How fast can the fixpoints in modal μ calculus be reached?

Marek Czarnecki

Department of Philosophy and Sociology University of Warsaw

Department of Mathematics, Computer Science and Mechanics University of Warsaw

Brno, August 21st 2010

▲ □ ▶ ▲ □ ▶

Fast and slow formulae Can we control the number of iterations for ω and above? What next?

The very basics The main concept

Basics The very

- The very basics
- The main concept
- Past and slow formulae
 - Some formulae never fix
 - Some formulae always reach their fixpoints fast
- Can we control the number of iterations for ω and above?
 Formulae with fuses
 How do fuses work?

What next?

< 一型

Fast and slow formulae Can we control the number of iterations for ω and above? What next?

The very basics The main concept

The very basics – syntax

Modal μ syntax

$$\varphi \longrightarrow \top |\mathbf{p}|\mathbf{x}| \neg \varphi |\varphi \lor \varphi| \diamondsuit \varphi |\mu \mathbf{x}.\varphi$$

p is a propositional letter (*Prop*), *x* is an individual variable (*Var*) and construction $\mu x.\varphi$ is allowed when every occurrence of *x* in φ is in range of even number of negations.

Fast and slow formulae Can we control the number of iterations for ω and above? What next?

The very basics The main concept

The very basics – syntax

Modal μ syntax

$$\varphi \longrightarrow \top |\mathbf{p}|\mathbf{x}| \neg \varphi | \varphi \lor \varphi | \diamondsuit \varphi | \mu \mathbf{x}. \varphi$$

p is a propositional letter (*Prop*), *x* is an individual variable (*Var*) and construction $\mu x.\varphi$ is allowed when every occurrence of *x* in φ is in range of even number of negations.

Normal form

Set $\perp = \neg \top$, $\varphi \land \psi = \neg (\neg \varphi \lor \neg \psi)$, $\Box \varphi = \neg \diamondsuit \neg \varphi$ and $\nu x.\varphi = \neg \mu x.\neg \varphi[x := \neg x]$. Thus we obtain a normal form for μ formulae by pushing negations as deep as it is possible. We get:

 $\varphi \longrightarrow \bot | \top |p| \neg p |x| \neg x |\varphi \lor \varphi |\varphi \lor \varphi| \diamondsuit \varphi | \Box \varphi |\mu x.\varphi |\nu x.\varphi$ Where $\mu x.\varphi$ and $\nu x.\varphi$ are allowed when there are no $\neg x$ in φ .

Fast and slow formulae Can we control the number of iterations for ω and above? What next?

The very basics The main concept

The very basics – semantics

Kripke models

 $\mathcal{M} = (M, R, V)$ is a Kripke model when (M, R) is a graph and $V : Prop \rightarrow \mathcal{P}(M)$ assigns values to propositional letters.

A valuation (assignment) τ : *Var* $\rightarrow \mathcal{P}(M)$ assigns values to individual variables.

We define $[\![\varphi]\!]_{\mathcal{M},\tau}$ – a subset of *M* of points in which φ is true in a usual way. Recall that:

$$\llbracket \mu \mathbf{X}.\varphi \rrbracket_{\mathcal{M},\tau} = \bigcap \{ \mathbf{A} \subseteq \mathbf{M} : \llbracket \varphi \rrbracket_{\mathcal{M},\tau[\mathbf{X}:=\mathbf{A}]} \subseteq \mathbf{A} \}$$

where $\tau[x := A](x) = A$ and $\tau[x := A](y) = \tau(y)$ for $y \neq x$.

Fast and slow formulae Can we control the number of iterations for ω and above? What next?

The very basics The main concept

The very basics – fixpoints

Finding fixpoints

Fix φ , *x*, \mathcal{M} and τ . There is α such that

$$\llbracket \mu \mathbf{X}. \varphi \rrbracket_{\mathcal{M}, \tau} = \varphi_{\mathbf{X}}^{\alpha}(\emptyset)$$

where $\varphi_X^0(A) = [\![\varphi]\!]_{\mathcal{M},\tau[x:=A]}, \varphi_X^{\beta+1}(A) = \varphi_X(\varphi_X^{\beta}(A))$, and for limit ordinals λ : $\varphi_X^{\lambda}(A) = \bigcup_{\beta < \lambda} \varphi_X^{\beta}(A)$.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Fast and slow formulae Can we control the number of iterations for ω and above? What next?

