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An example (from Day 1983, Math. Biosciences, after Johnson and Selander
1971, Schnell, Best and Kennedy 1978):
k = 3 trees on 11 species of kangaroo rats

A B CDE GF N H L M A B C DE GF NH L M

A B C D E GF NH L M
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Strict consensus (retain classes present in all trees):

A B C D E GF NH L M

Quota rule consensus (retain classes present in σ trees): σ = 2

A B C DE GF NH L M

The output is a tree for σ > k/2 (Margush and McMorris 1981)
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Adam's consensus

A B C D E GF NH L M

Frequent subclasses consensus

A B C D E GF NH L M
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Closure system

Finite set S (objects to choose, to classify, …)
family C ⊆ 2S of subsets of S satisfying:

(i) S ∈ C (universal set)
(ii) C, C’ ∈ C   ⇒    C∩C’ ∈ C

Then, C is a closure system (CS), or a Moore family on S.

The associated closure operator ϕC on 2S:
ϕC(A) = ∩{C ∈ C: A ⊆ C}

Example: after using a classification procedure on a set S of objects to classify, one
often gets a set of classes C satisfying (i), (ii) and:

(iii) s ∈ S   ⇒    {s} ∈ C (individual classes)

Elements of a class C ∈ C ought to be similar or sharing common properties
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Lattice structure of a closure system C on S, ordered by inclusion

for C, C' ∈ C,

meet C∩C' 

join C∨C' = ϕC(C∪C')

• covering relation p

• join-irreducible J ∈ JC. For any C ∈ C,
C = ∨{J ∈ JC: J ⊆ C } = ∨J(C)

(full join irreducible representation)

• meet-irreducible M ∈ MC. For any C ∈ C,
C = ∩{M ∈ MC: C ⊆ M} = ∩M(C)
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Types of closure systems

Distributive CS: C, C’ ∈ C  ⇒  C∪C’ ∈ C,

Tree of subsets: C, C’ ∈ C  ⇒  C∩C’ ∈ {∅, C, C'},
(a tree completed with the empty set)

Nested CS: C, C’ ∈ C  ⇒  C∩C’ ∈ {C, C'}.
(both tree and distributive)

Convex geometry: every element of C  has a unique irredundant (minimal) join-
irreducible representation.

Combinatorial geometry (matroid) and so on…
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Obtaining closure systems (1)

Data

Type of
variable v

Structure of
domain D of

v

Subsets of S Type of
closure
system

Numerical, Linear
{s ∈ S: v(s) ≤
α}, α ∈ D

Nested

ordinal order Intervals of D Convex
geometry

Nominal Finite set D =
{v1,…, vk}

{s ∈ S:
     v(s) = vi}

Tree of
subsets

Multicriterion
evaluation

Product of
linear orders

{s ∈ S:
     v(s) ≤ α},
α ∈ D

Distributive

Taxonomic Rooted tree {s ∈ S:
     v(s) ≤ α},
α ∈ D

Tree of
subsets
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Obtaining closure systems (2)

Choice models
W complete ordering (weak order) on S
for s ∈ S, Ws = {s' ∈ S: (s', s) ∈ S} (elements at least as good as s),
then, {Ws: s ∈ S} is a nesting family on S

Classification models
Hierarchy H on S, (H1) S ∈ H,

(H2) s ∈ S   ⇒   {s} ∈ H,
(H3) H, H’ ∈ H   ⇒   H∩H’ ∈ {∅, H, H’},

then H ∪ {∅} is a hierarchical classification system.
Others: pyramids, weak hierarchies, …

(Galois) lattices

Databases, Association rules mining,…
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The lattice structure of M

Let M be the set of all closure systems on S;

• 2S ∈ M,

• for C, C' ∈ M, C∩C' ∈ M

So, M is a closure system on 2S.

• For any family F of subsets of S, is there is a smallest CS Φ(F) including F
(make all intersections of subsets of F comprising S = ∩∅)

• Join-irreducibles of M are closure systems {A, S}, with a unique (proper) closed
subset A ⊂ S.
Then, for C ∈ M,

C = Φ(F)  ⇐⇒  MC ⊆ F

• So, M is a convex geometry (lower locally distributive) on 2S.
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Consensus of closure systems

searching a consensus function f
f

Mk   →   M

(aggregation of a profile C* = (C1, C2, …, Ck) ∈ Mk of CS's into a unique CS)

So, we can apply results on the consensus problem

- in lattices (Monjardet 1990, Barthélemy and Janowitz 1991, L. 1994, and others)

- particularly, in convex geometries (Raderanirina 2001, L. 2003)



12

Median consensus

Given a metric d on M, find a median Cµ ∈ M such that

ρ(Cµ, C*) = ∑1≤i≤k d(Cµ, Ci)   →   min

• often difficult to compute,

• not necessarily unique,

• satisfies Young's consistency: for C* ∈ Mk, C'* ∈ Mk',

µ(C*)∩µ(C'*) ≠ ∅  ⇒  µ(C*C'*) = µ(C*)∩µ(C'*),

where µ(C*) is the set of the medians of C*
C*C'*  ∈ Mk+k' is the concatenation of C* and C'*.

