
Characterizing recursive programs up to bisimilarity

Paul Blain Levy

University of Birmingham

August 21, 2010

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 1 / 19

Imperative Language, Deterministic

Syntax

M ::= print c . M | x | rec x. M c ∈ A

We write Γ ` M, where Γ is a list of identifiers.

Small-step semantics

print c . M c M

rec x. M M[rec x. M/x]

A program either

prints a finite string, then diverges

or prints an infinite string.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 2 / 19

Imperative Language, Deterministic

Syntax

M ::= print c . M | x | rec x. M c ∈ A

We write Γ ` M, where Γ is a list of identifiers.

Small-step semantics

print c . M c M

rec x. M M[rec x. M/x]

A program either

prints a finite string, then diverges

or prints an infinite string.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 2 / 19

Imperative Language, Deterministic

Syntax

M ::= print c . M | x | rec x. M c ∈ A

We write Γ ` M, where Γ is a list of identifiers.

Small-step semantics

print c . M c M

rec x. M M[rec x. M/x]

A program either

prints a finite string, then diverges

or prints an infinite string.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 2 / 19

Medium step semantics

Convergence

Define M ⇒c N inductively:

print c. M ⇒c M

M[rec x. M/x] ⇒c N

rec x. M ⇒c N

Divergence

Define M ⇑ coinductively:

M[rec x. M/x] ⇑

rec x. M ⇑

We have

M ⇒c N iff M ∗ c N

M ⇑ iff M ω

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 3 / 19

Medium step semantics

Convergence

Define M ⇒c N inductively:

print c. M ⇒c M

M[rec x. M/x] ⇒c N

rec x. M ⇒c N

Divergence

Define M ⇑ coinductively:

M[rec x. M/x] ⇑

rec x. M ⇑

We have

M ⇒c N iff M ∗ c N

M ⇑ iff M ω

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 3 / 19

Denotational Semantics

Let Streams be the domain of finite and infinite streams of characters.

Then a term x, y, z ` M denotes a continuous function

[[M]] : Streams3 −→ Streams

Recursion is interpreted as least pre-fixed point.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 4 / 19

Adding Nondeterminism

M ::= print c . M | x | rec x. M | choose {Mn}n∈N

choose {Mn}n∈N means: choose a number n, then execute Mn.

Denotational semantics?

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 5 / 19

Adding Nondeterminism

M ::= print c . M | x | rec x. M | choose {Mn}n∈N

choose {Mn}n∈N means: choose a number n, then execute Mn.

Denotational semantics?

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 5 / 19

Equivalence relations on closed terms P and Q

Infinite trace equivalence

P ≡ Q when they have the same set of behaviours (divergences and
infinite traces).
This implies they have the same finite traces.

Lower bisimilarity

Let R be a binary relation on closed terms.

It is a lower simulation when M R M ′ and M ⇒c N implies ∃N ′ such that
M ′ ⇒c N ′ and N R N ′.

It is a lower bisimulation when R and Rop
are lower simulations.

The greatest lower bisimulation is called h.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 6 / 19

Other definitions of h

Two programs are lower bisimilar

iff they satisfy the same formulas in Hennessy-Milner logic

iff there is a strategy for the bisimilarity game between them

iff they have the same anamorphic image.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 7 / 19

Other definitions of h

Two programs are lower bisimilar

iff they satisfy the same formulas in Hennessy-Milner logic

iff there is a strategy for the bisimilarity game between them

iff they have the same anamorphic image.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 7 / 19

Other definitions of h

Two programs are lower bisimilar

iff they satisfy the same formulas in Hennessy-Milner logic

iff there is a strategy for the bisimilarity game between them

iff they have the same anamorphic image.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 7 / 19

Other definitions of h

Two programs are lower bisimilar

iff they satisfy the same formulas in Hennessy-Milner logic

iff there is a strategy for the bisimilarity game between them

iff they have the same anamorphic image.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 7 / 19

Open extension of Infinite Trace Equivalence

Two terms x, y, z ` P ≡o Q when

Definition via substitution

P[M/x,M ′/y,M ′′/z] ≡ Q[M/x,M ′/y,M ′′/z]

for any closed terms M,M ′,M ′′.

Definition via operational meaning

they give the same function

(P>0Streams)3 −→ (P>0Streams)

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 8 / 19

Open extension of lower bisimilarity

Two terms x, y, z ` P ho Q when

Definition via substitution

P[M/x,M ′/y,M ′′/z] h Q[M/x,M ′/y,M ′′/z]

for any closed terms M,M ′,M ′′.

