Characterizing recursive programs up to bisimilarity

Paul Blain Levy

University of Birmingham

August 21, 2010

Syntax

$$M ::=$$
 print $c. M | x |$ rec x. M

$$c\in \mathcal{A}$$

We write $\Gamma \vdash M$, where Γ is a list of identifiers.

Syntax

$$M ::=$$
 print $c. M | x |$ rec x. M

$$c \in \mathcal{A}$$

We write $\Gamma \vdash M$, where Γ is a list of identifiers.

Small-step semantics

print c.
$$M \xrightarrow{C} M$$

rec x. $M \xrightarrow{\sim} M$ [rec x. M/x]

Syntax

$$M ::=$$
 print $c. M | x |$ rec x. M

$$c \in \mathcal{A}$$

We write $\Gamma \vdash M$, where Γ is a list of identifiers.

Small-step semantics

print c.
$$M \xrightarrow{C} M$$

rec x. $M \xrightarrow{\sim} M$ [rec x. M/x]

A program either

- prints a finite string, then diverges
- or prints an infinite string.

Medium step semantics

Convergence

Define $M \stackrel{c}{\Rightarrow} N$ inductively:

$$\frac{M[\operatorname{rec} x. M/x] \stackrel{C}{\Rightarrow} N}{\operatorname{rec} x. M \stackrel{C}{\Rightarrow} N}$$

Divergence

Define $M \Uparrow$ coinductively:

$$\frac{M[\text{rec x. } M/\text{x}] \Uparrow}{\text{rec x. } M \Uparrow}$$

print c. $M \stackrel{c}{\Rightarrow} \overline{M}$

Medium step semantics

Convergence

Define $M \stackrel{c}{\Rightarrow} N$ inductively:

$$\frac{M[\operatorname{rec} x. M/x] \stackrel{C}{\Rightarrow} N}{\operatorname{rec} x. M \stackrel{C}{\Rightarrow} N}$$

Divergence

Define $M \uparrow$ coinductively:

$$\frac{M[\text{rec x. } M/\text{x}] \Uparrow}{\text{rec x. } M \Uparrow}$$

We have

- $M \stackrel{c}{\Rightarrow} N \text{ iff } M \rightsquigarrow^* \stackrel{c}{\rightsquigarrow} N$
- $M \Uparrow \inf M \rightsquigarrow^{\omega}$

print c. $M \stackrel{c}{\Rightarrow} \overline{M}$

Let Streams be the domain of finite and infinite streams of characters. Then a term $x, y, z \vdash M$ denotes a continuous function

 $\llbracket M \rrbracket : \mathrm{Streams}^3 \longrightarrow \mathrm{Streams}$

Recursion is interpreted as least pre-fixed point.

$M ::= \text{ print } c. M \mid x \mid \text{ rec } x. M \mid \text{ choose } \{M_n\}_{n \in \mathbb{N}}$

choose $\{M_n\}_{n\in\mathbb{N}}$ means: choose a number *n*, then execute M_n .

$M ::= \text{ print } c. M \mid x \mid \text{ rec } x. M \mid \text{ choose } \{M_n\}_{n \in \mathbb{N}}$

choose $\{M_n\}_{n\in\mathbb{N}}$ means: choose a number *n*, then execute M_n . Denotational semantics?

Infinite trace equivalence

 $P \equiv Q$ when they have the same set of behaviours (divergences and infinite traces).

This implies they have the same finite traces.

Lower bisimilarity

Let ${\mathcal R}$ be a binary relation on closed terms.

It is a lower simulation when $M \mathcal{R} M'$ and $M \xrightarrow{C} N$ implies $\exists N'$ such that $M' \xrightarrow{C} N'$ and $N \mathcal{R} N'$.

It is a lower bisimulation when ${\mathcal R}$ and ${\mathcal R}^{^{op}}$ are lower simulations.

The greatest lower bisimulation is called \eqsim .

• iff they satisfy the same formulas in Hennessy-Milner logic

- iff they satisfy the same formulas in Hennessy-Milner logic
- iff there is a strategy for the bisimilarity game between them

- iff they satisfy the same formulas in Hennessy-Milner logic
- iff there is a strategy for the bisimilarity game between them
- iff they have the same anamorphic image.

