
Denotational semantics for
lazy initialization of letrec

black holes as exceptions rather than divergence

Keiko Nakata
Institute of Cybernetics, Tallinn

FICS 2010, Brno, 21 August 2010

Lazy evaluation in OCaml and Racket

OCaml and Racket (PLT Scheme) support lazy evaluation
which implements

• memorization of computation — evaluate just once
• on-demand computation — evaluate when necessary

Recall that both OCaml and Racket are call-by-value languages
with arbitrary side-effects.

Background: Controlled use of lazy evaluation in call-by-value
effectful languages to account for dynamic libraries.

Lazy evaluation for letrec

Lazy evaluation provides a useful means to initialize
unrestricted recursive bindings

let rec x1 be M1, . . . , xn be Mn in N

where Mi ’s are arbitrary expressions.

• On-demand computation to find a most successful
initialization order.

• the initialization succeeds if and only if there is a
non-circular order in which the bindings can be initialized.

• Memorization for value recursion
• initialization may perform side-effects which are produced

just once

Black holes as exceptions

OCaml and Racket distinguishes black holes and looping
recursion.

let rec x be x in x ⇒ exception

let rec x be (λy .y) x in x ⇒ exception

let rec f beλx .f in f ⇒ termination

let rec f beλx .f x in f 0 ⇒ divergence

Circular initialization signals a runtime exception, which is both
natural and useful in practice.
(Cf. β takes a tick but substitution does not.)

C.f. F#’s object initialization

Syntax

Expressions M,N ::= n | x | λx .M | M N | •
| let rec x1 be M1, . . . , xn be Mn in M

Results V ::= n | λx .M | •
Types τ ::= nat | τ1 → τ2

N.B. The order of bindings in letrec is insignificant.

Typing

n : nat x : type(x) • : τ

x : τ1 M : τ2
λx .M : τ1 → τ2

M : τ1 → τ2 N : τ1
M N : τ2

x1 : τ1 . . . xn : τn M1 : τ1 . . . Mn : τn N : τ

let rec x1 be M1, . . . , xn be Mn in N : τ

Natural semantics
Judgment form

〈Ψ〉M ⇓ 〈Φ〉V expresses that an expression M in an initial
heap Ψ evaluates to a result V with the heap being Φ.

Inference rules of the Natural semantics

Result
〈Ψ〉V ⇓ 〈Ψ〉V

Application
〈Ψ〉M1 ⇓ 〈Φ〉λx .N 〈Φ[x ′ 7→ M2]〉N[x ′/x] ⇓ 〈Ψ′〉V x ′ fresh

〈Ψ〉M1 M2 ⇓ 〈Ψ′〉V

Variable
〈Ψ[x 7→ •]〉Ψ(x) ⇓ 〈Φ〉V
〈Ψ〉 x ⇓ 〈Φ[x 7→ V]〉V

Letrec
〈Ψ[x ′1 7→ M ′

1, . . . , x
′
n 7→ M ′

n]〉N ′ ⇓ 〈Φ〉V x ′1, . . . , x
′
n fresh

〈Ψ〉 let rec x1 be M1, . . . , xn be Mn in N ⇓ 〈Φ〉V

where M ′
i = Mi [x ′1/x1] . . . [x ′n/xn]

Errorβ
〈Ψ〉M1 ⇓ 〈Φ〉 •
〈Ψ〉M1 M2 ⇓ 〈Φ〉 •

Example

〈x ′ 7→ •, f ′ 7→ •〉λy .y ⇓ 〈x ′ 7→ •, f ′ 7→ •〉λy .y
〈x ′ 7→ •, f ′ 7→ λy .y〉 f ′ ⇓ 〈x ′ 7→ •, f ′ 7→ λy .y〉λy .y

〈x ′ 7→ •, f ′ 7→ λy .y , y ′ 7→ •〉 • ⇓ 〈x ′ 7→ •, f ′ 7→ λy .y , y ′ 7→ •〉 •
〈x ′ 7→ •, f ′ 7→ λy .y , y ′ 7→ •〉 x ′ ⇓ 〈x ′ 7→ •, f ′ 7→ λy .y , y ′ 7→ •〉 •
〈x ′ 7→ •, f ′ 7→ λy .y , y ′ 7→ x ′〉 y ′ ⇓ 〈x ′ 7→ •, f ′ 7→ λy .y , y ′ 7→ •〉 •

E
E
E
EE

〈x ′ 7→ •, f ′ 7→ λy .y〉 f ′ x ′ ⇓ 〈x ′ 7→ •, f ′ 7→ λy .y , y ′ 7→ •〉 •
〈x ′ 7→ f ′ x ′, f ′ 7→ λy .y〉 x ′ ⇓ 〈x ′ 7→ •, f ′ 7→ λy .y , y ′ 7→ •〉 •

〈〉 let rec x be f x , f beλy .y in x ⇓ 〈x ′ 7→ •, f ′ 7→ λy .y , y ′ 7→ •〉 •

Denotational semantics

An expression M of type τ denotes an element of (Vτ + Errτ)⊥.

