Cyclic Ordering through Partial Orders

Stefan Haar

INRIA / LSV (ENS Cachan + CNRS France)

Nov 17, 2010

Stefan Haar INRIA / LSV (ENS Cachan + CNRS France) Cyclic Ordering through Partial Orders

Cyclic Orders and Orientability

6 Conclusion

2 Windings

- Separation and Saturation
- 4 Characterization of Orientability

5 Conclusion

In girum imus nocte et consumimur igni

Cyclic Orders

Let \triangleleft be a ternary relation over set \mathcal{X} . Then $\Gamma = (\mathcal{X}, \triangleleft)$ is a **cyclic** order (*CyO*) iff it satisfies, for $a, b, c, d \in \mathcal{X}$:

- **()** inversion asymmetry: $\triangleleft(a, b, c) \Rightarrow \neg \triangleleft(b, a, c)$
- **2** rotational symmetry: $\triangleleft(a, b, c) \Rightarrow \triangleleft(c, a, b);$

③ ternary transitivity: $[⊲(a, b, c) \land ⊲(a, c, d)] \Rightarrow ⊲(a, b, d)$. A *CyO* $\Gamma_{tot} = (X, ⊲_{tot})$ is called **total** or a *TCO* if for all $a, b, c \in \mathcal{X}$,

$$(x \neq y \neq z \neq x) \Rightarrow \triangleleft (a, b, c) \lor \triangleleft (b, a, c).$$

If a total *CyO* Γ_{tot} on \mathcal{X} extends Γ , call Γ orientable, and Γ_{tot} an orientation of Γ .

Cyclic Orders and Orientability

Windings Separation and Saturation Characterization of Orientability Conclusion

Cyclic Transitivity

- * 母 * * き * *

-

Short History

9 . . .

- Huntington (1916,1924,1938) introduces cyclic (total) order over words of variable length
- Partial Cyos as *ternary relations*, orientability problem:
 - Power({Alles, Nešetřil, Novotny, Poljak, Chaida}) (1982,1984,1985,1986,1991,1994,...),
 - Galil and Megiddo (1977)
 - Genrich (1971): links to synchronization graphs (conflict free Petri nets)
 - Petri: Concurrency Theory; Rozenberg et al: Square structures

イロト イポト イヨト イヨト

• Stehr (1998) axiomatizes partial cyclic order over words

(Some) known results

- Orientability is NP-complete (Megiddo 1976, Galil and Megiddo 1977)
- Compactness: a Cyo is orientable iff all its finite sub-CyOs are (Alles, Nešetřil, Poljak 1991)
- Genrich 1971, Stehr 1998: orientable finite CyOs correspond to 1-safe live Synchronization Graphs

(4 同) (4 日) (4 日)

• HERE: explore new link with partial orders : WINDING

Cyclic Orders and Orientability

Windings Separation and Saturation Characterization of Orientability Conclusion

Non-Orientable CyOs

- 《圖》 《문》 《문》

Stefan Haar INRIA / LSV (ENS Cachan + CNRS France) Cyclic Ordering through Partial Orders

Preliminaries : Global vs round-orientedness

- Ii $\triangleq \{(x,y) \mid \exists z : \triangleleft(x,y,z) \lor \triangleleft(x,z,y)\}$
- $co \triangleq \mathcal{X}^2 (\mathsf{id}_{\mathcal{X}} \cup \mathsf{li})$
- Rounds: Maximal cliques of li
- cuts: Maximal cliques of co
- $\Gamma = (\mathcal{X}, \triangleleft)$ is **round-oriented** (*ROCO*) iff for any round $\{a, b, c\}$, either $\triangleleft(a, b, c)$ or $\triangleleft(b, a, c)$.

Not a ROCO:

Cyclic Orders and Orientability

3 Separation and Saturation

4 Characterization of Orientability

5 Conclusion

Shifts and Windings

Definitions

• Fix poset $\Pi = (\mathcal{X}, <)$. An order automorphism is a bijection $\mathbf{G} : \mathcal{X} \to \mathcal{X}$ such that $\forall x, y \in \mathcal{X} : [x < y] \Leftrightarrow [\mathbf{G}x < \mathbf{G}y]$.