The very basics The main concept

Basics The very basics

- The main concept
- Past and slow formulae
 - Some formulae never fix
 - Some formulae always reach their fixpoints fast
- 3 Can we control the number of iterations for ω and above?
 Formulae with fuses
 How do fuses work?

What next?

< 一型

The very basics The main concept

Definition

We say that a modal μ -formula φ fixes after α steps in x when α is the least ordinal number such that for all \mathcal{M} and τ ,

$$\llbracket \mu \mathbf{X}. \varphi \rrbracket_{\mathcal{M}, \tau} = \varphi^{\alpha}_{\mathbf{X}}(\varnothing)$$

We denote it by $\mathcal{O}_{x}(\varphi) = \alpha$.

< 回 > < 回 > < 回 >

The very basics The main concept

Definition

We say that a modal μ -formula φ fixes after α steps in x when α is the least ordinal number such that for all \mathcal{M} and τ ,

$$\llbracket \mu \mathbf{X}. \varphi \rrbracket_{\mathcal{M}, \tau} = \varphi^{\alpha}_{\mathbf{X}}(\varnothing)$$

We denote it by $\mathcal{O}_{x}(\varphi) = \alpha$.

What is it all about?

We investigate after which ordinal numbers of steps modal μ formulae may fix.

Fast and slow formulae Can we control the number of iterations for ω and above? What next?

The very basics The main concept

Examples:

$$\mathcal{O}_{x}(\diamondsuit x \lor p) = \omega$$

 $\mathcal{O}_{x}(x) = 0$

Marek Czarnecki How fast can the fixpoints in modal μ calculus be reached?

Can we control the number of iterations for ω and above? What next?

Some formulae never fix Some formulae always reach their fixpoints fast

Basics

- The very basics
- The main concept
- 2 Fast and slow formulae
 - Some formulae never fix
 - Some formulae always reach their fixpoints fast
- Can we control the number of iterations for ω and above?
 Formulae with fuses
 - How do fuses work?

What next?

Fast and slow formulae

Can we control the number of iterations for ω and above? What next?

Some formulae never fix Some formulae always reach their fixpoints fast

Fact

 $\mathcal{O}_{x}(\Box x)$ is undefined i.e. $\Box x$ goes forever.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Some formulae never fix Some formulae always reach their fixpoints fast

Can we control the number of iterations for ω and above? What next?

An example (2)

Proof:

We show that there are models in which $\Box x$ needs more than any given number of steps to fix.

We use an assignment of trees to ordinal numbers. To 0 we assign just a single point – a root. For α + 1 we construct the tree by taking a new point to be the root and attaching to it the root of the tree for α . For limit ordinals λ we construct the tree by taking a new point to be the root and attach to it all the roots of trees constructed before $\alpha < \lambda$. It is easy to see that in a tree assigned to λ formula $\Box x$ fixes after λ + 1 steps – thus $\mathcal{O}_x(\Box x)$ is undefined.

Can we control the number of iterations for ω and above? What next?

Some formulae never fix Some formulae always reach their fixpoints fast

Basics

- The very basics
- The main concept

Past and slow formulae

• Some formulae never fix

• Some formulae always reach their fixpoints fast

3 Can we control the number of iterations for ω and above?
 • Formulae with fuses
 • How do fuses work?

What next?

Some formulae never fix Some formulae always reach their fixpoints fast

Can we control the number of iterations for ω and above? What next?

Examples for $\alpha < \omega$

Fact

Let $\varphi_n = \Box x \wedge \Box^{n+1} \perp$. Then $\mathcal{O}_x(\varphi_n) = n$.

イロト イヨト イヨト イヨト

Some formulae never fix Some formulae always reach their fixpoints fast

Can we control the number of iterations for ω and above? What next?

Examples for $\alpha < \omega$

Fact

Let $\varphi_n = \Box x \land \Box^{n+1} \bot$. Then $\mathcal{O}_x(\varphi_n) = n$.

