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In this talk

I A new proof method for order-theoretic fixed point
theorems
→ A new method to define these fixed points

I A comparison with other traditional proof methods
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Fixed points theorems
I There are mainly two kinds of fixed point theorems:

metric-theoretic and order-theoretic (see Mr Waszkiewicz’s
talk this morning).

I We are interested in fixed points of maps defined over
partially ordered sets (posets).

I General form
I Assume a poset satisfying some completeness property.
I Assume a map satisfying some order property (order

preservation, expansion).
I Then the map has a [least, greatest] fixed point.

I The proof gives in some way a definition of the fixed point.
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Example: Tarski’s Theorem
Theorem (Tarski 1955)

I Assume a complete lattice E (every subset has a least
upper bound and a greatest lower bound).

I Assume an isotone map η (it preserves order).
I Then the map η has a least fixed point and a greatest fixed

point.

Proof.
There are two two standard proofs using two methods:

I the impredicative method, used by Tarski in his original
article,

I the iterative method, resorting to ordinals.
4



Induction (and Coinduction) for Inference Systems Generalization of the deductive method Comparison Future Work

Tarski’s Theorem: Impredicative Proof Method
Proof.

lfp η = ∧{x ∈ E | η(x) ≤ x}
gfp η = ∨{x ∈ E | x ≤ η(x)}

I Let S = {x ∈ E | η(x) ≤ x} (set of η-closed points).
I If x ∈ S, then η(x) ∈ S.
I ∧S ∈ S.
I First conclusion: ∧S is a fixed point.
I All fixed point belongs to S.
I Second conclusion: ∧S is the least fixed point.
I Use duality for the greatest fixed point.
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Tarski’s Theorem: Iterative Proof Method
Proof.

lfp η =
∨
α ∆α(η) ∆α(η) = η(

∨
β|β<α ∆β(η))

gfp η =
∧
α∇α(η) ∇α(η) = η(

∧
β|β<α∇β(η))

I For all α, ∆α(η) ≤ η(∆α(η)) and (∆β(η))β<α is increasing.
I By Hartogs’ lemma: the sequence becomes stationary.
I First conclusion: the limit of the sequence is a fixed point.
I All fixed point is an upper bound of the sequence (∆α(η))α.
I Second conclusion: the limit is the least fixed point.
I Use duality for the greatest fixed point.
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Fixed points: What Kind of Definition?
I The impredicative method is not constructive.
→ Specifying a fixed point

I The iterative method is more constructive.
→ Iteratively computing an approximation until the limit is
reached

I But the iterative method resorts to ordinals, therefore to
infinities, possibly in a non-constructive way.
→ Heavy machinery (arguably)

I Problem: there is no clear connection between the
impredicative method and the iterative method.
It seems to be an old question in Mathematics.
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Contribution: Alternative Method to Prove Fixed Point
Theorems

I Equivalently: alternative method to define fixed points
I The deductive method: not impredicative, ordinal-free but

still constructive
I The fixed point is inductively proved in an inference system.
→ Proving the fixed point

I It is a first step allowing the impredicative method and the
iterative method to be connected.
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Outline

I Induction (and coinduction) for inference systems:
reminder and presentation of the deductive method

I The deductive method generalized
I Tarski Theorem revisited – The main idea for generalization
I Application to other fixed point theorems

Extension to chain-complete posets
Bourbaki-Witt’s theorem

I Comparison of the methods
I Future work

I Connection between the methods
I Coq implementation
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Plan

Induction (and Coinduction) for Inference Systems

Generalization of the deductive method
Tarski’s theorem revisited
Applications to other fixed point theorems

Comparison

Future Work
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Inference Systems

I A set U of judgments: the universe
I Inference system over U : a set of deduction rules
I A deduction rule: an ordered pair (A, c), with premises

A ⊆ U and conclusion c ∈ U

A

c
→ From premises A, deduce conclusion c.
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First Interpretation: Fixed Point Approach

Φ′
def
=
( A

c

)
A,c∈ϕ(A)

