Semantics for the Probabilistic μ-calculus

The Equivalence of
 Game and Denotational Semantics for the Probabilistic μ-Calculus

Matteo Mio
University of Edinburgh, LFCS

Outline

- Introduction to the standard modal μ-calculus
- Labeled Transition Systems
- Syntax, Denotational Semantics
- Examples
- Game Semantics
- Probabilistic modal μ-calculus
- Probabilistic Labeled Transition Systems
- Syntax, Denotational Semantics
- Examples
- Game Semantics
- Sketch of the Proof Technique

Labeled Transition Systems

A LTS is a pair $\left\langle P,\{\xrightarrow{a}\}_{a \in L}\right\rangle$ where

- P is a countable set of states,
- L is a countable set of labels, or atomic actions,
$\stackrel{a}{\longrightarrow} \subseteq P \times P$ is the a-transition relation.

Labeled Transition Systems

A LTS is a pair $\left\langle P,\{\xrightarrow{a}\}_{a \in L}\right\rangle$ where

- P is a countable set of states,
- L is a countable set of labels, or atomic actions,
$\stackrel{a}{\longrightarrow} \subseteq P \times P$ is the a-transition relation.

Modal μ-Calculus

The modal μ-calculus extends Hennessy-Milner Logic with least and greatest fixed points:

$$
F::=F \vee F|F \wedge G|\langle a\rangle F|[a] F| X|\mu X . F| \nu X . F
$$

Modal μ-Calculus

The modal μ-calculus extends Hennessy-Milner Logic with least and greatest fixed points:

$$
F::=F \vee F|F \wedge G|\langle a\rangle F|[a] F| X|\mu X . F| \nu X . F
$$

The semantics of a formula [Kozen 1983] is a map:

$$
\llbracket \mid \llbracket \rrbracket_{\rho}: P \rightarrow\{\top, \perp\} \cong \mathcal{P}(P)
$$

Modal μ-Calculus

The modal μ-calculus extends Hennessy-Milner Logic with least and greatest fixed points:

$$
F::=F \vee F|F \wedge G|\langle a\rangle F|[a] F| X|\mu X . F| \nu X . F
$$

The semantics of a formula [Kozen 1983] is a map:

$$
\begin{aligned}
& \quad \llbracket F \rrbracket_{\rho}: P \rightarrow\{\top, \perp\} \cong \mathcal{P}(P) \\
& \llbracket X \rrbracket_{\rho}=\rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho}
\end{aligned}
$$

Modal μ-Calculus

The modal μ-calculus extends Hennessy-Milner Logic with least and greatest fixed points:

$$
F::=F \vee F|F \wedge G|\langle a\rangle F|[a] F| X|\mu X . F| \nu X . F
$$

The semantics of a formula [Kozen 1983] is a map:

$$
\begin{aligned}
& \quad \llbracket F \rrbracket_{\rho}: P \rightarrow\{\top, \perp\} \cong \mathcal{P}(P) \\
& \llbracket X \rrbracket_{\rho}=\rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup_{p \xrightarrow{a} q} \llbracket F \rrbracket_{\rho}(q)
\end{aligned}
$$

Modal μ-Calculus

The modal μ-calculus extends Hennessy-Milner Logic with least and greatest fixed points:

$$
F::=F \vee F|F \wedge G|\langle a\rangle F|[a] F| X|\mu X . F| \nu X . F
$$

The semantics of a formula [Kozen 1983] is a map:

$$
\begin{aligned}
& \qquad \llbracket F \rrbracket_{\rho}: P \rightarrow\{\top, \perp\} \cong \mathcal{P}(P) \\
& \llbracket X \rrbracket_{\rho}=\rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup_{\rho \xrightarrow{a} q} \llbracket F \rrbracket_{\rho}(q) \\
& \llbracket \mu X . F \rrbracket_{\rho}=I f p \text { of the functional } \lambda f . \llbracket F \rrbracket_{\rho[f / X]}
\end{aligned}
$$

$$
\llbracket F \rrbracket_{\rho}: P \rightarrow\{T, \perp\}
$$

$\llbracket X \rrbracket_{\rho}=\rho(X)$

$$
\llbracket F \vee G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho}
$$

- $\llbracket F \wedge G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcap \llbracket G \rrbracket_{\rho}$

$$
\llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup_{p \xrightarrow{\rightarrow} q} \llbracket F \rrbracket_{\rho}(q)
$$

- $\llbracket[a] F \rrbracket_{\rho}(p)=\bigcap \llbracket F \rrbracket_{\rho}(q)$

$$
p \xrightarrow{\rightarrow} q
$$

$\llbracket \mu X . F \rrbracket_{\rho}=I f p$ of the functional $\lambda f . \llbracket F \rrbracket_{\rho[f / X]}$

- $\llbracket \nu X . F \rrbracket_{\rho}=g f p$ of the functional $\lambda f . \llbracket F \rrbracket_{\rho[f / X]}$

One can define a negation operator \sim by induction as follows:

- $\sim(F \vee G)=\sim F \wedge \sim G$
- $\sim(F \wedge G)=\sim F \vee \sim G$
- $\sim(\langle a\rangle F)=[a] \sim F$
- $\sim([a] F)=\langle a\rangle \sim F$
- $\sim(\mu X . F)=\nu X . \sim F[\sim X / X]$
- $\sim(\nu X . F)=\mu X . \sim F[\sim X / X]$
- $\sim \sim X=X$

