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The very basics – syntax

Modal µ syntax

ϕ Ð→ ⊤ ∣p ∣x ∣¬ϕ ∣ϕ ∨ ϕ ∣ ◇ ϕ ∣µx .ϕ
p is a propositional letter (Prop), x is an individual variable
(Var) and construction µx .ϕ is allowed when every occurrence
of x in ϕ is in range of even number of negations.

Normal form
Set ⊥= ¬ ⊤, ϕ ∧ ψ = ¬(¬ϕ ∨ ¬ψ),
◻ϕ = ¬◇ ¬ϕ and νx .ϕ = ¬µx .¬ϕ[x ∶= ¬x].
Thus we obtain a normal form for µ formulae by pushing
negations as deep as it is possible. We get:
ϕ Ð→ ⊥ ∣ ⊤ ∣p ∣¬p ∣x ∣¬x ∣ϕ ∨ ϕ ∣ϕ ∨ ϕ ∣ ◇ ϕ ∣ ◻ ϕ ∣µx .ϕ ∣νx .ϕ
Where µx .ϕ and νx .ϕ are allowed when there are no ¬x in ϕ.
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The very basics – semantics

Kripke models

M = (M,R,V) is a Kripke model when (M,R) is a graph and
V ∶ Prop → P(M) assigns values to propositional letters.
A valuation (assignment) τ ∶ Var → P(M) assigns values to
individual variables.
We define JϕKM,τ – a subset of M of points in which ϕ is true in
a usual way. Recall that:

Jµx .ϕKM,τ =⋂{A ⊆ M ∶ JϕKM,τ[x ∶=A] ⊆ A}

where τ[x ∶= A](x) = A and τ[x ∶= A](y) = τ(y) for y ≠ x .
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The very basics – fixpoints

Finding fixpoints
Fix ϕ, x ,M and τ . There is α such that

Jµx .ϕKM,τ = ϕαx (∅)

where ϕ0
x(A) = JϕKM,τ[x ∶=A], ϕ

β+1
x (A) = ϕx(ϕβx (A)), and for limit

ordinals λ: ϕλx(A) = ⋃β<λϕβx (A).
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Definition
We say that a modal µ–formula ϕ fixes after α steps in x when
α is the least ordinal number such that for allM and τ ,

Jµx .ϕKM,τ = ϕαx (∅)

We denote it by Ox(ϕ) = α.

What is it all about?
We investigate after which ordinal numbers of steps modal µ
formulae may fix.
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Examples

Examples:

Ox(◇x ∨ p) = ω

Ox(x) = 0
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Some formulae never fix
Some formulae always reach their fixpoints fast

An example

Fact
Ox(◻x) is undefined i.e. ◻x goes forever.
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Some formulae never fix
Some formulae always reach their fixpoints fast

An example (2)

Proof:
We show that there are models in which ◻x needs more than
any given number of steps to fix.
We use an assignment of trees to ordinal numbers. To 0 we

assign just a single point – a root. For α + 1 we construct the
tree by taking a new point to be the root and attaching to it the
root of the tree for α. For limit ordinals λ we construct the tree
by taking a new point to be the root and attach to it all the roots
of trees constructed before α < λ. It is easy to see that in a tree
assigned to λ formula ◻x fixes after λ + 1 steps – thus Ox(◻x)
is undefined.
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Some formulae never fix
Some formulae always reach their fixpoints fast

Examples for α < ω

Fact

Let ϕn = ◻x ∧ ◻n+1 ⊥.
Then Ox(ϕn) = n.

Fact
For k ≤ l ,

◻k ⊥ ∧◻l ⊥≡ ◻k(◻l−k ⊥ ∧ ⊥) ≡ ◻k ⊥

and
◻k ⊥ ∨◻l ⊥≡ ◻l ⊥
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Some formulae never fix
Some formulae always reach their fixpoints fast

Examples for α < ω (2)

Fact

Let ϕn = ◻x ∧ ◻n+1 ⊥.
Then Ox(◻x ∧ ◻n+1 ⊥) = n.

