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Hao Wang tiles: squares with colored sides

Color: element of a finite set C

Tile: element of C 4

Tile set: a set τ ⊂ C 4

Tiling: a mapping U : Z2 → τ

U(i , j).right = U(i + 1, j).left,
U(i , j).top = U(i , j + 1).bottom.

T ∈ Z2 is a period if U(x + T ) = U(x) for all x .
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Trivial example 1: one color

τ = { }

There exists only one τ -tiling of Z2.
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Trivial example 3: two colors
τ = all colorings of the 1× 1-square

continuum of tilings
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I all τ -tilings are periodic

I there exist periodic and aperiodic τ -tilings
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Theorem (Robert Berger 1966): There exists a tile
set that allows only aperiodic tilings.



Why these tilings are not “strongly” aperiodic

I Tiling is aperiodic, but close to periodic

I There are periodic configurations that are
almost tilings (sparse set of tiling errors)

I Tiling is aperiodic, but remote tiles are highly
correlated
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We want the tilings to be “strongly” aperiodic.
What could it mean?

I every shift changes a significant fraction of
positions

I being far from anything periodic

B.Durand, A.Shen, A.R. 2008: There exists a tile
set τ such that all τ -tilings are strongly aperiodic
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Periodic tiling: very strong remote order.

Charles Radin:

There is no Long Range Order if for large shifts
T = (a, b), tiles

U(x , y) and U(x + a, y + b)

are almost independent.
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This work’s result:

There exists a set of red and green tiles τ = τ1 t τ2
such that for large shifts T = (a, b), colors of tiles

U(x , y) and U(x + a, y + b)

are almost independent.



The tool:
a self-similar tile set based on a fixed-point
construction (á la Kleene)

(B. Durand, A. Shen, A. R. [DLT08, ICALP09])

Similar ideas:
J. von Neumann, Self-reproducible Automata (1966)

Very similar ideas:
Peter Gács, reliable cellular automata (80-th, 90-th)
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Theorem (Robert Berger): There exists a tile set
that allows only aperiodic tilings.

A small miracle: no computability in this statement,
but Kleene’s recursion theorem helps in the proof!
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Fix a tile set τ and number N > 1.

Macro-tile: a N × N square made of matching tiles

A set of tiles τ simulates a set of tiles ρ if

I there exists a set M of τ -macro-tiles isomorphic
to ρ

I every τ -tiling can be uniquely split by N × N
grid into macro-tiles from M .
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A tile set τ1: A tile set that simulates τ0
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Self-similar tile set: a tile set that simulates itself.

Theorem: Self-similar tile set is aperiodic

Folklore: several known aperiodic tile sets are
self-similar.

The new tool: self-similar tile set á la Kleene
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Simulating a given tile set ρ by macro-tiles.

Presentation of the tile set ρ:
colors are k-bit strings: C = Bk

set of tiles (a subset of C 4) presented as a predicate
R(x1, x2, x3, x4) whose arguments are bit strings
tile set is presented as TM that accepts quadruples
of colors that are tiles
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Sketch of the fixed point construction: what
program should check

I coordinate matching rules

I bit wires implementation

I UTM rules implementation

I checking the program
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Question 1:

Can we make a strongly aperiodic tile set tolerant
to errors?

I B.Durand, A.Shen, A.R.: the answer is yes
if errors = independent random holes

I What about Gibbs measures? Need methods
from percolation theory and statistical physics.
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How to reduce the number of tiles and/or zoom
factor?

Use other programming models instead of TM ?
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Thank you!