Fact: $\llbracket \sim F \rrbracket(p)=\neg(\llbracket F \rrbracket(p))$

Examples

$$
\begin{aligned}
& \llbracket X \rrbracket_{\rho} \quad=\quad \rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho} \quad=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket\langle b\rangle t \mathbb{~} \rrbracket(p)=\mathrm{T} \\
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup \llbracket F \rrbracket_{\rho}(q) \\
& p \xrightarrow{2} q \\
& \llbracket[a] F \rrbracket_{\rho}(p)=\prod \llbracket F \rrbracket_{\rho}(q) \\
& p^{\stackrel{a}{a}} q \\
& \llbracket \mu X . F \rrbracket_{\rho}=\mid f p \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket \nu X . F \rrbracket_{\rho}=g f p \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket t \rrbracket_{\rho} \quad=\quad \lambda x . T \\
& \llbracket f \rrbracket_{\rho} \quad=\quad \lambda x . \perp
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \llbracket X \rrbracket_{\rho} \quad=\quad \rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho} \quad=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup \llbracket F \rrbracket_{\rho}(q) \\
& p \xrightarrow{a} q \\
& \llbracket[a] F \rrbracket_{\rho}(p)=\prod \llbracket F \rrbracket_{\rho}(q) \\
& p \xrightarrow{a} q \\
& \llbracket \mu X . F \rrbracket_{\rho}=\mid f p \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket \nu X . F \rrbracket_{\rho}=g f p \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket t \rrbracket_{\rho} \quad=\quad \lambda x . T \\
& \llbracket f \rrbracket_{\rho} \quad=\quad \lambda x . \perp \\
& \llbracket\langle b\rangle t \mathbb{} \rrbracket(p)=T \\
& \llbracket\langle b\rangle t \mathbb{} \rrbracket(s)=\perp
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \llbracket X \rrbracket_{\rho} \quad=\quad \rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho} \quad=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup \llbracket F \rrbracket_{\rho}(q) \\
& p \xrightarrow{a} q \\
& \llbracket\langle b\rangle \nmid \rrbracket \rrbracket(p)=T \\
& \llbracket\langle b\rangle t \mathbb{} \rrbracket(s)=\perp \\
& \llbracket\langle b\rangle\langle b\rangle t \mathbb{} \rrbracket(p)=\perp \\
& \llbracket[a] F \rrbracket_{\rho}(p)=\prod \llbracket F \rrbracket_{\rho}(q) \\
& p^{\stackrel{a}{a}} q \\
& \llbracket \mu X . F \rrbracket_{\rho}=\mid f p \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket \nu X . F \rrbracket_{\rho}=g f p \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket t \rrbracket_{\rho} \quad=\quad \lambda x . T \\
& \llbracket f \rrbracket_{\rho} \\
& =\lambda x . \perp
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \llbracket X \rrbracket_{\rho} \quad=\quad \rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho} \quad=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup \llbracket F \rrbracket_{\rho}(q) \\
& p \xrightarrow{a} q \\
& \llbracket\langle b\rangle \nmid \rrbracket \rrbracket(p)=T \\
& \llbracket\langle b\rangle \nmid t \rrbracket(s)=\perp \\
& \llbracket\langle b\rangle\langle b\rangle t \mathbb{~} \ddagger(p)=\perp \\
& \llbracket\langle b\rangle t t \vee\langle b\rangle\langle b\rangle t \mathbb{} \rrbracket(p)=T \\
& \llbracket[a] F \rrbracket_{\rho}(p)=\prod \llbracket F \rrbracket_{\rho}(q) \\
& p^{\stackrel{a}{a}} q \\
& \llbracket \mu X . F \rrbracket_{\rho}=\mid f p \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket \nu X \cdot F \rrbracket_{\rho}=\operatorname{gfp} \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket t \rrbracket_{\rho} \quad=\quad \lambda x . T \\
& \llbracket f \rrbracket_{\rho} \\
& =\lambda x . \perp
\end{aligned}
$$

Examples

$$
\llbracket\langle b\rangle \backslash t \rrbracket(p)=\top
$$

$$
\llbracket\langle b\rangle \nmid \rrbracket \rrbracket(s)=\perp
$$

$$
\llbracket\langle b\rangle\langle b\rangle t t \rrbracket(p)=\perp
$$

$$
\llbracket\langle b\rangle \sharp t \vee\langle b\rangle\langle b\rangle \sharp t \rrbracket(p)=T
$$

$$
\begin{aligned}
& \llbracket X \rrbracket_{\rho} \quad=\quad \rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho} \quad=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup \llbracket F \rrbracket_{\rho}(q) \\
& p \xrightarrow{a} q \\
& \llbracket[a] F \rrbracket_{\rho}(p)=\prod \llbracket F \rrbracket_{\rho}(q) \\
& \llbracket \mu X . F \rrbracket_{\rho}=\mid f p \lambda f . \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket \nu X . F \rrbracket_{\rho}=g f p \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket t \rrbracket_{\rho} \quad=\quad \lambda x . T \\
& \llbracket f \rrbracket_{\rho} \\
& =\lambda x . \perp
\end{aligned}
$$

Examples

$$
\llbracket\langle b\rangle \nmid t \rrbracket(p)=\top
$$

$$
\llbracket\langle b\rangle \nmid \rrbracket \rrbracket(s)=\perp
$$

$$
\llbracket\langle b\rangle\langle b\rangle\langle t \rrbracket(p)=\perp
$$

$$
\llbracket\langle b\rangle \sharp t \vee\langle b\rangle\langle b\rangle \sharp t \rrbracket(p)=T
$$

$$
\begin{aligned}
& \llbracket X \rrbracket_{\rho} \quad=\quad \rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho} \quad=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup \llbracket F \rrbracket_{\rho}(q) \\
& p \xrightarrow{a} q \\
& \llbracket[a] F \rrbracket_{\rho}(p)=\prod \llbracket F \rrbracket_{\rho}(q) \\
& \llbracket \mu X . F \rrbracket_{\rho}=\mid f p \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket \nu X . F \rrbracket_{\rho}=g f p \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket t \rrbracket_{\rho} \quad=\quad \lambda x . T \\
& \llbracket f \rrbracket_{\rho} \\
& =\lambda x . \perp
\end{aligned}
$$

Examples

$$
\llbracket\langle b\rangle \nmid t \rrbracket(p)=\top
$$

$\llbracket\langle b\rangle t \mathbb{(p)}=\mathrm{T}$
$\llbracket\langle b\rangle\langle t \rrbracket(s)=\perp$
$\llbracket\langle b\rangle\langle b\rangle\langle t \rrbracket(p)=\perp$
$\llbracket\langle b\rangle\langle t \vee\langle b\rangle\langle b\rangle t \mathbb{}(p)=\top$

$$
\llbracket\langle b\rangle \nmid \rrbracket \rrbracket(s)=\perp
$$

$$
\llbracket\langle b\rangle\langle b\rangle\langle t \rrbracket(p)=\perp
$$

$$
\llbracket\langle b\rangle \sharp t \vee\langle b\rangle\langle b\rangle \sharp t \rrbracket(p)=T
$$

