<ロ> <同> <同> < 回> < 回>

э

A Metric Model of Lambda Calculus with Guarded Recursion

Jan Schwinghammer

Programming Systems Lab Saarland University

joint work with Lars Birkedal and Kristian Støvring

Jan Schwinghammer

- < 同 > < 三 > < 三 >

21.08.2010

Metric semantics of lambda calculus

Metric semantics of simply typed lambda calculus (Complete, bounded, non-empty) ultrametric spaces and non-expansive functions, *CBUlt*, forms a CCC.

Metric semantics of call-by-name PCF

Counting clock ticks to determine the similarity of programs, ensuring that recursive definitions are contractive [Escardo, 1998].

Metric semantics of Functional Reactive Programming Streams of events, and "causal" stream transformers as non-expansive functions [Krishnaswami & Benton, 2010].

Metric semantics of lambda calculus

Two questions:

- Are there good syntactic criteria for determining when a term denotes a contractive function in *CBUIt*?
- 2 Which recursive types can be interpreted?

Nakano's modal type system [Nakano, LICS'00] gives an answer.

(日) (同) (三) (三)

Talk outline

1 Reasoning about streams and stream transformers

2 Nakano's calculus

3 Metric semantics

Jan Schwinghammer

э

<ロ> <同> <同> < 回> < 回>

21.08.2010

Recursively defined streams

Integer streams

data Stream = Cons of Int × Stream

nats1 = iterate succ 0
nats2 = Cons (0, (map succ nats2))

Well-definedness

Are these "good" recursive definitions? For instance,

zs = f (Cons (1,zs)) may or may not be, depending on f.

Jan Schwinghammer

э

Guarded recursion

Recursive occurrences should be guarded by constructors.

Guardedness

 $\mathtt{f}:\mathtt{Stream}\to\mathtt{Stream}\text{ is guarded if}$

$$\forall \mathtt{x}\mathtt{s}, \mathtt{y}\mathtt{s}, n. \quad \lfloor \mathtt{x}\mathtt{s} \rfloor_n = \lfloor \mathtt{y}\mathtt{s} \rfloor_n \quad \Rightarrow \quad \lfloor \mathtt{f}(\mathtt{x}\mathtt{s}) \rfloor_{n+1} = \lfloor \mathtt{f}(\mathtt{y}\mathtt{s}) \rfloor_{n+1}$$

i.e., f is "productive."

21.08.2010

イロト 不得 トイヨト イヨト 二日

Unique fixed points

A consequence of guardedness is the following proof principle:

```
Ralf Hinze, ICFP'08 pearl:
Streams and unique fixed points
```

To prove xs = ys: Stream find f: Stream \rightarrow Stream, guarded, such that $f(xs) = xs \land f(ys) = ys$

For instance, let $f(s) = \text{Cons } 0 \pmod{s}$.

■ *f* is guarded

• $f(nats_2) = nats_2$ by definition

• $f(nats_1) = nats_1$ by equational reasoning

The principle yields $nats_1 = nats_2$.

Jan Schwinghammer

Nakano's typed lambda calculus

Hiroshi Nakano, LICS'00: A modality for recursion

A simply typed cbn lambda calculus with a unary type constructor:

$$\tau ::= Int \mid \tau \times \tau' \mid \tau \to \tau' \mid \underbrace{ty}_{type \ names} \mid \underbrace{\bullet \tau}_{later \ \tau}$$

Each type name associated with a declaration:

data ty =
$$ln_1$$
 of $\tau_1 \mid \ldots \mid ln_k$ of τ_k

For instance,

data
$$S = Cons \text{ of } Int \times S$$

data $U = Fold \text{ of } U \rightarrow \tau$

Jan Schwinghammer

21.08.2010

Typing guardedness

Intuition:

- τ : values of type τ that can only be used in guarded positions
- $S \rightarrow S$ consists of guarded stream functions

Constructor applications are guarded:

$$\frac{\Gamma \vdash t : \bullet \tau_j}{\Gamma \vdash \mathit{In}_j(t) : ty}$$

Pattern matching adds guardedness constraint:

$$\frac{\Gamma \vdash t: ty \quad \Gamma, x_1:\bullet\tau_1 \vdash t_1: \tau \quad \dots \quad \Gamma, x_k:\bullet\tau_k \vdash t_k: \tau}{\Gamma \vdash case \ t \ of \ ln_1(x_1) \Rightarrow t_1 \mid \dots \mid ln_k(x_k) \Rightarrow t_k: \tau}$$

Jan Schwinghammer

Typing guardedness

Fixed points are restricted to guarded recursion:

$$\frac{\Gamma \vdash t : \bullet \tau \to \tau}{\Gamma \vdash \text{fix } t : \tau}$$