Fact

а

For
$$k \le l$$
,

$$\Box^{k} \perp \land \Box^{l} \perp \equiv \Box^{k} (\Box^{l-k} \perp \land \bot) \equiv \Box^{k} \perp$$
and

$$\Box^{k} \perp \lor \Box^{l} \perp \equiv \Box^{l} \perp$$

イロト イヨト イヨト イヨト

Fast and slow formulae

Can we control the number of iterations for ω and above? What next?

Some formulae never fix Some formulae always reach their fixpoints fast

Examples for $\alpha < \omega$ (2)

Fact

Let $\varphi_n = \Box x \land \Box^{n+1} \bot$. Then $\mathcal{O}_x(\Box x \land \Box^{n+1} \bot) = n$.

Proof:

Fix $n \in \omega$, a model and a valuation $\varphi_n^{n+1}(\emptyset) = \llbracket \bigvee_{i=0}^{n+1} (\Box^{i+1} \bot \land \Box^{n+1} \bot) \rrbracket = \llbracket \Box^{n+1} \bot \land \bigvee_{i=0}^{n+1} \Box^{i+1} \bot \rrbracket = \llbracket \Box^{n+1} \bot \land \Box^{n+2} \bot \rrbracket = \llbracket \Box^{n+1} \bot \rrbracket = \varphi_n^n(\emptyset).$

This gives the upper bound for number of iterations of φ_n . For the lower bound consider models assigned to finite ordinals.

イロト イヨト イヨト イヨ

Formulae with fuses How do fuses work?

1 Basics

- The very basics
- The main concept
- 2 Fast and slow formulae
 - Some formulae never fix
 - Some formulae always reach their fixpoints fast

3 Can we control the number of iterations for ω and above?

- Formulae with fuses
- How do fuses work?

4 What next?

Formulae with fuses How do fuses work?

Can we control the number of iterations for ω and above? What next?

Inspiration

Inspiration

Our investigation is motivated by a question asked by Damian Niwiński whether there exists a formula which fixes after ω + 1 steps and, in a broader sense, whether it is possible to control the number of iterations of formulae above ω .

Mikołaj Bojańczyk's conjecture

The formula $(\Diamond x \land \Box p_1 \land p_1) \lor (\Box x \land \Box p_1 \land \neg p_1) \lor \Box \bot$ fixes in $\omega + 1$ steps.

The main result

Mikołaj Bojańczyk conjecture is true. We generalize this result showing formulae that fix in α steps for all $\alpha < \omega^2$.

Formulae with fuses How do fuses work?

Can we control the number of iterations for ω and above? What next?

The formulae

Sets of fuses

For n > 0 and $0 \le i \le n$ let $C_i^n = \neg p_1 \land \cdots \land \neg p_i \land p_{i+1} \land \cdots \land p_n$.

크

Formulae with fuses How do fuses work?

Can we control the number of iterations for ω and above? What next?

The formulae

Sets of fuses

For n > 0 and $0 \le i \le n$ let $C_i^n = \neg p_1 \land \cdots \land \neg p_i \land p_{i+1} \land \cdots \land p_n$.

The formulae

۲

$\psi_{\omega \cdot n} = \bigvee_{i=0}^{n-1} (\diamondsuit x \land C_i^n \land \Box C_i^n) \lor \bigvee_{i=0}^{n-2} (\Box x \land C_{i+1}^n \land \Box C_i^n)$

Formulae with fuses How do fuses work?

Can we control the number of iterations for ω and above? What next?

The formulae

Sets of fuses

For n > 0 and $0 \le i \le n$ let $C_i^n = \neg p_1 \land \cdots \land \neg p_i \land p_{i+1} \land \cdots \land p_n$.

The formulae

۲

$$\psi_{\omega \cdot n} = \bigvee_{i=0}^{n-1} (\diamondsuit x \land C_i^n \land \Box C_i^n) \lor \bigvee_{i=0}^{n-2} (\Box x \land C_{i+1}^n \land \Box C_i^n)$$

$$\psi_{\omega \cdot n+m} = \psi_{\omega \cdot n} \vee \bigvee_{i=0}^{m-1} (\Box X \wedge \bigwedge_{j=0}^{i} \Box^{j} C_{n}^{n} \wedge \Box^{i+1} C_{n-1}^{n})$$

Can we control the number of iterations for ω and above? What next? Formulae with fuses How do fuses work?

