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Imperative Language, Deterministic

Syntax

M ::= print c . M | x | rec x. M c ∈ A

We write Γ ` M, where Γ is a list of identifiers.

Small-step semantics

print c . M  c M

rec x. M  M[rec x. M/x]

A program either

prints a finite string, then diverges

or prints an infinite string.
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Medium step semantics

Convergence

Define M ⇒c N inductively:

print c. M ⇒c M

M[rec x. M/x] ⇒c N

rec x. M ⇒c N

Divergence

Define M ⇑ coinductively:

M[rec x. M/x] ⇑

rec x. M ⇑

We have

M ⇒c N iff M  ∗  c N

M ⇑ iff M  ω
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Denotational Semantics

Let Streams be the domain of finite and infinite streams of characters.

Then a term x, y, z ` M denotes a continuous function

[[M]] : Streams3 −→ Streams

Recursion is interpreted as least pre-fixed point.
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Adding Nondeterminism

M ::= print c . M | x | rec x. M | choose {Mn}n∈N

choose {Mn}n∈N means: choose a number n, then execute Mn.

Denotational semantics?
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Equivalence relations on closed terms P and Q

Infinite trace equivalence

P ≡ Q when they have the same set of behaviours (divergences and
infinite traces).
This implies they have the same finite traces.

Lower bisimilarity

Let R be a binary relation on closed terms.

It is a lower simulation when M R M ′ and M ⇒c N implies ∃N ′ such that
M ′ ⇒c N ′ and N R N ′.

It is a lower bisimulation when R and Rop
are lower simulations.

The greatest lower bisimulation is called h.
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Other definitions of h

Two programs are lower bisimilar

iff they satisfy the same formulas in Hennessy-Milner logic

iff there is a strategy for the bisimilarity game between them

iff they have the same anamorphic image.
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Open extension of Infinite Trace Equivalence

Two terms x, y, z ` P ≡o Q when

Definition via substitution

P[M/x,M ′/y,M ′′/z] ≡ Q[M/x,M ′/y,M ′′/z]

for any closed terms M,M ′,M ′′.

Definition via operational meaning

they give the same function

(P>0Streams)3 −→ (P>0Streams)
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Open extension of lower bisimilarity

Two terms x, y, z ` P ho Q when

Definition via substitution

P[M/x,M ′/y,M ′′/z] h Q[M/x,M ′/y,M ′′/z]

for any closed terms M,M ′,M ′′.

Definition via operational meaning

they give the same function

Proc3 −→ Proc

where Proc is the set of programs modulo lower bisimilarity

i.e. a final coalgebra for X 7→ (P(0,ℵ0]X )A.
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The Dream

Infinite trace equivalence

Can we give a denotational semantics for ≡o ?
A term x, y, z ` P would denote a [. . . ] function

(P>0Streams)3 −→ (P>0Streams)

Recursion rec x.M would denote the [. . . ] fixpoint of [[M]].

Lower bisimilarity

Can we give a denotational semantics for ho ?
A term x, y, z ` P would denote a [. . . ] function

Proc3 −→ Proc

Recursion rec x.M would denote the [. . . ] fixpoint of [[M]].
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Nightmare on ≡ street

Here are two terms with a free identifier x.

N = choose⊥ n ∈ N. Xn. ⊥ or x

N ′ = choose⊥ n ∈ N. Xn. ⊥ or x or X.x

Xn, then diverge Xω

N yes iff x can
N ′ yes iff x can

rec x. N yes no
rec x. N ′ yes yes

Same endofunction, different fixpoint.
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Encouraging situation on h street

We know that ho is a congruence.

Proof by Howe’s method i.e. magic.

For a term x ` N, the endofunction determines the fixpoint rec x.N.

But how is that fixpoint obtained?

What is the structure of Proc?
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Nested simulation

A 2-nested lower simulation is a simulation contained in mutual similarity.

Characterized by

Hennessy-Milner logic with one alternation

Bisimulation game with one change of side

Final coalgebra for suitable endofunctor.

A 3-nested lower simulation is a simulation contained in mutual 2-nested
similarity. And so through all countable ordinals.

The intersection of n-nested similarity for n < ω1 is bisimilarity.
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An ω1-nested preordered set is a set X with a sequence of preorders
(6α)α6ω1 where

(6α+1 is contained in the symmetrization of (6α)

at a limit ordinal, it’s the intersection of the previous ones (hence
symmetric).

Example: programs, ordered by α-nested simulation

It’s an ω1-nested poset when 6ω1 is discrete.

Example: Proc

A function between these is monotone when it preserves all the preorders.
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Calculating the nesting fixpoint

Suppose f is a monotone endofunction on an ω1-nested poset (X ,6).

Obtain a decreasing sequence of sets (Uα)α6ω1 .

We put U0 = X .

Then U1 is the set of least pre-fixed points of f wrt (61)
—Might be empty

f restricts to an endofunction on U1.
So U2 is the set of least pre-fixed points of f � U1 wrt (62)
—Might be empty

At a limit ordinal we take the intersection of the previous sets.
—Might be empty

Then Uω1 is a singleton set —Or empty
That’s the nesting fixpoint.
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Towards denotational semantics

rec x. M is the nesting fixpoint of N 7→ M[N/x].

But not every monotone endofunction has a nesting fixpoint.

Can we restrict to a class of functions to guarantee existence?

Maybe exploratory functions (Levy and Weldemariam, MFPS 2009)?
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Functional language: call-by-name FPC

Types

A ::= A→ A |
∑

i∈IAi |
∏

i∈I Ai | X | rec X. A (I countable)

Terms

M ::= x | 〈i ,M〉 | case M of {〈i , x〉.Mi}i∈I

| λx.M | MM | Mi | λ{i .Mi}i∈I

| rec x. M | fold M | unfold M

| choose {Mn}n∈N

Big-step semantics

M ⇓ T inductively defined

M ⇑ coinductively defined
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Applicative bisimilarity [Abramsky]

A binary relation R on closed terms is a lower applicative simulation when
M R M ′ : A implies

(if A = B → C ) for all closed N : B we have MN R M ′N

(if A =
∏

i∈I Bi ) for all i ∈ I we have Mi R M ′i

(if A =
∑

i∈IAi ) if M ⇓ 〈i ,N〉 then ∃N ′ such that M ′ ⇓ 〈i ,N ′〉 and
N R N ′.

The largest is applicative bisimilarity.
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Summary of results

For both languages, Howe’s method shows that ho is a congruence.

Imperative language

rec x.M is nesting fixpoint of N 7→ M[N/x]

This implies ho is a congruence

Functional language

rec x.M is a nesting fixpoint of N 7→ M[N/x]

This does not imply ho is a congruence.

We would also need to show application preserves h.
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