Function application is generalized:

$$\frac{\Gamma \vdash t_1 : \bullet^n (\tau \to \sigma) \qquad \Gamma \vdash t_2 : \bullet^n \tau}{\Gamma \vdash t_1 \, t_2 : \bullet^n \sigma}$$

Subtyping relation with axioms like:

$$au \leq ullet au \qquad ullet au o \sigma \leq ullet (au o \sigma) \qquad \dots$$

Jan Schwinghammer

(ロ) (四) (三) (三)

21.08.2010

Recursively defined streams, revisited

- We have $\vdash \lambda xs. Cons(1, xs) : \bullet S \rightarrow S$ thus $\vdash fix \lambda xs. Cons(1, xs) : S$

Using data $U = Fold \text{ of } U \to \tau$ one can type the Y combinator: • We have $\vdash Y : (\bullet \tau \to \tau) \to \tau$

э

21.08.2010

Recursively defined streams, revisited

- We have $\vdash \lambda xs. Cons(1, xs) : \bullet S \rightarrow S$ thus $\vdash fix \lambda xs. Cons(1, xs) : S$

Using data $U = Fold \text{ of } U \to \tau$ one can type the Y combinator: • We have $\vdash Y : (\bullet \tau \to \tau) \to \tau$

3

21.08.2010

Recursively defined streams, revisited

- We have $\vdash \lambda xs. Cons(1, xs) : \bullet S \rightarrow S$ thus $\vdash fix \lambda xs. Cons(1, xs) : S$

Using data $U = Fold \text{ of } U \to \tau$ one can type the Y combinator: • We have $\vdash Y : (\bullet \tau \to \tau) \to \tau$

э

21.08.2010

Recursively defined streams, revisited

- We have $\vdash \lambda xs. Cons(1, xs) : \bullet S \rightarrow S$ thus $\vdash fix \lambda xs. Cons(1, xs) : S$

Using data U = Fold of $U \rightarrow \tau$ one can type the Y combinator:

• We have
$$\vdash Y : (\bullet \tau \to \tau) \to \tau$$

Jan Schwinghammer

Unique fixed point principle, revisited

To prove
$$s \simeq t : \tau$$

find $f : \bullet \tau \to \tau$
such that $f(s) \stackrel{*}{\leftrightarrow} s \land f(t) \stackrel{*}{\leftrightarrow} t$

• $s \simeq t : \tau$ denotes contextual equivalence:

$$\forall C[\cdot] : Int. \ C[s] \xrightarrow{*} \underline{n} \Leftrightarrow \ C[t] \xrightarrow{*} \underline{n}$$

guardedness is expressed abstractly using • τ → τ.
τ need not be S,

Jan Schwinghammer

21.08.2010

Ultrametric spaces

Complete ultrametric spaces CBUlt

Complete metric spaces (X, d) satisfying ultrametric inequality:

$$d(x,y) \leq \max\{d(x,z), d(z,y)\}$$

Products

Cartesian product $X_1 \times X_2$ equipped with max distance:

$$d((x_1, x_2), (y_1, y_2)) = \max\{d_1(x_1, y_1), d_2(x_2, y_2)\}$$

Exponentials

Non-expansive functions $X_1 \rightarrow_{ne} X_2$ equipped with sup distance:

$$d(f,g) = \sup \{ d_2(f x, g x) \mid x \in X_1 \}$$

21.08.2010

Semantics of $\bullet \tau$

Key idea of the semantics: Later modality as scaling functor $\frac{1}{2} \cdot (-) : CBUlt \longrightarrow CBUlt$

$$rac{1}{2} \cdot (X,d) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} (X,d')$$
 where $d'(x,y) = 1/2 \cdot d(x,y)$

Guardedness as contractiveness

• $\tau \rightarrow \sigma$ denotes contractive functions from τ to σ :

- Assume d(x, y) = c in $\llbracket \tau \rrbracket$.
- Then d(x, y) = c/2 in $\llbracket \bullet \tau \rrbracket$.
- Thus, $d(f x, f y) \leq c/2$ in $\llbracket \sigma \rrbracket$.

In particular, interpretation [fix t] qua Banach fixed point theorem.

