (a)-(c). It satisfies (a)-(c) as well.
3. Hence $f: C \rightarrow C$ is an order-preserving and expanding map on a pointed dcpo. The set of all such maps $E(X)$ is a dcpo in the pointwise order.
4. But since $f, g \leqslant f \circ g$ and $f, g \leqslant g \circ f$ for any maps f, g in $E(X)$, the dсро $E(X)$ is itself directed.
5. Therefore $E(X)$ has a top element T. We have $f \circ T=T$.
6. Hence $f(\top(\perp))=T(\perp)$, and for any other fixpoint $x \in X$, the set $\downarrow x$ satisfies (a)-(c), and thus $T(\perp) \in C \subseteq \downarrow x$. QED.
