Critical points between varieties of algebras

P. Gillibert

November 2010

P. Gillibert

Critical points between varieties of algebras

• A similarity type \mathscr{L} is a set of symbols with a map $\phi : \mathscr{L} \to \{0, 1, 2, \ldots\}.$

- A similarity type ℒ is a set of symbols with a map φ: ℒ → {0, 1, 2, ...}.
- An element l ∈ L such that φ(l) = n is a n-ary operation symbol (n = 0 : symbols of constant.)

- A *similarity type* \mathscr{L} is a set of symbols with a map $\phi: \mathscr{L} \to \{0, 1, 2, ...\}.$
- An element l ∈ L such that φ(l) = n is a n-ary operation symbol (n = 0 : symbols of constant.)
- A *L*-algebra A is a non-empty set, with for each *n*-ary operation symbol *l* ∈ *L*, a map *l*^A: Aⁿ → A.

- A *similarity type* \mathscr{L} is a set of symbols with a map $\phi: \mathscr{L} \to \{0, 1, 2, ...\}.$
- An element l ∈ L such that φ(l) = n is a n-ary operation symbol (n = 0 : symbols of constant.)
- A *L*-algebra A is a non-empty set, with for each *n*-ary operation symbol *l* ∈ *L*, a map *l*^A: Aⁿ → A.
- For example :

- A *similarity type* \mathscr{L} is a set of symbols with a map $\phi: \mathscr{L} \to \{0, 1, 2, ...\}.$
- An element l ∈ L such that φ(l) = n is a n-ary operation symbol (n = 0 : symbols of constant.)
- A *L*-algebra A is a non-empty set, with for each *n*-ary operation symbol *l* ∈ *L*, a map *l*^A: Aⁿ → A.
- For example :
 - A group is an $\{*, -1, 1\}$ -algebra.

- A *similarity type* \mathscr{L} is a set of symbols with a map $\phi: \mathscr{L} \to \{0, 1, 2, ...\}.$
- An element l ∈ L such that φ(l) = n is a n-ary operation symbol (n = 0 : symbols of constant.)
- A *L*-algebra A is a non-empty set, with for each *n*-ary operation symbol *l* ∈ *L*, a map *l*^A: Aⁿ → A.
- For example :
 - A group is an $\{*, -1, 1\}$ -algebra.
 - A ring is a $\{+, -, \cdot, 0\}$ -algebra.

- A *similarity type* \mathscr{L} is a set of symbols with a map $\phi: \mathscr{L} \to \{0, 1, 2, ...\}.$
- An element l ∈ L such that φ(l) = n is a n-ary operation symbol (n = 0 : symbols of constant.)
- A *L*-algebra A is a non-empty set, with for each *n*-ary operation symbol *l* ∈ *L*, a map *l*^A: Aⁿ → A.
- For example :
 - A group is an $\{*, -1, 1\}$ -algebra.
 - A ring is a $\{+, -, \cdot, 0\}$ -algebra.
 - If *R* is a ring. An *R*-module is a $\{+, -, 0\} \cup \{\lambda_a \mid a \in R\}$ -algebra.

 An *identity* is a pair of well-formed expressions in variables, operations, and parentheses.

Identity

- An *identity* is a pair of well-formed expressions in variables, operations, and parentheses.
- For example distributivity, associativity...

Identity

- An *identity* is a pair of well-formed expressions in variables, operations, and parentheses.
- For example distributivity, associativity...
- An algebra *A satisfies* an identity if for each assignment of variables in *A* the evaluations of the terms are equal.

Identity

- An *identity* is a pair of well-formed expressions in variables, operations, and parentheses.
- For example distributivity, associativity...
- An algebra *A satisfies* an identity if for each assignment of variables in *A* the evaluations of the terms are equal.
- An {*, ⁻¹, 1}-algebra is a group if it satisfies the following identities :

$$x * (y * z) = (x * y) * z,$$

 $1 * x = x * 1 = x,$
 $x * x^{-1} = x^{-1} * x = 1.$

• A *variety* of *L*-algebras is the class of all *L*-algebras that satisfy a given set of identities.

- A *variety* of *L*-algebras is the class of all *L*-algebras that satisfy a given set of identities.
- The variety of groups, the variety of rings, the variety of *R*-modules where *R* is a given ring...

- A *variety* of *L*-algebras is the class of all *L*-algebras that satisfy a given set of identities.
- The variety of groups, the variety of rings, the variety of *R*-modules where *R* is a given ring...
- The class of all fields is not a variety.

- A *variety* of *L*-algebras is the class of all *L*-algebras that satisfy a given set of identities.
- The variety of groups, the variety of rings, the variety of *R*-modules where *R* is a given ring...
- The class of all fields is not a variety.
- For K a class of L-algebras, we denote by Var(K) the smallest variety that contains K.

- A *variety* of *L*-algebras is the class of all *L*-algebras that satisfy a given set of identities.
- The variety of groups, the variety of rings, the variety of *R*-modules where *R* is a given ring...
- The class of all fields is not a variety.
- For K a class of L-algebras, we denote by Var(K) the smallest variety that contains K.
- Denote H(K) the class of all homomorphic images of algebras in K.

- A *variety* of *L*-algebras is the class of all *L*-algebras that satisfy a given set of identities.
- The variety of groups, the variety of rings, the variety of *R*-modules where *R* is a given ring...
- The class of all fields is not a variety.
- For K a class of L-algebras, we denote by Var(K) the smallest variety that contains K.
- Denote H(K) the class of all homomorphic images of algebras in K.
- Denote $S(\mathcal{K})$ the class of all subalgebras of algebras in \mathcal{K} .

- A *variety* of *L*-algebras is the class of all *L*-algebras that satisfy a given set of identities.
- The variety of groups, the variety of rings, the variety of *R*-modules where *R* is a given ring...
- The class of all fields is not a variety.
- For K a class of L-algebras, we denote by Var(K) the smallest variety that contains K.
- Denote H(K) the class of all homomorphic images of algebras in K.
- Denote $\mathbf{S}(\mathcal{K})$ the class of all subalgebras of algebras in \mathcal{K} .
- Denote $\mathbf{P}(\mathcal{K})$ the class of all products of algebras in \mathcal{K} .

- A *variety* of *L*-algebras is the class of all *L*-algebras that satisfy a given set of identities.
- The variety of groups, the variety of rings, the variety of *R*-modules where *R* is a given ring...
- The class of all fields is not a variety.
- For K a class of L-algebras, we denote by Var(K) the smallest variety that contains K.
- Denote H(K) the class of all homomorphic images of algebras in K.
- Denote $S(\mathcal{K})$ the class of all subalgebras of algebras in \mathcal{K} .
- Denote $\mathbf{P}(\mathcal{K})$ the class of all products of algebras in \mathcal{K} .
- $Var(\mathcal{K}) = HSP(\mathcal{K})$ (Birkhoff, Tarski).

- A *variety* of *L*-algebras is the class of all *L*-algebras that satisfy a given set of identities.
- The variety of groups, the variety of rings, the variety of *R*-modules where *R* is a given ring...
- The class of all fields is not a variety.
- For K a class of L-algebras, we denote by Var(K) the smallest variety that contains K.
- Denote H(K) the class of all homomorphic images of algebras in K.
- Denote $S(\mathcal{K})$ the class of all subalgebras of algebras in \mathcal{K} .
- Denote $\mathbf{P}(\mathcal{K})$ the class of all products of algebras in \mathcal{K} .
- $Var(\mathcal{K}) = HSP(\mathcal{K})$ (Birkhoff, Tarski).
- A variety is *finitely generated* if it is generated by a finite class of finite algebras.