$\llbracket[b] \ddagger \rrbracket(s)=T$
$\llbracket[b]\langle a\rangle t t \rrbracket(s)=T$
$\llbracket[a]\langle c\rangle t \mathbb{t} \rrbracket(s)=\perp$

$$
\begin{aligned}
& \llbracket X \rrbracket_{\rho} \quad=\quad \rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho} \quad=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup \llbracket F \rrbracket_{\rho}(q) \\
& p \xrightarrow{a} q \\
& \llbracket[a] F \rrbracket_{\rho}(p)=\prod \llbracket F \rrbracket_{\rho}(q) \\
& \llbracket \mu X . F \rrbracket_{\rho}=\mid f p \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket \nu X . F \rrbracket_{\rho}=g f p \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket t \rrbracket_{\rho} \quad=\quad \lambda x . T \\
& \llbracket f \rrbracket_{\rho} \\
& =\lambda x . \perp
\end{aligned}
$$

Examples

$\llbracket X \rrbracket_{\rho} \quad=\rho(X)$
$\llbracket F \vee G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho}$
$\llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup_{p \omega^{\rightarrow} q} \llbracket F \mathbb{\rrbracket}_{\rho}(q)$
$\llbracket[a] F \mathbb{I}_{\rho}(p)=\prod \mathbb{F} F \rrbracket_{\rho}(q)$
$\llbracket \mu X \cdot F \rrbracket_{\rho} \quad=\stackrel{{ }_{l}^{2 \rightarrow} \rightarrow q}{\| f p} \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]}$
$\llbracket \nu X \cdot F \rrbracket_{\rho}=g f p \lambda f \cdot \llbracket \mathbb{F} \rrbracket_{\rho \mid f / X]}$
$\mathbb{K}\rangle\rangle t \mathbb{}(p)=T$
$\llbracket\langle b\rangle \nmid \rrbracket(s)=\perp$
$\llbracket\langle b\rangle\langle b\rangle t \mathbb{} \ddagger(p)=\perp$
$\llbracket\langle b\rangle t t \vee\langle b\rangle\langle b\rangle t \mathbb{} \rrbracket(p)=T$
$\llbracket[b] \ddagger \rrbracket(s)=T$
$\llbracket[b]\langle a\rangle t t \rrbracket(s)=\top$
$\llbracket[a]\langle c\rangle t t \rrbracket(s)=\perp$
$\llbracket t \rrbracket_{\rho}$
【ff $]_{\rho}$
$\llbracket \nu X .[b]\langle a\rangle X \rrbracket(p)=T$

Examples

$\llbracket X \rrbracket_{\rho} \quad=\rho(X)$
$\llbracket F \vee G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho}$
$\llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup_{p \omega^{\rightarrow} q} \llbracket F \mathbb{\rrbracket}_{\rho}(q)$
$\llbracket[a] F \mathbb{I}_{\rho}(p)=\prod \mathbb{I} F \rrbracket_{\rho}(q)$
$\llbracket \mu X \cdot F \rrbracket_{\rho} \quad=\stackrel{\underset{l f p}{p \rightarrow q} \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]}}{\|}$
$\llbracket \nu X \cdot F \rrbracket_{\rho}=g f p \lambda f \cdot \llbracket \mathbb{F} \rrbracket_{\rho \mid f / X]}$
$\begin{array}{ll}\llbracket \llbracket t \rrbracket_{\rho} & =\lambda x . T \\ \llbracket f \rrbracket_{\rho} & =\lambda x . \perp\end{array}$
$\llbracket\langle b\rangle t \mathbb{}(p)=T$
$\llbracket\langle b\rangle \sharp t \rrbracket(s)=\perp$
$\llbracket\langle b\rangle\langle b\rangle t t \rrbracket(p)=\perp$
$\llbracket\langle b\rangle t t \vee\langle b\rangle\langle b\rangle t t \rrbracket(p)=\top$
$\llbracket[b] f \rrbracket(s)=\top$
$\llbracket[b]\langle a\rangle t t \rrbracket(s)=\top$
$\llbracket[a]\langle c\rangle t t \rrbracket(s)=\perp$
$\llbracket \nu X \cdot[b]\langle a\rangle X \rrbracket(p)=\top$
$\llbracket \mu X \cdot[b]\langle a\rangle X \rrbracket(p)=\perp$

2 Player Game Semantics

The modal μ-calculus has a complementary game semantics (Emerson and Jutla 1991, Stirling 1996)

A game is an infinite directed graph (V, E). The states $v \in V$ of the game are pairs $\langle p, G\rangle . E$ is defined using the structure of G.

The modal μ-calculus has a complementary game semantics (Emerson and Jutla 1991, Stirling 1996)

A game is an infinite directed graph (V, E). The states $v \in V$ of the game are pairs $\langle p, G\rangle . E$ is defined using the structure of G.

A Play is a (finite or infinite) path π in the Game.

A Play is a (finite or infinite) path π in the Game.
The objective for P_{1} is a particular function $\mathbb{V}:$ PATHS $\rightarrow\{\top, \perp\}$

A Play is a (finite or infinite) path π in the Game.
The objective for P_{1} is a particular function $\mathbb{V}:$ PATHS $\rightarrow\{\top, \perp\}$
P_{1} has a winning strategy in v if $\exists \sigma_{1} \cdot \forall \sigma_{2} \cdot \mathbb{V}\left(\pi_{\sigma_{1}, \sigma_{2}}^{v}\right)=T$.

A Play is a (finite or infinite) path π in the Game.
The objective for P_{1} is a particular function
$\mathbb{V}:$ PATHS $\rightarrow\{\top, \perp\}$
P_{1} has a winning strategy in v if $\exists \sigma_{1} \cdot \forall \sigma_{2} \cdot \mathbb{V}\left(\pi_{\sigma_{1}, \sigma_{2}}^{v}\right)=\top$.
P_{2} has a winning strategy in v if $\exists \sigma_{2} \cdot \forall \sigma_{1} \cdot \mathbb{V}\left(\pi_{\sigma_{1}, \sigma_{2}}^{v}\right)=\perp$.

