SOME PROPERTIES OF THE LATTICE OF FINITE Moore families

Nathalie Caspard

LACL, UPEC et CAMS, EHESS, France
Trecolococo, Cirm, Luminy, 17-19 novembre 2010

Outline

(1) Introduction and definitions

2 Lower bounded lattices and the doubling operation

DEFINITION

Moore family

A Moore family \mathcal{M} on S : any subset of 2^{S} which is \cap-stable and contains S.

- $M_{1}, M_{2} \in \mathcal{M} \Longrightarrow M_{1} \cap M_{2} \in \mathcal{M}$.
- $S \in \mathcal{M}$.

The elements of \mathcal{M} are called the closed sets.

DEFINITION

Moore family

A Moore family \mathcal{M} on S : any subset of 2^{S} which is \cap-stable and contains S.

- $M_{1}, M_{2} \in \mathcal{M} \Longrightarrow M_{1} \cap M_{2} \in \mathcal{M}$.
- $S \in \mathcal{M}$.

The elements of \mathcal{M} are called the closed sets.

- Closure system
- Intersection ring (of sets)
- Protopology
- Intersection semilattice,
- ...

Numbers of finite closure systems on S

Known up to $|S|=7$.

(1) 2,
(2) 7,
(3) 61,
(1) 2480 ,
© 1.385.552 (see Higuchi),
(6) 75.973.751.474 (Habib \& Nourine, Discrete Maths, 2005)
© 14.087.648.235.707.352.472 (Colomb, Irlande \& Raynaud, LNCS, 2010)

[ac|

SOME CRYPTOMORPHIC NOTIONS

Folklore : closure operators on S (Moore/Birkhoff)

Any map ϕ on 2^{S} which is :

- isotone $(A \subseteq B \Longrightarrow \phi(A) \subseteq \phi(B))$,
- extensive $(A \subseteq \phi(A))$,
- idempotente $\left(\phi^{2}(A)=\phi(A)\right)$.

SOME CRYPTOMORPHIC NOTIONS

Folklore : closure operators on S (Moore/Birkhoff)

Any map ϕ on 2^{S} which is :

- isotone $(A \subseteq B \Longrightarrow \phi(A) \subseteq \phi(B))$,
- extensive $(A \subseteq \phi(A))$,
- idempotente $\left(\phi^{2}(A)=\phi(A)\right)$.
- for any $\phi, \mathcal{M}_{\phi}=$ fixed points of ϕ,

SOME CRYPTOMORPHIC NOTIONS

Folklore : closure operators on S (Moore/Birkhoff)

Any map ϕ on 2^{S} which is :

- isotone $(A \subseteq B \Longrightarrow \phi(A) \subseteq \phi(B))$,
- extensive $(A \subseteq \phi(A))$,
- idempotente $\left(\phi^{2}(A)=\phi(A)\right)$.
- for any $\phi, \mathcal{M}_{\phi}=$ fixed points of ϕ,
- for any $\mathcal{M}, \phi_{\mathcal{M}}$ is such that $\phi_{\mathcal{M}}(X)=\bigcap\{M \in \mathcal{M}: X \subseteq M\}$

SOME CRYPTOMORPHIC NOTIONS

Other kinds of families

Example : Families \mathcal{O} on S containing the emptyset and the union of any subset of \mathcal{O}.

Sperner Villages on S (Demetrovics \& Hua, 1991)

A Sperner village on S : set \mathcal{V} of Sperner families on S satisfying some particular properties.
(A Sperner family \mathcal{F} on S is such that two distinct elements of \mathcal{F} are incomparable for set inclusion.)

lacl

SOME CRYPTOMORPHIC NOTIONS

Complete implicational systems Σ on S (Armstrong, 1974)
Any binary relation Σ on 2^{S} satisfying the following three properties :

- $A \longrightarrow B$ and $B \longrightarrow C \in \Sigma$ imply $A \longrightarrow C \in \Sigma$,
- $A \supseteq B$ implies $A \longrightarrow B \in \Sigma$,
- $A \longrightarrow B$ and $C \longrightarrow D \in \Sigma$ imply $(A \cup C) \longrightarrow(B \cup D) \in \Sigma$.

lacl

SOME CRYPTOMORPHIC NOTIONS

Complete implicational systems Σ on S (Armstrong, 1974)

Any binary relation Σ on 2^{S} satisfying the following three properties :

- $A \longrightarrow B$ and $B \longrightarrow C \in \Sigma$ imply $A \longrightarrow C \in \Sigma$,
- $A \supseteq B$ implies $A \longrightarrow B \in \Sigma$,
- $A \longrightarrow B$ and $C \longrightarrow D \in \Sigma$ imply $(A \cup C) \longrightarrow(B \cup D) \in \Sigma$.
- For a given $\Sigma, \phi_{\Sigma}: \phi_{\Sigma}(A)=\bigcup\{x \in S: A \longrightarrow x \in \Sigma\}$
- For a given closure operator $\phi, \Sigma_{\phi}=\{X \longrightarrow Y: Y \subseteq \phi(X)\}$.

