Fixed Point Argument and Tilings without Long Range Order

Andrei Romashchenko, (CNRS, LIF de Marseille, France)

August 22, Brno, FICS 2010

Tilings: local rules define a global order.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Tilings: local rules define a global order.

Interesting in different contexts:

- combinatorics
- logic and computability
- physics

Hao Wang tiles: squares with colored sides

Hao Wang tiles: squares with colored sides Color: element of a finite set *C*

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hao Wang tiles: squares with colored sides Color: element of a finite set C

Tile: element of C^4

Hao Wang tiles: squares with colored sides Color: element of a finite set CTile: element of C^4

Tile set: a set $\tau \subset C^4$

Hao Wang tiles: squares with colored sides Color: element of a finite set CTile: element of C^4 Tile set: a set $\tau \subset C^4$ Tiling: a mapping $U: \mathbb{Z}^2 \to \tau$

$$U(i,j)$$
.right = $U(i+1,j)$.left,
 $U(i,j)$.top = $U(i,j+1)$.bottom.

Hao Wang tiles: squares with colored sides Color: element of a finite set C Tile: element of C^4 Tile set: a set $\tau \subset C^4$ Tiling: a mapping $U: \mathbb{Z}^2 \to \tau$ U(i, j).right = U(i + 1, j).left, U(i, j).top = U(i, j + 1).bottom.

 $T \in \mathbb{Z}^2$ is a *period* if U(x + T) = U(x) for all x.

Trivial example 1: one color $\tau = \{ \square \}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Trivial example 1: one color $\tau = \{ \square \}$

There exists only one τ -tiling of \mathbb{Z}^2 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Trivial example 2: two colors $\tau = \{ \Box, \Box \}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Trivial example 2: two colors $\tau = \{ \Box, \Box \}$

There exists two τ -tilings of \mathbb{Z}^2 .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Trivial example 3: two colors $\tau =$ all colorings of the 1 \times 1-square

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Trivial example 3: two colors $\tau =$ all colorings of the 1 \times 1-square continuum of tilings

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

 \blacktriangleright there is no $\tau\text{-tilings}$

• there is no τ -tilings (exercise :)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• there is no τ -tilings (exercise :)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• all τ -tilings are periodic

- there is no τ -tilings (exercise :)
- all τ -tilings are periodic
- \blacktriangleright there exist periodic and aperiodic $\tau\text{-tilings}$

- there is no τ -tilings (exercise :)
- all τ -tilings are periodic
- there exist periodic and aperiodic τ -tilings

• there only aperiodic τ -tilings ?

Theorem (Robert Berger 1966): There exists a tile set that allows only aperiodic tilings.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► Tiling is aperiodic, but close to periodic

・ロト・日本・モート モー うへぐ

- ► Tiling is aperiodic, but close to periodic
- There are periodic configurations that are almost tilings (sparse set of tiling errors)

- ► Tiling is aperiodic, but close to periodic
- There are periodic configurations that are almost tilings (sparse set of tiling errors)
- Tiling is aperiodic, but remote tiles are highly correlated

We want the tilings to be "strongly" aperiodic. What could it mean?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We want the tilings to be "strongly" aperiodic. What could it mean?

 every shift changes a significant fraction of positions

We want the tilings to be "strongly" aperiodic. What could it mean?

 every shift changes a significant fraction of positions

being far from anything periodic

We want the tilings to be "strongly" aperiodic. What could it mean?

- every shift changes a significant fraction of positions
- being far from anything periodic

B.Durand, A.Shen, A.R. 2008: There exists a tile set τ such that all τ -tilings are strongly aperiodic

Periodic tiling: very strong remote order.

Periodic tiling: very strong *remote order*. Charles Radin:

There is no Long Range Order if for large shifts T = (a, b), tiles

$$U(x, y)$$
 and $U(x + a, y + b)$

are almost independent.

This work's result:

There exists a set of red and green tiles $\tau = \tau_1 \sqcup \tau_2$ such that for large shifts T = (a, b), colors of tiles

$$U(x, y)$$
 and $U(x + a, y + b)$

are almost independent.