Errτ is a singleton, whose only element is •τ .

Vτ denotes proper values of type τ and is defined by

Vnat = N Vτ0→τ1 = [(Vτ0 + Errτ0)⊥ → (Vτ1 + Errτ1)⊥]

Notations
Denotational semantics

For d ∈ (Vτ0→τ1 + Errτ0→τ1)⊥ and d ′ ∈ (Vτ0 + Errτ0)⊥,
application of d to d ′ is defined by

d(d ′) =

{ ⊥τ1 when d = ⊥τ0→τ1

•τ1 when d = •τ0→τ1

ϕ(d ′) when d = ϕ ∈ Vτ0→τ1

Moreover we write (d)∗ to denote the strict version of d on both
⊥ and •, i.e.,

(d)∗(d ′) =

{ ⊥τ1 when d = ϕ and d ′ = ⊥τ0

•τ1 when d = ϕ and d ′ = •τ0

d(d ′) otherwise

An environment, ρ, maps variables to denotations:
ρ(x) ∈ (Vτ + Errτ)⊥ where x : τ .
The least environment, ρ⊥, maps all variables to bottom
elements.

Semantic function
Denotational semantics

The semantic function [[M : τ]]ρ assigns a denotation to a typing
derivation M : τ under an environment ρ.

[[n : τ]]ρ = n
[[x : τ]]ρ = ρ(x)
[[• : τ]]ρ = •τ

[[λx .M : τ0 → τ1]]ρ = λν.[[M : τ1]]ρ[x 7→ν]

[[Mτ0→τ1 Nτ0 : τ1]]ρ = ([[M : τ0 → τ1]]ρ)([[N : τ0]]ρ)
[[let rec x1 be Mτ1

1 , . . . , xn be Mτn
n in N : τ]]ρ = [[N : τ]]{{x1 7→Mτ1

1 ,...,xn 7→Mτn
n }}(n)

ρ

Semantic function for heaps
Denotational semantics

{{x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n }}
(0)
ρ = ρ[x1 7→ •τ1 , . . . , xn 7→ •τn]

{{x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n }}
(m+1)
ρ =

µρ′.ρ[x1 7→ [[M1 : τ1]]ρm · [[M1 : τ1]]ρ′ , . . . , xn 7→ [[Mn : τn]]ρm · [[Mn : τn]]ρ′]

where ρm = {{x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n }}
(m)
ρ

d · d ′ abbreviates ((λy .λx .x)∗(d))(d ′)

Denotation of heaps
Denotational semantics

The denotation of a heap Ψ = x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n under
an environment ρ is computed as follows.

1. Pre-initialize to black holes.
ρ0 = ρ[x1 7→ •τ1 , . . . , xn 7→ •τn].

2. Compute the denotation of Mi : τi under ρ0.
3. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ0.

ρ1 = µρ′.ρ[x1 7→ d1, . . . , xn 7→ dn] where

di =

{
•τi when [[Mi : τi]]ρ0 = •τi

[[Mi : τi]]ρ′ otherwise

4. Compute the denotation of Mi : τi under ρ1.
5. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ1.
6. ...

Denotation of heaps
Denotational semantics

The denotation of a heap Ψ = x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n under
an environment ρ is computed as follows.

1. Pre-initialize to black holes.
ρ0 = ρ[x1 7→ •τ1 , . . . , xn 7→ •τn].

2. Compute the denotation of Mi : τi under ρ0.
3. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ0.

ρ1 = µρ′.ρ[x1 7→ d1, . . . , xn 7→ dn] where

di =

{
•τi when [[Mi : τi]]ρ0 = •τi

[[Mi : τi]]ρ′ otherwise

4. Compute the denotation of Mi : τi under ρ1.
5. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ1.
6. ...

Denotation of heaps
Denotational semantics

The denotation of a heap Ψ = x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n under
an environment ρ is computed as follows.

1. Pre-initialize to black holes.
ρ0 = ρ[x1 7→ •τ1 , . . . , xn 7→ •τn].

2. Compute the denotation of Mi : τi under ρ0.
3. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ0.

ρ1 = µρ′.ρ[x1 7→ d1, . . . , xn 7→ dn] where

di =

{
•τi when [[Mi : τi]]ρ0 = •τi

[[Mi : τi]]ρ′ otherwise

4. Compute the denotation of Mi : τi under ρ1.
5. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ1.
6. ...

Denotation of heaps
Denotational semantics

The denotation of a heap Ψ = x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n under
an environment ρ is computed as follows.

1. Pre-initialize to black holes.
ρ0 = ρ[x1 7→ •τ1 , . . . , xn 7→ •τn].

2. Compute the denotation of Mi : τi under ρ0.
3. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ0.

ρ1 = µρ′.ρ[x1 7→ d1, . . . , xn 7→ dn] where

di =

{
•τi when [[Mi : τi]]ρ0 = •τi

[[Mi : τi]]ρ′ otherwise

4. Compute the denotation of Mi : τi under ρ1.
5. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ1.
6. ...

Denotation of heaps
Denotational semantics

The denotation of a heap Ψ = x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n under
an environment ρ is computed as follows.