• A *lattice L* is a poset such that the meet and the join of any two elements exists.

- A *lattice L* is a poset such that the meet and the join of any two elements exists.
- Denote x ∧ y the meet of x and y. Denote x ∨ y the join of x and y, for all x, y ∈ L. The following identities are satisfied.

- A *lattice L* is a poset such that the meet and the join of any two elements exists.
- Denote x ∧ y the meet of x and y. Denote x ∨ y the join of x and y, for all x, y ∈ L. The following identities are satisfied.

$$x \wedge x = x \qquad x \vee x = x$$
$$x \wedge y = y \wedge x \qquad x \vee y = y \vee x$$
$$x \wedge (y \wedge z) = (x \wedge y) \wedge z \qquad x \vee (y \vee z) = (x \vee y) \vee z$$
$$x \wedge (x \vee y) = x \qquad x \vee (x \wedge y) = x$$

- A *lattice L* is a poset such that the meet and the join of any two elements exists.
- Denote x ∧ y the meet of x and y. Denote x ∨ y the join of x and y, for all x, y ∈ L. The following identities are satisfied.

$$x \wedge x = x \qquad x \vee x = x$$
$$x \wedge y = y \wedge x \qquad x \vee y = y \vee x$$
$$x \wedge (y \wedge z) = (x \wedge y) \wedge z \qquad x \vee (y \vee z) = (x \vee y) \vee z$$
$$x \wedge (x \vee y) = x \qquad x \vee (x \wedge y) = x$$

Conversely given an {∨, ∧}-algebra L that satisfies those identities.

- A *lattice L* is a poset such that the meet and the join of any two elements exists.
- Denote x ∧ y the meet of x and y. Denote x ∨ y the join of x and y, for all x, y ∈ L. The following identities are satisfied.

$$\begin{array}{cccc} x \wedge x = x & x \vee x = x \\ x \wedge y = y \wedge x & x \vee y = y \vee x \\ x \wedge (y \wedge z) = (x \wedge y) \wedge z & x \vee (y \vee z) = (x \vee y) \vee z \\ x \wedge (x \vee y) = x & x \vee (x \wedge y) = x \end{array}$$

Conversely given an {∨, ∧}-algebra *L* that satisfies those identities. Put *x* ≤ *y* iff *x* ∧ *y* = *x*, for all *x*, *y* ∈ *L*, then *L* is a lattice.

- A *lattice L* is a poset such that the meet and the join of any two elements exists.
- Denote x ∧ y the meet of x and y. Denote x ∨ y the join of x and y, for all x, y ∈ L. The following identities are satisfied.

$$\begin{array}{cccc} x \wedge x = x & x \vee x = x \\ x \wedge y = y \wedge x & x \vee y = y \vee x \\ x \wedge (y \wedge z) = (x \wedge y) \wedge z & x \vee (y \vee z) = (x \vee y) \vee z \\ x \wedge (x \vee y) = x & x \vee (x \wedge y) = x \end{array}$$

- Conversely given an {∨, ∧}-algebra *L* that satisfies those identities. Put *x* ≤ *y* iff *x* ∧ *y* = *x*, for all *x*, *y* ∈ *L*, then *L* is a lattice.
- Those identities define the variety of lattices.

• A *congruence* of an algebra *A* is an equivalent relation compatible with the operations.

- A *congruence* of an algebra *A* is an equivalent relation compatible with the operations.
- Congruences of a group correspond to normal subgroups.

- A *congruence* of an algebra *A* is an equivalent relation compatible with the operations.
- Congruences of a group correspond to normal subgroups.
- Congruences of a ring correspond to two-sided ideals.

- A *congruence* of an algebra *A* is an equivalent relation compatible with the operations.
- Congruences of a group correspond to normal subgroups.
- Congruences of a ring correspond to two-sided ideals.
- Congruences of a vector space correspond to subspaces.

- A *congruence* of an algebra *A* is an equivalent relation compatible with the operations.
- Congruences of a group correspond to normal subgroups.
- Congruences of a ring correspond to two-sided ideals.
- Congruences of a vector space correspond to subspaces.
- Denote by Con *A* the poset of all congruences of *A*, under inclusion.

- A *congruence* of an algebra *A* is an equivalent relation compatible with the operations.
- Congruences of a group correspond to normal subgroups.
- Congruences of a ring correspond to two-sided ideals.
- Congruences of a vector space correspond to subspaces.
- Denote by Con *A* the poset of all congruences of *A*, under inclusion. It is an algebraic lattice.

Given x, y in A, denote by ⊖_A(x, y) the smallest congruence of A that identify x and y.

 Given x, y in A, denote by ⊖_A(x, y) the smallest congruence of A that identify x and y. Such congruence is called *principal*.

- Given x, y in A, denote by ⊖_A(x, y) the smallest congruence of A that identify x and y. Such congruence is called *principal*.
- A congruence is *finitely generated* if it is a finite join of principal congruences.
- Given x, y in A, denote by ⊖_A(x, y) the smallest congruence of A that identify x and y. Such congruence is called *principal*.
- A congruence is *finitely generated* if it is a finite join of principal congruences.
- Every congruence is a (infinite) join of finitely generated congruences.

$$\theta = \bigvee (\Theta_A(x, y) \mid (x, y) \in \theta).$$

• A semilattice (or $(\lor, 0)$ -semilattice) is a poset S such that

- A semilattice (or $(\lor, 0)$ -semilattice) is a poset S such that
 - S has a smallest element, denoted by 0.

- A semilattice (or $(\lor, 0)$ -semilattice) is a poset S such that
 - S has a smallest element, denoted by 0.
 - The join of α and β , denoted by $\alpha \lor \beta$, exists for all $\alpha, \beta \in S$.

- A *semilattice* (or $(\lor, 0)$ -semilattice) is a poset S such that
 - *S* has a smallest element, denoted by 0.
 - The join of α and β , denoted by $\alpha \lor \beta$, exists for all $\alpha, \beta \in S$.
- For any algebra *A*, we denote by Con_c *A* the set of compact (=finitely generated) congruences of *A*.

- A *semilattice* (or $(\lor, 0)$ -semilattice) is a poset S such that
 - S has a smallest element, denoted by 0.
 - The join of α and β , denoted by $\alpha \lor \beta$, exists for all $\alpha, \beta \in S$.
- For any algebra *A*, we denote by Con_c *A* the set of compact (=finitely generated) congruences of *A*. It is a semilattice.

- A *semilattice* (or (∨, 0)-semilattice) is a poset S such that
 - *S* has a smallest element, denoted by 0.
 - The join of α and β , denoted by $\alpha \lor \beta$, exists for all $\alpha, \beta \in S$.
- For any algebra *A*, we denote by Con_c *A* the set of compact (=finitely generated) congruences of *A*. It is a semilattice.
- The lattice Con A, is determined by Con_c A, we have Con A ≅ Id Con_c A.