• Problem: do medians satisfy
∩1≤i≤k Ci ⊆ Cµ

 (a unanimity property: does Cµ preserves those closed sets present in all Ci's)
?
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Two classical metrics on a lattice

• MPL metric ∂:
∂(C, C') is the minimum path length in the covering graph (M, p)

• (Generalized) symmetric difference metric δ:
δ(C, C') = | JC ∆ JC' | = | C ∆ C' |

• Since M is a convex geometry, ∂ = δ,
a characterization of LLD lattices (L. 2003)
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Federation consensus rules and quota rules

Federation on K = {1, …, k}: inclusion monotone family K of subsets of K:
[L ∈ K, L' ⊇ L] ⇒ [L' ∈ K]

Federation consensus function cK on M:
cK(C*) = ∨L∈K (∩i∈L Ci)

Include:

Oligarchic consensus functions: K = {L ⊆ K: L ⊇ I} for a fixed I ⊆ K.
cK(C*) = ∩i∈I Ci,

Quota rules: with 1 ≤ q ≤ k (majority rule: q > k/2)

cq(C*) = Φ(Aq),
where K = {L ⊆ K: |L| ≥ q}, for a fixed q,
Aq is the set of closed sets present in at least q elements of the profile



15

Results in the lattice M

• Properties of cq:

Unanimity: ∩1≤i≤k Ci ⊆ cq(C*);

Isotony: Ci ⊆ C'i for all i = 1, …, k ⇒ cq(C*) ⊆ cq(C'*).

In convex geometries, quota rules share consistency with the median procedure (L.
2003). Consider a relative frequency α ∈ [0, 1[:

cα(C*) = cα(C'*) = C ⇒ cα(C*C'*) = C

Sketched proof. From M(C) ⊆ Aq ⊆ C, M(C') ⊆ A'q ⊆ C', and standard properties of
frequencies:
for any C ⊂ S, min(γ(C, C*), γ(C, C'*)) ≤ γ(C, C*C'*) ≤ max(γ(C, C*), γ(C, C'*)),
one gets M(C) ⊆ Aq(C*C'*) ⊆ C

This property is not true, e.g., in the partition lattice (Barthélemy and L. 1995).
Problem : does it characterize LLD ones ?
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Weak majorities and medians

For any median Cµ,
Cµ ⊆ ck/2(C*),

that is, Cµ ⊆ Φ(Ak/2),

where Ak/2 is a set of closed sets present in at least half of the elements of the profile.

Any closed set of a median CS is an intersection of "majority closed sets".

Consequence: if such closed sets do not exist (but S), the trivial closure system {S}
is the unique median of C*.
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Axiomatic results

A consensus rule f: Mk   →   M satisfies unanimity and is
neutral monotonic: for all A, B ⊂ S, C*, C'* ∈ Mk,

{i: A ∈ Ci} ⊆ {i: B ∈ C'i} ⇒ [A ∈ f(C*) ⇒ B ∈ f(C'*)]

if and only if it is oligarchic (Raderanirina 2001, Monjardet and Raderanirina 2004,
by particularization of Monjardet 1990)

with many related results on special cases of closure systems, choice functions, …

- the above result applies to the unanimity rule ck.
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Discussion

Significant results were obtained, especially for quota rules (including majority rule)

A limitation:
Quota rules, and related methods only take into account presence or absence of
closed sets in a significant number (oligarchies, majorities) or in all (unanimity)
elements of the profile:

• Small q: lack of significance of the consensus

• Consensus closed sets vanish when q increases. Unless the elements of the profile
C* are close to each other, cq(C*) may become trivial
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• Actual common features not recognized: see the 2-profile below

a b c d e

ab

abc

de

cde

S

∅

a e b c d

ae cd

abe bcd

S

∅

No common non trivial closet set
Common association of: ab, bc, cd
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A possible consensus closure system for σ = 2 (unanimity on nestings):

a b c d e

ab

S

∅

bc cd

For a finer approach, we consider implications and their overhangings variant
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Adams' intersection rule (1972, 1986) for the consensus of classification trees:

• S ∈ a(C*)
Let C be an obtained class,
• select the maximal C'i 's in Ci s.t. C'i ⊂ C,
• For a tuple (C'1, C'2, …, C'k), set C' = ∩1≤i≤k C'i ∈ a(C*),
and iterate…

A B C D E GF NH L M
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Adam's Theorem

Let us associate to a tree H its nesting order Œ on 2S:
A Œ B if A ⊂ B and HA ⊂ HB

HA is the smaller class in H including A

Given a profile H* = (H1, H2, …, Hk) of hierarchical classification systems
with overhangings/nesting orders Œ1, Œ2, …, Œk

Adams' tree is the unique tree H (with nesting order Œ) s.t.:

(A1) ∩1≤i≤k Œi ⊆ Œ (preservation of unanimity)

(A2) H, H' ∈ H and H ⊆ H' imply (H, H') ∈ ∩1≤i≤k Œi (qualified nestings)
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Discussion (2)

Quota rules:

- sensitive to noising (existence of common classes required)
- take frequencies into account

Adams rule:

- able to provide new classes (based on common subclasses)
- does not take frequencies into account

• what about other closure systems than trees?
• other frequencies than unanimity ?
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Implication relation (of a closure system)

A binary relation → on 2S: A → B if every closed set containing A also contains B

Characterization (complete – or full – implication system CIS, Armstrong 1974):

(I1) B ⊆ A  ⇒  A → B,
(I2) A → B  and  B → C   ⇒   A → C,
(I3) A → B  and  C → D   ⇒   A∪C → B∪D.

Important literature (databases, lattice or symbolic data analysis, data mining,…),
with strong results (existence of a canonical implication basis, Maier 1983, Guigues
and Duquenne 1986)

Survey by Caspard and Monjardet (2003)
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Overhanging/nesting order (of a closure system)

A binary relation Œ on 2S: A Œ B if A ⊂ B and not A → B
(there exists a closed set containing A and not B)

Example: Adams' nestings for hierarchical CS's

Characterization (Domenach and L. 2003):

(O1) A Œ B  ⇒  A ⊂ B,
(O2) A ⊂ B ⊂ C  ⇒  [A Œ C  ⇐⇒  A Œ B or B Œ C],
(O3) A Œ A∪B  ⇒  A∩B Œ B.

From (O1) and(O2), Œ is a strict order on 2S.
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Cryptomorphisms… Four isomorphic or dually isomorphic lattices

M set of all closure systems on S, C set of all closure operators on 2S,
I set of all complete implication systems on S,
O set of all complete overhanging orders on S, among others…

M C I O
2S (maximum) ϕmin = id2S

(minimum)
{(X, Y) ∈ (2S)2:
Y ⊆ X} (minimum)

{(X, Y) ∈ (2S)2: X ⊂ Y}
 (maximum)

{S} (minimum) ϕmax(A) = S
 (maximum)

(2S)2 (maximum)   ∅ (minimum)

join M∨M' meet (pointwise
intersection)

meet I∩I' join Œ∪Œ'

meet M∩M' join join I∨I' meet Œ∧Œ'
{S, A}, A ⊂ S
(join irreducible)

ϕ(X) = A if X ⊆ A;
ϕ(X) = S otherwise
(meet irred.)

(2A)2∪{(X,Y) ∈ (2S)2:
A ⊆ X} (meet irred.)

{(X,Y) ∈ (A] × (2S –(A]):
X ⊂ Y} (join irred.)

{X ⊆ S: A ⊆ X ⇒ s ∈
X}, A ⊂  S , s  ∈ S-A
(meet irred.)

ϕ(X)= X+s if A ⊆ X
ϕ(X) = X otherwise
(join irred.)

{(X, Y) ∈ (2S)2: X ⊆ Y
or A ⊆  X , Y = X+s}
(join irred.)

{(X,Y) ∈ (2S)2: X  ⊂  Y} –
{(X,Y) ∈ (2S)2: A ⊆ X, Y =
X+s} (meet irred.)



27

Overhanging orders  (special cases)
(Domenach and L. 2004-2007…)

• Classification systems: (O1), (O2), (O3) and
(OE) ∅ Œ {s} for any s ∈ S,
(OS) A ∉ {∅, {s}} ⇒ {s} Œ A∪{s}, for all s ∈ S.

• Nested families: (O1), (O2) and
(ON) A Œ C and B Œ C ⇒ A∪B Œ C.