ϕ
def
= λS. {c ∈ U | ∃A ⊆ S . (A, c) ∈ Φ}oo

Φ

Inference operator

66llllllllllllllllllllllllllllllllll

⊆

OO

I Canonical Galois connection (and even reflection) between
inference systems Φ over U (ordered by inclusion) and
isotone operators ϕ : 2U → 2U over U (ordered point-wise
by inclusion)
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First Interpretation: Fixed Point Approach

Φ′
def
=
( A

c

)
A,c∈ϕ(A)

ϕ
def
= λS. {c ∈ U | ∃A ⊆ S . (A, c) ∈ Φ}oo

Φ

Inference operator

66llllllllllllllllllllllllllllllllll

⊆

OO

I Application of Tarski’s theorem to the powerset 2U , a
complete lattice, and the inference operator ϕ, an isotone
map
→ A least and a greatest fixed point
Standard approach? Yes.
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Second Interpretation: Deductive Method

I Central notion: proofs in an inference system

Rule
. . . a . . .

c
Proof

. . . (proof of a) . . .

c
I Two interpretations: inductive and coinductive

I Inductive interpretation: the set ∆(Φ) of the conclusions of
the well-founded proofs in Φ

I Coinductive interpretation: the set ∇(Φ) of the conclusions
of all the proofs in Φ, ill-founded or well-founded

Standard approach? No.
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Equivalence theorem

Theorem

lfpϕ = ∆(Φ) and gfpϕ = ∇(Φ).

→ Equivalence between the standard approach using fixed
points and the non-standard one using proofs
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Equivalence theorem
Proof.
Application of the following reasoning principles

Method Induction Coinduction

Impredicative
ϕ(S) ⊆ S

lfpϕ ⊆ S

S ⊆ ϕ(S)

S ⊆ gfpϕ

Deductive Well-foundation Proof construction by
for proofs guarded recursive equations
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Equivalence theorem

I Inductive case: well-known (Aczel 1977)
I Coinductive case: folklore (Grall 2003, Leroy-Grall 2009)
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Plan

Induction (and Coinduction) for Inference Systems

Generalization of the deductive method
Tarski’s theorem revisited
Applications to other fixed point theorems

Comparison

Future Work
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Tarski’s theorem revisited
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Tarski’s theorem revisited

Main idea

I Assumption: an isotone map η over a complete lattice
(E ,≤)

I Question: How to define an inference system Φ over E , or
equivalently an inference operator ϕ : 2E → 2E , whose
inductive and coinductive interpretations produce the least
and greatest fixed points of η?
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Tarski’s theorem revisited

Main idea

I First attempt: ϕ(S)
def
= η(S)

→ Trivially fails: lfpϕ = ∅.
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Tarski’s theorem revisited

Main idea
I Second attempt: Embedding of the complete lattice in its

powerset via a closure operator

E ι // {≤ x | x ∈ E} δ // 2E

E

η

OO

{≤ x | x ∈ E}
ι−1

oo 2Eγ
oo

ϕ

OO

I ι(x)
def
= ≤ x : canonical isomorphism

I γ(S)
def
= ≤ (∨S): closure operator with adjoint embedding δ

→ ϕ(S) = ≤ η(∨S)
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Tarski’s theorem revisited

New Statement
Theorem (Tarski revisited)

I Assume a complete lattice E .
I Assume an isotone map η.
I Define an inference system Φ over E with the following

rules, and only these rules:

S

c

(
S ⊆ E , c ≤ η(∨S)

)
.

I Then the map η has a least fixed point and a greatest fixed
point satisfying:

≤ (lfp η) = ∆(Φ) and ≤ (gfp η) = ∇(Φ).
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Applications to other fixed point theorems
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Applications to other fixed point theorems

Variations

I Chain-complete posets instead of complete lattices
→ Chains (included the empty one) are assumed to have a
least upper bound.

I Isotony or expansion for the map
I The inference system is restricted.

I Premises: chain
Indispensable assumption

I Conclusion: greatest possible conclusion
Assumption only needed for Bourbaki-Witt’s Theorem

25



Induction (and Coinduction) for Inference Systems Generalization of the deductive method Comparison Future Work

Applications to other fixed point theorems

Two Extensions
Theorem (Extension to Chain-Complete Posets)

I Assume a chain-complete poset E .
I Assume an isotone map η.
I Define an inference system Φ over E with the following

rules, and only these rules:

C

η(∨C)

(
C ⊆ E ,C chain

)
.