- A *semilattice* (or (∨, 0)-semilattice) is a poset S such that
 - *S* has a smallest element, denoted by 0.
 - The join of α and β , denoted by $\alpha \lor \beta$, exists for all $\alpha, \beta \in S$.
- For any algebra *A*, we denote by Con_c *A* the set of compact (=finitely generated) congruences of *A*. It is a semilattice.
- The lattice Con *A*, is determined by $Con_c A$, we have $Con A \cong Id Con_c A$.
- Con A is distributive if and only if Con_c A is distributive, that is,

- A semilattice (or (∨, 0)-semilattice) is a poset S such that
 - *S* has a smallest element, denoted by 0.
 - The join of α and β , denoted by $\alpha \lor \beta$, exists for all $\alpha, \beta \in S$.
- For any algebra *A*, we denote by Con_c *A* the set of compact (=finitely generated) congruences of *A*. It is a semilattice.
- The lattice Con A, is determined by Con_c A, we have Con A ≅ Id Con_c A.
- Con A is distributive if and only if Con_c A is *distributive*, that is, for all α, β, γ ∈ Con_c A with α ≤ β ∨ γ, there exists β' ≤ β and γ' ≤ γ such that α = β' ∨ γ'.

- A semilattice (or (∨, 0)-semilattice) is a poset S such that
 - *S* has a smallest element, denoted by 0.
 - The join of α and β , denoted by $\alpha \lor \beta$, exists for all $\alpha, \beta \in S$.
- For any algebra *A*, we denote by Con_c *A* the set of compact (=finitely generated) congruences of *A*. It is a semilattice.
- The lattice Con A, is determined by Con_c A, we have Con A ≅ Id Con_c A.
- Con A is distributive if and only if Con_c A is *distributive*, that is, for all α, β, γ ∈ Con_c A with α ≤ β ∨ γ, there exists β' ≤ β and γ' ≤ γ such that α = β' ∨ γ'.
- If it is the case, we say that *A* is *congruence-distributive*.

• For $f: A \rightarrow B$. We put :

$\operatorname{Con}_{c} f \colon \operatorname{Con}_{c} A \to \operatorname{Con}_{c} B$ $\alpha \mapsto \Theta_{B}(\{(f(x), f(y)) \mid (x, y) \in \alpha\})$

• For $f: A \rightarrow B$. We put :

$$\begin{array}{l} \operatorname{Con}_{c} f \colon \operatorname{Con}_{c} A \to \operatorname{Con}_{c} B \\ \alpha \mapsto \Theta_{B}(\{(f(x), f(y)) \mid (x, y) \in \alpha\}) \end{array}$$

 Con_c is a functor from any variety of algebras to the variety of semilattices. • A *lifting* of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.

- A *lifting* of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.
- The *congruence class* of a variety \mathcal{V} , denoted by $Con_c \mathcal{V}$, is the class of all semilattices liftable in \mathcal{V} .

- A *lifting* of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.
- The *congruence class* of a variety \mathcal{V} , denoted by $Con_c \mathcal{V}$, is the class of all semilattices liftable in \mathcal{V} .
- We have a good description of Con_c V for very few varieties of algebras.

- A *lifting* of a semilattice S is an algebra A such that $\operatorname{Con}_{c} A \cong S$.
- The *congruence class* of a variety \mathcal{V} , denoted by $Con_c \mathcal{V}$, is the class of all semilattices liftable in \mathcal{V} .
- We have a good description of Con_c V for very few varieties of algebras.
- We denote by D the variety of all distributive lattices, then Con_c D is the class of all generalized Boolean algebras.

Congruences classes

• Every bounded semilattice is liftable with a groupoid (Lamp 1982).

- Every bounded semilattice is liftable with a groupoid (Lamp 1982).
- There are also some unbounded semilattice liftable with a groupoid, but not all.

- Every bounded semilattice is liftable with a groupoid (Lamp 1982).
- There are also some unbounded semilattice liftable with a groupoid, but not all.
- Every semilattice is liftable with an algebra, with many operations (Grätzer and Schmidt 1963).

- Every bounded semilattice is liftable with a groupoid (Lamp 1982).
- There are also some unbounded semilattice liftable with a groupoid, but not all.
- Every semilattice is liftable with an algebra, with many operations (Grätzer and Schmidt 1963).
- The lifting of a semilattice *S* mentioned above has card *S* operations.

- Every bounded semilattice is liftable with a groupoid (Lamp 1982).
- There are also some unbounded semilattice liftable with a groupoid, but not all.
- Every semilattice is liftable with an algebra, with many operations (Grätzer and Schmidt 1963).
- The lifting of a semilattice *S* mentioned above has card *S* operations.
- Let *K* be an uncountable field, let *E* be a *K*-vector space of infinite dimension.

- Every bounded semilattice is liftable with a groupoid (Lamp 1982).
- There are also some unbounded semilattice liftable with a groupoid, but not all.
- Every semilattice is liftable with an algebra, with many operations (Grätzer and Schmidt 1963).
- The lifting of a semilattice *S* mentioned above has card *S* operations.
- Let *K* be an uncountable field, let *E* be a *K*-vector space of infinite dimension.
- The semilattice Sub_c *E* is not liftable with any algebra with less than card *K* operations.

- Every bounded semilattice is liftable with a groupoid (Lamp 1982).
- There are also some unbounded semilattice liftable with a groupoid, but not all.
- Every semilattice is liftable with an algebra, with many operations (Grätzer and Schmidt 1963).
- The lifting of a semilattice *S* mentioned above has card *S* operations.
- Let *K* be an uncountable field, let *E* be a *K*-vector space of infinite dimension.
- The semilattice Sub_c *E* is not liftable with any algebra with less than card *K* operations.
- In particular $Sub_c E$ is not liftable with a groupoid.

• We denote by \mathcal{L} the variety of all lattices.

- We denote by \mathcal{L} the variety of all lattices.
- Funayama and Nakayama have shown that Con *L* is distributive for each *L* ∈ *L*.

- We denote by \mathcal{L} the variety of all lattices.
- Funayama and Nakayama have shown that Con *L* is distributive for each $L \in \mathcal{L}$.
- Hence every semilattice $S \in Con_c \mathcal{L}$ is distributive.

- We denote by \mathcal{L} the variety of all lattices.
- Funayama and Nakayama have shown that Con *L* is distributive for each *L* ∈ *L*.
- Hence every semilattice $S \in Con_c \mathcal{L}$ is distributive.
- Every finite distributive semilattice belongs to Con_c L (Dilworth ≈1940, Grätzer and Schmidt 1962).

- We denote by \mathcal{L} the variety of all lattices.
- Funayama and Nakayama have shown that Con *L* is distributive for each *L* ∈ *L*.
- Hence every semilattice $S \in Con_c \mathcal{L}$ is distributive.
- Every finite distributive semilattice belongs to Con_c L (Dilworth ≈1940, Grätzer and Schmidt 1962).
- Every distributive semilattice of cardinality at most ℵ₁ belongs to Con_c L (Huhn 1985).

- We denote by \mathcal{L} the variety of all lattices.
- Funayama and Nakayama have shown that Con *L* is distributive for each *L* ∈ *L*.
- Hence every semilattice $S \in Con_c \mathcal{L}$ is distributive.
- Every finite distributive semilattice belongs to Con_c L (Dilworth ≈1940, Grätzer and Schmidt 1962).
- Every distributive semilattice of cardinality at most ℵ₁ belongs to Con_c L (Huhn 1985).
- There exists a distributive semilattice of cardinality ℵ_{ω+1} that does not belong to Con_c L (Wehrung 2007).