Two terms $\mathbf{x}, \mathbf{y}, \mathbf{z} \vdash P \equiv^o Q$ when

Definition via substitution

$$\mathsf{P}[M/\mathrm{x},M'/\mathrm{y},M''/\mathrm{z}] \equiv Q[M/\mathrm{x},M'/\mathrm{y},M''/\mathrm{z}]$$

for any closed terms M, M', M''.

Definition via operational meaning

they give the same function

$$(\mathcal{P}^{>0}\mathrm{Streams})^3 \longrightarrow (\mathcal{P}^{>0}\mathrm{Streams})^3$$

Open extension of lower bisimilarity

Two terms $\mathbf{x}, \mathbf{y}, \mathbf{z} \vdash P \ =^o \ Q$ when

Definition via substitution

$$P[M/\mathrm{x}, M'/\mathrm{y}, M''/\mathrm{z}] \eqsim Q[M/\mathrm{x}, M'/\mathrm{y}, M''/\mathrm{z}]$$

for any closed terms M, M', M''.

Definition via operational meaning

they give the same function

$$\operatorname{Proc}^3 \longrightarrow \operatorname{Proc}$$

where Proc is the set of programs modulo lower bisimilarity

i.e. a final coalgebra for $X \mapsto (\mathcal{P}^{(0,\aleph_0]}X)^{\mathcal{A}}$.

The Dream

Infinite trace equivalence

Can we give a denotational semantics for \equiv^{o} ? A term x, y, z \vdash P would denote a [...] function

$$(\mathcal{P}^{>0}\mathrm{Streams})^3 \longrightarrow (\mathcal{P}^{>0}\mathrm{Streams})$$

Recursion rec x.M would denote the [...] fixpoint of $\llbracket M \rrbracket$.

Lower bisimilarity

Can we give a denotational semantics for \equiv^{o} ? A term x, y, z \vdash P would denote a [...] function

 $\operatorname{Proc}^3 \longrightarrow \operatorname{Proc}$

Recursion rec x.M would denote the [...] fixpoint of $\llbracket M \rrbracket$.

Here are two terms with a free identifier x.

$$N = \text{choose}^{\perp} n \in \mathbb{N}. \checkmark^{n}. \perp \text{ or } x$$
$$N' = \text{choose}^{\perp} n \in \mathbb{N}. \checkmark^{n}. \perp \text{ or } x \text{ or } \checkmark. x$$

	\checkmark^n , then diverge	\checkmark^{ω}
N	yes	iff x can
N′	yes	iff x can
rec x. N	yes	no
rec x. N'	yes	yes

Same endofunction, different fixpoint.

Proof by Howe's method

Proof by Howe's method i.e. magic.

Proof by Howe's method i.e. magic.

For a term $x \vdash N$, the endofunction determines the fixpoint rec x.N.

- We know that \equiv^{o} is a congruence.
- Proof by Howe's method i.e. magic.
- For a term $\mathbf{x} \vdash N$, the endofunction determines the fixpoint rec $\mathbf{x}.N$.
- But how is that fixpoint obtained?
- What is the structure of Proc?

A 2-nested lower simulation is a simulation contained in mutual similarity.

A 2-nested lower simulation is a simulation contained in mutual similarity.

Characterized by

- Hennessy-Milner logic with one alternation
- Bisimulation game with one change of side
- Final coalgebra for suitable endofunctor.

A 3-nested lower simulation is a simulation contained in mutual 2-nested similarity. And so through all countable ordinals.

The intersection of *n*-nested similarity for $n < \omega_1$ is bisimilarity.

An $\omega_1\text{-nested}$ preordered set is a set X with a sequence of preorders $(\leqslant_\alpha)_{\alpha\leqslant\omega_1}$ where

- ($\leqslant_{\alpha+1}$ is contained in the symmetrization of ($\leqslant_{\alpha})$
- at a limit ordinal, it's the intersection of the previous ones (hence symmetric).

Example: programs, ordered by α -nested simulation

An ω_1 -nested preordered set is a set X with a sequence of preorders $(\leqslant_{\alpha})_{\alpha\leqslant\omega_1}$ where

- ($\leqslant_{\alpha+1}$ is contained in the symmetrization of ($\leqslant_{\alpha})$
- at a limit ordinal, it's the intersection of the previous ones (hence symmetric).