Definition via operational meaning

they give the same function

Proc3 −→ Proc

where Proc is the set of programs modulo lower bisimilarity

i.e. a final coalgebra for X 7→ (P(0,ℵ0]X)A.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 9 / 19

The Dream

Infinite trace equivalence

Can we give a denotational semantics for ≡o ?
A term x, y, z ` P would denote a [. . .] function

(P>0Streams)3 −→ (P>0Streams)

Recursion rec x.M would denote the [. . .] fixpoint of [[M]].

Lower bisimilarity

Can we give a denotational semantics for ho ?
A term x, y, z ` P would denote a [. . .] function

Proc3 −→ Proc

Recursion rec x.M would denote the [. . .] fixpoint of [[M]].

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 10 / 19

Nightmare on ≡ street

Here are two terms with a free identifier x.

N = choose⊥ n ∈ N. Xn. ⊥ or x

N ′ = choose⊥ n ∈ N. Xn. ⊥ or x or X.x

Xn, then diverge Xω

N yes iff x can
N ′ yes iff x can

rec x. N yes no
rec x. N ′ yes yes

Same endofunction, different fixpoint.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 11 / 19

Encouraging situation on h street

We know that ho is a congruence.

Proof by Howe’s method i.e. magic.

For a term x ` N, the endofunction determines the fixpoint rec x.N.

But how is that fixpoint obtained?

What is the structure of Proc?

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 12 / 19

Encouraging situation on h street

We know that ho is a congruence.

Proof by Howe’s method

i.e. magic.

For a term x ` N, the endofunction determines the fixpoint rec x.N.

But how is that fixpoint obtained?

What is the structure of Proc?

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 12 / 19

Encouraging situation on h street

We know that ho is a congruence.

Proof by Howe’s method i.e. magic.

For a term x ` N, the endofunction determines the fixpoint rec x.N.

But how is that fixpoint obtained?

What is the structure of Proc?

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 12 / 19

Encouraging situation on h street

We know that ho is a congruence.

Proof by Howe’s method i.e. magic.

For a term x ` N, the endofunction determines the fixpoint rec x.N.

But how is that fixpoint obtained?

What is the structure of Proc?

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 12 / 19

Encouraging situation on h street

We know that ho is a congruence.

Proof by Howe’s method i.e. magic.

For a term x ` N, the endofunction determines the fixpoint rec x.N.

But how is that fixpoint obtained?

What is the structure of Proc?

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 12 / 19

Nested simulation

A 2-nested lower simulation is a simulation contained in mutual similarity.

Characterized by

Hennessy-Milner logic with one alternation

Bisimulation game with one change of side

Final coalgebra for suitable endofunctor.

A 3-nested lower simulation is a simulation contained in mutual 2-nested
similarity. And so through all countable ordinals.

The intersection of n-nested similarity for n < ω1 is bisimilarity.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 13 / 19

Nested simulation

A 2-nested lower simulation is a simulation contained in mutual similarity.

Characterized by

Hennessy-Milner logic with one alternation

Bisimulation game with one change of side

Final coalgebra for suitable endofunctor.

A 3-nested lower simulation is a simulation contained in mutual 2-nested
similarity. And so through all countable ordinals.

The intersection of n-nested similarity for n < ω1 is bisimilarity.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 13 / 19

An ω1-nested preordered set is a set X with a sequence of preorders
(6α)α6ω1 where

(6α+1 is contained in the symmetrization of (6α)

at a limit ordinal, it’s the intersection of the previous ones (hence
symmetric).

Example: programs, ordered by α-nested simulation

It’s an ω1-nested poset when 6ω1 is discrete.

Example: Proc

A function between these is monotone when it preserves all the preorders.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 14 / 19

An ω1-nested preordered set is a set X with a sequence of preorders
(6α)α6ω1 where

(6α+1 is contained in the symmetrization of (6α)

at a limit ordinal, it’s the intersection of the previous ones (hence
symmetric).

Example: programs, ordered by α-nested simulation

It’s an ω1-nested poset when 6ω1 is discrete.

Example: Proc

A function between these is monotone when it preserves all the preorders.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 14 / 19

Calculating the nesting fixpoint

Suppose f is a monotone endofunction on an ω1-nested poset (X ,6).

Obtain a decreasing sequence of sets (Uα)α6ω1 .

We put U0 = X .

Then U1 is the set of least pre-fixed points of f wrt (61)
—Might be empty

f restricts to an endofunction on U1.
So U2 is the set of least pre-fixed points of f � U1 wrt (62)
—Might be empty

At a limit ordinal we take the intersection of the previous sets.
—Might be empty

Then Uω1 is a singleton set —Or empty
That’s the nesting fixpoint.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 15 / 19

Calculating the nesting fixpoint

Suppose f is a monotone endofunction on an ω1-nested poset (X ,6).