- We denote by \mathcal{L} the variety of all lattices.
- Funayama and Nakayama have shown that Con *L* is distributive for each *L* ∈ *L*.
- Hence every semilattice $S \in Con_c \mathcal{L}$ is distributive.
- Every finite distributive semilattice belongs to Con_c L (Dilworth ≈1940, Grätzer and Schmidt 1962).
- Every distributive semilattice of cardinality at most ℵ₁ belongs to Con_c L (Huhn 1985).
- There exists a distributive semilattice of cardinality ℵ_{ω+1} that does not belong to Con_c ℒ (Wehrung 2007).
- There exists a distributive semilattice of cardinality ℵ₂ that does not belong to Con_c L (Růžička 2008).

Given varieties of algebras V and W, in which case do we have Con_c V ⊆ Con_c W?

- Given varieties of algebras V and W, in which case do we have Con_c V ⊆ Con_c W?
- We put crit(V; W) = min{card S | S ∈ Con_c V − Con_c W}, if it exists, otherwise we put crit(V; W) = ∞.

- Given varieties of algebras V and W, in which case do we have Con_c V ⊆ Con_c W?
- We put crit(V; W) = min{card S | S ∈ Con_c V − Con_c W}, if it exists, otherwise we put crit(V; W) = ∞.

- Given varieties of algebras V and W, in which case do we have Con_c V ⊆ Con_c W?
- We put crit(V; W) = min{card S | S ∈ Con_c V − Con_c W}, if it exists, otherwise we put crit(V; W) = ∞.

Denote by M_n the variety of lattices generated by M_n .

- Given varieties of algebras V and W, in which case do we have Con_c V ⊆ Con_c W?
- We put crit(V; W) = min{card S | S ∈ Con_c V − Con_c W}, if it exists, otherwise we put crit(V; W) = ∞.

crit(M₃; D) = ℵ₀, where D is the variety of all distributive lattices.

- Given varieties of algebras V and W, in which case do we have Con_c V ⊆ Con_c W?
- We put crit(V; W) = min{card S | S ∈ Con_c V − Con_c W}, if it exists, otherwise we put crit(V; W) = ∞.

- crit(M₃; D) = ℵ₀, where D is the variety of all distributive lattices.
- crit(\mathcal{M}_m ; \mathcal{M}_n) = \aleph_2 , for all $m > n \ge 3$ (Ploščica, 2000)
• Denote by \mathcal{G} the variety of all groups.

 Denote by G the variety of all groups. The following results are due to P. Růžička, J. Tůma, and F. Wehrung (2007).

- Denote by G the variety of all groups. The following results are due to P. Růžička, J. Tůma, and F. Wehrung (2007).
- All distributive semilattice of cardinality $\leq \aleph_1$ is liftable in \mathcal{G} .

- Denote by G the variety of all groups. The following results are due to P. Růžička, J. Tůma, and F. Wehrung (2007).
- All distributive semilattice of cardinality $\leq \aleph_1$ is liftable in \mathcal{G} .
- Let V be a non-distributive variety of lattices. Let F be the lattice of V freely generate by ℵ₂ elements.

- Denote by G the variety of all groups. The following results are due to P. Růžička, J. Tůma, and F. Wehrung (2007).
- All distributive semilattice of cardinality $\leq \aleph_1$ is liftable in \mathcal{G} .
- Let V be a non-distributive variety of lattices. Let F be the lattice of V freely generate by ℵ₂ elements.
- Then Con_c *F* is not liftable with any congruence-permutable algebras.

- Denote by G the variety of all groups. The following results are due to P. Růžička, J. Tůma, and F. Wehrung (2007).
- All distributive semilattice of cardinality $\leq \aleph_1$ is liftable in \mathcal{G} .
- Let V be a non-distributive variety of lattices. Let F be the lattice of V freely generate by ℵ₂ elements.
- Then Con_c *F* is not liftable with any congruence-permutable algebras.
- In particular :

 $\text{crit}(\mathcal{V};\mathcal{G}) = \aleph_2$

- Denote by G the variety of all groups. The following results are due to P. Růžička, J. Tůma, and F. Wehrung (2007).
- All distributive semilattice of cardinality $\leq \aleph_1$ is liftable in \mathcal{G} .
- Let V be a non-distributive variety of lattices. Let F be the lattice of V freely generate by ℵ₂ elements.
- Then Con_c *F* is not liftable with any congruence-permutable algebras.
- In particular :

 $\operatorname{crit}(\mathcal{V};\mathcal{G}) = \aleph_2$

• We have $M_3 \in \operatorname{Con}_c \mathcal{G}$ and $M_3 \notin \operatorname{Con}_c \mathcal{L}$, hence :

$$\operatorname{crit}(\mathcal{G};\mathcal{L})=\operatorname{card} M_3=5$$

Lifting of diagrams

• All diagram considered are poset-indexed diagrams.

- All diagram considered are poset-indexed diagrams.
- A *lifting in* V of a diagram of semilattices S
 [−]: P → S is a diagram A
 [−]: P → V such that Con_c ∘ A
 [−]: S
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A such that Con_c ∘ A such that Con_c ∘ A such that Con

- All diagram considered are poset-indexed diagrams.
- A *lifting in* V of a diagram of semilattices S
 [−]: P → S is a diagram A
 [−]: P → V such that Con_c ∘ A
 [−]: S
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A such that C
- A lifting of a morphism of semilattices φ: S₁ → S₂ is a morphism of algebras f: A₁ → A₂,

Lifting of diagrams

- All diagram considered are poset-indexed diagrams.
- A *lifting in* V of a diagram of semilattices S
 [−]: P → S is a diagram A
 [−]: P → V such that Con_c ∘ A
 [−]: S
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A
 [−]: C → C such that Con_c ∘ A such that C
- A lifting of a morphism of semilattices φ: S₁ → S₂ is a morphism of algebras f: A₁ → A₂, such that :

$$\begin{array}{ccc} \operatorname{Con}_{c} A_{1} & \xrightarrow{\operatorname{Con}_{c} f} & \operatorname{Con}_{c} A_{2} \\ & & & \\ \psi_{1} \downarrow & & \psi_{2} \downarrow & \text{commutes.} \\ & & S_{1} & \xrightarrow{\phi} & S_{2} \end{array}$$

Let \mathcal{V} and \mathcal{W} be variety of algebras. We assume the following conditions.

Let \mathcal{V} and \mathcal{W} be variety of algebras. We assume the following conditions.

V is locally finite.

Let \mathcal{V} and \mathcal{W} be variety of algebras. We assume the following conditions.

- V is locally finite.
- 2 For each diagram \vec{A} of finite algebras in \mathcal{V} ,

Let $\mathcal V$ and $\mathcal W$ be variety of algebras. We assume the following conditions.

- V is locally finite.
- If or each diagram A of finite algebras in V, there exists a diagram B of W such that Con_c A ≅ Con_c B.

Let \mathcal{V} and \mathcal{W} be variety of algebras. We assume the following conditions.

- V is locally finite.
- If the exists a diagram B of W such that Con_c A ≅ Con_c B.

Then $\operatorname{crit}(\mathcal{V}; \mathcal{W}) = \infty$.

• Let $A \in \mathcal{V}$, we must find $B \in \mathcal{W}$ such that $\operatorname{Con}_{c} A \cong \operatorname{Con}_{c} B$.