Proof:
Fix n ∈ ω, a model and a valuation
ϕn+1

n (∅) = J⋁n+1
i=0 (◻i+1⊥ ∧ ◻n+1⊥)K = J◻n+1⊥ ∧⋁n+1

i=0 ◻i+1⊥K =
J◻n+1⊥ ∧◻n+2⊥K = J◻n+1⊥K = ϕn

n(∅).
This gives the upper bound for number of iterations of ϕn. For

the lower bound consider models assigned to finite ordinals.
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Formulae with fuses
How do fuses work?

Inspiration

Inspiration
Our investigation is motivated by a question asked by Damian
Niwiński whether there exists a formula which fixes after ω + 1
steps and, in a broader sense, whether it is possible to control
the number of iterations of formulae above ω.

Mikołaj Bojańczyk’s conjecture

The formula (◇x ∧ ◻p1 ∧ p1) ∨ (◻x ∧ ◻p1 ∧ ¬p1) ∨ ◻⊥ fixes in
ω + 1 steps.

The main result
Mikołaj Bojańczyk conjecture is true. We generalize this result
showing formulae that fix in α steps for all α < ω2.

Marek Czarnecki How fast can the fixpoints in modal µ calculus be reached?



Basics
Fast and slow formulae

Can we control the number of iterations for ω and above?
What next?

Formulae with fuses
How do fuses work?

The formulae

Sets of fuses
For n > 0 and 0 ≤ i ≤ n let Cn

i = ¬p1 ∧ ⋅ ⋅ ⋅ ∧ ¬pi ∧ pi+1 ∧ ⋅ ⋅ ⋅ ∧ pn.

The formulae

ψω⋅n =
n−1
⋁
i=0

(◇x ∧Cn
i ∧ ◻Cn

i ) ∨
n−2
⋁
i=0

(◻x ∧Cn
i+1 ∧ ◻Cn

i )

ψω⋅n+m = ψω⋅n ∨
m−1
⋁
i=0

(◻x ∧
i
⋀
j=0

◻jCn
n ∧ ◻i+1Cn

n−1)

ϕω⋅n+m = ψω⋅n+m ∨ ◻ ⊥

Marek Czarnecki How fast can the fixpoints in modal µ calculus be reached?



Basics
Fast and slow formulae

Can we control the number of iterations for ω and above?
What next?

Formulae with fuses
How do fuses work?

The formulae

Sets of fuses
For n > 0 and 0 ≤ i ≤ n let Cn

i = ¬p1 ∧ ⋅ ⋅ ⋅ ∧ ¬pi ∧ pi+1 ∧ ⋅ ⋅ ⋅ ∧ pn.

The formulae

ψω⋅n =
n−1
⋁
i=0

(◇x ∧Cn
i ∧ ◻Cn

i ) ∨
n−2
⋁
i=0

(◻x ∧Cn
i+1 ∧ ◻Cn

i )

ψω⋅n+m = ψω⋅n ∨
m−1
⋁
i=0

(◻x ∧
i
⋀
j=0

◻jCn
n ∧ ◻i+1Cn

n−1)

ϕω⋅n+m = ψω⋅n+m ∨ ◻ ⊥

Marek Czarnecki How fast can the fixpoints in modal µ calculus be reached?



Basics
Fast and slow formulae

Can we control the number of iterations for ω and above?
What next?

Formulae with fuses
How do fuses work?

The formulae

Sets of fuses
For n > 0 and 0 ≤ i ≤ n let Cn

i = ¬p1 ∧ ⋅ ⋅ ⋅ ∧ ¬pi ∧ pi+1 ∧ ⋅ ⋅ ⋅ ∧ pn.

The formulae

ψω⋅n =
n−1
⋁
i=0

(◇x ∧Cn
i ∧ ◻Cn

i ) ∨
n−2
⋁
i=0

(◻x ∧Cn
i+1 ∧ ◻Cn

i )

ψω⋅n+m = ψω⋅n ∨
m−1
⋁
i=0

(◻x ∧
i
⋀
j=0

◻jCn
n ∧ ◻i+1Cn

n−1)

ϕω⋅n+m = ψω⋅n+m ∨ ◻ ⊥

Marek Czarnecki How fast can the fixpoints in modal µ calculus be reached?