The formulae

Sets of fuses

For n > 0 and $0 \le i \le n$ let $C_i^n = \neg p_1 \land \cdots \land \neg p_i \land p_{i+1} \land \cdots \land p_n$.

The formulae

۲

٩

$$\psi_{\omega \cdot n} = \bigvee_{i=0}^{n-1} (\diamondsuit x \land C_i^n \land \Box C_i^n) \lor \bigvee_{i=0}^{n-2} (\Box x \land C_{i+1}^n \land \Box C_i^n)$$

$$\psi_{\omega \cdot n+m} = \psi_{\omega \cdot n} \vee \bigvee_{i=0}^{m-1} (\Box X \wedge \bigwedge_{j=0}^{i} \Box^{j} C_{n}^{n} \wedge \Box^{i+1} C_{n-1}^{n})$$

$$\varphi_{\omega \cdot n+m} = \psi_{\omega \cdot n+m} \vee \Box \bot$$

Formulae with fuses How do fuses work?

Can we control the number of iterations for ω and above? What next?

The main lemma

Lemma

Let k > 0, $\omega \cdot k \le \alpha < \omega^2$. Then

$$(\boldsymbol{a} \vDash \boldsymbol{p}_{\boldsymbol{k}} \land \boldsymbol{a} \in \llbracket \mu \boldsymbol{x}.\varphi_{\alpha} \rrbracket) \Rightarrow \boldsymbol{a} \in \varphi_{\alpha}^{\omega \cdot \boldsymbol{k}}(\varnothing)$$

Formulae with fuses How do fuses work?

The main lemma (2)

Proof...:

Fix $\mathcal{M} = (M, R, V)$, τ and $a \in M$. There exists β such that $a \in \varphi_{\alpha}^{\beta}(\emptyset)$. We proceed by induction on β .

What next?

The base step and limit steps are trivial.

We need to show that

 $\forall k > 0 \forall \omega \cdot k \leq \alpha < \omega^2 [(a \models p_k \land a \in \varphi_{\alpha}^{\gamma+1}(\emptyset)) \Rightarrow a \in \varphi_{\alpha}^{\omega \cdot k}(\emptyset)].$ Fix k > 0 and let $\alpha = \omega \cdot n + m$, for $n \geq k$ and $m \in \omega$. Let us assume that $a \models p_k$ and $a \in \varphi_{\alpha}^{\beta}(\emptyset)$. Since $\beta = \gamma + 1$ we have $a \in \varphi_{\alpha}(\varphi_{\alpha}^{\gamma}(\emptyset))$. By the definition of φ_{α} , one of the following cases must hold:

Formulae with fuses How do fuses work?

Can we control the number of iterations for ω and above? What next?

The main lemma (3)

...Proof...:

- $a \vDash \Box \bot \text{then } a \in \varphi_{\alpha}^{0}(\emptyset) \subseteq \varphi_{\alpha}^{\omega \cdot k}(\emptyset),$
- $a \models C_l^n \land \Box C_l^n$ for some l < k since $a \models p_k$, and there exists t such that aRt and $t \in \varphi_{\alpha}^{\gamma}(\emptyset)$. Therefore $t \models C_l^n$ which implies $t \models p_{l+1}$. By the induction hypothesis, since $t \in \varphi_{\alpha}^{\gamma}(\emptyset)$ and $t \models p_{l+1}$, we know that $t \in \varphi_{\alpha}^{\omega \cdot (l+1)}(\emptyset)$. Because $\omega \cdot (l+1)$ is a limit ordinal, there exists $s \in \omega$ such that $t \in \varphi_{\alpha}^{\omega \cdot l+s+1}(\emptyset) \subseteq \varphi_{\alpha}^{\omega \cdot (l+1)}(\emptyset)$.

A B > A B >

Formulae with fuses How do fuses work?

Can we control the number of iterations for ω and above? What next?