- Let $A \in \mathcal{V}$, we must find $B \in \mathcal{W}$ such that $\operatorname{Con}_{c} A \cong \operatorname{Con}_{c} B$.
- Denote \vec{A} the diagram of finite subalgebras of *A*, with inclusions.

- Let $A \in \mathcal{V}$, we must find $B \in \mathcal{W}$ such that $\operatorname{Con}_{c} A \cong \operatorname{Con}_{c} B$.
- Denote \vec{A} the diagram of finite subalgebras of *A*, with inclusions.
- As \mathcal{V} is locally finite, $A = \varinjlim \vec{A}$.

- Let $A \in \mathcal{V}$, we must find $B \in \mathcal{W}$ such that $\operatorname{Con}_{c} A \cong \operatorname{Con}_{c} B$.
- Denote A
 the diagram of finite subalgebras of A, with inclusions.
- As \mathcal{V} is locally finite, $A = \varinjlim \vec{A}$.
- There is \vec{B} a diagram in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.

- Let $A \in \mathcal{V}$, we must find $B \in \mathcal{W}$ such that $\operatorname{Con}_{c} A \cong \operatorname{Con}_{c} B$.
- Denote \vec{A} the diagram of finite subalgebras of A, with inclusions.
- As \mathcal{V} is locally finite, $A = \varinjlim \vec{A}$.
- There is \vec{B} a diagram in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.
- Put $B = \varinjlim \vec{B}$, then

- Let $A \in \mathcal{V}$, we must find $B \in \mathcal{W}$ such that $\operatorname{Con}_{c} A \cong \operatorname{Con}_{c} B$.
- Denote \vec{A} the diagram of finite subalgebras of A, with inclusions.
- As \mathcal{V} is locally finite, $A = \varinjlim \vec{A}$.
- There is \vec{B} a diagram in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.

• Put
$$B = \varinjlim \vec{B}$$
, then

$$\operatorname{Con}_{\operatorname{c}} B = \operatorname{Con}_{\operatorname{c}}(\varinjlim \vec{B})$$

- Let $A \in \mathcal{V}$, we must find $B \in \mathcal{W}$ such that $\operatorname{Con}_{c} A \cong \operatorname{Con}_{c} B$.
- Denote A
 the diagram of finite subalgebras of A, with inclusions.
- As \mathcal{V} is locally finite, $A = \varinjlim \vec{A}$.
- There is \vec{B} a diagram in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.
- Put $B = \varinjlim \vec{B}$, then

$$\operatorname{\mathsf{Con}}_{\mathsf{c}} B = \operatorname{\mathsf{Con}}_{\mathsf{c}}(\varinjlim B)$$

 $\cong \varinjlim(\operatorname{\mathsf{Con}}_{\mathsf{c}} \circ \vec{B})$

- Let $A \in \mathcal{V}$, we must find $B \in \mathcal{W}$ such that $\operatorname{Con}_{c} A \cong \operatorname{Con}_{c} B$.
- Denote \vec{A} the diagram of finite subalgebras of A, with inclusions.
- As \mathcal{V} is locally finite, $A = \varinjlim \vec{A}$.
- There is \vec{B} a diagram in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.

• Put
$$B = \varinjlim \vec{B}$$
, then

$$egin{aligned} \mathsf{Con}_{\mathsf{c}}\, B &= \mathsf{Con}_{\mathsf{c}}(ert ec{\mathsf{Im}}\,ec{B}) \ &\cong ec{\mathsf{Im}}(\mathsf{Con}_{\mathsf{c}}\,\circec{B}) \ &\cong ec{\mathsf{Im}}(\mathsf{Con}_{\mathsf{c}}\,\circec{A}) \end{aligned}$$

- Let $A \in \mathcal{V}$, we must find $B \in \mathcal{W}$ such that $\operatorname{Con}_{c} A \cong \operatorname{Con}_{c} B$.
- Denote A
 the diagram of finite subalgebras of A, with inclusions.
- As \mathcal{V} is locally finite, $A = \varinjlim \vec{A}$.

(

• There is \vec{B} a diagram in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.

• Put
$$B = \varinjlim \vec{B}$$
, then

$$\operatorname{Con}_{c} B = \operatorname{Con}_{c}(\varinjlim \vec{B})$$

 $\cong \varinjlim(\operatorname{Con}_{c} \circ \vec{B})$
 $\cong \varinjlim(\operatorname{Con}_{c} \circ \vec{A})$
 $\cong \operatorname{Con}_{c}(\varinjlim \vec{A})$

- Let $A \in \mathcal{V}$, we must find $B \in \mathcal{W}$ such that $\operatorname{Con}_{c} A \cong \operatorname{Con}_{c} B$.
- Denote \vec{A} the diagram of finite subalgebras of A, with inclusions.
- As \mathcal{V} is locally finite, $A = \varinjlim \vec{A}$.

(

• There is \vec{B} a diagram in \mathcal{W} such that $\operatorname{Con}_{c} \circ \vec{A} \cong \operatorname{Con}_{c} \circ \vec{B}$.

• Put
$$B = \varinjlim \vec{B}$$
, then

$$\operatorname{Con}_{c} B = \operatorname{Con}_{c}(\varinjlim \vec{B})$$
$$\cong \varinjlim(\operatorname{Con}_{c} \circ \vec{B})$$
$$\cong \varinjlim(\operatorname{Con}_{c} \circ \vec{A})$$
$$\cong \operatorname{Con}_{c}(\varinjlim \vec{A})$$
$$= \operatorname{Con}_{c} A$$

The condensate of an arrow

• Lifting semilattices \rightleftharpoons lifting *diagrams* of semilattices.

Theorem (G. 2008)

Let $\phi \colon S \to T$ be a morphism of countable semilattices. Put :

$$\mathsf{Cond}\,\phi = \Big\{ (x, y_\alpha)_{\alpha \in \aleph_1} \in S \times T^{\aleph_1} \mid \{ \alpha \in \aleph_1 \mid y_\alpha \neq \phi(x) \} \text{ is finite} \Big\}$$

Theorem (G. 2008)

Let $\phi \colon S \to T$ be a morphism of countable semilattices. Put :

$$\mathsf{Cond}\,\phi = \Big\{ (x, y_\alpha)_{\alpha \in \aleph_1} \in \mathcal{S} \times \mathcal{T}^{\aleph_1} \mid \{ \alpha \in \aleph_1 \mid y_\alpha \neq \phi(x) \} \text{ is finite} \Big\}$$

• Cond ϕ is a semilattice and card(Cond ϕ) = \aleph_1 .

Theorem (G. 2008)

Let $\phi \colon S \to T$ be a morphism of countable semilattices. Put :

$$\mathsf{Cond}\,\phi = \Big\{ (x, y_\alpha)_{\alpha \in \aleph_1} \in S \times T^{\aleph_1} \mid \{ \alpha \in \aleph_1 \mid y_\alpha \neq \phi(x) \} \text{ is finite} \Big\}$$

- Cond ϕ is a semilattice and card(Cond ϕ) = \aleph_1 .
- 2 Let V be a variety of lattices. Then φ is liftable in V if and only if Cond(φ) is liftable in V.