イロト イポト イヨト イヨト

- **G** is called a **shift** if $x < \mathbf{G}x$ for all $x \in \mathcal{X}$
- The group ${\mathcal G}$ of $\Pi\mbox{-}automorphisms$ generated by ${\bm G}$ is isomorphic to $({\mathbb Z},+)$
- Equivalence : $\overline{x} \sim_{\mathbf{G}} \overline{y}$ iff $\exists \ k \in \mathbb{Z}$: $\mathbf{G}^k \overline{x} = \overline{y}$

• Let
$$[\overline{x}] \triangleq [x]_{\sim_{\mathsf{G}}}$$

• LEt $\beta_{\mathbf{G}} : \overline{\mathcal{X}} \to \mathcal{X}$, $\overline{\mathbf{X}} \mapsto [\overline{\mathbf{X}}]_{\sim_{\mathbf{G}}}$ be the winding map.

Winding a shift-invariant PO to a CyO

Windings and their Properties

- Set $\triangleleft(x, y, z)$ iff $\exists \ \overline{x} \in x, \ \overline{y} \in y, \ \overline{z} \in z \ : \ \overline{x} < \overline{y} < \overline{z} < \mathbf{G}\overline{x}.$
- $\Gamma = (\mathcal{X}, \triangleleft)$ is wound from Π via **G** (or $\beta_{\mathbf{G}}$)
- Note : this leaves more concurrency than the usual construction of CyO from a poset: ⊲(x, y, z) iff ∃ x ∈ x, y ∈ y, z ∈ z : x₀ < y₀ < z₀.
- Inheritance: If Γ_1 is obtained by winding, then so are all its Sub-CyOs.
- We say that a winding is loop-free iff for all x̄ ∈ X̄, there exist ȳ, z̄ ∈ X̄ that x̄ < ȳ < z̄ < Gx̄. Loop-free windings generate ROCOs.

イロト イポト イヨト イヨト

Mind the Gap !

Not all windings preserve successor relations

< 同→ < 三

Mind the Gap !

- Let x < y iff
 - 🚺 x li y and
 - **2** for all $z \in \mathcal{X} \{x, y\}$, x li z and z li y imply $\triangleleft(x, y, z)$.
- x̄ covers ȳ from below, written x ⊻ y, iff (a) x̄ < ȳ, and (b) for all z̄ ∈ X, z̄ < ȳ implies z̄ < x̄.
- \overline{y} covers \overline{x} from above, written $y \overline{\wedge} x$, iff (a) $\overline{x} < \overline{y}$, and (b) for all $\overline{z} \in \mathcal{X}$, $\overline{x} < \overline{z}$ implies $\overline{y} < \overline{z}$.
- In $(\mathcal{X}, \triangleleft)$, x covers y, written $x \triangleright y$, iff (a) x li y, and (b) for all $z, u \in \mathcal{X}, \triangleleft(z, u, y)$ implies $\triangleleft(z, u, x)$.
- A gap in $(\overline{\mathcal{X}}, <)$: x < y holds, but neither $x \overline{\land} y$ nor $y \ \leq x$.
- A gap in $(\mathcal{X}, \triangleleft)$: $x \triangleleft y$ holds, and $x \triangleright y$ does not hold.
- Suppose $(\overline{\mathcal{X}}, <)$ is gap-free and $\beta_{\mathbf{G}}$ winds $(\overline{\mathcal{X}}, <)$ to $(\mathcal{X}, \triangleleft)$. If $\beta_{\mathbf{G}}$ is loop-free, then $\beta_{\mathbf{G}}$ maps $< \cdot$ surjectively to \triangleleft .

4 Characterization of Orientability

5 Conclusion

Separation properties

Definitions

- A cut c is called a separator iff c ∩ O ≠ Ø for all O ∈ O(Γ), and
- a cycle separator iff $\mathbf{c} \cap \gamma \neq \emptyset$ for all $\gamma \in \mathcal{D}(\Gamma)$
- Γ is called weakly (cycle) separable iff there exists a (cycle) separator c ∈ C(Γ), and
- strongly (cycle) separable iff all its cuts are (cycle) cuts.
- If some superstructure cyclic order Γ' of Γ is (strongly) cycle separable, then Γ is called (strongly) saturable.

(日) (同) (日) (日)

• Every total *CyO* is strongly separable.

Separation properties

Cycle separation implies round separation; the converse is not true:

2 Windings

3 Separation and Saturation

Characterization of Orientability

5 Conclusion

Main Result

THEOREM

0

2

Let $\mathcal{X} \neq \emptyset$, and $\Gamma = (\mathcal{X}, \triangleleft)$ a *ROCO*. Then the following are equivalent:

Γ is weakly saturable;

there exists a winding representation for Γ , i.e. a partial order $\Pi = (\overline{\mathcal{X}}, <)$ with shift **G** such that $\mathcal{X} = \overline{\mathcal{X}}_{/_{\mathsf{G}}}$, and ϕ_{G} winds Π to Γ ;

(4 同) (4 日) (4 日)

Γ is orientable.

