Denotational semantics for lazy initialization of letrec

black holes as exceptions rather than divergence

Keiko Nakata Institute of Cybernetics, Tallinn

FICS 2010, Brno, 21 August 2010

Lazy evaluation in OCaml and Racket

OCaml and Racket (PLT Scheme) support lazy evaluation which implements

- memorization of computation - evaluate just once
- on-demand computation - evaluate when necessary

Recall that both OCaml and Racket are call-by-value languages with arbitrary side-effects.

Background: Controlled use of lazy evaluation in call-by-value effectful languages to account for dynamic libraries.

Lazy evaluation for letrec

Lazy evaluation provides a useful means to initialize unrestricted recursive bindings

$$
\text { let rec } x_{1} \text { be } M_{1}, \ldots, x_{n} \text { be } M_{n} \text { in } N
$$

where M_{i} 's are arbitrary expressions.

- On-demand computation to find a most successful initialization order.
- the initialization succeeds if and only if there is a non-circular order in which the bindings can be initialized.
- Memorization for value recursion
- initialization may perform side-effects which are produced just once

Black holes as exceptions

OCaml and Racket distinguishes black holes and looping recursion.

$$
\begin{array}{ll}
\text { let rec } x \text { be } x \text { in } x & \Rightarrow \text { exception } \\
\text { let rec } x \text { be }(\lambda y . y) x \text { in } x & \Rightarrow \text { exception } \\
\text { let rec } f \text { be } \lambda x . f \text { in } f & \Rightarrow \text { termination } \\
\text { let rec } f \text { be } \lambda x . f x \text { in } f 0 & \Rightarrow \text { divergence }
\end{array}
$$

Circular initialization signals a runtime exception, which is both natural and useful in practice.
(Cf. β takes a tick but substitution does not.)
C.f. F\#'s object initialization

Syntax

N.B. The order of bindings in letrec is insignificant.

Typing

$$
\begin{gathered}
n: \text { nat } \quad x: \operatorname{type}(x) \quad \bullet: \tau \\
\frac{x: \tau_{1} \quad M: \tau_{2}}{\lambda x \cdot M: \tau_{1} \rightarrow \tau_{2}} \frac{M: \tau_{1} \rightarrow \tau_{2} \quad N: \tau_{1}}{M N: \tau_{2}} \\
\frac{x_{1}: \tau_{1} \quad \ldots \quad x_{n}: \tau_{n}}{} \quad M_{1}: \tau_{1} \ldots \quad M_{n}: \tau_{n} \quad N: \tau \\
\text { let rec } x_{1} \text { be } M_{1}, \ldots, x_{n} \text { be } M_{n} \text { in } N: \tau
\end{gathered}
$$

Natural semantics

Judgment form

$\langle\Psi\rangle M \Downarrow\langle\Phi\rangle V$ expresses that an expression M in an initial heap ψ evaluates to a result V with the heap being Φ.