Theorem (G. 2008)

Let $\phi \colon S \to T$ be a morphism of countable semilattices. Put :

$$\mathsf{Cond}\,\phi = \Big\{ (x, y_\alpha)_{\alpha \in \aleph_1} \in \mathcal{S} \times \mathcal{T}^{\aleph_1} \mid \{ \alpha \in \aleph_1 \mid y_\alpha \neq \phi(x) \} \text{ is finite} \Big\}$$

- Cond ϕ is a semilattice and card(Cond ϕ) = \aleph_1 .
- 2 Let V be a variety of lattices. Then φ is liftable in V if and only if Cond(φ) is liftable in V.

If S and T are finite and \mathcal{V} is a finitely generated variety of lattices,

Theorem (G. 2008)

Let $\phi \colon S \to T$ be a morphism of countable semilattices. Put :

$$\mathsf{Cond}\,\phi = \Big\{ (x, y_\alpha)_{\alpha \in \aleph_1} \in \mathcal{S} \times \mathcal{T}^{\aleph_1} \mid \{ \alpha \in \aleph_1 \mid y_\alpha \neq \phi(x) \} \text{ is finite} \Big\}$$

- Cond ϕ is a semilattice and card(Cond ϕ) = \aleph_1 .
- 2 Let V be a variety of lattices. Then φ is liftable in V if and only if Cond(φ) is liftable in V.

If *S* and *T* are finite and \mathcal{V} is a finitely generated variety of lattices, then we can change \aleph_1 to \aleph_0 .

Consider the lattices M_3 and N_5 . Denote \mathcal{M}_3 (resp., \mathcal{N}_5) the variety generated by M_3 (resp., N_5).

Consider the lattices M_3 and N_5 . Denote \mathcal{M}_3 (resp., \mathcal{N}_5) the variety generated by M_3 (resp., N_5).

• Put $S = 2^2$, put T = 2, denote $\phi: S \to T$, $(\alpha, \beta) \mapsto \alpha \lor \beta$.

Consider the lattices M_3 and N_5 . Denote \mathcal{M}_3 (resp., \mathcal{N}_5) the variety generated by M_3 (resp., N_5).

• Put $S = 2^2$, put T = 2, denote $\phi \colon S \to T$, $(\alpha, \beta) \mapsto \alpha \lor \beta$.

• The inclusion $f: \{0, a, 1\} \rightarrow M_3$ is a lifting of ϕ .

Consider the lattices M_3 and N_5 . Denote \mathcal{M}_3 (resp., \mathcal{N}_5) the variety generated by M_3 (resp., N_5).

• Put $S = 2^2$, put T = 2, denote $\phi: S \to T$, $(\alpha, \beta) \mapsto \alpha \lor \beta$.

- The inclusion $f: \{0, a, 1\} \rightarrow M_3$ is a lifting of ϕ .
- ϕ has no lifting in \mathcal{N}_5 .
Example

Consider the lattices M_3 and N_5 . Denote \mathcal{M}_3 (resp., \mathcal{N}_5) the variety generated by M_3 (resp., N_5).

- Put $S = 2^2$, put T = 2, denote $\phi \colon S \to T$, $(\alpha, \beta) \mapsto \alpha \lor \beta$.
- The inclusion $f: \{0, a, 1\} \rightarrow M_3$ is a lifting of ϕ .
- ϕ has no lifting in \mathcal{N}_5 .
- Thus crit($\mathcal{M}_3; \mathcal{N}_5$) = \aleph_0 .

 Let P be a poset with a λ-compatible norm-covering of cardinal κ.

- Let P be a poset with a λ-compatible norm-covering of cardinal κ.
- Notice that a finite lattice *P* of order-dimension d + 1 has a λ -compatible norm-covering of cardinal λ^{+d} .

- Let *P* be a poset with a λ-compatible norm-covering of cardinal κ.
- Notice that a finite lattice *P* of order-dimension d + 1 has a λ -compatible norm-covering of cardinal λ^{+d} .
- Let \vec{A} be a *P*-indexed-diagram of algebras of cardinal $< \lambda$.

- Let *P* be a poset with a λ-compatible norm-covering of cardinal κ.
- Notice that a finite lattice *P* of order-dimension d + 1 has a λ -compatible norm-covering of cardinal λ^{+d} .
- Let \vec{A} be a *P*-indexed-diagram of algebras of cardinal $< \lambda$.
- We can construct an algebra A of cardinal κ, called condensate of A.

- Let P be a poset with a λ-compatible norm-covering of cardinal κ.
- Notice that a finite lattice *P* of order-dimension d + 1 has a λ -compatible norm-covering of cardinal λ^{+d} .
- Let \vec{A} be a *P*-indexed-diagram of algebras of cardinal $< \lambda$.
- We can construct an algebra A of cardinal κ, called condensate of A.

Theorem (G. 2008)

Assume that λ is uncountable, let V be a variety of algebras (on a countable similarity type).

- Let P be a poset with a λ-compatible norm-covering of cardinal κ.
- Notice that a finite lattice *P* of order-dimension d + 1 has a λ -compatible norm-covering of cardinal λ^{+d} .
- Let \vec{A} be a *P*-indexed-diagram of algebras of cardinal $< \lambda$.
- We can construct an algebra A of cardinal κ, called condensate of A.

Theorem (G. 2008)

Assume that λ is uncountable, let \mathcal{V} be a variety of algebras (on a countable similarity type). If $\operatorname{Con}_{c} A$ has a liting in \mathcal{V} , then $\operatorname{Con}_{c} \circ \vec{A}$ has a lifting in \mathcal{V} .

- Let P be a poset with a λ-compatible norm-covering of cardinal κ.
- Notice that a finite lattice *P* of order-dimension d + 1 has a λ -compatible norm-covering of cardinal λ^{+d} .
- Let \vec{A} be a *P*-indexed-diagram of algebras of cardinal $< \lambda$.
- We can construct an algebra A of cardinal κ, called condensate of A.

Theorem (G. 2008)

Assume that λ is uncountable, let \mathcal{V} be a variety of algebras (on a countable similarity type). If $\operatorname{Con}_{c} A$ has a liting in \mathcal{V} , then $\operatorname{Con}_{c} \circ \vec{A}$ has a lifting in \mathcal{V} .

Moreover if \mathcal{V} is a finitely generated congruence-distributive variety, then the theorem is also true for $\lambda = \aleph_0$.

Let \mathcal{V} and \mathcal{W} be a finitly generated congruence-distributive variety of algebras. The following statement are equivalent.

Let \mathcal{V} and \mathcal{W} be a finitly generated congruence-distributive variety of algebras. The following statement are equivalent. • crit($\mathcal{V}; \mathcal{W}$) > \aleph_0 .

Let \mathcal{V} and \mathcal{W} be a finitly generated congruence-distributive variety of algebras. The following statement are equivalent.

- crit($\mathcal{V}; \mathcal{W}$) > \aleph_0 .
- Let S be a diagram of finite semilattice indexed by a finite chain, if S is liftable in V, then S is liftable in W.

Let \mathcal{V} and \mathcal{W} be a finitly generated congruence-distributive variety of algebras. The following statement are equivalent.

- crit($\mathcal{V}; \mathcal{W}$) > \aleph_0 .
- 2 Let S be a diagram of finite semilattice indexed by a finite chain, if S is liftable in V, then S is liftable in W.
- Solution Let \vec{S} be a ω -indexe diagram of finite semilattice, if \vec{S} is liftable in \mathcal{V} , then \vec{S} is liftable in \mathcal{W} .

• Let \mathcal{V} and \mathcal{W} be finitely generated congruence-distributive varieties of algebras.

