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2. unary implicational system

*Unary implicational system 2 on S : binary relation between P(S) and S

denoted UIS :
> LP(S) xS
Implication : pair of the binary relation P remis@

(B,x) 2 denoted B+= x

<\< Conclusion >

*Implicational system >° on S : binary relation on P(S), denoted IS:

2¢ [0 P(S) x P(S)

*To every IS, one can associate an unique UIS as follows:

B_-AOX o [Box:x0OA) OZX



F.: closure system

*A subset X [] S verifies the implication B - x [I2 if

B XUOxOX

*To every UIS 2 one can associate the family F; of all the subsets of S

verifying all the implications of 2

F.={XUS:Xverified B - xforallB - x[ 2 }

e Two UIS 2 and 2 ’ areequivalent when F;=F,

*F; is a Moore family (i.e. closed under intersection, and containing S)

L (F,, ) 1salattice

*F; is a closure system [] itis associated to a closure operator ¢,




¢,: closure operator

*To every closure system F; on S, one can associate a closure operator ¢,
defined on P(S), for X I S :

¢, (X) = smaller subset of F; containing X = n {FUOF; : X [F}

*F; is the set of fixed points of ¢,.
F,= (FOS:F=0,(F) )

¢, is, with X, X [0S
* idempotent: d; (¢; (X)) =0, (X)

* extensiv: X O ¢s (X)

* isotone: XOX 'O ¢, (X)Oos (X)



S ={ab,c,d.e}
2 ={ a — b,
ac —» d,

e —» a}




S ={ab,c,d.e}
Z={ d — b,
ac —» d,

e —» a}
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Closure systems
and Galois lattice

Closure system
on objects

Closure system
on attributes

‘ Galois lattice ‘




Some properties of UIS

* An UIS 2 is pure if x [J B for every implication B - x [ 2.
*An UIS 2 is minimal iff, [IB - x, 2\ {B - x } is not equivalent to 2

*An UIS 2 is minimum iff 2] <12 [12' equivalent:

*For every UIS 2, the closure ¢, (X), with X [ S, is obtained by several

iterations over the implications of 2
« ¢, (X)= (X) U mX) UmeX) O....
ewith MX)=XUO{x:XOBandB - x %}

*An UIS 2 is direct iff: ¢, (X) = T(X)



Equivalent UlSs

UlSy
o

[] let us consider the set of all

« 1§ composed
pure and equivalent UISs of implications

included in »

ordered by inclusion

of their implications ®
UIS x



Equivalent UISs

4 An unique maximal UIS
denoted the full UIS 2.
direct UIS
< 2. ={X - ¢, X)\X: XIS}
N
/

An unique minimal UIS between
all the direct UIS, denoted

the canonical direct basis (CDB) 2 ,

non direct <
UIS

everal minimal UIS, but an
unique minimum UIS denoted

the canonical basis (CB) 2 ___




Example

The canonical direct basis CDB
2,={a-b,ac-d,e-a e-b,ce->d}

Not minimal between all the equivalent UIS:

(e > bor ce - d can be deleted)

eDirect (only one iteration to compute every closure)

*Minimal between all the direct UIS

(there exist no smaller direct UIS)




Identity between basis

The following basis are equivalent to the canonical direct basis 2
(Bertet, Monjardet, 2005) :

e The left minimal basis (Demetrovics et Hua, 1991 ) also denoted
the proper implications in data-mining (Bastide et Taouil, 2002), or
the fonctional dependencies in data-bases (Maier, 1983)

» The canonical iteration free basis (Wild, 1994) defined using
free subsets.

» The weak implication basis (Rush et Wille, 1996) defined using
minimal transversal of a family.

* The optimal constructive basis (Bertet et Nebut, 2004) defined
by a generation way




The left minimal basis X

Im

Demetrovics et Hua (1991)

Zlmz{B—) X

Zlm={B_’ X

xJ¢ (B) \ B and B minimal }

: Bo xU2,andforall Y UB, Y- xU2; }

e Proper implications in data-mining, Bastide et Taouil (2002)

* Functional dependencies in data bases, Maier (1983)




The left minimal basis X

Im

* ¢, (ac) = abcd
[J ac - bUZ,

*p, (a)=ab

[] a-»bDZlm

2. ={a-b,ac - d, e - a,

e -b,ce->d}




The canonical iteration
free basis >

Wild (1994)

2.={B- x : xU¢(B)\1(B) and B is a free subset}

with:
e X IS free subset if, for all x I X, x 1 (X \ x)
eTUX)=XUO{¢(Y):YUXand ¢CY) I d(X) }