Inference rules of the Natural semantics

$$
\begin{aligned}
& \text { Result } \\
& \langle\Psi\rangle V \Downarrow\langle\Psi\rangle V \\
& \text { Application } \\
& \frac{\langle\Psi\rangle M_{1} \Downarrow\langle\Phi\rangle \lambda x . N \quad\left\langle\Phi\left[x^{\prime} \mapsto M_{2}\right]\right\rangle N\left[x^{\prime} / x\right] \Downarrow\left\langle\Psi^{\prime}\right\rangle V \quad x^{\prime} \text { fresh }}{\langle\Psi\rangle M_{1} M_{2} \Downarrow\left\langle\Psi^{\prime}\right\rangle V} \\
& \text { Variable } \\
& \frac{\langle\Psi[x \mapsto \bullet]\rangle \Psi(x) \Downarrow\langle\Phi\rangle V}{\langle\Psi\rangle x \Downarrow\langle\Phi[x \mapsto V]\rangle V} \\
& \text { Letrec } \\
& \frac{\left\langle\Psi\left[x_{1}^{\prime} \mapsto M_{1}^{\prime}, \ldots, x_{n}^{\prime} \mapsto M_{n}^{\prime}\right]\right\rangle N^{\prime} \Downarrow\langle\Phi\rangle V \quad x_{1}^{\prime}, \ldots, x_{n}^{\prime} \text { fresh }}{\langle\Psi\rangle \text { let rec } x_{1} \text { be } M_{1}, \ldots, x_{n} \text { be } M_{n} \text { in } N \Downarrow\langle\Phi\rangle V} \\
& \text { where } M_{i}^{\prime}=M_{i}\left[x_{1}^{\prime} / x_{1}\right] \ldots\left[x_{n}^{\prime} / x_{n}\right] \\
& \text { Error }_{\beta} \\
& \frac{\langle\Psi\rangle M_{1} \Downarrow\langle\Phi\rangle \bullet}{\langle\Psi\rangle M_{1} M_{2} \Downarrow\langle\Phi\rangle \bullet}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \frac{\left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \lambda y \cdot y, y^{\prime} \mapsto \bullet\right\rangle \bullet \Downarrow\left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \lambda y \cdot y, y^{\prime} \mapsto \bullet\right\rangle \bullet}{\left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \lambda y \cdot y, y^{\prime} \mapsto \bullet\right\rangle x^{\prime} \Downarrow\left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \lambda y \cdot y, y^{\prime} \mapsto \bullet\right\rangle \bullet} \\
& \left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \lambda y \cdot y, y^{\prime} \mapsto x^{\prime}\right\rangle y^{\prime} \Downarrow\left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \lambda y \cdot y, y^{\prime} \mapsto \bullet\right\rangle \bullet \\
& \left.\frac{\left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \bullet\right\rangle \lambda y \cdot y \Downarrow\left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \bullet\right\rangle \lambda y \cdot y}{\left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \lambda y \cdot y\right\rangle f^{\prime} \Downarrow\left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \lambda y \cdot y\right\rangle \lambda y \cdot y} \right\rvert\, \\
& \frac{\left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \lambda y \cdot y\right\rangle f^{\prime} x^{\prime} \Downarrow\left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \lambda y \cdot y, y^{\prime} \mapsto \bullet\right\rangle \bullet}{\left\langle x^{\prime} \mapsto f^{\prime} x^{\prime}, f^{\prime} \mapsto \lambda y \cdot y\right\rangle x^{\prime} \Downarrow\left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \lambda y \cdot y, y^{\prime} \mapsto \bullet\right\rangle \bullet} \\
& \left\rangle \text { let rec } x \text { be } f x , f \text { be } \lambda y \cdot y \text { in } x \Downarrow \left\langle x^{\prime} \mapsto \bullet, f^{\prime} \mapsto \lambda y \cdot y, y^{\prime} \mapsto \bullet \bullet \bullet\right.\right.
\end{aligned}
$$

Denotational semantics

An expression M of type τ denotes an element of $\left(V_{\tau}+\operatorname{Err}_{\tau}\right)_{\perp}$.
Err_{τ} is a singleton, whose only element is \bullet_{τ}.
V_{τ} denotes proper values of type τ and is defined by

$$
V_{\text {nat }}=N \quad V_{\tau_{0} \rightarrow \tau_{1}}=\left[\left(V_{\tau_{0}}+\operatorname{Err}_{\tau_{0}}\right)_{\perp} \rightarrow\left(V_{\tau_{1}}+\operatorname{Err}_{\tau_{1}}\right)_{\perp}\right]
$$

Notations

Denotational semantics
For $d \in\left(V_{\tau_{0} \rightarrow \tau_{1}}+\operatorname{Err}_{\tau_{0} \rightarrow \tau_{1}}\right)_{\perp}$ and $d^{\prime} \in\left(V_{\tau_{0}}+\operatorname{Err}_{\tau_{0}}\right)_{\perp}$, application of d to d^{\prime} is defined by

$$
d\left(d^{\prime}\right)= \begin{cases}\perp_{\tau_{1}} & \text { when } d=\perp_{\tau_{0} \rightarrow \tau_{1}} \\ \bullet_{\tau_{1}} & \text { when } d=\bullet_{\tau_{0} \rightarrow \tau_{1}} \\ \varphi\left(d^{\prime}\right) & \text { when } d=\varphi \in V_{\tau_{0} \rightarrow \tau_{1}}\end{cases}
$$