- Let \mathcal{V} and \mathcal{W} be finitely generated congruence-distributive varieties of algebras.
- Let C be a finite chain, let $n \ge 1$.

- Let \mathcal{V} and \mathcal{W} be finitely generated congruence-distributive varieties of algebras.
- Let C be a finite chain, let $n \ge 1$.
- Let S
 be a diagram of finite semilattices indexed by Cⁿ.

- Let \mathcal{V} and \mathcal{W} be finitely generated congruence-distributive varieties of algebras.
- Let C be a finite chain, let $n \ge 1$.
- Let S be a diagram of finite semilattices indexed by Cⁿ.
- Assume that \vec{S} is liftable in \mathcal{V} but not in \mathcal{W} .

- Let \mathcal{V} and \mathcal{W} be finitely generated congruence-distributive varieties of algebras.
- Let C be a finite chain, let $n \ge 1$.
- Let S be a diagram of finite semilattices indexed by Cⁿ.
- Assume that \vec{S} is liftable in $\mathcal V$ but not in $\mathcal W$. Then :

 $\operatorname{crit}(\mathcal{V};\mathcal{W}) \leq \aleph_{n-1}$

 Tůma and Wehrung asked in 2002 if there are two varieties of lattices with critical point ℵ₁.

- Tůma and Wehrung asked in 2002 if there are two varieties of lattices with critical point ℵ₁.
- We considere the following varieties

 Assume that A
 is a ω-indexed diagram of finite lattices in V, then Con_c ◦A
 has a lifting in W.

- Tůma and Wehrung asked in 2002 if there are two varieties of lattices with critical point ℵ₁.
- We considere the following varieties

 Assume that A
 is a ω-indexed diagram of finite lattices in V, then Con_c ◦A
 has a lifting in W.

• Hence crit(
$$\mathcal{V}; \mathcal{W}$$
) $\geq \aleph_1$.

FIG.: $A_0, A_1, A_2, A_3 = T_1$

Two varieties with critical point ℵ1

FIG.: T_1 , T_2 , T_3 , and T_4

Theorem (G. 2008)

Let $\mathcal{V} =$ **Var** (T_1) and $\mathcal{W} =$ **Var** (T_2, T_3, T_4) , where T_1, T_2, T_3 , and T_4 are the lattices above, then :

 $\operatorname{crit}(\mathcal{V};\mathcal{W}) = \aleph_1$

Let \mathcal{V} be a finitely generated congruence-distributive variety of algebras.

Let \mathcal{V} be a finitely generated congruence-distributive variety of algebras. Let \vec{S} be a diagram of finite semilattices.

Let \mathcal{V} be a finitely generated congruence-distributive variety of algebras. Let \vec{S} be a diagram of finite semilattices. If every finite subdiagram of \vec{S} has a lifting in \mathcal{V} then \vec{S} has a lifting in \mathcal{V} .

Let \mathcal{V} be a finitely generated congruence-distributive variety of algebras. Let \vec{S} be a diagram of finite semilattices. If every finite subdiagram of \vec{S} has a lifting in \mathcal{V} then \vec{S} has a lifting in \mathcal{V} .

Corollary (G. 2008)

Let \mathcal{V} be locally finie variety of algebras, let \mathcal{W} be a finitely generated congruence-distributive variety of algebras. Then either crit($\mathcal{V}; \mathcal{W}$) < \aleph_{ω} or crit($\mathcal{V}; \mathcal{W}$) = ∞ .

Let \mathcal{V} be a finitely generated congruence-distributive variety of algebras. Let \vec{S} be a diagram of finite semilattices. If every finite subdiagram of \vec{S} has a lifting in \mathcal{V} then \vec{S} has a lifting in \mathcal{V} .

Corollary (G. 2008)

Let \mathcal{V} be locally finie variety of algebras, let \mathcal{W} be a finitely generated congruence-distributive variety of algebras. Then either crit($\mathcal{V}; \mathcal{W}$) < \aleph_{ω} or crit($\mathcal{V}; \mathcal{W}$) = ∞ .

The result can be generalized assuming only that \mathcal{W} is finitely generated congruence-modular varieties of algebras (G., Wehrung).

• Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.

- Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.
- Using the "condensate" we obtain that every finite diagram of finite semilattices liftable in \mathcal{V} is liftable in \mathcal{W} .

- Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.
- Using the "condensate" we obtain that every finite diagram of finite semilattices liftable in \mathcal{V} is liftable in \mathcal{W} .
- Let \vec{S} be a diagram of finite semilattices liftable in \mathcal{V} .

- Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.
- Using the "condensate" we obtain that every finite diagram of finite semilattices liftable in \mathcal{V} is liftable in \mathcal{W} .
- Let \vec{S} be a diagram of finite semilattices liftable in \mathcal{V} .
- Every finite subdiagram of \vec{S} is liftable in \mathcal{V} , thus also in \mathcal{W} .

- Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.
- Using the "condensate" we obtain that every finite diagram of finite semilattices liftable in \mathcal{V} is liftable in \mathcal{W} .
- Let \vec{S} be a diagram of finite semilattices liftable in \mathcal{V} .
- Every finite subdiagram of \vec{S} is liftable in \mathcal{V} , thus also in \mathcal{W} .
- Hence, by the Compactness theorem, \vec{S} is liftable in \mathcal{W} .

- Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.
- Using the "condensate" we obtain that every finite diagram of finite semilattices liftable in \mathcal{V} is liftable in \mathcal{W} .
- Let \vec{S} be a diagram of finite semilattices liftable in \mathcal{V} .
- Every finite subdiagram of \vec{S} is liftable in \mathcal{V} , thus also in \mathcal{W} .
- Hence, by the Compactness theorem, \vec{S} is liftable in \mathcal{W} .
- Every diagram of finite semilattices liftable in \mathcal{V} is also liftable in \mathcal{W} .

- Assume that $\operatorname{crit}(\mathcal{V}; \mathcal{W}) \geq \aleph_{\omega}$.
- Using the "condensate" we obtain that every finite diagram of finite semilattices liftable in \mathcal{V} is liftable in \mathcal{W} .
- Let \vec{S} be a diagram of finite semilattices liftable in \mathcal{V} .
- Every finite subdiagram of \vec{S} is liftable in \mathcal{V} , thus also in \mathcal{W} .
- Hence, by the Compactness theorem, \vec{S} is liftable in \mathcal{W} .
- Every diagram of finite semilattices liftable in \mathcal{V} is also liftable in \mathcal{W} .
- Hence $\operatorname{crit}(\mathcal{V}; \mathcal{W}) = \infty$.

 Let V and W be varieties of lattices, denote by V^d the dual of V.
Critical points

- Let V and W be varieties of lattices, denote by V^d the dual of V.
- If either $\mathcal{V} \subseteq \mathcal{W}$ or $\mathcal{V}^d \subseteq \mathcal{W}$, then $crit(\mathcal{V}; \mathcal{W}) = \infty$ (i.e. $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$)

- Let V and W be varieties of lattices, denote by V^d the dual of V.
- If either $\mathcal{V} \subseteq \mathcal{W}$ or $\mathcal{V}^d \subseteq \mathcal{W}$, then $crit(\mathcal{V}; \mathcal{W}) = \infty$ (i.e. $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$)

Conjecture (J. Tůma and F. Wehrung 2002)

Let \mathcal{V} and \mathcal{W} be (finitely generated) varieties of lattices, if $\operatorname{crit}(\mathcal{V}; \mathcal{W}) = \infty$ then $\mathcal{V} \subseteq \mathcal{W}$ or $\mathcal{V}^d \subseteq \mathcal{W}$.