1. Pre-initialize to black holes.
ρ0 = ρ[x1 7→ •τ1 , . . . , xn 7→ •τn].

2. Compute the denotation of Mi : τi under ρ0.
3. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ0.

ρ1 = µρ′.ρ[x1 7→ d1, . . . , xn 7→ dn] where

di =

{
•τi when [[Mi : τi]]ρ0 = •τi

[[Mi : τi]]ρ′ otherwise

4. Compute the denotation of Mi : τi under ρ1.
5. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ1.
6. ...

Denotation of heaps
Denotational semantics

The denotation of a heap Ψ = x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n under
an environment ρ is computed as follows.

1. Pre-initialize to black holes.
ρ0 = ρ[x1 7→ •τ1 , . . . , xn 7→ •τn].

2. Compute the denotation of Mi : τi under ρ0.
3. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ0.

ρ1 = µρ′.ρ[x1 7→ d1, . . . , xn 7→ dn] where

di =

{
•τi when [[Mi : τi]]ρ0 = •τi

[[Mi : τi]]ρ′ otherwise

4. Compute the denotation of Mi : τi under ρ1.
5. Compute the fixed-point semantics for Mi ’s whose

evaluation was successful under ρ1.
6. ...

Denotation of heaps (cont.)
Denotational semantics

Generally, ρm+1 is given by taking the fixed-point semantics for
the recursive bindings whose initialization is successful under
the environment ρm

ρm+1 = µρ′.ρ[x1 7→ d1, . . . , xn 7→ dn]

where di =

{
•τi when [[Mi : τi]]ρm = •τi

[[Mi : τi]]ρ′ otherwise

This process is iterated for n times; it converges by then:

∀m, {{Ψ}}(n)
ρ = {{Ψ}}(n+m)

ρ

Semantic function for heaps
Denotational semantics

{{x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n }}
(0)
ρ = ρ[x1 7→ •τ1 , . . . , xn 7→ •τn]

{{x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n }}
(m+1)
ρ =

µρ′.ρ[x1 7→ [[M1 : τ1]]ρm · [[M1 : τ1]]ρ′ , . . . , xn 7→ [[Mn : τn]]ρm · [[Mn : τn]]ρ′]

where ρm = {{x1 7→ Mτ1
1 , . . . , xn 7→ Mτn

n }}
(m)
ρ

d · d ′ abbreviates ((λy .λx .x)∗(d))(d ′)

Adequacy
Denotational semantics

Evaluations preserve the denotations of expressions.

Proposition
For any typed expression M : τ , if 〈〉M ⇓ 〈Ψ〉V, then V : τ and
[[M : τ]]ρ⊥ = [[V : τ]]{{Ψ}}ρ⊥ .

An expression evaluates to a result if and only if its denotation
is non-bottom.

Proposition
For any typed expression M : τ , [[M : τ]]ρ⊥ 6= ⊥τ iff there are Φ
and V such that 〈〉M ⇓ 〈Φ〉V.

Operational soundness of equational laws for letrec

βneed
(λx .M) N = let rec x be N in M
lift
(let rec D in M) N = let rec D in M N
deref
let rec x be V ,D in C[x] = let rec x be V ,D in C[V]
deref env
let rec x be C[x ′], x ′ be V ,D in M = let rec x be C[V], x ′ be V ,D in M
assoc
let rec x be (let rec D in M),D′ in N = let rec D, x be M,D′ in N

where D abbreviates x1 be M1 . . . xn be Mn.

Monadic framework
for effectful unrestricted value recursion

Joint work with Masahito Hasegawa

Γ ` L : A→ T B
Γ ` L∗ : A→ T B Γ ` ηA : A→ T A Γ ` •A : T A

Γ, x1 : T A1, . . . , xn : T An ` L1 : T A1. . .
Γ, x1 : T A1, . . . , xn : T An ` Ln : T An

Γ ` µ(xT A1
1 , . . . , xT An

n).(L1, . . . ,Ln) : T A1 × . . .T An

To be modeled in a target language given by a cartsian closed
category equipped with a strong monad and a uniform T-fixed
point operator and a family of black hole constants.

Black holes are exceptions!

Monadic framework
for effectful unrestricted value recursion

Joint work with Masahito Hasegawa

Γ ` L : A→ T B
Γ ` L∗ : A→ T B Γ ` ηA : A→ T A Γ ` •A : T A

Γ, x1 : T A1, . . . , xn : T An ` L1 : T A1. . .
Γ, x1 : T A1, . . . , xn : T An ` Ln : T An

Γ ` µ(xT A1
1 , . . . , xT An

n).(L1, . . . ,Ln) : T A1 × . . .T An

To be modeled in a target language given by a cartsian closed
category equipped with a strong monad and a uniform T-fixed
point operator and a family of black hole constants.

Black holes are exceptions!

