Induction (and Coinduction) for Inference Systems	Generalization of the deductive method	Comparison	Future Work

"Proving" Fixed Points

Hervé Grall

 $\begin{array}{l} \mbox{Team Ascola (INRIA - EMN < LINA < CNRS)} \\ \mbox{École des mines de Nantes} \end{array}$

Saturday, August 21st 2010 FICS 2010 - BRNO

1

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

induction (and Coinduction) for interence Systems definitiation of the deductive method Comparison Puture work 000 000
--

- A new proof method for order-theoretic fixed point theorems
 - \rightarrow A new method to define these fixed points
- A comparison with other traditional proof methods

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

A D A A B A A B A A B A B B

Fixed points theorems

- There are mainly two kinds of fixed point theorems: metric-theoretic and order-theoretic (see Mr Waszkiewicz's talk this morning).
- We are interested in fixed points of maps defined over partially ordered sets (posets).
- General form
 - Assume a poset satisfying some completeness property.
 - Assume a map satisfying some order property (order preservation, expansion).
 - Then the map has a [least, greatest] fixed point.
- The proof gives in some way a definition of the fixed point.

Example: Tarski's Theorem Theorem (Tarski 1955)

- Assume a complete lattice E (every subset has a least upper bound and a greatest lower bound).
- Assume an isotone map η (it preserves order).
- Then the map η has a least fixed point and a greatest fixed point.

Proof.

There are two two standard proofs using two methods:

- the impredicative method, used by Tarski in his original article,
- the iterative method, resorting to ordinals.

Tarski's Theorem: Impredicative Proof Method Proof.

$$\begin{aligned} & \text{lfp} \ \eta &= \ \land \{ \textbf{\textit{x}} \in \mathcal{E} \mid \eta(\textbf{\textit{x}}) \leq \textbf{\textit{x}} \} \\ & \text{gfp} \ \eta &= \ \lor \{ \textbf{\textit{x}} \in \mathcal{E} \mid \textbf{\textit{x}} \leq \eta(\textbf{\textit{x}}) \} \end{aligned}$$

- Let $S = \{x \in \mathcal{E} \mid \eta(x) \le x\}$ (set of η -closed points).
- If $x \in S$, then $\eta(x) \in S$.
- $\land S \in S$.
- First conclusion: $\land S$ is a fixed point.
- All fixed point belongs to *S*.
- Second conclusion: A S is the least fixed point.
- Use duality for the greatest fixed point.

Tarski's Theorem: Iterative Proof Method Proof.

$$\begin{aligned} & \operatorname{lfp} \eta &= \bigvee_{\alpha} \Delta_{\alpha}(\eta) & \Delta_{\alpha}(\eta) &= \eta(\bigvee_{\beta \mid \beta < \alpha} \Delta_{\beta}(\eta)) \\ & \operatorname{gfp} \eta &= \bigwedge_{\alpha} \nabla_{\alpha}(\eta) & \nabla_{\alpha}(\eta) &= \eta(\bigwedge_{\beta \mid \beta < \alpha} \nabla_{\beta}(\eta)) \end{aligned}$$

- ▶ For all α , $\Delta_{\alpha}(\eta) \leq \eta(\Delta_{\alpha}(\eta))$ and $(\Delta_{\beta}(\eta))_{\beta < \alpha}$ is increasing.
- ► By Hartogs' lemma: the sequence becomes stationary.
- First conclusion: the limit of the sequence is a fixed point.
- All fixed point is an upper bound of the sequence (Δ_α(η))_α.
- Second conclusion: the limit is the least fixed point.
- Use duality for the greatest fixed point.

Fixed points: What Kind of Definition?

- ► The impredicative method is not constructive.
 → Specifying a fixed point
- The iterative method is more constructive.

 Iteratively computing an approximation until the limit is reached
- ► But the iterative method resorts to ordinals, therefore to infinities, possibly in a non-constructive way.
 → Heavy machinery (arguably)
- Problem: there is no clear connection between the impredicative method and the iterative method. It seems to be an old question in Mathematics.