The canonical iteration
free basis >

* ac is a free subset since a [Id; (c) and ¢ LI, (a)
* ¢, (ac)= abcd
e Ti(ac) =ac U ¢, (a) U ¢py(c)=ac I ab [l c= abc

Jac - dUOZ,

2.={a-b,ac - d, e - a,

e->b,ce->d}




The weak implication
basis 2

weak

Rush and Wille (1996)

2 =1 b- X : bblockade 10r X ;|

weak —

where a blockade for x is a minimal transversal of the family
F(x) = { S\ (F+x) : F copoint of x }

A copoint of x 1s a maximal closed set of F that doesn't contains x

Equivalently a copoint of x is a meet-irreducible m of F such that ¢,(x) 1 m



The weak implication
basis 2

weak

e copoints of d: F = { bc, abe }
e Minimal transversal of F_ : {ac, ce}
Ja -dU2

Jce-dU2

2. ..=1a->b,ac - d, e - a,

e->b,ce-d}




The basis associated to the

dependance relation 2,

Monjardet and Caspard (1990, 1997), Bertet (2004)

24p={ B+y - x : x 0,y and B is minimal }
where 0, is the dependance relation of F valuated by subsets of S:

x 9.y iff x,y¢(B) and x U P(B+y)

The dependance relation can also be defined using arrows relations



The basis associated to the
dependance relation 2,

ca,e P(@ and alld(e)
0 age U e-allx,,
e c,d¢(a) and d [ ¢P(ac)

0 doc O ac-dUZ,,

Zdepz{aab,a(:—»d, e — a,

e >b,ce->d}




Horn clauses

Bijection:

Fonctions booléennes sur P(S) < Famille sur S

/
Exemple:

Simplication f =abc'd'+ab'cd'+ab'c'd < F={ab,ac, d}
(recherche des

implicants

premiers)
Probleme NP

/ En particulier:

Fonctions booléennes de Horn sur P(S) < Famille de Moore sur S




Link with Horn clauses

Une fonction de Horn est une formule propositionelle telle que:
eles disjonctions de la FND admettent une seule variable complémentée
eles conjonctions de la FNC admettent une seule variable non complémentée

[1 on parle d' implicants premiers

Bijection
(Bertet, Monjardet- 2005)

Implicants premiers < Implications de 2,

Exemple:

abd - a+4b+d < ad - b
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Algorithmical aspects

Four main generation problems:
1. How to generate a closure ¢, (X) ?
2. How to generate the family F ?
3. How to generate the canonical basis 2 __?

4. How to generate the canonical direct basis 2 ;?

Problems 2. 3 and 4: Generation are « output sensitive » since

2 ,: can be exponential in |I2|,with X equivalent, or in S|

* I : can be exponential in [2_| or in ISI

[1 complexity is expressed for :
e the generation of one closed set of F (P-complete)

e the generation of one implication of 2__or Z_, (NP, open problem)



Generation of a closed set ¢,
(X)

How to generate a closed set §,(X), with X []S ?

*Using any UIS or the canonical basis 2 _ :

when not direct, several iterations over the implications are performed

Linclosure : O(IZ_,_| ISI?)
Mannila, Raihd, 1992)

*Using a direct UIS or the canonical direct basis 2 ;:

when direct, only one iteration over the implications is needed

O(I1Z 4l ISI)
Bertet, Nebut, 2004)




Generation of a closed set §,(X)

Generation of ¢, (ce) by 2 iterations using
the canonical basis (minimal and minimum, but not direct)
$, (ce) = cellm(ce) 1(ce)=ceJallb

2..={a-b,abc -d, e - a}

Generation of ¢, (ce) with 1 iteration using

the canonical direct basis (direct, not minimal,

but minimal between all the direct UIS):

¢, (ce) = cellm(ce) = ce [ bd

2,=fa-b,ac-d,e-a e-b, ce-d}




Generation of the family F

How to generate the whole family F 5 (thus a lattice) ?

* from any UIS 2 :

F,= ¢, (@0{¢,x):x0S} O{¢, (FOF): FFOF, }

per closed set of Fs : O(ISPc(¢p)) Next Closure (Ganter, 1984)

with c(¢), coast of one closed set generation

| ISI*)

e from the canonical basis : O

can

e from the canonical direct basis: Oz | ISP)




Generation of the canonical
basis

How to formally define the canonical basis ?

e The canonical basis 1s defined as an IS (not an UIS)
* Thus one can associate an unique UIS to the canonical basis

* The definition of the canonical basis definition based on pseudo-closed
sets (Guigues Duquenne 1986 ):

2 ={P - ¢,(P)\P with P S pseudo-closed set }




Generation of the canonical
basis

How to generate the canonical basis ?

eFrom a context (Ganter, 1984): Next Closure algorithm

*From an equivalent UIS 2. first minimize 2 before to replace premisses
by pseudo-closed sets

Exponential generation per implication

(open problem)

Incremental generation of the canonical basis ?

e Attribute-incremental generation from a context (Obiedkov, Duquenne, 2003)

Exponential generation per implication, competitive in practice



Generation of the
canonical direct basis

How to generate the canonical direct basis ?
*From an equivalent UIS 2 : (Wild, 1995) (Bertet and Nebut, 2004)

Generation of an intermediate direct UIS whose size is, in the worst

case, exponential in S. Simple to implement.