A Play is a (finite or infinite) path π in the Game.
The objective for P_{1} is a particular function
$\mathbb{V}:$ PATHS $\rightarrow\{\top, \perp\}$
P_{1} has a winning strategy in v if $\exists \sigma_{1} \cdot \forall \sigma_{2} \cdot \mathbb{V}\left(\pi_{\sigma_{1}, \sigma_{2}}^{v}\right)=\top$.
P_{2} has a winning strategy in v if $\exists \sigma_{2} \cdot \forall \sigma_{1} \cdot \mathbb{V}\left(\pi_{\sigma_{1}, \sigma_{2}}^{v}\right)=\perp$.
Determinacy of Gale-Stewart Games [Martin 1975]:
Either P_{1} has a winning strategy or P_{2} has a winning strategy.

A Play is a (finite or infinite) path π in the Game.
The objective for P_{1} is a particular function
$\mathbb{V}:$ PATHS $\rightarrow\{\top, \perp\}$
P_{1} has a winning strategy in v if $\exists \sigma_{1} \cdot \forall \sigma_{2} \cdot \mathbb{V}\left(\pi_{\sigma_{1}, \sigma_{2}}^{v}\right)=\top$.
P_{2} has a winning strategy in v if $\exists \sigma_{2} \cdot \forall \sigma_{1} \cdot \mathbb{V}\left(\pi_{\sigma_{1}, \sigma_{2}}^{v}\right)=\perp$.
Determinacy of Gale-Stewart Games [Martin 1975]:
Either P_{1} has a winning strategy or P_{2} has a winning strategy.

The game semantics of the formula F is the map $(F): P \rightarrow\{\perp, \top\}$ defined as

$$
\begin{aligned}
& \ F D(p)=\top \text { if } P_{1} \text { has a winning strategy in }\langle p, F\rangle \\
& \bigcup F D(p)=\perp \text { if } P_{2} \text { has a winning strategy in }\langle p, F\rangle
\end{aligned}
$$

example

$\llbracket \nu X .(\langle a\rangle \nmid t \wedge\langle b\rangle\langle a\rangle X) \rrbracket(p)=$?

example

$\llbracket \nu X .(\langle a\rangle\langle t \wedge\langle b\rangle\langle a\rangle X) \rrbracket(p)=$?

example

$\llbracket \nu X .(\langle a\rangle \not t \wedge\langle\langle \rangle\rangle\langle a\rangle X) \rrbracket(p)=$?

$$
\llbracket \nu X .(\langle a\rangle t t \wedge\langle b\rangle\langle a\rangle X) \rrbracket(p)=\top
$$

Probabilistic LTS

A PLTS is a pair $\left\langle P,\{\xrightarrow{a}\}_{a \in L}\right\rangle$ where

- P is a countable set of states,
- L is a countable set of labels, or atomic actions,
$\xrightarrow{a} \subseteq P \times \mathcal{D}(P)$ is the a-transition relation.

Probabilistic LTS

A PLTS is a pair $\left\langle P,\{\xrightarrow{a}\}_{a \in L}\right\rangle$ where

- P is a countable set of states,
- L is a countable set of labels, or atomic actions,
$\stackrel{a}{\longrightarrow} \subseteq P \times \mathcal{D}(P)$ is the a-transition relation.

Probabilstic Modal μ-calculus

The Probabilistic modal μ-Calculus, was introduced in

- Huth and Kwiatkowska 1997
- Mclver and Morgan 2003
- de Alfaro and Majumdar 2004
as a logic for expressing properties of PLTS:

Probabilstic Modal μ-calculus

The Probabilistic modal μ-Calculus, was introduced in

- Huth and Kwiatkowska 1997
- Mclver and Morgan 2003
- de Alfaro and Majumdar 2004
as a logic for expressing properties of PLTS:
It has the same syntax of standard μ-calculus:

$$
F::=F \vee F|F \wedge G|\langle a\rangle F|[a] F| X|\mu X . F| \nu X . F
$$

The semantics of a formula is: $\llbracket F \rrbracket_{\rho}: P \rightarrow[0,1] \cong \mathcal{D}\{T, \perp\}$
$\llbracket X \rrbracket_{\rho}=\rho(X)$

The semantics of a formula is: $\llbracket\left\lceil\rrbracket_{\rho}: P \rightarrow[0,1] \cong \mathcal{D}\{T, \perp\}\right.$

$$
\begin{aligned}
& \llbracket X \rrbracket_{\rho}=\rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho}
\end{aligned}
$$

The semantics of a formula is: $\llbracket\left\lceil\rrbracket_{\rho}: P \rightarrow[0,1] \cong \mathcal{D}\{T, \perp\}\right.$

$$
\begin{aligned}
& \llbracket X \rrbracket_{\rho}=\rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket F \wedge G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcap \llbracket G \rrbracket_{\rho}
\end{aligned}
$$

The semantics of a formula is: $\llbracket F \rrbracket_{\rho}: P \rightarrow[0,1] \cong \mathcal{D}\{T, \perp\}$
$\llbracket X \rrbracket_{\rho}=\rho(X)$

$$
\begin{aligned}
& \llbracket F \vee G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket F \wedge G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcap \llbracket G \rrbracket_{\rho}
\end{aligned}
$$

$\llbracket \mu X . F \rrbracket_{\rho}=I f p$ of the functional $\lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]}$

The semantics of a formula is: $\llbracket F \rrbracket_{\rho}: P \rightarrow[0,1] \cong \mathcal{D}\{T, \perp\}$

$$
\begin{aligned}
& \llbracket X \rrbracket_{\rho}=\rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket F \wedge G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcap \llbracket G \rrbracket_{\rho} \\
& \llbracket \mu X . F \rrbracket_{\rho}=I f p \text { of the functional } \lambda f . \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket \nu X . F \rrbracket_{\rho}=g f p \text { of the functional } \lambda f . \llbracket F \rrbracket_{\rho[f / X]}
\end{aligned}
$$

The semantics of a formula is: $\llbracket F \rrbracket_{\rho}: P \rightarrow[0,1] \cong \mathcal{D}\{T, \perp\}$

$$
\begin{aligned}
& \llbracket X \rrbracket_{\rho}=\rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket F \wedge G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcap \llbracket G \rrbracket_{\rho} \\
& \llbracket \mu X \cdot F \rrbracket_{\rho}=I f p \text { of the functional } \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket \nu X \cdot F \rrbracket_{\rho}=g f p \text { of the functional } \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup_{p \xrightarrow{a} \alpha} \llbracket F \rrbracket_{\rho}(\alpha)
\end{aligned}
$$

$$
\llbracket \nu X . F \rrbracket_{\rho}=g f p \text { of the functional } \lambda f . \llbracket F \rrbracket_{\rho[f / X]}
$$