Basics
Fast and slow formulae

Can we control the number of iterations for ω and above?
What next?

Formulae with fuses
How do fuses work?

The formulae

Sets of fuses
For n > 0 and 0 ≤ i ≤ n let Cn

i = ¬p1 ∧ ⋅ ⋅ ⋅ ∧ ¬pi ∧ pi+1 ∧ ⋅ ⋅ ⋅ ∧ pn.

The formulae

ψω⋅n =
n−1
⋁
i=0

(◇x ∧Cn
i ∧ ◻Cn

i ) ∨
n−2
⋁
i=0

(◻x ∧Cn
i+1 ∧ ◻Cn

i )

ψω⋅n+m = ψω⋅n ∨
m−1
⋁
i=0

(◻x ∧
i
⋀
j=0

◻jCn
n ∧ ◻i+1Cn

n−1)

ϕω⋅n+m = ψω⋅n+m ∨ ◻ ⊥

Marek Czarnecki How fast can the fixpoints in modal µ calculus be reached?



Basics
Fast and slow formulae

Can we control the number of iterations for ω and above?
What next?

Formulae with fuses
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The main lemma

Lemma

Let k > 0, ω ⋅ k ≤ α < ω2. Then

(a ⊧ pk ∧ a ∈ Jµx .ϕαK)⇒ a ∈ ϕω⋅kα (∅)
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The main lemma (2)

Proof...:
FixM = (M,R,V), τ and a ∈ M. There exists β such that
a ∈ ϕβα(∅). We proceed by induction on β.
The base step and limit steps are trivial.
We need to show that
∀k > 0∀ω ⋅ k ≤ α < ω2 [(a ⊧ pk ∧ a ∈ ϕγ+1

α (∅))⇒ a ∈ ϕω⋅kα (∅)].
Fix k > 0 and let α = ω ⋅ n +m, for n ≥ k and m ∈ ω. Let us
assume that a ⊧ pk and a ∈ ϕβα(∅). Since β = γ + 1 we have
a ∈ ϕα(ϕγα(∅)). By the definition of ϕα, one of the following
cases must hold:
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The main lemma (3)

...Proof...:

a ⊧ ◻ ⊥ – then a ∈ ϕ0
α(∅) ⊆ ϕω⋅kα (∅),

a ⊧ Cn
l ∧◻Cn

l for some l < k – since a ⊧ pk , and there exists
t such that aRt and t ∈ ϕγα(∅). Therefore t ⊧ Cn

l which
implies t ⊧ pl+1. By the induction hypothesis, since
t ∈ ϕγα(∅) and t ⊧ pl+1, we know that t ∈ ϕω⋅(l+1)

α (∅).
Because ω ⋅ (l + 1) is a limit ordinal, there exists s ∈ ω such
that t ∈ ϕω⋅l+s

α (∅). Therefore
a ∈ ϕω⋅l+s+1

α (∅) ⊆ ϕω⋅(l+1)
α (∅) ⊆ ϕω⋅kα (∅),
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The main lemma (4)

...Proof:
a ⊧ Cn

l+1 ∧◻Cn
l for some l < k −1 – since a ⊧ pk , and for all t

if aRt , then t ∈ ϕγα(∅). Fix such t , then t ⊧ Cn
l and therefore

t ⊧ pl+1, so by the induction hypothesis t ∈ ϕω⋅(l+1)
α (∅).

Thus a ∈ ϕω⋅(l+1)+1
α (∅) ⊆ ϕω⋅kα (∅) since l < k − 1,

In other cases, namely:
a ⊧ ⋁m−1

i=0 (◻x ∧⋀i
j=0 ◻jCn

n ∧ ◻i+1Cn
n−1), a ⊧ Cn

n which means
a ⊧ ¬pi for i = 1, . . . ,n, but this is a contradiction since k ≤ n
and we assumed that a ⊧ pk .
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Formulae with fuses
How do fuses work?