Incremental generation of the canonical direct basis ?
*From an equivalent UIS 2 : (Bertet 2006)

The size of the intermediate direct UIS that has to be generated is

reduced. Very competitive in practice. Simple to implement.

Exponential generation per implication

(open problem)




Generation of the
canonical direct basis

Generation of 2, from an

direct UIS< equivalent UIS 2

O(ISIIZ )
(Wild, 1995)
(Bertet Nebut, 2004)

<

non direct UIS

e 2, 1s an intermediate direct UIS

generated before to be minimized.

e size of 2 1s, in the worst case
exponential in S.
[1 exponential complexity per
implication



Generation of the
canonical direct basis

(Wild, 1995) (Bertet and Nebut, 2004)
Generation of an intermediate direct UIS whose size is, in
the worst case exponential in S.

From any equivalent UIS 2 :

1) first, recursively apply the make-direct treatment
(to obtain the equivalent intermediate direct UIS 2))

« forall B> x and C+x - d,add B[IC->d »

2) then apply the make-minimal treatment
(to obtain the canonical direct basis 2 ,)

« forall A> x and C - x, delete A—- b when C[]A »




A joint use of the two
canonical basis

(Bertet, Guillas, Ogier - ICFCA'07) Proposition of the joint use of:
the canonical direct basis (for algorithmical aspects since direct)

and the canonical basis (minimal description, without redundancy)

e Definition of a two-level

lexicographic tree as a data-structure
to efficiently handle the two basis

* Implementation of a java class Rule

to handle UIS and their basis

2,=fa-b,ac-d,e-a e-b,ce-d} a7l el




A joint use of the two
canonical basis

A joint use of the two
basis

The canonical
basis

The canonical
direct basis

Description

No redondancy

With redondancy
(since direct)

Number of implications

Minimal

Minimal between
direct UIS

Algorithmical use

Several iterations to
compute one closed sef

One iteration to
compute one closed set

Exponential per

Exponential per

Generation . . . .
implication implication
, Addition of a new Addition of a new
Incremental generation . . ..
attribute implication




Incremental generation of
the canonical direct basis

The incremental generation algorithm consists in limiting the size of the
intermediate direct UIS:
e that have to be recursively generated by the make-direct treatment
e before to be minimizing by the make-minimal treatment.

2 ,1s obtained from an UIS 2 = { Bi1 - xi:1< n} by successively compute
the canonical direct basis

Zi — (Zi-l [] {Bl — Xl} )cd
thus %; ={Bl - x1}
and Zn — ch

Generation of 2; from 2, ;: [ Incremental generation of 4 from >:
O(ISI.IZ;|(Bil+D)) O(IS].2(BOIB1I* ... *[Bnl)




Incremental generation
of Z

How to generate 2; from 2 ; »

1. first, apply a restriction of the recursive
make-direct treatment (main Theorem)
2. then apply the make-minimal treatment

Main Theorem: the make-direct treatment has to be non recursively applied to
subsets of implications of Z; containing:

e the implication Bi — xi (since Z; is a canonical direct basis )
eand at most IBil implications of Z;

[1 Using other subsets of implications, non minimal implication will be generated.
[l The size of the intermediate direct UIS that have to be generated is limited.



Experimentation 1

UIS are randomly generated with [SI=7

Number of implications 5 10 15 20| 25

Conceptsnumber 48 34 13 6 | 5

Size of the canonicalbasis 5 6 10 9 | 5

Size of the canonical direct basis 11| 9 25 26 | 7
Generation of the canonical direct basis .....

... by the global algorithm 37 10 214 257 26

... by theincremental algorithm 2 0 14 4 | 3

« (number of
implications of
the intermediate

\_ direct UIS)




Experimentation 2

UIS are randomly generated with 15 implications

Size of the setofelementsS 5 6 7 8 | 9

Conceptsnumber 5 | 10 | 14 14| 89

Size of the canonical basis 4 5 11 10|12

Size of the canonical direct basis 6 11 24 32 | 54
Generation of the canonical direct basis .....