Sketch of Proof

$1 \Rightarrow 2$

Saturability to winding: Given $(\overline{\mathcal{X}}, <)$ and **c**, set $\overline{\mathcal{X}} \triangleq \mathcal{X} \times \mathbb{Z}$, $x_k \triangleq (x, k)$. Let $\mathbf{G} : \overline{\mathcal{X}} \to \overline{\mathcal{X}}$ be given by $\mathbf{G}x_k = x_{k+1}$ for $k \in \mathbb{Z}$. $\mathcal{R}_0 \triangleq \{(a_0, b_0) \mid a \in \mathbf{c} \land a \text{ li } b\}$ $\cup \{(a_k, a_{k+1}) \mid a \in \mathcal{X}, \ k \in \mathbb{Z}, \ l \in \mathbb{N}\}$ $\prec \triangleq \{(a_{l+k}, b_{m+k}) \mid a_l \ \mathcal{R}_0 \ b_m, \ k \in \mathbb{Z}\}$ $< \triangleq \text{ transitive closure of } \prec$

< 同 ト < 三 ト < 三 ト

Sketch of Proof

$2 \Rightarrow 3$

Winding to orientability:

Take a weakly separable SuperPO Π_{\sharp} of Π , with separator and $\mathbf{c}_0.\mathbf{c}_k \triangleq \mathbf{G}^k \mathbf{c}_0$, and define $\mathcal{U}_k \triangleq \mathcal{U}_k^{\sharp} \cap \overline{\mathcal{X}}$, where

$$\mathcal{U}_k^{\sharp} \triangleq \bigcup_{\overline{y}_k \in \mathbf{c}_k, \quad \overline{y}_{k+1} \in \mathbf{c}_{k+1}} [\overline{y}_k, \overline{y}_{k+1}].$$

- The \mathcal{U}_k are pairwise disjoint and cover $\overline{\mathcal{X}}$
- Set $\Pi_k \triangleq (\mathcal{U}_k, <_k)$; **G** induces order isomorphisms $\mathbf{G}_{n,m} : \mathcal{U}_n \to \mathcal{U}_m$ from Π_n to Π_m .
- Take total ordering Π_0^{tot} on \mathcal{U}_0 that embeds $<_0$ (Szpilrajn !)
- Export Π_0^{tot} to \mathcal{U}_k via $\mathbf{G}_{0,k} \Rightarrow$ Done

Sketch of Proof

$3 \Rightarrow 1$

Orientability to saturability:

Let $\Gamma_{tot} = (\mathcal{X}, \triangleleft_{tot})$ be an orientation of Γ ; fix $x \in \mathcal{X}$.

- Let $\mathcal Y$ be a set disjoint from $\mathcal X$, and $\psi:\mathcal O\to\mathcal Y$ injective
- Set $A_x \triangleq \{ O \in \mathcal{O}(\Gamma) \mid x \notin O \}$ and $\mathcal{X}_x \triangleq \mathcal{X} \cup \psi(A_x)$
- Let $\iota_x : \mathcal{X} \to \mathcal{X}_x$ be the insertion of \mathcal{X} into \mathcal{X}_x .
- For every cycle $O \in A_x$, set $x_O \triangleq \psi(O)$
- For every edge [s_i, e_i] of O, let
 - $\triangleleft_x(s_i, x_O, e_i)$ if $\triangleleft_{tot}(s_i, x, e_i)$, and
 - $\triangleleft_x(s_i, e_i, x_O)$ otherwise.
- Check that $\Gamma_x = (\mathcal{X}_x, \triangleleft_x)$ is a superstructure of Γ that has $\mathbf{c}_x \triangleq \psi(\mathcal{O}(\Gamma))$ as a separator.

(人間) シスヨン メヨン

Winding a shift-invariant PO to a CyO

- 3 Separation and Saturation
- 4 Characterization of Orientability

Final Remarks

Outlook

- Characterization provides link to
 - concurrent process dynamics
 - Partial order properties
- The difficulty of cyclic orientation is lifted once a separator is known
- Future Work:
 - formalize abstraction mappings
 - Develop morphisms, study category of CyOs vs Posets
 - Investigate functorial properties (adjunctions etc ?)
 - Correlate (?) with topological coverings etc.
 - Things to explore : e.g. cyclic analogs of lattices ...