The semantics of a formula is: $\llbracket F \rrbracket_{\rho}: P \rightarrow[0,1] \cong \mathcal{D}\{T, \perp\}$

$$
\begin{aligned}
& \llbracket X \rrbracket_{\rho}=\rho(X) \\
& \llbracket F \vee G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcup \llbracket G \rrbracket_{\rho} \\
& \llbracket F \wedge G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcap \llbracket G \rrbracket_{\rho} \\
& \llbracket \mu X \cdot F \rrbracket_{\rho}=I f p \text { of the functional } \lambda f . \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket \nu X \cdot F \rrbracket_{\rho}=g f p \text { of the functional } \lambda f \cdot \llbracket F \rrbracket_{\rho[f / X]} \\
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup_{\rho \xrightarrow{\rightharpoonup} \alpha} \llbracket F \rrbracket_{\rho}(\alpha) \\
& \llbracket[a] F \rrbracket_{\rho}(p)=\prod_{p \xrightarrow{a} \alpha} \llbracket F \rrbracket_{\rho}(\alpha)
\end{aligned}
$$

$$
\llbracket \nu X . F \rrbracket_{\rho}=g f p \text { of the functional } \lambda f . \llbracket F \mathbb{\rrbracket}_{\rho[f / X]}
$$

where $\llbracket F \rrbracket_{\rho}(\alpha)=\sum_{p \in \operatorname{supp}(\alpha)} \alpha(p) \cdot \llbracket F \rrbracket_{\rho}(p)$

Examples

$$
\begin{aligned}
& \llbracket\langle a\rangle \mathbb{F}_{\rho}(p)=\bigsqcup \llbracket \mathbb{} \rrbracket_{\rho}(\alpha) \quad \llbracket\langle a\rangle t \mathbb{}(\rho)=1 \\
& \llbracket[a] F \mathbb{I}_{\rho}(p)=\prod \llbracket \mathbb{F} \rrbracket_{\rho}(\alpha) \\
& \mathbb{F} \mathbb{\rrbracket}_{\rho}(\alpha)=\sum_{p \in \operatorname{supp}(\alpha)}^{\rho \dot{\stackrel{\rightharpoonup}{*} \alpha}} \alpha(p) \cdot \mathbb{I} \mathbb{F} \mathbb{\rrbracket}_{\rho}(p) \\
& \llbracket t t \rrbracket_{\rho} \quad=\quad \lambda x .1 \\
& \llbracket f \rrbracket_{\rho} \quad=\quad \lambda x .0
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \llbracket(a) F \rrbracket_{\rho}(p)=\bigsqcup \llbracket \mathbb{F} \rrbracket_{\rho}(\alpha) \\
& \llbracket\langle a\rangle t \mathbb{}(p)=1 \\
& \llbracket(a) t t \rrbracket(q)=0 \\
& \llbracket[a] F \mathbb{I}_{\rho}(p)=\prod \llbracket \mathbb{F} \rrbracket_{\rho}(\alpha)
\end{aligned}
$$

$$
\begin{aligned}
& \llbracket t t \rrbracket_{\rho} \quad=\quad \lambda x .1 \\
& \llbracket f \rrbracket_{\rho} \\
& =\lambda x .0
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup \llbracket F \rrbracket_{\rho}(\alpha) \\
& \llbracket\langle a\rangle t \mathbb{}(p)=1 \\
& \llbracket\langle a\rangle t t \rrbracket(q)=0 \\
& \llbracket[a] F \mathbb{I}_{\rho}(p)=\prod \llbracket \mathbb{F} \rrbracket_{\rho}(\alpha) \\
& \mathbb{T}\rangle) t \mathbb{Z}(\alpha)=\frac{1}{2} \\
& \mathbb{} \mathbb{F} \mathbb{\rrbracket}_{\rho}(\alpha)=\sum_{p \in \operatorname{supp}(\alpha)}^{p \overrightarrow{2} \alpha} \alpha(p) \cdot \llbracket \mathbb{F} \mathbb{\rrbracket}_{\rho}(p) \\
& \llbracket t t \rrbracket_{\rho} \quad=\quad \lambda x .1 \\
& \llbracket f \rrbracket_{\rho} \\
& =\lambda x .0
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup \llbracket F \rrbracket_{\rho}(\alpha) \quad \llbracket\langle a\rangle t t \rrbracket(p)=1 \\
& \llbracket\langle a\rangle t t \rrbracket(q)=0 \\
& \llbracket\langle a\rangle t \mathbb{~} \rrbracket(\alpha)=\frac{1}{2} \\
& \llbracket\langle a\rangle\langle a\rangle t t \rrbracket(p)=\frac{1}{2} \\
& \llbracket F \rrbracket_{\rho}(\alpha)=\sum_{p \in \operatorname{supp}(\alpha)}^{p \stackrel{\rightharpoonup}{\rightarrow} \alpha} \alpha(p) \cdot \llbracket F \rrbracket_{\rho}(p) \\
& \llbracket t \rrbracket_{\rho} \quad=\quad \lambda \times .1 \\
& \llbracket f \rrbracket_{\rho} \\
& =\lambda x .0
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \llbracket\langle a\rangle \mathbb{I}_{\rho}(p)=\bigsqcup \llbracket F \rrbracket_{\rho}(\alpha) \\
& \llbracket\langle a) t \mathbb{Z}(p)=1 \\
& \llbracket\langle a\rangle t t \rrbracket(q)=0 \\
& \llbracket\langle a\rangle t \mathbb{~} \rrbracket(\alpha)=\frac{1}{2} \\
& \llbracket\langle a\rangle\langle a\rangle t \mathbb{\rrbracket}(p)=\frac{1}{2} \\
& \llbracket\langle a\rangle t t \vee\langle a\rangle\langle a\rangle t \mathbb{} \downarrow(p)=1
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \llbracket\langle a\rangle t t \rrbracket(q)=0 \\
& \llbracket\langle a\rangle t \mathbb{~} \rrbracket(\alpha)=\frac{1}{2} \\
& \llbracket\langle a\rangle\langle a\rangle \sharp \pi \rrbracket(p)=\frac{1}{2} \\
& \llbracket\langle a\rangle t t \vee\langle a\rangle\langle a\rangle t t \rrbracket(p)=1 \\
& \llbracket[b][b] f f \rrbracket(p)=\frac{1}{3}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \llbracket\langle a\rangle F \rrbracket_{\rho}(p)=\bigsqcup \llbracket F \rrbracket_{\rho}(\alpha) \quad \llbracket\langle a\rangle t t \rrbracket(p)=1 \\
& \llbracket\langle a\rangle t t \rrbracket(q)=0 \\
& \llbracket\langle a\rangle t \mathbb{~} \rrbracket(\alpha)=\frac{1}{2} \\
& \llbracket\langle a\rangle\langle a\rangle t t \rrbracket(p)=\frac{1}{2} \\
& \llbracket\langle a\rangle t \mathbb{} \vee\langle a\rangle\langle a\rangle t \mathbb{} \rrbracket^{2}(p)=1 \\
& \llbracket[b][b] f f \rrbracket(p)=\frac{1}{3} \\
& \llbracket[b][b][b] f f \rrbracket(p)=\frac{5}{9}
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \llbracket\langle a\rangle t t \rrbracket(q)=0 \\
& \llbracket\langle a\rangle t \mathbb{d}(\alpha)=\frac{1}{2} \\
& \llbracket\langle a\rangle\langle a\rangle t t \rrbracket(p)=\frac{1}{2} \\
& \llbracket\langle a\rangle t t \vee\langle a\rangle\langle a\rangle t \mathbb{} \rrbracket^{2}(p)=1 \\
& \llbracket[b][b] f f \rrbracket(p)=\frac{1}{3} \\
& \llbracket[b][b][b] f f \rrbracket(p)=\frac{5}{9} \\
& \llbracket \mu X \cdot[b] X \rrbracket(p)=1
\end{aligned}
$$