The main lemma (4)

...Proof:

- $a \models C_{l+1}^n \land \Box C_l^n$ for some l < k 1 since $a \models p_k$, and for all t if aRt, then $t \in \varphi_{\alpha}^{\gamma}(\emptyset)$. Fix such t, then $t \models C_l^n$ and therefore $t \models p_{l+1}$, so by the induction hypothesis $t \in \varphi_{\alpha}^{\omega \cdot (l+1)}(\emptyset)$. Thus $a \in \varphi_{\alpha}^{\omega \cdot (l+1)+1}(\emptyset) \subseteq \varphi_{\alpha}^{\omega \cdot k}(\emptyset)$ since l < k - 1,
- In other cases, namely: $a \models \bigvee_{i=0}^{m-1} (\Box x \land \bigwedge_{j=0}^{i} \Box^{j} C_{n}^{n} \land \Box^{i+1} C_{n-1}^{n}), a \models C_{n}^{n}$ which means $a \models \neg p_{i}$ for i = 1, ..., n, but this is a contradiction since $k \le n$ and we assumed that $a \models p_{k}$.

Formulae with fuses How do fuses work?

Basics

- The very basics
- The main concept
- 2 Fast and slow formulae
 - Some formulae never fix
 - Some formulae always reach their fixpoints fast
- Can we control the number of iterations for ω and above?
 Formulae with fuses
 - How do fuses work?

What next?

Formulae with fuses How do fuses work?

Can we control the number of iterations for ω and above? What next?

Corollaries of the main lemma

Global view on fuses:

If a point in which p_i is true is in the least fixpoint of φ_{α} , it has to be added to it fast, that is after at most $\omega \cdot i$ steps. After that number of iterations the *fuse* p_i melts and no more points in which p_i is true may be added to the fixpoint.

Formulae with fuses How do fuses work?

Corollaries of the main lemma (2)

Local view on fuses – an example:

Let us consider the formula:

$$\begin{aligned} \varphi_{\omega \cdot 2+3} &= (\diamondsuit x \land C_0^2 \land \Box C_0^2) \lor (\diamondsuit x \land C_1^2 \land \Box C_1^2) \lor (\Box x \land C_1^2 \land \Box C_0^2) \lor \\ &\lor (\Box x \land C_2^2 \land \Box C_1^2) \lor (\Box x \land C_2^2 \land \Box C_2^2 \land \Box^2 C_1^2) \lor \\ &\lor (\Box x \land C_2^2 \land \Box C_2^2 \land \Box^2 C_2^2 \land \Box^3 C_1^2) \end{aligned}$$

Recall that $C_0^2 = p_1 \land p_2$, $C_1^2 = \neg p_1 \land p_2$ and $C_2^2 = \neg p_1 \land \neg p_2$.

Formulae with fuses How do fuses work?

Can we control the number of iterations for ω and above?

What next?

Corollaries of the main lemma (3)

Local view on fuses - an example (2):

Example.....

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Formulae with fuses How do fuses work?

The main theorem

Theorem:

For every $\alpha < \omega^2$: φ_α fixes after α steps.

Proof...:

If there exists $i \leq n$ such that $a \models p_i$, then, by lemma we know that $a \in \varphi_{\alpha}^{\omega \cdot i}(\emptyset) \subseteq \varphi_{\alpha}^{\omega \cdot n+m}(\emptyset) = \varphi_{\alpha}^{\alpha}(\emptyset)$, since $a \in \varphi_{\alpha}^{\alpha+1}(\emptyset)$. Let us now assume that for i = 1, ..., n, $a \models \neg p_i$ holds. Since $a \in \varphi_{\alpha}(\varphi_{\alpha}^{\alpha}(\emptyset))$, then by the definition of φ_{α} , m > 0 and one of the following cases must hold:

• $a \models \Box \perp -$ then trivially $a \in \varphi_{\alpha}^{\alpha}(\emptyset)$.

Formulae with fuses How do fuses work?

Can we control the number of iterations for ω and above? What next?