- Let V and W be varieties of lattices, denote by V^d the dual of V.
- If either $\mathcal{V} \subseteq \mathcal{W}$ or $\mathcal{V}^d \subseteq \mathcal{W}$, then $crit(\mathcal{V}; \mathcal{W}) = \infty$ (i.e. $Con_c \mathcal{V} \subseteq Con_c \mathcal{W}$)

Conjecture (J. Tůma and F. Wehrung 2002)

Let \mathcal{V} and \mathcal{W} be (finitely generated) varieties of lattices, if $\operatorname{crit}(\mathcal{V}; \mathcal{W}) = \infty$ then $\mathcal{V} \subseteq \mathcal{W}$ or $\mathcal{V}^d \subseteq \mathcal{W}$.

Conjecture (J. Tůma and F. Wehrung 2002)

Let \mathcal{V} and \mathcal{W} be (finitely generated) varieties of lattices, then $crit(\mathcal{V}; \mathcal{W}) \leq \aleph_2$ or $crit(\mathcal{V}; \mathcal{W}) = \infty$.

• Let *L* be a finite lattice.

• Let *L* be a finite lattice. Denote 0 the smallest element of *L* and 1 the largest element of *L*.

- Let *L* be a finite lattice. Denote 0 the smallest element of *L* and 1 the largest element of *L*.
- We construct the *chain diagram* of *L* in the following way. The morphisms are inclusions.

- Let *L* be a finite lattice. Denote 0 the smallest element of *L* and 1 the largest element of *L*.
- We construct the *chain diagram* of *L* in the following way. The morphisms are inclusions.
- On the first level we put {0, 1}.

- Let *L* be a finite lattice. Denote 0 the smallest element of *L* and 1 the largest element of *L*.
- We construct the *chain diagram* of *L* in the following way. The morphisms are inclusions.
- On the first level we put {0,1}.
- On the second level we put all chains of length 2 or 3 of *L*, with 0 and 1.

- Let *L* be a finite lattice. Denote 0 the smallest element of *L* and 1 the largest element of *L*.
- We construct the *chain diagram* of *L* in the following way. The morphisms are inclusions.
- On the first level we put {0,1}.
- On the second level we put all chains of length 2 or 3 of *L*, with 0 and 1.
- On the third level we put all sublattice of *L* generated by two chains.

- Let *L* be a finite lattice. Denote 0 the smallest element of *L* and 1 the largest element of *L*.
- We construct the *chain diagram* of *L* in the following way. The morphisms are inclusions.
- On the first level we put {0,1}.
- On the second level we put all chains of length 2 or 3 of *L*, with 0 and 1.
- On the third level we put all sublattice of *L* generated by two chains.
- On the top we put the lattice L.

- Let *L* be a finite lattice. Denote 0 the smallest element of *L* and 1 the largest element of *L*.
- We construct the *chain diagram* of *L* in the following way. The morphisms are inclusions.
- On the first level we put {0,1}.
- On the second level we put all chains of length 2 or 3 of *L*, with 0 and 1.
- On the third level we put all sublattice of *L* generated by two chains.
- On the top we put the lattice L.
- Then we add many "decorations", we obtain a diagram A in Var(L).

- Let *L* be a finite lattice. Denote 0 the smallest element of *L* and 1 the largest element of *L*.
- We construct the *chain diagram* of *L* in the following way. The morphisms are inclusions.
- On the first level we put {0,1}.
- On the second level we put all chains of length 2 or 3 of *L*, with 0 and 1.
- On the third level we put all sublattice of *L* generated by two chains.
- On the top we put the lattice L.
- Then we add many "decorations", we obtain a diagram A in Var(L).
- Let V be a variety of lattices, Con_c ∘ A has a lifting in V if and only if L belongs to V or V^d.

• Denote \vec{A} the chain diagram of a lattice *L*.

- Denote \vec{A} the chain diagram of a lattice *L*.
- Let A be a condensate of A
 (there is such condensate of cardinal ℵ₂).

- Denote \vec{A} the chain diagram of a lattice L.
- Let A be a condensate of A
 (there is such condensate of cardinal ℵ₂).
- The following assertions are equivalent
 - $\operatorname{Con}_{c} A$ has a lifting in \mathcal{V} .

- Denote \vec{A} the chain diagram of a lattice L.
- Let A be a condensate of A
 (there is such condensate of cardinal ℵ₂).
- The following assertions are equivalent
 - $\operatorname{Con}_{c} A$ has a lifting in \mathcal{V} .
 - $\operatorname{Con}_{c} \circ \vec{A}$ has a lifting in \mathcal{V} .

- Denote \vec{A} the chain diagram of a lattice L.
- Let A be a condensate of A
 (there is such condensate of cardinal ℵ₂).
- The following assertions are equivalent
 - $\operatorname{Con}_{c} A$ has a lifting in \mathcal{V} .
 - $\operatorname{Con}_{c} \circ \vec{A}$ has a lifting in \mathcal{V} .
 - L belongs to \mathcal{V} or \mathcal{V}^d .

Theorem (G. 2010)

Let \mathcal{V} and \mathcal{W} be finitely generated variety of lattices. Let L be a finite lattice in \mathcal{V} .

- Denote \vec{A} the chain diagram of a lattice L.
- Let A be a condensate of A
 (there is such condensate of cardinal ℵ₂).
- The following assertions are equivalent
 - $\operatorname{Con}_{c} A$ has a lifting in \mathcal{V} .
 - $\operatorname{Con}_{c} \circ \vec{A}$ has a lifting in \mathcal{V} .
 - L belongs to \mathcal{V} or \mathcal{V}^d .

Theorem (G. 2010)

Let \mathcal{V} and \mathcal{W} be finitely generated variety of lattices. Let L be a finite lattice in \mathcal{V} . If $L \notin \mathcal{W} \cup \mathcal{W}^d$, then $crit(\mathcal{V}; \mathcal{W}) \leq \aleph_2$.

Let \mathcal{V} and \mathcal{W} be varieties of lattices.

Let \mathcal{V} and \mathcal{W} be varieties of lattices. Assume that each simple lattice in \mathcal{W} has a prime interval.

Let \mathcal{V} and \mathcal{W} be varieties of lattices. Assume that each simple lattice in \mathcal{W} has a prime interval. One of the following statement is true.

• crit(
$$\mathcal{V}; \mathcal{W}$$
) $\leq \aleph_2$.

$$2 \mathcal{V} \subseteq \mathcal{W}.$$

$$\textcircled{3} \hspace{0.1in} \mathcal{V} \subseteq \mathcal{W}^{\mathrm{d}}$$

Let \mathcal{V} and \mathcal{W} be varieties of lattices. Assume that each simple lattice in \mathcal{W} has a prime interval. One of the following statement is true.

• crit(
$$\mathcal{V}; \mathcal{W}$$
) $\leq \aleph_2$.

$$2 \mathcal{V} \subseteq \mathcal{W}.$$

3
$$\mathcal{V} \subseteq \mathcal{W}^{\mathsf{d}}$$

 This solve the two, above mentione, conjecture of J. Tůma et F. Wehrung in the finitely generated case. Thank you for your attention. Any questions ?