Fixed Point Argument and Tilings without Long Range Order

Andrei Romashchenko, (CNRS, LIF de Marseille, France)

August 22, Brno, FICS 2010

Tilings: local rules define a global order.

Tilings: local rules define a global order.
Interesting in different contexts:

- combinatorics
- logic and computability
- physics

Hao Wang tiles: squares with colored sides

Hao Wang tiles: squares with colored sides
Color: element of a finite set C

Hao Wang tiles: squares with colored sides
Color: element of a finite set C
Tile: element of $C^{4} \quad \square$

Hao Wang tiles: squares with colored sides
Color: element of a finite set C
Tile: element of $C^{4} \quad \square$
Tile set: a set $\tau \subset C^{4}$

Hao Wang tiles: squares with colored sides
Color: element of a finite set C
Tile: element of $C^{4} \quad \square$
Tile set: a set $\tau \subset C^{4}$
Tiling: a mapping $U: \mathbb{Z}^{2} \rightarrow \tau$

$$
\begin{aligned}
& U(i, j) \text {.right } \\
& U(i, j) . \text { top } \\
& =U(i+1, j) \text {.left, } \\
&
\end{aligned}
$$

Hao Wang tiles: squares with colored sides
Color: element of a finite set C
Tile: element of C^{4}
Tile set: a set $\tau \subset C^{4}$
Tiling: a mapping $U: \mathbb{Z}^{2} \rightarrow \tau$
$U(i, j)$.right $=U(i+1, j)$.left,
$U(i, j)$.top $=U(i, j+1)$.bottom.
$T \in \mathbb{Z}^{2}$ is a period if $U(x+T)=U(x)$ for all x.

Trivial example 1: one color $\tau=\{\square\}$

Trivial example 1: one color $\tau=\{\square\}$
There exists only one τ-tiling of \mathbb{Z}^{2}.

Trivial example 2: two colors
$\tau=\{\square, \square\}$

Trivial example 2: two colors
$\tau=\{\square, \square\}$
There exists two τ-tilings of \mathbb{Z}^{2}.

Trivial example 3: two colors $\tau=$ all colorings of the 1×1-square

Trivial example 3: two colors $\tau=$ all colorings of the 1×1-square continuum of tilings
there exist tile sets τ such that
there exist tile sets τ such that

- there is no τ-tilings
there exist tile sets τ such that
- there is no τ-tilings (exercise :)
there exist tile sets τ such that
- there is no τ-tilings (exercise :)
- all τ-tilings are periodic
there exist tile sets τ such that
- there is no τ-tilings (exercise :)
- all τ-tilings are periodic
- there exist periodic and aperiodic τ-tilings
there exist tile sets τ such that
- there is no τ-tilings (exercise :)
- all τ-tilings are periodic
- there exist periodic and aperiodic τ-tilings
- there only aperiodic τ-tilings ?

Theorem (Robert Berger 1966): There exists a tile set that allows only aperiodic tilings.

Why these tilings are not "strongly" aperiodic

Why these tilings are not "strongly" aperiodic

- Tiling is aperiodic, but close to periodic

Why these tilings are not "strongly" aperiodic

- Tiling is aperiodic, but close to periodic
- There are periodic configurations that are almost tilings (sparse set of tiling errors)

Why these tilings are not "strongly" aperiodic

- Tiling is aperiodic, but close to periodic
- There are periodic configurations that are almost tilings (sparse set of tiling errors)
- Tiling is aperiodic, but remote tiles are highly correlated

We want the tilings to be "strongly" aperiodic. What could it mean?

We want the tilings to be "strongly" aperiodic. What could it mean?

- every shift changes a significant fraction of positions

We want the tilings to be "strongly" aperiodic. What could it mean?

- every shift changes a significant fraction of positions
- being far from anything periodic

We want the tilings to be "strongly" aperiodic. What could it mean?

- every shift changes a significant fraction of positions
- being far from anything periodic
B.Durand, A.Shen, A.R. 2008: There exists a tile set τ such that all τ-tilings are strongly aperiodic

Periodic tiling: very strong remote order.

Periodic tiling: very strong remote order.
Charles Radin:
There is no Long Range Order if for large shifts $T=(a, b)$, tiles

$$
U(x, y) \text { and } U(x+a, y+b)
$$

are almost independent.

This work's result:
There exists a set of red and green tiles $\tau=\tau_{1} \sqcup \tau_{2}$ such that for large shifts $T=(a, b)$, colors of tiles

$$
U(x, y) \text { and } U(x+a, y+b)
$$

are almost independent.