Semantics of recursive types

By separating positive and negative occurrences of ty in au define

 $F_{\tau}: CBUlt^{op} \times CBUlt \longrightarrow CBUlt$

For each data $ty = In_1 \text{ of } \tau_1 | \dots | In_k \text{ of } \tau_k$ define

$${\mathcal F}(X^-,X^+) \stackrel{ ext{def}}{=} rac{1}{2} \cdot {\mathcal F}_{ au_1}(X^-,X^+) + \ldots + rac{1}{2} \cdot {\mathcal F}_{ au_k}(X^-,X^+)$$

For instance,

• for data S = Cons of $Int \times S$: $F(X^-, X^+) = \frac{1}{2} \cdot (\mathbb{Z} \times X^+)$ • for data U = Fold of $U \to \tau$: $F(X^-, X^+) = \frac{1}{2} \cdot (X^- \to_{ne} F_\tau(X^-, X^+))$

Jan Schwinghammer

21.08.2010

イロト イポト イヨト イヨト

イロン 不同 とくほう イロン

3

21.08.2010

Semantics of recursive types, cnt'd

Then F is locally contractive:

 $d(F(f_1,g_1),F(f_2,g_2)) \leq 1/2 \cdot \max\{d(f_1,g_1),d(f_2,g_2)\}$

Theorem (America & Rutten, 1989)

Let $F : CBUlt^{op} \times CBUlt \longrightarrow CBUlt$ be locally contractive. Then there exists a unique (X, d) such that $F(X, X) \cong X$.

For instance, for data S = Cons of $Int \times S$ have $X \cong \frac{1}{2} \cdot (\mathbb{Z} \times X)$: $d(s, s') \leq 2^{-n}$ iff $\lfloor s \rfloor_{n-1} = \lfloor s' \rfloor_{n-1}$

Jan Schwinghammer

Adequacy

Theorem

The model is sound and adequate for the operational semantics:

$$1 \hspace{0.1in} s \rightarrow t \hspace{0.1in} \Rightarrow \hspace{0.1in} \llbracket s \rrbracket = \llbracket t \rrbracket$$

$$2 [[s]] = [[t]] \Rightarrow s \simeq t$$

Proof sketch.

- **1** By an easy induction.
- 2 By a logical relation between semantics and syntax.

Jan Schwinghammer

イロン イロン イヨン イヨン

э

Kripke logical relation

Relations $R_{\tau}^{k} \subseteq \llbracket \tau \rrbracket \times \mathsf{Tm}(\tau)$, given by:]

$$n R_{Int}^{k} t \Leftrightarrow t \stackrel{*}{\to} \underline{n}$$

$$f R_{\tau_{1} \to \tau_{2}}^{k} t \Leftrightarrow \forall j \leq k, a_{1}, t_{1}. a_{1} R_{\tau_{1}}^{j} t_{1} \Rightarrow fa_{1} R_{\tau_{2}}^{j} t t_{1}$$

$$a R_{\bullet\tau}^{k} t \Leftrightarrow k > 0 \Rightarrow a R_{\tau}^{k-1} t$$

$$a R_{ty}^{k} t \Leftrightarrow a = (\iota \circ \operatorname{in}_{j})(a') \land t \stackrel{*}{\to} \operatorname{In}_{j}(t') \land a' R_{\bullet\tau_{j}}^{k} t'$$

Theorem (fundamental property)

 $\forall t \in Tm(\tau) \; \forall k. \llbracket t \rrbracket \; R^k_\tau \; t.$

Jan Schwinghammer

21.08.2010

Proving the unique fixed point principle

- Suppose $f : \bullet \tau \to \tau$. Then $\llbracket f \rrbracket$ is a contractive function on $\llbracket \tau \rrbracket$
- Suppose f(s) ^{*}↔ s and f(t) ^{*}↔ t.
 By soundness, [[s]] and [[t]] are both fixed points of [[f]].
 By the contractiveness of [[f]] and Banach theorem, [[s]] = [[t]].

By adequacy,
$$s \simeq t$$
.

Jan Schwinghammer

21.08.2010

Summary

Nakano's system is a calculus of total functions.

Ultrametric spaces form a model of Nakano's lambda calculus:

- τ is interpreted as a scaling functor on *CBUIt*,
- ${\color{black}\bullet}\, \tau \to \sigma$ denotes the contractive functions on $\tau,$ and
- syntactic notion of guardedness becomes contractiveness.

Banach's fixed point theorem explains

- the typing of the recursion operators, as well as
- the unique fixed point principle.

An open question is full abstraction of the model.

21.08.2010

Outlook

- F. Pottier proposed a variant of System F with recursive kinds:
 - used as target language for translation of ML-like languages,
 - Nakano's calculus on the kind level, and
 - unique fixed point principle used to prove *type equivalences*.
- It should be possible to give a model by indexing over CBUIt.

Recursively defined properties on recursive types:

- step-indexed logics [Dreyer et al., LICS'09]
- semantics of expressive type systems tomorrow

Explore semantics for • on type and logical level.

・ロト ・四ト ・ヨト ・ヨト

2

Thank you.

Jan Schwinghammer