... by the global algorithm 5 27 225 653|698

... by theincremental algorithm 1 0 17 9 | 18

« (number of
implications of
the intermediate

\_ direct UILS)
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Lattice theory
Closure

Concept Lattice ] g
lattice S . > system
Maximal A
antichains | A

p lattice canonical (direct)
Reduced context "~ Reduced ] _basis
N _bipartite order L )
Equivalent contexts « equivalent » order Equivalent
N \ implicational systems
N 7\ J X ~
g g i
Formal Concept Purtially ordered h Data Mining
Analysis artially ordered sets theory Data bases.
Propositional

Data Mining logic.



Data mining

« Est-il possible d'extraire quelque chose d'intéressant des grandes
quantité de données existant actuellement ? Et comment ? »

ECD (ECBD): Extraction de connaissances a partir de données
(entrepots de données)

KDD: Knowledge Discovery in big Databases

Processus d'ECB: « extraire dans des grands volumes de données des
éléments de connaissances non triviaux et nouveaux pouvant avoir un
sens et un intérét pour etre réutilisés »

Fouille de données (data-mining): un traitement du processus
d'extraction de connaissances



Processus d'extraction des
connaissances

© 1-F. Boulicaut



Binary datas

C/P o chips moutarde saudsse  boisson douce  biére

=1
2

x
X
X

= o= = X

>
H oOHE ®H =B = = H

X
X X

= o= = H

Objects,
persons, ...

)

\

Attributes,

\

features,

descriptors,

_/

Binary relation or contexte




Data mining

Objectives of data mining:

Classification: to associate a class to an object depending on its
attributes. Classification needs two stages:

Learning stage from an inital set of classified objects

Classification stage of objects

Segmentation: to form homogeneous groups of objects
depending on their attributes.

The most usual

Two kinds of models of data-mining: symbolic models

Numerical models for numerical datas are linked with

statistical model, Markov model, bayes model, new lattice theory

Symbolic models for binary datas (context)

association rules. Galois lattice. decision tree. .....



Association rules

X={biere, saucisse, moutarde}: item of support 0.4
X'={biere, saucisse}: item of support 0.6

{Biere, saucisse} — {moutarde}: association rule with confidence 0.66

« 1f a person buysaucisse and biere, then it will by moutarde with a
probability of 0.66 »

/P chips moutarde saudsse  boisson douce  biére
1 X X
-2 X X X X
a3 X

4

CH X
Ch
7
8
ca
1 X X X

HOH ®H H =X H =X
=
A A

= o X =
=




Association rules

Association rules: two items A — B

Support of a rule: support (A [1 B)

Confidence of the rule: support (A [1 B) / support (A)

Valid association rule: association rule with a confidence
greather than a minimal confidence

 Exact assocation rule: association rule with 1 as confidence

Exact association rules are implications.
The two basis are used to generate all valid association rules.
The canonical direct basis 1s denoted as

e Proper implications, Bastide et Taouil (2002)

e Functional dependencies, Maier (1983)




Galois / concept lattice

Example of concepts:(abd,12), (bd,123),
Relation on concepts: (abd,12) = (bd,123)

Context

Galois lattice




Lattice and decision tree

Property: (Guillas, 2005)

« Every decision tree issued from a context Concept lattice

1s included 1n the concept lattice
associated to this context »

12345678910

’ 7
(2 :

34567810 678910
b2
345678 67810
b2 c2 a2 b2

al a2bl b2cl c2

Decision tree

12345678910

* Smaller size * Biger size
* Fast classification * Several ways of classification
[l approprite for exact datas [1 appropriate for noised datas



Recognition of noised
symbols

Classification with a lattice (Guillas, 2005):

Learning stage:

1- Extraction of a signature from images of symbols
2- Discretization of signatures according to their class
3- Generation of the concept lattice from the discretized data

Classification stage

4- Recogt[mi(in of a noisy symbol by navigation into the lattice

b

Symboll.bmp Symbeol2.bmp Symbeol3.bmp Symbeold.bmp Symbol5.bmp

w g g =

Symbol6.bmp  Symbol7.bmp  Symbol8.bmp  Symbol9.bmp Symboll0.bmp’




Experimentation

90 noisy symbols
of class 1
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Experimentation

Size ofthesetSofelements 7 8 8 6 @7

Conceptsnumber 20 42 24 25 23

Recognition rate 98,6 99,2 99,2 98,9 99,2

Size of the canonical basis 33 62 32 31 32

Size of the canonical direct basis 280 779 724 103 293

Generation of the canonical direct basis ..........

... by the global algorithm 30 112 46 32 39

... by theincremental algorithm 17 | 25 21 14 17