Obtain a decreasing sequence of sets (Uα)α6ω1 .

We put U0 = X .

Then U1 is the set of least pre-fixed points of f wrt (61)
—Might be empty

f restricts to an endofunction on U1.
So U2 is the set of least pre-fixed points of f � U1 wrt (62)
—Might be empty

At a limit ordinal we take the intersection of the previous sets.
—Might be empty

Then Uω1 is a singleton set —Or empty
That’s the nesting fixpoint.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 15 / 19

Calculating the nesting fixpoint

Suppose f is a monotone endofunction on an ω1-nested poset (X ,6).

Obtain a decreasing sequence of sets (Uα)α6ω1 .

We put U0 = X .

Then U1 is the set of least pre-fixed points of f wrt (61)
—Might be empty

f restricts to an endofunction on U1.
So U2 is the set of least pre-fixed points of f � U1 wrt (62)
—Might be empty

At a limit ordinal we take the intersection of the previous sets.
—Might be empty

Then Uω1 is a singleton set —Or empty
That’s the nesting fixpoint.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 15 / 19

Calculating the nesting fixpoint

Suppose f is a monotone endofunction on an ω1-nested poset (X ,6).

Obtain a decreasing sequence of sets (Uα)α6ω1 .

We put U0 = X .

Then U1 is the set of least pre-fixed points of f wrt (61)
—Might be empty

f restricts to an endofunction on U1.
So U2 is the set of least pre-fixed points of f � U1 wrt (62)
—Might be empty

At a limit ordinal we take the intersection of the previous sets.
—Might be empty

Then Uω1 is a singleton set —Or empty
That’s the nesting fixpoint.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 15 / 19

Calculating the nesting fixpoint

Suppose f is a monotone endofunction on an ω1-nested poset (X ,6).

Obtain a decreasing sequence of sets (Uα)α6ω1 .

We put U0 = X .

Then U1 is the set of least pre-fixed points of f wrt (61)
—Might be empty

f restricts to an endofunction on U1.
So U2 is the set of least pre-fixed points of f � U1 wrt (62)
—Might be empty

At a limit ordinal we take the intersection of the previous sets.
—Might be empty

Then Uω1 is a singleton set —Or empty
That’s the nesting fixpoint.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 15 / 19

Calculating the nesting fixpoint

Suppose f is a monotone endofunction on an ω1-nested poset (X ,6).

Obtain a decreasing sequence of sets (Uα)α6ω1 .

We put U0 = X .

Then U1 is the set of least pre-fixed points of f wrt (61)
—Might be empty

f restricts to an endofunction on U1.
So U2 is the set of least pre-fixed points of f � U1 wrt (62)
—Might be empty

At a limit ordinal we take the intersection of the previous sets.
—Might be empty

Then Uω1 is a singleton set —Or empty
That’s the nesting fixpoint.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 15 / 19

Towards denotational semantics

rec x. M is the nesting fixpoint of N 7→ M[N/x].

But not every monotone endofunction has a nesting fixpoint.

Can we restrict to a class of functions to guarantee existence?

Maybe exploratory functions (Levy and Weldemariam, MFPS 2009)?

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 16 / 19

Functional language: call-by-name FPC

Types

A ::= A→ A |
∑

i∈IAi |
∏

i∈I Ai | X | rec X. A (I countable)

Terms

M ::= x | 〈i ,M〉 | case M of {〈i , x〉.Mi}i∈I

| λx.M | MM | Mi | λ{i .Mi}i∈I

| rec x. M | fold M | unfold M

| choose {Mn}n∈N

Big-step semantics

M ⇓ T inductively defined

M ⇑ coinductively defined

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 17 / 19

Applicative bisimilarity [Abramsky]

A binary relation R on closed terms is a lower applicative simulation when
M R M ′ : A implies

(if A = B → C) for all closed N : B we have MN R M ′N

(if A =
∏

i∈I Bi) for all i ∈ I we have Mi R M ′i

(if A =
∑

i∈IAi) if M ⇓ 〈i ,N〉 then ∃N ′ such that M ′ ⇓ 〈i ,N ′〉 and
N R N ′.

The largest is applicative bisimilarity.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 18 / 19

Summary of results

For both languages, Howe’s method shows that ho is a congruence.

Imperative language

rec x.M is nesting fixpoint of N 7→ M[N/x]

This implies ho is a congruence

Functional language

rec x.M is a nesting fixpoint of N 7→ M[N/x]

This does not imply ho is a congruence.

We would also need to show application preserves h.

Paul Blain Levy (University of Birmingham) Recursive programs up to bisimilarity August 21, 2010 19 / 19

