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Let C(L) denote the set of covers of a poset L: γ ∈ C(L) if and only
γ = (γ0, γ1) ∈ L×L and the interval {x | γ0 ≤ x ≤ γ1 } is a two elements poset.
If L is a lattice then there is a natural ordering of C(L): γ ≤ δ if and only
if γ0 ≤ δ0, γ1 6≤ δ0, and γ1 ≤ δ1. That is, γ ≤ δ if and only if the cover γ
transposes up to δ.

For α ∈ C(L) let C(L,α) denote the component of the poset C(L) connected
to α. For example, if L is finite join semidistributive and α = (j∗, j) for a join
irreducible j and its unique lower cover j∗, then C(L,α) = {β |α ≤ β }. The
main result we wish to present is the following:

Theorem 1. If L is a finite semidistributive lattice and α ∈ C(L), then C(L,α)
is a semidistributive lattice.

We call C(L,α) the semidistributive lattice derived from L and α. Theorem
1 can be lifted to bounded lattices:

Theorem 2. If L is a finite bounded lattice and α ∈ C(L), then C(L,α) is a
bounded lattice.

We are interested in the explicit computation of semidistributive lattices de-
rived from the Newman lattices of [1]. To this goal, let Sn be the permutohedron
on n letters (i.e., the weak Bruhat order on permutations of n), and let Tn be
the associahedron on n + 1 letters (i.e., binary trees with n + 1 leaves and n
internal nodes).

Proposition 3. Let a be an atom of Sn (resp. of Tn) and consider the cover
α = (⊥, a). The following relations hold (up to isomorphism) for n ≥ 2:

C(Sn, α) = Sn−1 , C(Tn, α) = Tn−1 .
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The Proposition above shows that C(L,α) does not depend on the choice of
the atom a for L either Sn or Tn. It is possible, on the other hand, to exhibit
a multinomial lattice – not a complemented lattice – and two distinct atoms
giving rise to non isomorphic derived lattices.

It might be conjectured that the lattice C(L,α) is related to the quotient
lattice L/θ(α0, α1), where θ(α0, α1) is the congruence generated by the pair
(α0, α1). Proposition 3 shows that these lattices are not in general isomorphic.
Using the characterization of the join dependency relation in permutohedra, see
[8, 3.10], it is relatively easy to argue that

Sn/θi = Si × Sn−i ,

where i = 1, . . . , n− 1 and θi = θ(⊥, (i, i + 1)).

These results are part of a general investigation relating rewrite systems to
lattices, following [7] and [1]. The examples at hand have directed us to consider
join semidistributive lattices, i.e. lattices satisfying the Horn sentence

x ∨ y = x ∨ z implies x ∨ (y ∧ z) = x ∨ y .

There are already many characterization of finite join semidistributive lattices,
see for example [4] and [5, Theorem 2.56]. Proposition 4, which is a refinement
of the latter characterization, allow us to derive Theorem 1.

To state the Proposition, remark that the projections ( · )i : C(L) - L,
sending γ ∈ C(L) to γi, i = 0, 1, are order preserving. An order preserving
function f : P - Q is said to create pullbacks if whenever y, z ≤ w ∈ P and
the meet x = f(y) ∧ f(z) exists in Q, then there exists a unique x′ ∈ P such
that f(x′) = x, and moreover x′ = y ∧ z.

Proposition 4. A finite lattice is join semidistributive if and only if the pro-
jection ( · )0 : C(L) - L creates pullbacks.

Consideration of pullbacks, i.e. meets of the form x ∧ y where x, y have an
upper bound, is suggested by recent work on Cayley lattices of Coxeter groups.
We derive Theorem 2 by means of a new characterization – Proposition 6 – of
finite lower bounded lattices. The characterization relies on the tools used in
[2] to prove that HH lattices are bounded.

A hat in a finite lattice L is a triple (x, δ1, δ0) ∈ L3 such that x 6= δ0 and
(x, δ1), (δ0, δ1) ∈ C(L). If L is join semidistributive, then there exists a unique
γ1 ∈ L such that x ∧ δ0 ≺ γ1 ≤ x. Let γ = (x ∧ δ0, γ1) and δ = (δ0, δ1), we
denote this relation by γ ≺x δ, since the covers of the poset C(L) have exactly
this form (provided L is join semidistributive). Note also that γ0 is the pullback
of the hat (x, δ1, δ0).

Dually, an antihat is a triple (x, γ0, γ1) ∈ L3 such that (γ0, x), (γ0, γ1) ∈ C(L)
and x 6= γ1. If L is join semidistributive, then there exists a unique δ0 ∈ L such
that x ≤ δ0 ≺ x∨γ1. Let γ = (γ0, γ1) and δ = (δ0, x∨γ1), and note this relation
by γ

x→ δ. Observe that γ
x→ δ implies γ < δ but this might not be a cover.

A facet is an interval of the form [γ0, δ1], where γ ≺x δ or γ
x→ δ.
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Definition 5. Let L be a finite join semidistributive lattice. A function f :
C(L) - N is:

(i) a strict lower facet labeling if f(δ) = f(γ) < f(ε) whenever γ ≺x δ and
γ1 ≤ ε0 ≺ ε1 ≤ x.

(ii) a strict upper facet labeling if f(δ) = f(γ) < f(ε) whenever γ
x→ δ and

x ≤ ε0 ≺ ε1 ≤ δ0.

(iii) a strict facet labeling if it is both a strict lower facet labeling and a strict
upper facet labeling.

Proposition 6. A finite join semidistributive lattice is lower bounded if and
only if it has a strict facet labeling.

Among the existing characterizations of finite lower bounded lattices, see for
example [5, Corollary 2.39, Theorem 2.43] or [6, I.2], Proposition 6 has already
shown its use for lattices of combinatorial presentation [2, 3] and, we recall, it
is the tool by which Theorem 2 is derived.
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