Remark 1: The following equality holds:

$$
\llbracket \sim F \rrbracket_{\rho}(p)=1-\left(\llbracket F \rrbracket_{\rho}(p)\right)
$$

Remark 1: The following equality holds:

$$
\llbracket \sim F \rrbracket_{\rho}(p)=1-\left(\llbracket F \rrbracket_{\rho}(p)\right)
$$

Remark 2: at early stages [Huth and Kwiatkowska 1997] of the development of this logic, different semantics were proposed:

$$
\begin{aligned}
& \llbracket F \wedge G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \sqcap \llbracket G \rrbracket_{\rho} \\
& \llbracket F \wedge G \rrbracket_{\rho}=\llbracket F \rrbracket_{\rho} \cdot \llbracket G \rrbracket_{\rho} \\
& \llbracket F \vee G \rrbracket_{\rho}=\min \left\{1, \llbracket F \rrbracket_{\rho}+\llbracket G \rrbracket_{\rho}\right\}
\end{aligned}
$$

2 Player Probabilistic Game Semantics

A game semantics for the probabilistic μ-calculus was proposed in [Mclver and Morgan 2003].

A game semantics for the probabilistic μ-calculus was proposed in [Mclver and Morgan 2003].

example

The outcome of the game is a (finite or infinite) path π in the Game.

The outcome of the game is a (finite or infinite) path π in the Game.

Again, the objective is a function $\mathbb{V}: \operatorname{PATHS} \rightarrow\{\perp, \top\}$

The outcome of the game is a (finite or infinite) path π in the Game.

Again, the objective is a function $\mathbb{V}: \operatorname{PATHS} \rightarrow\{\perp, \top\}$
A pair of strategies, determines a Markov Chain in the game: Markov Play.

The outcome of the game is a (finite or infinite) path π in the Game.

Again, the objective is a function $\mathbb{V}:$ PATHS $\rightarrow\{\perp, \top\}$
A pair of strategies, determines a Markov Chain in the game:
Markov Play.
Note: A Markov Chain determines a unique probability measure over the set of paths in the game.

The outcome of the game is a (finite or infinite) path π in the Game.

Again, the objective is a function $\mathbb{V}:$ PATHS $\rightarrow\{\perp, \top\}$
A pair of strategies, determines a Markov Chain in the game:
Markov Play.
Note: A Markov Chain determines a unique probability measure over the set of paths in the game.

The probability (in $\mathcal{M}_{\sigma_{1}, \sigma_{2}}^{v}$) of the winning paths for P_{1} is:

$$
\mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v} \stackrel{\text { def }}{=} \mathcal{M}_{\sigma_{1}, \sigma_{2}}^{v}\left(\mathbb{V}^{-1}\{\top\}\right)
$$

The outcome of the game is a (finite or infinite) path π in the Game.

Again, the objective is a function $\mathbb{V}:$ PATHS $\rightarrow\{\perp, \top\}$
A pair of strategies, determines a Markov Chain in the game:
Markov Play.
Note: A Markov Chain determines a unique probability measure over the set of paths in the game.

The probability (in $\mathcal{M}_{\sigma_{1}, \sigma_{2}}^{v}$) of the winning paths for P_{1} is:

$$
\mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v} \stackrel{\text { def }}{=} \mathcal{M}_{\sigma_{1}, \sigma_{2}}^{v}\left(\mathbb{V}^{-1}\{\top\}\right)
$$

Idea: When the two Players play accordingly with $\left\langle\sigma_{1}, \sigma_{2}\right\rangle$ Player 1 wins with probability $\mathbb{V}_{\sigma_{1}, \sigma_{2}}^{V}$

There is no more notion of a winning strategy for a Player.

There is no more notion of a winning strategy for a Player.
There are two natural quantitative values we can assign to the nodes v of a game.

There is no more notion of a winning strategy for a Player.
There are two natural quantitative values we can assign to the nodes v of a game.
1.
$\bigsqcup_{\sigma_{1}} \prod_{\sigma_{2}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}$: the (limit) probability of winning for P_{1}, when
he declares his strategy first, and then waits for a counterstrategy σ_{2}.