The main theorem (2)

...Proof...:

• $a \models \bigwedge_{i=0}^{i} \Box^{j} C_{n}^{n} \land \Box^{i+1} C_{n-1}^{n}$, for some $i = 0, \ldots, m-1$ and for every t such that aRt. $t \in \varphi_{\alpha}^{\alpha}(\emptyset)$. We proceed by induction on *i* to show that if $a \models \bigwedge_{i=0}^{i} \Box^{j} C_{n}^{n} \wedge \Box^{i+1} C_{n-1}^{n}$, then $a \in \varphi_{\alpha}^{\omega \cdot n + i + 1}(\emptyset)$. For the base step let us assume that i = 0. Then for all t such that aRt, $t \models C_n^n$, holds. Therefore $t \models p_n$ and by the main lemma, $t \in \varphi_{\alpha}^{\omega \cdot n}(\emptyset)$. Thus $a \in \varphi_{\alpha}^{\omega \cdot n+1}(\emptyset)$. Suppose now that for $0 \le i < k \le m$ if $a \models \bigwedge_{i=0}^{i} \Box^{j} C_{n}^{n} \land \Box^{i+1} C_{n-1}^{n}$, then $a \in \varphi_{\alpha}^{\omega \cdot n + i + 1}(\emptyset)$. We show that for i = k this implication holds as well. Suppose that $a \models \bigwedge_{i=0}^{k} \Box^{i} C_{n}^{n} \land \Box^{k+1} C_{n-1}^{n}$ then for every t such that aRt, $t \models \bigwedge_{i=0}^{k-1} \Box^i C_n^n \land \Box^k C_{n-1}^n$ holds. Therefore, by the induction hypothesis $t \in \varphi_{\alpha}^{\omega \cdot n+k}(\emptyset)$, and thus $a \in \varphi_{\alpha}^{\omega \cdot n+k+1}(\emptyset)$. Hence, for every such case $a \in \varphi_{\alpha}^{\omega \cdot n + m}(\emptyset) = \varphi_{\alpha}^{\alpha}(\emptyset)$.

Formulae with fuses How do fuses work?

Can we control the number of iterations for ω and above? What next?

The main theorem (3)

...Proof...:

• In other cases, namely when $a \models \bigvee_{i=0}^{n-1} (\diamondsuit x \land C_i^n \land \Box C_i^n) \lor \bigvee_{i=0}^{n-2} (\Box x \land C_{i+1}^n \land \Box C_i^n)$ also $a \models C_i^{n+1}$ holds, for some i = 1, ..., n-1. This means that $a \models p_n$ which is a contradiction, since we assumed that $a \models \neg p_n$. This shows that $\alpha^{n+1}(\alpha) = \alpha(\alpha)$

$$\varphi_{\alpha}^{\alpha+1}(\varnothing) = \varphi_{\alpha}^{\alpha}(\varnothing)$$

Formulae with fuses How do fuses work?

Can we control the number of iterations for ω and above? What next?

The main theorem (4)

...Proof:

For $\alpha < \omega^2$ we can construct models in which φ_{α} fixes after α steps.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Open (?) questions

 Are there basic modal formulae that fix after ω² or more steps?

< 17 ×

-

Open (?) questions

- Are there basic modal formulae that fix after ω^2 or more steps?
- Are there μ -formulae that fix after ω^2 or more steps?

Open (?) questions

- Are there basic modal formulae that fix after ω^2 or more steps?
- Are there μ -formulae that fix after ω^2 or more steps?
- Is there a formula that behaves as an ω–counter (at least in big enough models), that allows us to count uses of □ up to ω?

Open (?) questions

- Are there basic modal formulae that fix after ω^2 or more steps?
- Are there μ -formulae that fix after ω^2 or more steps?
- Is there a formula that behaves as an ω–counter (at least in big enough models), that allows us to count uses of □ up to ω?
- Is it decidable whether $\mathcal{O}_{\chi}(\varphi)$ is defined, given φ ?

A. Arnold and D. Niwiński. Rudiments of μ -Calculus.

Studies in Logic, Vol 146, North-Holland 2001.

G. Fontaine.

Continuous fragment of the μ -calculus. Lecture Notes in Computer Science, Volume 5213/2008:139-153.

THANK YOU FOR YOUR ATTENTION

æ

Marek Czarnecki How fast can the fixpoints in modal μ calculus be reached?