The tool:
a self-similar tile set based on a fixed-point construction (á la Kleene)
(B. Durand, A. Shen, A. R. [DLT08, ICALP09])

The tool:
a self-similar tile set based on a fixed-point construction (á la Kleene)
(B. Durand, A. Shen, A. R. [DLT08, ICALP09])

Similar ideas:
J. von Neumann, Self-reproducible Automata (1966)

The tool:

a self-similar tile set based on a fixed-point construction (á la Kleene)
(B. Durand, A. Shen, A. R. [DLT08, ICALP09])

Similar ideas:
J. von Neumann, Self-reproducible Automata (1966)

Very similar ideas:
Peter Gács, reliable cellular automata (80-th, 90-th)

Once again:
Theorem (Robert Berger): There exists a tile set that allows only aperiodic tilings.

Once again:
Theorem (Robert Berger): There exists a tile set that allows only aperiodic tilings.

A small miracle: no computability in this statement, but Kleene's recursion theorem helps in the proof!

Macro-tile:

Fix a tile set τ and number $N>1$.

Fix a tile set τ and number $N>1$.
Macro-tile: a $N \times N$ square made of matching tiles

Fix a tile set τ and number $N>1$.
Macro-tile: a $N \times N$ square made of matching tiles
A set of tiles τ simulates a set of tiles ρ if

- there exists a set M of τ-macro-tiles isomorphic to ρ
- every τ-tiling can be uniquely split by $N \times N$ grid into macro-tiles from M.

Example.

A tile set $\tau_{0}=\{\square\}$

Example.

A tile set $\tau_{0}=\{\square\}$
A tile set τ_{1} : A tile set that simulates τ_{0}

Example.

A tile set $\tau_{0}=\{\square\}$
A tile set τ_{1} : A tile set that simulates τ_{0}

Self-similar tile set: a tile set that simulates itself.

Self-similar tile set: a tile set that simulates itself. Theorem: Self-similar tile set is aperiodic

Self-similar tile set: a tile set that simulates itself.
Theorem: Self-similar tile set is aperiodic
Folklore: several known aperiodic tile sets are self-similar.

Self-similar tile set: a tile set that simulates itself.
Theorem: Self-similar tile set is aperiodic
Folklore: several known aperiodic tile sets are self-similar.

The new tool: self-similar tile set á la Kleene

Simulating a given tile set ρ by macro-tiles.

Simulating a given tile set ρ by macro-tiles. Presentation of the tile set ρ :

Simulating a given tile set ρ by macro-tiles. Presentation of the tile set ρ :
colors are k-bit strings: $C=\mathbb{B}^{k}$

Simulating a given tile set ρ by macro-tiles. Presentation of the tile set ρ :
colors are k-bit strings: $C=\mathbb{B}^{k}$
set of tiles (a subset of C^{4}) presented as a predicate $R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ whose arguments are bit strings

Simulating a given tile set ρ by macro-tiles. Presentation of the tile set ρ :
colors are k-bit strings: $C=\mathbb{B}^{k}$
set of tiles (a subset of C^{4}) presented as a predicate $R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$ whose arguments are bit strings tile set is presented as TM that accepts quadruples of colors that are tiles

Implementation scheme:

Implementation scheme:

Implementation scheme:

A fixed point: simulating tile set $=$ simulated tile set

Sketch of the fixed point construction: what program should check

Sketch of the fixed point construction: what program should check

- coordinate matching rules

Sketch of the fixed point construction: what program should check

- coordinate matching rules
- bit wires implementation

Sketch of the fixed point construction: what program should check

- coordinate matching rules
- bit wires implementation
- UTM rules implementation

Sketch of the fixed point construction: what program should check

- coordinate matching rules
- bit wires implementation
- UTM rules implementation
- checking the program

Question 1:
Can we make a strongly aperiodic tile set tolerant to errors?

Question 1:
Can we make a strongly aperiodic tile set tolerant to errors?

- B.Durand, A.Shen, A.R.: the answer is yes if errors $=$ independent random holes

Question 1:
Can we make a strongly aperiodic tile set tolerant to errors?

- B.Durand, A.Shen, A.R.: the answer is yes if errors $=$ independent random holes
- What about Gibbs measures? Need methods from percolation theory and statistical physics.

Question 2:
How to reduce the number of tiles and/or zoom factor?

Question 2:
How to reduce the number of tiles and/or zoom factor?

Use other programming models instead of TM ?

Thank you!