Moreover we write $(d)^{*}$ to denote the strict version of d on both \perp and •, i.e.,

$$
(d)^{*}\left(d^{\prime}\right)= \begin{cases}\perp_{\tau_{1}} & \text { when } d=\varphi \text { and } d^{\prime}=\perp_{\tau_{0}} \\ \bullet_{\tau_{1}} & \text { when } d=\varphi \text { and } d^{\prime}=\bullet_{\tau_{0}} \\ d\left(d^{\prime}\right) & \text { otherwise }\end{cases}
$$

An environment, ρ, maps variables to denotations: $\rho(x) \in\left(V_{\tau}+\mathrm{Err}_{\tau}\right)_{\perp}$ where $x: \tau$.
The least environment, ρ_{\perp}, maps all variables to bottom elements.

Semantic function

Denotational semantics

The semantic function $\llbracket M: \tau \rrbracket_{\rho}$ assigns a denotation to a typing derivation $M: \tau$ under an environment ρ.

Semantic function for heaps

Denotational semantics

$$
\begin{aligned}
& \left\{\left\{x_{1} \mapsto M_{1}^{\tau_{1}}, \ldots, x_{n} \mapsto M_{n}^{\tau_{n}}\right\}\right\}_{\rho}^{(0)}=\rho\left[x_{1} \mapsto \bullet_{\tau_{1}}, \ldots, x_{n} \mapsto \bullet_{\tau_{n}}\right] \\
& \left\{x_{1} \mapsto M_{1}^{\tau_{1}}, \ldots, x_{n} \mapsto M_{n}^{\tau_{n}} \rrbracket{ }_{\rho}^{(m+1)}=\right. \\
& \mu \rho^{\prime} . \rho\left[x_{1} \mapsto \llbracket M_{1}: \tau_{1} \rrbracket_{\rho_{m}} \cdot \llbracket M_{1}: \tau_{1} \rrbracket_{\rho^{\prime}}, \ldots, x_{n} \mapsto \llbracket M_{n}: \tau_{n} \rrbracket_{\rho_{m}} \cdot \llbracket M_{n}: \tau_{n} \rrbracket_{\rho^{\prime}}\right] \\
& \text { where } \rho_{m}=\left\{\left\{x_{1} \mapsto M_{1}^{\tau_{1}}, \ldots, x_{n} \mapsto M_{n}^{\tau_{n}}\right\}\right\} \rho_{\rho}^{(m)}
\end{aligned}
$$

$d \cdot d^{\prime}$ abbreviates $\left((\lambda y \cdot \lambda x \cdot x)^{*}(d)\right)\left(d^{\prime}\right)$

Denotation of heaps

Denotational semantics
The denotation of a heap $\psi=x_{1} \mapsto M_{1}^{\tau_{1}}, \ldots, x_{n} \mapsto M_{n}^{\tau_{n}}$ under an environment ρ is computed as follows.

1. Pre-initialize to black holes.
2. Compute the denotation of $M_{i}: \tau_{i}$ under ρ_{0}.
3. Compute the fixed-point semantics for Mi's whose
evaluation was successful under ρ_{0}.

4. Compute the denotation of $M_{i}: \tau_{i}$ under ρ_{1}.
5. Compute the fixed-point semantics for M_{i} 's whose evaluation was successful under ρ_{1}

Denotation of heaps

Denotational semantics
The denotation of a heap $\psi=x_{1} \mapsto M_{1}^{\tau_{1}}, \ldots, x_{n} \mapsto M_{n}^{\tau_{n}}$ under an environment ρ is computed as follows.