There is no more notion of a winning strategy for a Player.
There are two natural quantitative values we can assign to the nodes v of a game.
1.
$\bigsqcup_{\sigma_{1}} \prod_{\sigma_{2}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}$: the (limit) probability of winning for P_{1}, when he declares his strategy first, and then waits for a counterstrategy σ_{2}.
2.
$\prod_{\sigma_{2}} \bigsqcup_{\sigma_{1}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}$: the (limit) probability of winning for P_{1}, when P_{2} declares his strategy first, and then P_{1} gives a counterstrategy σ_{2}.

There is no more notion of a winning strategy for a Player.
There are two natural quantitative values we can assign to the nodes v of a game.
1.
$\bigsqcup_{\sigma_{1}} \prod_{\sigma_{2}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}$: the (limit) probability of winning for P_{1}, when he declares his strategy first, and then waits for a counterstrategy σ_{2}.
2.
$\prod_{\sigma_{2}} \bigsqcup_{\sigma_{1}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}$: the (limit) probability of winning for P_{1}, when P_{2} declares his strategy first, and then P_{1} gives a counterstrategy σ_{2}.

Determinacy of Blackwell Games [Martin 1998, Maitra and Sudderth 1998]: $1=2$

For each $v \in V$,

$$
\mathcal{V}(v) \stackrel{\text { def }}{=} \bigsqcup_{\sigma_{1}} \prod_{\sigma_{2}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}=\prod_{\sigma_{2}} \bigsqcup_{\sigma_{1}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{V}
$$

is called the value of the game at v.

For each $v \in V$,

$$
\mathcal{V}(v) \stackrel{\text { def }}{=} \bigsqcup_{\sigma_{1}} \prod_{\sigma_{2}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}=\prod_{\sigma_{2}} \bigsqcup_{\sigma_{1}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}
$$

is called the value of the game at v.

Fact 1: No optimal strategies!

For each $v \in V$,

$$
\mathcal{V}(v) \stackrel{\text { def }}{=} \bigsqcup_{\sigma_{1}} \prod_{\sigma_{2}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}=\prod_{\sigma_{2}} \bigsqcup_{\sigma_{1}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}
$$

is called the value of the game at v.

Fact 1: No optimal strategies! only ϵ-optimal strategies.

For each $v \in V$,

$$
\mathcal{V}(v) \stackrel{\text { def }}{=} \bigsqcup_{\sigma_{1}} \prod_{\sigma_{2}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}=\prod_{\sigma_{2}} \bigsqcup_{\sigma_{1}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}
$$

is called the value of the game at v.

Fact 1: No optimal strategies! only ϵ-optimal strategies.
Fact 2: unbounded amount memory is needed, in general!

For each $v \in V$,

$$
\mathcal{V}(v) \stackrel{\text { def }}{=} \bigsqcup_{\sigma_{1}} \prod_{\sigma_{2}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}=\prod_{\sigma_{2}} \bigsqcup_{\sigma_{1}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}
$$

is called the value of the game at v.

Fact 1: No optimal strategies! only ϵ-optimal strategies.
Fact 2: unbounded amount memory is needed, in general!

For each $v \in V$,

$$
\mathcal{V}(v) \stackrel{\text { def }}{=} \bigsqcup_{\sigma_{1}} \prod_{\sigma_{2}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}=\prod_{\sigma_{2}} \bigsqcup_{\sigma_{1}} \mathbb{V}_{\sigma_{1}, \sigma_{2}}^{v}
$$

is called the value of the game at v.

Fact 1: No optimal strategies! only ϵ-optimal strategies.
Fact 2: unbounded amount memory is needed, in general!

The game semantics of the formula F is the map $(F): P \rightarrow[0,1]$ defined as

$$
\lceil F D(p) \stackrel{\text { def }}{=} \mathcal{V}(\langle p, F\rangle)
$$

The game semantics of the formula F is the map $(F): P \rightarrow[0,1]$ defined as

$$
\lceil F D(p) \stackrel{\text { def }}{=} \mathcal{V}(\langle p, F\rangle)
$$

The game semantics of the formula F is the map $(F): P \rightarrow[0,1]$ defined as

$$
(F D(p) \stackrel{\text { def }}{=} \mathcal{V}(\langle p, F\rangle)
$$

Question: $\quad \forall p . \llbracket F \rrbracket(p)=\lceil F D(p)$?

The game semantics of the formula F is the map $(F): P \rightarrow[0,1]$ defined as

$$
\lceil F D(p) \stackrel{\text { def }}{=} \mathcal{V}(\langle p, F\rangle)
$$

Question: $\quad \forall p . \llbracket F \rrbracket(p)=\lceil F D(p)$?
Partial Answer [Mclver and Morgan 2003]: YES, if the PTLS is finite.

The game semantics of the formula F is the map $(F): P \rightarrow[0,1]$ defined as

$$
\lceil F D(p) \stackrel{\text { def }}{=} \mathcal{V}(\langle p, F\rangle)
$$

Question: $\quad \forall p . \llbracket F \rrbracket(p)=\emptyset F D(p)$?
Partial Answer [Mclver and Morgan 2003]: YES, if the PTLS is finite.

Full Answer [This Contribution]: YES.

The game semantics of the formula F is the map $(F): P \rightarrow[0,1]$ defined as

$$
\lceil F D(p) \stackrel{\text { def }}{=} \mathcal{V}(\langle p, F\rangle)
$$

Question: $\quad \forall p . \llbracket F \rrbracket(p)=\emptyset F D(p)$?
Partial Answer [Mclver and Morgan 2003]: YES, if the PTLS is finite.

Full Answer [This Contribution]: YES.
The proof uses a technique recently introduced in [Fischer, Gradel and Kaiser 2009]

example

$\llbracket \mu X .[b] X \rrbracket(p)=$?

example

example

Proof Technique

- Given interpretation ρ, Games are defined on open formulae.

Proof Technique

- Given interpretation ρ, Games are defined on open formulae.
$\rightarrow p, X$ reward: $\rho(X)(p)$
- The proof is by induction on the structure of the formula F.

Proof Technique

- Given interpretation ρ, Games are defined on open formulae.

- The proof is by induction on the structure of the formula F.
- Crucial point: $F=\mu X . G, F=\nu X . G$.