Contribution: Alternative Method to Prove Fixed Point Theorems

- Equivalently: alternative method to define fixed points
- The deductive method: not impredicative, ordinal-free but still constructive
- It is a first step allowing the impredicative method and the iterative method to be connected.

Outline

- Induction (and coinduction) for inference systems: reminder and presentation of the deductive method
- The deductive method generalized
 - Tarski Theorem revisited The main idea for generalization
 - Application to other fixed point theorems Extension to chain-complete posets Bourbaki-Witt's theorem
- Comparison of the methods
- Future work
 - Connection between the methods
 - Coq implementation

Plan

Induction (and Coinduction) for Inference Systems

Generalization of the deductive method Tarski's theorem revisited Applications to other fixed point theorems

Comparison

Future Work

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 ● ◆○

Inference Systems

- A set U of judgments: the universe
- Inference system over U: a set of deduction rules
- ► A deduction rule: an ordered pair (*A*, *c*), with premises $A \subseteq U$ and conclusion $c \in U$

<u>A</u>

С

 \rightarrow From premises *A*, deduce conclusion *c*.

First Interpretation: Fixed Point Approach

Canonical Galois connection (and even reflection) between inference systems Φ over U (ordered by inclusion) and isotone operators φ : 2^U → 2^U over U (ordered point-wise by inclusion)

First Interpretation: Fixed Point Approach

Application of Tarski's theorem to the powerset 2^{*U*}, a complete lattice, and the inference operator *φ*, an isotone map

Second Interpretation: Deductive Method

Central notion: proofs in an inference system

Rule
$$\frac{\dots \ a \ \dots}{c}$$
 Proof $\frac{\dots \ (\text{proof of } a) \ \dots}{c}$

- Two interpretations: inductive and coinductive
 - Inductive interpretation: the set Δ(Φ) of the conclusions of the well-founded proofs in Φ
 - Coinductive interpretation: the set ∇(Φ) of the conclusions of all the proofs in Φ, ill-founded or well-founded

Standard approach? No.

Equivalence theorem

Theorem

$$\operatorname{lfp} \varphi = \Delta(\Phi) \quad and \quad \operatorname{gfp} \varphi = \nabla(\Phi).$$

 \rightarrow Equivalence between the standard approach using fixed points and the non-standard one using proofs

Equivalence theorem

Proof. Application of the following reasoning principles

Method	Induction	Coinduction
Impredicative	$rac{arphi(oldsymbol{\mathcal{S}})\subseteqoldsymbol{\mathcal{S}}}{\operatorname{lfp}arphi\subseteqoldsymbol{\mathcal{S}}}$	$\frac{\boldsymbol{\mathcal{S}} \subseteq \varphi(\boldsymbol{\mathcal{S}})}{\boldsymbol{\mathcal{S}} \subseteq \operatorname{gfp} \varphi}$
Deductive	Well-foundation for proofs	Proof construction by guarded recursive equations

Induction (and Coinduction) for Inference Systems	Generalization of the deductive method	Comparison	Future Work

Equivalence theorem

- Inductive case: well-known (Aczel 1977)
- Coinductive case: folklore (Grall 2003, Leroy-Grall 2009)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Plan

Induction (and Coinduction) for Inference Systems

Generalization of the deductive method Tarski's theorem revisited Applications to other fixed point theorems

Comparison

Future Work

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - 釣ぬの

Tarski's theorem revisited

Plan

Induction (and Coinduction) for Inference Systems

Generalization of the deductive method Tarski's theorem revisited

Applications to other fixed point theorems

Comparison

Future Work

Tarski's theorem revisited

Main idea

- Assumption: an isotone map η over a complete lattice (*E*, ≤)
- Question: How to define an inference system Φ over *E*, or equivalently an inference operator φ : 2^{*E*} → 2^{*E*}, whose inductive and coinductive interpretations produce the least and greatest fixed points of η?