1. Pre-initialize to black holes.
$\rho_{0}=\rho\left[x_{1} \mapsto \bullet_{\tau_{1}}, \ldots, x_{n} \mapsto \bullet_{\tau_{n}}\right]$.
2. Compute the denotation of $M_{i}: \tau_{i}$ under ρ_{0}.
3. Compute the fixed-point semantics for M_{i} 's whose
evaluation was successful under ρ_{0}.

4. Compute the denotation of $M_{i}: \tau_{i}$ under ρ_{1}
5. Compute the fixed-point semantics for M_{i} 's whose evaluation was successful under ρ_{1}

Denotation of heaps

Denotational semantics
The denotation of a heap $\Psi=x_{1} \mapsto M_{1}^{\tau_{1}}, \ldots, x_{n} \mapsto M_{n}^{\tau_{n}}$ under an environment ρ is computed as follows.

1. Pre-initialize to black holes.

$$
\rho_{0}=\rho\left[x_{1} \mapsto \bullet_{\tau_{1}}, \ldots, x_{n} \mapsto \bullet_{\tau_{n}}\right] .
$$

2. Compute the denotation of $M_{i}: \tau_{i}$ under ρ_{0}.
3. Compute the fixed-point semantics for M_{i} 's whose evaluation was successful under ρ_{0}.

4. Compute the denotation of $M_{i}: \tau_{i}$ under ρ_{1},
5. Compute the fixed-point semantics for M_{i} 's whose evaluation was successful under ρ_{1}

Denotation of heaps

Denotational semantics
The denotation of a heap $\psi=x_{1} \mapsto M_{1}^{\tau_{1}}, \ldots, x_{n} \mapsto M_{n}^{\tau_{n}}$ under an environment ρ is computed as follows.

1. Pre-initialize to black holes.

$$
\rho_{0}=\rho\left[x_{1} \mapsto \bullet_{\tau_{1}}, \ldots, x_{n} \mapsto \bullet_{\tau_{n}}\right] .
$$

2. Compute the denotation of $M_{i}: \tau_{i}$ under ρ_{0}.
3. Compute the fixed-point semantics for M_{i} 's whose evaluation was successful under ρ_{0}.

$$
\begin{aligned}
& \rho_{1}=\mu \rho^{\prime} . \rho\left[x_{1} \mapsto d_{1}, \ldots, x_{n} \mapsto d_{n}\right] \text { where } \\
& \qquad d_{i}= \begin{cases}\bullet_{\tau_{i}} & \text { when } \llbracket M_{i}: \tau_{i} \rrbracket_{\rho_{0}}=\bullet_{\tau_{i}} \\
\llbracket M_{i}: \tau_{i} \rrbracket_{\rho^{\prime}} & \text { otherwise }\end{cases}
\end{aligned}
$$

4. Compute the denotation of $M_{i}: \tau_{i}$ under ρ_{1}.
5. Compute the fixed-point semantics for M_{i} 's whose
evaluation was successful under ρ_{1}

Denotation of heaps

Denotational semantics
The denotation of a heap $\psi=x_{1} \mapsto M_{1}^{\tau_{1}}, \ldots, x_{n} \mapsto M_{n}^{\tau_{n}}$ under an environment ρ is computed as follows.

1. Pre-initialize to black holes.

$$
\rho_{0}=\rho\left[x_{1} \mapsto \bullet_{\tau_{1}}, \ldots, x_{n} \mapsto \bullet_{\tau_{n}}\right] .
$$

2. Compute the denotation of $M_{i}: \tau_{i}$ under ρ_{0}.
3. Compute the fixed-point semantics for M_{i} 's whose evaluation was successful under ρ_{0}.

$$
\begin{aligned}
& \rho_{1}=\mu \rho^{\prime} . \rho\left[x_{1} \mapsto d_{1}, \ldots, x_{n} \mapsto d_{n}\right] \text { where } \\
& \qquad d_{i}= \begin{cases}\bullet^{\tau_{i}} \\
\llbracket M_{i}: \tau_{i} \rrbracket \rrbracket_{\rho^{\prime}} & \text { otherwise } \llbracket M_{i}: \tau_{i} \rrbracket_{\rho_{0}}=\bullet_{\tau_{i}}\end{cases}
\end{aligned}
$$

4. Compute the denotation of $M_{i}: \tau_{i}$ under ρ_{1}.

Denotation of heaps

Denotational semantics
The denotation of a heap $\psi=x_{1} \mapsto M_{1}^{\tau_{1}}, \ldots, x_{n} \mapsto M_{n}^{\tau_{n}}$ under an environment ρ is computed as follows.