I Then η has a least fixed point lfp η satisfying:

≤ (lfp η) = ≤ ∆(Φ).
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Applications to other fixed point theorems

Two Extensions

Proof.
I ∆(Φ) is a chain. By induction over well-founded proofs.
I Conclusion follows.
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Applications to other fixed point theorems

Two Extensions
Theorem (Bourbaki-Witt’s Theorem)

I Assume a chain-complete poset E .
I Assume an expansive map η: any point is η-consistent

(∀ x ∈ E . x ≤ η(x)).
I Define an inference system Φ over E with the following

rules, and only these rules:

C

η(∨C)

(
C ⊆ E ,C chain

)
.

I Then η has a fixed point fp η satisfying:

≤ (fp η) = ≤ ∆(Φ).
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Applications to other fixed point theorems

Two Extensions

Proof.
I ∆(Φ) is a chain. Intricate proof by induction over

well-founded proofs.
I Conclusion follows.
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Deductive Method vs Impredicative Method

Example: Bourbaki-Witt’s Theorem

I The fixed point is defined from the inductive set generated
by an inference system Φ.

I The inductive set ∆(Φ) is also the intersection of the
ϕ-closed sets, where ϕ is the inference operator
associated to Φ.

∆(Φ) =
⋂{

S | ∀ chain C ⊆ S . η(∨C) ∈ S
}
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Deductive Method vs Impredicative Method

Example: Bourbaki-Witt’s Theorem
I In the original proof given by Bourbaki, the fixed point is

defined from a set equal to the intersection I of all
admissible subsets.

I =
⋂{

S |
(⊥ ∈ S)

∧ (η(S) ⊆ S)
∧ (∀ chain C ⊆ S . ∨C ∈ S)

}
I It turns out that an admissible subset is also ϕ-closed.
→ Very close notions (definition and properties)
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Deductive Method vs Iterative Method
Tarski’s theorem

I Transfinite sequence (∆α(η))α of iterates
I Inference system Φ containing the following rules, and only

these rules:
S

s

(
S ⊆ E , s ≤ η(∨S)

)
I Characterizations of the least fixed point:

≤ (lfp η) = ∆(Φ) lfp η =
∨
α ∆α(η)
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Deductive Method vs Iterative Method

Tarski’s theorem
I ∆α(Φ): set of all x that are conclusion of a proof with

height less or equal to α
I Comparison

≤ ∆α(η) = ∆α(Φ).
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Deductive Method vs Iterative Method
Two other theorems

I Transfinite sequence (∆α(η))α of iterates
I Inference system Φ containing the following rules, and only

these rules:

C

η(∨C)

(
C ⊆ E ,C chain

)
.

I Characterizations of the (least) fixed point:

≤ (fp η) =≤ ∆(Φ) fp η =
∨
α ∆α(η)
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Deductive Method vs Iterative Method

Two other theorems
I ∆α(Φ): set of all x that are conclusion of a proof with

height equal to α
I Comparison

{∆α(η)} = ∆α(Φ)
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Contribution: the Deductive Method

I A new method: proving fixed points
I An alternative to the impredicative method and the iterative

method
I Specifying fixed points
I Computing fixed points

I A sketch of a comparison
I Future? Two issues
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First Issue: Connection between the Three Methods

I Thesis: the deductive method is central.
I Via the inference operator: connection to the impredicative

method
I Via the well-order canonically associated to the

well-foundation of proofs: connection to the iterative
method
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Second Issue: Implementation in Coq
I Coq: a proof assistant using a calculus of inductive and

coinductive constructions, an extension of type theory
I The deductive method seems to be the best solution.

I Iterative method: ordinals are needed.
→ Expensive (set theory) or restrictive (constructive
ordinals)

I Impredicative method: no direct support contrary to the
deductive method

I Deductive method: direct support, reasoning principles
available (induction over well-founded proofs)

I Main issue: possibility to extract a program computing the
fixed point from the proof that the fixed point satisfies its
specification, following the Curry-Howard correspondence
→ Problem: classical logic is needed.
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