Corollaries of the main lemma

Global view on fuses:
If a point in which pi is true is in the least fixpoint of ϕα, it has to
be added to it fast, that is after at most ω ⋅ i steps. After that
number of iterations the fuse pi melts and no more points in
which pi is true may be added to the fixpoint.
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Corollaries of the main lemma (2)

Local view on fuses – an example:
Let us consider the formula:

ϕω⋅2+3 = (◇x ∧C2
0 ∧ ◻C2

0) ∨ (◇x ∧C2
1 ∧ ◻C2

1) ∨ (◻x ∧C2
1 ∧ ◻C2

0)∨
∨ (◻x ∧C2

2 ∧ ◻C2
1) ∨ (◻x ∧C2

2 ∧ ◻C2
2 ∧ ◻2C2

1)∨
∨ (◻x ∧C2

2 ∧ ◻C2
2 ∧ ◻2C2

2 ∧ ◻3C2
1)

Recall that C2
0 = p1 ∧ p2, C2

1 = ¬p1 ∧ p2 and C2
2 = ¬p1 ∧ ¬p2.
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Corollaries of the main lemma (3)

Local view on fuses – an example (2):
Example.........................................................
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The main theorem

Theorem:

For every α < ω2: ϕα fixes after α steps.

Proof...:
If there exists i ≤ n such that a ⊧ pi , then, by lemma we know
that a ∈ ϕω⋅iα (∅) ⊆ ϕω⋅n+m

α (∅) = ϕαα(∅), since a ∈ ϕα+1
α (∅).

Let us now assume that for i = 1, . . . ,n, a ⊧ ¬pi holds. Since
a ∈ ϕα(ϕαα(∅)), then by the definition of ϕα, m > 0 and one of
the following cases must hold:

a ⊧ ◻ ⊥ – then trivially a ∈ ϕαα(∅).
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The main theorem (2)

...Proof...:

a ⊧ ⋀i
j=0 ◻jCn

n ∧ ◻i+1Cn
n−1, for some i = 0, . . . ,m − 1 and for

every t such that aRt , t ∈ ϕαα(∅).
We proceed by induction on i to show that if
a ⊧ ⋀i

j=0 ◻jCn
n ∧ ◻i+1Cn

n−1, then a ∈ ϕω⋅n+i+1
α (∅).

For the base step let us assume that i = 0. Then for all t such
that aRt , t ⊧ Cn

n−1 holds. Therefore t ⊧ pn and by the main
lemma, t ∈ ϕω⋅nα (∅). Thus a ∈ ϕω⋅n+1

α (∅).
Suppose now that for 0 ≤ i < k ≤ m if a ⊧ ⋀i

j=0 ◻jCn
n ∧ ◻i+1Cn

n−1,
then a ∈ ϕω⋅n+i+1

α (∅). We show that for i = k this implication holds
as well. Suppose that a ⊧ ⋀k

j=0 ◻jCn
n ∧ ◻k+1Cn

n−1 then for every t
such that aRt , t ⊧ ⋀k−1

j=0 ◻jCn
n ∧ ◻k Cn

n−1 holds. Therefore, by the
induction hypothesis t ∈ ϕω⋅n+k

α (∅), and thus a ∈ ϕω⋅n+k+1
α (∅).

Hence, for every such case a ∈ ϕω⋅n+m
α (∅) = ϕαα(∅).
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The main theorem (3)

...Proof...:
In other cases, namely when
a ⊧ ⋁n−1

i=0 (◇x ∧Cn
i ∧ ◻Cn

i ) ∨⋁n−2
i=0 (◻x ∧Cn

i+1 ∧ ◻Cn
i ) also

a ⊧ Cn+1
i holds, for some i = 1, . . .n − 1. This means that

a ⊧ pn which is a contradiction, since we assumed that
a ⊧ ¬pn.
This shows that

ϕα+1
α (∅) = ϕαα(∅)
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Formulae with fuses
How do fuses work?

The main theorem (4)

...Proof:

For α < ω2 we can construct models in which ϕα fixes after α
steps.
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Open (?) questions

Are there basic modal formulae that fix after ω2 or more
steps?

Are there µ–formulae that fix after ω2 or more steps?
Is there a formula that behaves as an ω–counter (at least in
big enough models), that allows us to count uses of ◻ up to
ω?
Is it decidable whether Ox(ϕ) is defined, given ϕ?
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