1. Pre-initialize to black holes.

$$
\rho_{0}=\rho\left[x_{1} \mapsto \bullet_{\tau_{1}}, \ldots, x_{n} \mapsto \bullet_{\tau_{n}}\right] .
$$

2. Compute the denotation of $M_{i}: \tau_{i}$ under ρ_{0}.
3. Compute the fixed-point semantics for M_{i} 's whose evaluation was successful under ρ_{0}.

$$
\begin{aligned}
\rho_{1}=\mu \rho^{\prime} . \rho\left[x_{1} \mapsto d_{1}, \ldots, x_{n} \mapsto d_{n}\right] \text { where } \\
\qquad d_{i}= \begin{cases}\bullet^{\tau_{i}} & \text { when } \llbracket M_{i}: \tau_{i} \rrbracket_{\rho_{0}}=\bullet_{\tau_{i}} \\
\llbracket M_{i}: \tau_{i} \rrbracket \rrbracket_{\rho^{\prime}} & \text { otherwise }\end{cases}
\end{aligned}
$$

4. Compute the denotation of $M_{i}: \tau_{i}$ under ρ_{1}.
5. Compute the fixed-point semantics for M_{i} 's whose evaluation was successful under ρ_{1}.
6. ...

Denotation of heaps (cont.)

Denotational semantics

Generally, ρ_{m+1} is given by taking the fixed-point semantics for the recursive bindings whose initialization is successful under the environment ρ_{m}
$\rho_{m+1}=\mu \rho^{\prime} . \rho\left[x_{1} \mapsto d_{1}, \ldots, x_{n} \mapsto d_{n}\right]$

$$
\text { where } d_{i}= \begin{cases}\bullet_{\tau_{i}} & \text { when } \llbracket M_{i}: \tau_{i} \rrbracket_{\rho_{m}}=\bullet_{\tau_{i}} \\ \llbracket M_{i}: \tau_{i} \rrbracket_{\rho^{\prime}} & \text { otherwise }\end{cases}
$$

This process is iterated for n times; it converges by then:

$$
\forall m,\{\{\Psi\}\}_{\rho}^{(n)}=\{\{\Psi\}\}_{\rho}^{(n+m)}
$$

Semantic function for heaps

Denotational semantics

$$
\begin{aligned}
& \left\{\left\{x_{1} \mapsto M_{1}^{\tau_{1}}, \ldots, x_{n} \mapsto M_{n}^{\tau_{n}}\right\}\right\}_{\rho}^{(0)}=\rho\left[x_{1} \mapsto \bullet_{\tau_{1}}, \ldots, x_{n} \mapsto \bullet_{\tau_{n}}\right] \\
& \left\{x_{1} \mapsto M_{1}^{\tau_{1}}, \ldots, x_{n} \mapsto M_{n}^{\tau_{n}} \rrbracket{ }_{\rho}^{(m+1)}=\right. \\
& \mu \rho^{\prime} . \rho\left[x_{1} \mapsto \llbracket M_{1}: \tau_{1} \rrbracket_{\rho_{m}} \cdot \llbracket M_{1}: \tau_{1} \rrbracket_{\rho^{\prime}}, \ldots, x_{n} \mapsto \llbracket M_{n}: \tau_{n} \rrbracket_{\rho_{m}} \cdot \llbracket M_{n}: \tau_{n} \rrbracket_{\rho^{\prime}}\right] \\
& \text { where } \rho_{m}=\left\{\left\{x_{1} \mapsto M_{1}^{\tau_{1}}, \ldots, x_{n} \mapsto M_{n}^{\tau_{n}}\right\}\right\} \rho_{\rho}^{(m)}
\end{aligned}
$$