Induction (and Coinduction) for Inference Systems	Generalization of the deductive method	Comparison	Future Work
Tarski's theorem revisited			

Main idea

► First attempt:
$$\varphi(S) \stackrel{\text{def}}{=} \eta(S)$$

 \rightarrow Trivially fails: lfp $\varphi = \emptyset$.

▲□▶▲□▶▲□▶▲□▶ □ のへで

Main idea

 Second attempt: Embedding of the complete lattice in its powerset via a closure operator

ι(*x*) ^{def} = ≤ *x*: canonical isomorphism
 γ(*S*) ^{def} = ≤ (∨ *S*): closure operator with adjoint embedding δ
 → φ(*S*) = ≤ η(∨ *S*)
 α = δ (∨ *S*)
 σ = δ (∨ *S*)

Tarski's theorem revisited

New Statement

Theorem (Tarski revisited)

- ► Assume a complete lattice *E*.
- Assume an isotone map η .

$$\frac{S}{c} \quad (S \subseteq \mathcal{E}, c \leq \eta(\lor S)).$$

Then the map η has a least fixed point and a greatest fixed point satisfying:

$$\leq (\operatorname{lfp} \eta) = \Delta(\Phi) \quad and \quad \leq (\operatorname{gfp} \eta) \stackrel{\circ}{=} \nabla(\Phi).$$

Plan

Induction (and Coinduction) for Inference Systems

Generalization of the deductive method Tarski's theorem revisited Applications to other fixed point theorems

Comparison

Future Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Variations

- ► Chain-complete posets instead of complete lattices → Chains (included the empty one) are assumed to have a least upper bound.
- Isotony or expansion for the map
- The inference system is restricted.
 - Premises: chain Indispensable assumption
 - Conclusion: greatest possible conclusion Assumption only needed for Bourbaki-Witt's Theorem

Two Extensions

Theorem (Extension to Chain-Complete Posets)

- ► Assume a chain-complete poset *E*.
- Assume an isotone map η .

$$rac{oldsymbol{\mathcal{C}}}{\eta(ee oldsymbol{\mathcal{C}})} \quad igl(oldsymbol{\mathcal{C}} \subseteq \mathcal{E}, oldsymbol{\mathcal{C}} \ chainigr).$$

• Then η has a least fixed point $lfp \eta$ satisfying:

$$\leq (\operatorname{lfp} \eta) = \leq \Delta(\Phi)_{\operatorname{i}}, \quad \text{for all } f \in \mathbb{R}$$

Induction (and Coinduction) for Inference Systems	Generalization of the deductive method ○○○ ○○●	Comparison	Future Work
Applications to other fixed point theorems			

Two Extensions

Proof.

- $\Delta(\Phi)$ is a chain. By induction over well-founded proofs.
- Conclusion follows.

Two Extensions

Theorem (Bourbaki-Witt's Theorem)

- ► Assume a chain-complete poset *E*.
- Assume an expansive map η: any point is η-consistent (∀ x ∈ E . x ≤ η(x)).
- Define an inference system \$\Phi\$ over \$\mathcal{E}\$ with the following rules, and only these rules:

$$\frac{\boldsymbol{C}}{\eta(\vee \boldsymbol{C})} \quad \big(\boldsymbol{C} \subseteq \mathcal{E}, \boldsymbol{C} \ chain\big).$$

• Then η has a fixed point fp η satisfying:

$$\leq (\operatorname{fp} \eta) = \leq \Delta(\Phi).$$

Induction (and Coinduction) for Inference Systems	Generalization of the deductive method	Comparison	Future Work
Applications to other fixed point theorems			

Two Extensions

Proof.