• Trees of subsets: (O1), (O2), either (ON) or (OE) and
(OT) A Œ C and B Œ C ⇒ A∪B Œ C or A∩B = ∅ (Adams' axiom) .

• Distributive CS: (O1), (O2) and
(OD) s ∈ S, A ⊆ S, and {a} Œ {a, s} for any a ∈ A ⇐⇒ A Œ A∪{s}.

• Convex geometries: (O1), (O2), (O3), (OE) and
(OC) A∪B ⊆ C, A∩B Œ C ⇒ A Œ C or B Œ C.
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Fitting overhangings: a dual closure

Data: a binary relation R on 2S, with (A, B) ∈ R implies A ⊂ B,

Problem: find an overhanging approximation of R.

An obvious solution: since
• O is ∪-stable,
• The empty relation ∅ is the minimum of O,

there is a dual closure operator ω on 2(2S)2

ω(R) = ∪{Œ ∈ O: Œ ⊆ R}.

Getting R ⊆ ω(R), while there are reasons to prefer an approximation "from the top".
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Fitting overhangings: a uniqueness result (Domenach and L. 2004)

Given a binary relation R on 2S, with (A, B) ∈ R implies A ⊂ B,
there is at most one closure system C (with overhanging order Œ) satisfying:

(AR1) R ⊆ Œ (preservation of R)
(AR2) For any meet-irreducible M of C, (M, M+) ∈ R (qualified overhangings)

Remark: (A2) is a (very) partial converse of (A1)

Proof. Assume that both C and C' satisfy (AR1) and (AR2). Observe first that S belongs to C
and C'. If the symmetric difference CΔC' is not empty, let C be a maximal element of CΔC'.
Assume without loss of generality that C belongs to C. If C was not a meet-irreducible C, it
would be an intersection of meet-irreducibles, all belonging to both C and C' and, so, C would
belong to C', and not to CΔC'.
Thus, C is covered by a unique element C+ of C , with C+ ∈ C'. By (AR2), the pair (C, C+)
belongs to R and, by (AR1), C Œ' C+. Set C' = ϕ'(C). We have C ⊂ C', since C ∉ C', and C' Œ'
C+, since C' = ϕ'(C) = ϕ'(C') ⊂ ϕ'(C+) = C+. But C ⊂ C' implies C' ∈ C, with C ⊂ C' ⊂ C+, a
contradiction with the hypothesis that C+ covers C in C.
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Adams theorem: • hierarchical case
• R = ∩1≤i≤k Œi
• axiom (AR2) is weaker than particularized (A2)

and existence guaranteed by Adams algorithm!

The solution for (AR1) and (AR2) does not always exist

Example 1: R = ∅, solution C = {S}

Example 2: R = {(A, S)}, with A ⊂ S, solution C = {A, S}

Example 3: R = {(A, B)}, with A ⊂ B ⊂ S, no C satisfying (AR1) and (AR2)
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Properties

• If R satisfies Conditions (O1) and (O2), then there exists a closure system C
satisfying Conditions (AR1) and (AR2).

• Approximation "from the top": if Œ satisfies Conditions (AR1) and (AR2), then,
for any overhanging order Œ',

R ⊆ Œ' ⊆ Œ implies Œ' = Œ.

What about the consensus case?
A profile C* = (C1, C2, …, Ck) of closure systems
A minimal frequency requested on nestings (fixed σ ≤ k)

Set R = ∪I⊆K, |I|≥σ ∩1≤i≤k Œi (then, ω(R) corresponds to cq(C*))

- Adams' intersection method: trees, σ = k.
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In terms of overhangings

(FO) for all A, B ⊆ X, |{i ∈ K : A Œi B}| ≥ p implies A Œ B,
(frequent overhangings preservation)

(QO) for all M ∈ M(C), |{i ∈ K : M Œi M+}| ≥ p.
(qualified overhangings)

In terms of implications

(FI) for all A, B ⊆ X, A → B implies |{i ∈ K : A →i B}| ≥ k – p,
(frequent implications preservation)

(UI) for all M ∈ M(C), |{i ∈ K : M →i M+}| < k – p.
(disqualified implications)
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Back to kangaroo rats

σ = 2

A B C D E GF NH L M

- includes the majority classes
- brings further ones : ABC, ABD, with reasons to distinguish them from
larger groups
- no longer a tree
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a b c d e

a b c d ea b c d e

a b cd e

ab ad

abc

S

∅
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Conjecture: for a relation R = ∪I⊆K, |I|≥σ ∩1≤i≤k Œi,

there always exists a closure system satisfying Conditions (AR1) and (AR2).

Two kinds of problems

• Possibility results and algorithms

• Impossibility results