$d \cdot d^{\prime}$ abbreviates $\left((\lambda y \cdot \lambda x \cdot x)^{*}(d)\right)\left(d^{\prime}\right)$

Adequacy

Denotational semantics

Evaluations preserve the denotations of expressions.
Proposition
For any typed expression $M: \tau$, if $\rangle M \Downarrow\langle\Psi\rangle V$, then $V: \tau$ and $\llbracket M: \tau \rrbracket_{\rho_{\perp}}=\llbracket V: \tau \rrbracket_{\{\psi\}_{\rho_{\perp}}}$.

An expression evaluates to a result if and only if its denotation is non-bottom.

Proposition
For any typed expression $M: \tau, \llbracket M: \tau \rrbracket_{\rho_{\perp}} \neq \perp_{\tau}$ iff there are Φ and V such that $\rangle M \Downarrow\langle\Phi\rangle V$.

Operational soundness of equational laws for letrec

$\beta_{\text {need }}$
$(\lambda x . M) N=$ let rec x be N in M
lift
(let rec D in M) $N=$ let rec D in $M N$
deref
let rec x be V, D in $C[x]=$ let rec x be V, D in $C[V]$
deref $_{\text {env }}$
let rec x be $C\left[x^{\prime}\right], x^{\prime}$ be V, D in $M=$ let rec x be $C[V], x^{\prime}$ be V, D in M
assoc
let rec x be (let rec D in $M), D^{\prime}$ in $N=$ let rec D, x be M, D^{\prime} in N
where D abbreviates x_{1} be $M_{1} \ldots x_{n}$ be M_{n}.

Monadic framework for effectful unrestricted value recursion

Joint work with Masahito Hasegawa

$$
\begin{aligned}
& \frac{\Gamma \vdash L: A \rightarrow T B}{\Gamma \vdash L^{*}: A \rightarrow T B} \overline{\Gamma \vdash \eta_{A}: A \rightarrow T A} \\
& \Gamma \vdash \bullet_{A}: T A \\
& \Gamma, x_{1}: T A_{1}, \ldots, x_{n}: T A_{n} \vdash L_{1}: T A_{1} \\
& \Gamma, x_{1}: T A_{1}, \ldots, x_{n}: T A_{n} \vdash L_{n}: T A_{n} \\
& \Gamma \vdash \mu\left(x_{1}^{T A_{1}}, \ldots, x_{n}^{T A_{n}}\right) \cdot\left(L_{1}, \ldots, L_{n}\right): T A_{1} \times \ldots T A_{n}
\end{aligned}
$$

To be modeled in a target language given by a cartsian closed category equipped with a strong monad and a uniform T-fixed point operator and a family of black hole constants.

Monadic framework for effectful unrestricted value recursion

Joint work with Masahito Hasegawa

$$
\begin{aligned}
& \frac{\Gamma \vdash L: A \rightarrow T B}{\Gamma \vdash L^{*}: A \rightarrow T B} \overline{\Gamma \vdash \eta_{A}: A \rightarrow T A} \\
& \Gamma \vdash \bullet_{A}: T A \\
& \Gamma, x_{1}: T A_{1}, \ldots, x_{n}: T A_{n} \vdash L_{1}: T A_{1} \\
& \Gamma, x_{1}: T A_{1}, \ldots, x_{n}: T A_{n} \vdash L_{n}: T A_{n} \\
& \Gamma \vdash \mu\left(x_{1}^{T A_{1}}, \ldots, x_{n}^{T A_{n}}\right) \cdot\left(L_{1}, \ldots, L_{n}\right): T A_{1} \times \ldots T A_{n}
\end{aligned}
$$

To be modeled in a target language given by a cartsian closed category equipped with a strong monad and a uniform T-fixed point operator and a family of black hole constants.
Black holes are exceptions!