The tool:

a self-similar tile set based on a fixed-point construction (\dot{a} la Kleene)

(B. Durand, A. Shen, A. R. [DLT08, ICALP09])

The tool:

a self-similar tile set based on a fixed-point construction (\dot{a} la Kleene)

(B. Durand, A. Shen, A. R. [DLT08, ICALP09])

Similar ideas:

J. von Neumann, Self-reproducible Automata (1966)

The tool:

a self-similar tile set based on a fixed-point construction (\dot{a} la Kleene)

(B. Durand, A. Shen, A. R. [DLT08, ICALP09])

Similar ideas:

J. von Neumann, Self-reproducible Automata (1966)

Very similar ideas:

Peter Gács, reliable cellular automata (80-th, 90-th)

Once again:

Theorem (Robert Berger): There exists a tile set that allows only aperiodic tilings.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Once again:

Theorem (Robert Berger): There exists a tile set that allows only aperiodic tilings.

A small miracle: no computability in this statement, but Kleene's recursion theorem helps in the proof!

Macro-tile:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fix a tile set τ and number N > 1.

<□ > < @ > < E > < E > E のQ @

Fix a tile set τ and number N > 1. Macro-tile: a $N \times N$ square made of matching tiles

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fix a tile set τ and number N > 1. Macro-tile: a $N \times N$ square made of matching tiles

A set of tiles τ simulates a set of tiles ρ if

► there exists a set M of \(\tau\)-macro-tiles isomorphic to \(\rho\)

 every τ-tiling can be uniquely split by N × N grid into macro-tiles from M.

Example.

A tile set
$$\tau_0 = \{ \square \}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Example.

A tile set
$$au_0 = \{ \Box \}$$

A tile set au_1 : A tile set that simulates au_0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example.

A tile set
$$au_0 = \{ \ \Box \ \}$$

A tile set au_1 : A tile set that simulates au_0

$$(i, j) \underbrace{[i, j]}_{(i, j)} (i+1, j)$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Self-similar tile set: a tile set that simulates itself.

Self-similar tile set: a tile set that simulates itself. **Theorem**: Self-similar tile set is aperiodic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Self-similar tile set: a tile set that simulates itself. **Theorem**: Self-similar tile set is aperiodic Folklore: several known aperiodic tile sets are self-similar.

Self-similar tile set: a tile set that simulates itself. **Theorem**: Self-similar tile set is aperiodic Folklore: several known aperiodic tile sets are self-similar.

The new tool: self-similar tile set á la Kleene

Simulating a given tile set ρ by macro-tiles.

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Simulating a given tile set ρ by macro-tiles. Presentation of the tile set ρ :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Simulating a given tile set ρ by macro-tiles. Presentation of the tile set ρ : colors are k-bit strings: $C = \mathbb{B}^k$

Simulating a given tile set ρ by macro-tiles. Presentation of the tile set ρ : colors are k-bit strings: $C = \mathbb{B}^k$ set of tiles (a subset of C^4) presented as a predicate $R(x_1, x_2, x_3, x_4)$ whose arguments are bit strings

Simulating a given tile set ρ by macro-tiles. Presentation of the tile set ρ : colors are k-bit strings: $C = \mathbb{B}^k$ set of tiles (a subset of C^4) presented as a predicate $R(x_1, x_2, x_3, x_4)$ whose arguments are bit strings tile set is presented as TM that accepts quadruples of colors that are tiles

Implementation scheme:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Implementation scheme:

Implementation scheme:

A fixed point: simulating tile set = simulated tile set

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

coordinate matching rules

- coordinate matching rules
- bit wires implementation

- coordinate matching rules
- bit wires implementation
- UTM rules implementation

- coordinate matching rules
- bit wires implementation
- UTM rules implementation
- checking the program

Question 1:

Can we make a strongly aperiodic tile set tolerant to errors?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question 1:

Can we make a strongly aperiodic tile set tolerant to errors?

B.Durand, A.Shen, A.R.: the answer is yes if errors = independent random holes

Question 1:

Can we make a strongly aperiodic tile set tolerant to errors?

- B.Durand, A.Shen, A.R.: the answer is yes if errors = independent random holes
- What about Gibbs measures? Need methods from percolation theory and statistical physics.

Question 2:

How to reduce the number of tiles and/or zoom factor?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Question 2:

How to reduce the number of tiles and/or zoom factor?

Use other programming models instead of TM ?

Thank you!