- Δ(Φ) is a chain. Intricate proof by induction over well-founded proofs.
- Conclusion follows.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Plan

Induction (and Coinduction) for Inference Systems

Generalization of the deductive method Tarski's theorem revisited Applications to other fixed point theorems

Comparison

Future Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Deductive Method vs Impredicative Method

Example: Bourbaki-Witt's Theorem

- The fixed point is defined from the inductive set generated by an inference system Φ.
- The inductive set Δ(Φ) is also the intersection of the φ-closed sets, where φ is the inference operator associated to Φ.

$$\Delta(\Phi) = \bigcap \left\{ oldsymbol{S} \mid orall ext{chain } oldsymbol{\mathcal{C}} \subseteq oldsymbol{S} \, , \ \eta(ee oldsymbol{\mathcal{C}}) \in oldsymbol{S}
ight\}$$

Deductive Method vs Impredicative Method

Example: Bourbaki-Witt's Theorem

In the original proof given by Bourbaki, the fixed point is defined from a set equal to the intersection / of all admissible subsets.

$$I = \bigcap \left\{ egin{array}{ccc} (ot \in oldsymbol{S}) \ \wedge & (\eta(oldsymbol{S}) \subseteq oldsymbol{S}) \ \wedge & (orall \operatorname{chain} oldsymbol{C} \subseteq oldsymbol{S}. \ ee oldsymbol{C} \in oldsymbol{S}) \end{array}
ight\}$$

It turns out that an admissible subset is also φ-closed.
 → Very close notions (definition and properties)

Deductive Method vs Iterative Method

Tarski's theorem

- Transfinite sequence $(\Delta_{\alpha}(\eta))_{\alpha}$ of iterates
- Inference system Φ containing the following rules, and only these rules:

$$egin{array}{ll} {S \ = \ } {S \subseteq \mathcal{E}, s \leq \eta(ee S)} \end{array}$$

Characterizations of the least fixed point:

$$\leq (\operatorname{lfp} \eta) = \Delta(\Phi) \qquad \quad \operatorname{lfp} \eta = \bigvee_{lpha} \Delta_{lpha}(\eta)$$

Deductive Method vs Iterative Method

Tarski's theorem

- ► Δ_α(Φ): set of all x that are conclusion of a proof with height less or equal to α
- Comparison

$$\leq \Delta_{lpha}(\eta) = \Delta_{lpha}(\Phi).$$

Deductive Method vs Iterative Method Two other theorems

- Transfinite sequence $(\Delta_{\alpha}(\eta))_{\alpha}$ of iterates
- Inference system Φ containing the following rules, and only these rules:

$$rac{oldsymbol{\mathcal{C}}}{\eta(ee oldsymbol{\mathcal{C}})} \quad igl(oldsymbol{\mathcal{C}} \subseteq \mathcal{E}, oldsymbol{\mathcal{C}} ext{ chain}igr).$$

Characterizations of the (least) fixed point:

$$\leq (\operatorname{fp} \eta) = \leq \Delta(\Phi) \qquad \quad \operatorname{fp} \eta = \bigvee_{lpha} \Delta_{lpha}(\eta)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Deductive Method vs Iterative Method

Two other theorems

- ► Δ_α(Φ): set of all x that are conclusion of a proof with height equal to α
- Comparison

$$\{\Delta_{\alpha}(\eta)\} = \Delta_{\alpha}(\Phi)$$

Plan

Induction (and Coinduction) for Inference Systems

Generalization of the deductive method Tarski's theorem revisited Applications to other fixed point theorems

Comparison

Future Work

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Contribution: the Deductive Method

- A new method: proving fixed points
- An alternative to the impredicative method and the iterative method
 - Specifying fixed points
 - Computing fixed points
- A sketch of a comparison
- Future? Two issues

First Issue: Connection between the Three Methods

- Thesis: the deductive method is central.
- Via the inference operator: connection to the impredicative method
- Via the well-order canonically associated to the well-foundation of proofs: connection to the iterative method

Second Issue: Implementation in Coq

- Coq: a proof assistant using a calculus of inductive and coinductive constructions, an extension of type theory
- The deductive method seems to be the best solution.
 - ► Iterative method: ordinals are needed.
 → Expensive (set theory) or restrictive (constructive ordinals)
 - Impredicative method: no direct support contrary to the deductive method
 - Deductive method: direct support, reasoning principles available (induction over well-founded proofs)
- ► Main issue: possibility to extract a program computing the fixed point from the proof that the fixed point satisfies its specification, following the Curry-Howard correspondence → Problem: classical logic is needed.