Example: programs, ordered by α -nested simulation

It's an $\omega_1\text{-nested}$ poset when \leqslant_{ω_1} is discrete.

Example: Proc

A function between these is monotone when it preserves all the preorders.

Calculating the nesting fixpoint

Suppose *f* is a monotone endofunction on an ω_1 -nested poset (X, \leq).

Calculating the nesting fixpoint

Suppose f is a monotone endofunction on an ω_1 -nested poset (X, \leq) . Obtain a decreasing sequence of sets $(U_\alpha)_{\alpha \leq \omega_1}$.

We put $U_0 = X$.

Calculating the nesting fixpoint

Suppose f is a monotone endofunction on an ω_1 -nested poset (X, \leq) . Obtain a decreasing sequence of sets $(U_\alpha)_{\alpha \leq \omega_1}$.

We put $U_0 = X$.

Then U_1 is the set of least pre-fixed points of f wrt (\leq_1) —Might be empty Suppose f is a monotone endofunction on an ω_1 -nested poset (X, \leq) . Obtain a decreasing sequence of sets $(U_\alpha)_{\alpha \leq \omega_1}$.

We put $U_0 = X$.

Then U_1 is the set of least pre-fixed points of f wrt (\leq_1) —Might be empty

f restricts to an endofunction on U_1 . So U_2 is the set of least pre-fixed points of $f \upharpoonright U_1$ wrt (\leq_2) —Might be empty Suppose f is a monotone endofunction on an ω_1 -nested poset (X, \leq) . Obtain a decreasing sequence of sets $(U_\alpha)_{\alpha \leq \omega_1}$.

We put $U_0 = X$.

Then U_1 is the set of least pre-fixed points of f wrt (\leq_1) —Might be empty

f restricts to an endofunction on U_1 . So U_2 is the set of least pre-fixed points of $f \upharpoonright U_1$ wrt (\leq_2) —Might be empty

At a limit ordinal we take the intersection of the previous sets. —Might be empty Suppose f is a monotone endofunction on an ω_1 -nested poset (X, \leq) . Obtain a decreasing sequence of sets $(U_\alpha)_{\alpha \leq \omega_1}$.

We put $U_0 = X$.

Then U_1 is the set of least pre-fixed points of f wrt (\leq_1) —Might be empty

f restricts to an endofunction on U_1 . So U_2 is the set of least pre-fixed points of $f \upharpoonright U_1$ wrt (\leq_2) —Might be empty

At a limit ordinal we take the intersection of the previous sets. —Might be empty

Then U_{ω_1} is a singleton set —Or empty That's the nesting fixpoint.

- rec x. *M* is the nesting fixpoint of $N \mapsto M[N/x]$.
- But not every monotone endofunction has a nesting fixpoint.
- Can we restrict to a class of functions to guarantee existence?
- Maybe exploratory functions (Levy and Weldemariam, MFPS 2009)?

Types

$$A ::= A \to A \mid \sum_{i \in I} A_i \mid \prod_{i \in I} A_i \mid X \mid \text{rec } X. A \quad (I \text{ countable})$$

Terms

Big-step semantics

$\begin{array}{ll} M \Downarrow T & \text{inductively defined} \\ M \Uparrow & \text{coinductively defined} \end{array}$

A binary relation \mathcal{R} on closed terms is a lower applicative simulation when $M \mathcal{R} M' : A$ implies

- (if $A = B \rightarrow C$) for all closed N : B we have $MN \mathcal{R} M'N$
- (if $A = \prod_{i \in I} B_i$) for all $i \in I$ we have $Mi \mathcal{R} M'i$
- (if $A = \sum_{i \in I} A_i$) if $M \Downarrow \langle i, N \rangle$ then $\exists N'$ such that $M' \Downarrow \langle i, N' \rangle$ and $N \mathcal{R} N'$.

The largest is applicative bisimilarity.

For both languages, Howe's method shows that \eqsim^o is a congruence.

Imperative language

- rec x.*M* is nesting fixpoint of $N \mapsto M[N/x]$
- This implies \equiv^{o} is a congruence

Functional language

- rec x.*M* is a nesting fixpoint of $N \mapsto M[N/x]$
- This does not imply \equiv^{o} is a congruence.
- We would also need to show application preserves \eqsim .