Proof Technique

- Given interpretation ρ, Games are defined on open formulae.
$\rightarrow p, X$ reward: $\rho(X)(p)$
- The proof is by induction on the structure of the formula F.
- Crucial point: $F=\mu X . G, F=\nu X . G$.
- Consider case where the formula is: $\mu X . F$

Proof Technique

- Given interpretation ρ, Games are defined on open formulae.
$\rightarrow p, X$ reward: $\rho(X)(p)$
- The proof is by induction on the structure of the formula F.
- Crucial point: $F=\mu X . G, F=\nu X . G$.
- Consider case where the formula is: $\mu X . F$ $\llbracket \mu X . F \rrbracket_{\rho}=\bigsqcup_{\alpha} \llbracket F \rrbracket_{\rho^{\alpha}}$, by Knaster-Tarski fixed point theorem.
- Step 1: $\llbracket F \rrbracket_{\rho^{\alpha}}=\ F{D_{\rho^{\alpha}}}$

Proof Technique

- Given interpretation ρ, Games are defined on open formulae. $\rightarrow p, X$ reward : $\rho(X)(p)$
- The proof is by induction on the structure of the formula F.
- Crucial point: $F=\mu X . G, F=\nu X . G$.
- Consider case where the formula is: $\mu X . F$ $\llbracket \mu X . F \rrbracket_{\rho}=\bigsqcup_{\alpha} \llbracket F \rrbracket_{\rho^{\alpha}}$, by Knaster-Tarski fixed point theorem.
- Step 1: $\llbracket F \rrbracket_{\rho^{\alpha}}=(F)_{\rho^{\alpha}}$
- Step 2: $\bigsqcup_{\alpha}\left(F D_{\rho^{\alpha}}=(\mu X . F)_{\rho}\right.$
- $\bigsqcup_{\alpha}\left(F D_{\rho^{\alpha}} \leq\left(\mu X . F D_{\rho}\right.\right.$
- $\bigsqcup_{\alpha}\left(F D_{\rho^{\alpha}} \geq\left(\mu X . F D_{\rho}\right.\right.$
by building ϵ-optimal strategies.
- Step 2: $\bigsqcup_{\alpha}\left(F D_{\rho^{\alpha}}=(\mu X . F)_{\rho}\right.$
- $\bigsqcup_{\alpha}\left(F D_{\rho^{\alpha}} \leq 0 \mu X . F D_{\rho}\right.$
- $\bigsqcup_{\alpha}\left(F D_{\rho^{\alpha}} \geq 0 \mu X . F D_{\rho}\right.$
by building ϵ-optimal strategies.
- Step 2: $\bigsqcup_{\alpha} 0 F D_{\rho^{\alpha}}=\left(\mu X . F D_{\rho}\right.$
- $\bigsqcup_{\alpha}\left(F D_{\rho^{\alpha}} \leq \| \mu X . F D_{\rho}\right.$
- $\bigsqcup_{\alpha}(F)_{\rho^{\alpha}} \geq(\mu X . F)_{\rho}$
by building ϵ-optimal strategies.

Let γ the smallest ordinal such that

$$
\| F D_{\rho^{\gamma}}=\left(F D_{\rho^{\gamma+1}}=\bigsqcup_{\alpha}\left(F D_{\rho^{\alpha}}\right.\right.
$$

- Step 2: $\bigsqcup_{\alpha}(F)_{\rho^{\alpha}}=(\mu X . F)_{\rho}$
- $\bigsqcup_{\alpha}\left(F D_{\rho^{\alpha}} \leq \| \mu X . F D_{\rho}\right.$
- $\bigsqcup_{\alpha}(F)_{\rho^{\alpha}} \geq(\mu X . F)_{\rho}$
by building ϵ-optimal strategies.

Let γ the smallest ordinal such that

$$
\ F D_{\rho^{\gamma}}=\left(F D_{\rho^{\gamma+1}}=\bigsqcup_{\alpha}\left(F D_{\rho^{\alpha}}\right.\right.
$$

\leq direction: We turn Player 1 t-optimal strategies of $\left(F D_{\rho^{\gamma}}\right.$ into ϵ-optimal strategies of $(\mu X . F)_{\rho}$.
Intuition: Player 1 wins in $(\mu X . F)_{\rho}$ at least as in $\left(F D_{\rho^{\gamma}}\right.$

- Step 2: $\bigsqcup_{\alpha}\left(F{D_{\rho^{\alpha}}}=(\mu X . F)_{\rho}\right.$
- $\bigsqcup_{\alpha}\left(F D_{\rho^{\alpha}} \leq \| \mu X . F D_{\rho}\right.$
- $\bigsqcup_{\alpha}(F)_{\rho^{\alpha}} \geq(\mu X . F)_{\rho}$
by building ϵ-optimal strategies.

Let γ the smallest ordinal such that

$$
\left(F D_{\rho^{\gamma}}=\left(F D_{\rho^{\gamma+1}}=\bigsqcup_{\alpha}\left(F D_{\rho^{\alpha}} .\right.\right.\right.
$$

\leq direction: We turn Player 1ϵ-optimal strategies of $\left(F D_{\rho^{\gamma}}\right.$ into ϵ-optimal strategies of $(\mu X . F)_{\rho}$.
Intuition: Player 1 wins in $(\mu X . F)_{\rho}$ at least as in $(F)_{\rho^{\gamma}}$
\geq direction: We turn Player 2 t-optimal strategies of $\left(F D_{\rho^{\gamma}}\right.$ into ϵ-optimal strategies of $(\mu X . F)_{\rho}$
Intuition: Player 2 wins in $(\mu X . F)_{\rho}$ at least as in $(F)_{\rho^{\gamma}}$, i.e. Player 1 loses $(\mu X . F)_{\rho}$ at least as in $(F)_{\rho^{\gamma}}$.

- L. de Alfaro and R. Majumdar. Quantitative solution of omega-regular games. Journal of Computer and System Sciences, Volume 68, Issue 2, pages 374 397, 2004.
- D. Fischer, E. Gradel, and L. Kaiser. Model checking games for the quantitative μ-calculus. In Theory of Computing Systems. Springer New York, 2009.
- M. Huth and M. Kwiatkowska. Quantitative analysis and model checking. In LICS 1997, page 111, Washington, DC, USA, 1997. IEEE Computer Society.
- A. Mclver and C. Morgan. Results on the quantitative μ-calculus qm μ. ACM Trans. Comput. Logic, 8(1):3, 2007.
- C. Stirling. Modal and temporal logics for processes. Springer (Texts in Computer Science), 2001