SOME CRYPTOMORPHIC NOTIONS

Congruences on $\left(2^{S}, \cup\right)$

Any equivalence relation θ on 2^{S} such that, for all $A, B, C \subseteq S$, $A \theta B$ implies $(A \cup C) \theta(B \cup C)$.

- For a given closure operator ϕ, θ_{ϕ} is such that $A \theta_{\phi} B$ iff $\phi(A)=\phi(B)$.
- Given a congruence θ on $2^{S}, \phi_{\theta}$ is such that $\phi_{\theta}(A)=\bigcup\{B \subseteq S: B \theta A\}$

[acl

SOME CRYPTOMORPHIC NOTIONS

Congruences on $\left(2^{S}, \cup\right)$

Any equivalence relation θ on 2^{S} such that, for all $A, B, C \subseteq S$, $A \theta B$ implies $(A \cup C) \theta(B \cup C)$.

- For a given closure operator ϕ, θ_{ϕ} is such that $A \theta_{\phi} B$ iff $\phi(A)=\phi(B)$.
- Given a congruence θ on $2^{S}, \phi_{\theta}$ is such that $\phi_{\theta}(A)=\bigcup\{B \subseteq S: B \theta A\}$

Set representations of finite lattices

- Any Moore family can be ordered as a lattice,
- Any lattice is the lattice of the fixed points of a closure operator.

Set Representations of finite lattices

Fig.: A Moore family on $S=\{1,2,3,4\}$

Examples of particular Moore families

Topologies

Any Moore family which contains \emptyset and is \cup-stable.

Examples of particular Moore families

Topologies

Any Moore family which contains \emptyset and is \cup-stable.

Convex geometries

Any Moore family containing \emptyset and such that : "for every closed set M different from S there exists $x \notin M$ such that $M+\{x\}$ is a closed set".

lac|

Examples of particular Moore families

Topologies

Any Moore family which contains \emptyset and is \cup-stable.

Convex geometries

Any Moore family containing \emptyset and such that : "for every closed set M different from S there exists $x \notin M$ such that $M+\{x\}$ is a closed set".
\longrightarrow Set representations of meet-distributive lattices,
\longrightarrow Families of fixed points of anti-exchange closures.
\longrightarrow path-independent choice functions in microeconomics.

lacl

The Lattice $\left(\mathbb{M}_{n}, \subseteq\right)$ OF Moore FAMILIES ON A FINITE SET S

Lattice structure

Ordered with set inclusion, \mathbb{M}_{n} is a lattice since :

- it is an \cap-semilattice
- with a maximum $\left(2^{S}\right)$

[acl

The lattice $\left(\mathbb{M}_{n}, \subseteq\right)$ of Moore families on a finite set S

Lattice structure

Ordered with set inclusion, \mathbb{M}_{n} is a lattice since :

- it is an \cap-semilattice
- with a maximum $\left(2^{S}\right)$

Lattice operations :

- $\mathcal{M} \wedge \mathcal{M}^{\prime}=\mathcal{M} \cap \mathcal{M}^{\prime}$,
- $\mathcal{M} \vee \mathcal{M}^{\prime}=\left\{M \cap M^{\prime}: M \in \mathcal{M}\right.$ and $\left.M^{\prime} \in \mathcal{M}^{\prime}\right\}$.

lacl

The Lattice $\left(\mathbb{M}_{n}, \subseteq\right)$ OF Moore FAMILIES ON A FINITE SET S

Example $(|S|=2)$

[acl

Covering relation of the lattice $\left(\mathbb{M}_{n}, \subseteq\right)$

Characterization

The following are equivalent :

- $\mathcal{M} \prec \mathcal{M}^{\prime}$,
- $\mathcal{M}^{\prime}=\mathcal{M}+\{Q\}$, with Q an \cap-irreducible element of \mathcal{M}^{\prime}.

Covering relation of the lattice $\left(\mathbb{M}_{n}, \subseteq\right)$

Characterization

The following are equivalent :

- $\mathcal{M} \prec \mathcal{M}^{\prime}$,
- $\mathcal{M}^{\prime}=\mathcal{M}+\{Q\}$, with Q an \cap-irreducible element of \mathcal{M}^{\prime}.

NB. " Q " for "Quasi-closed set" (of \mathcal{M}).

lacl

AtOMS AND JOiN-IRREDUCIBLES OF $\left(\mathbb{M}_{n}, \subseteq\right)$

Clearly :

The following are equivalent :

- \mathcal{M} is an atom of \mathbb{M}_{n},
- there exists $A \subset S$ such that $\mathcal{M}=\mathcal{M}_{A}=\{A, S\}$.

AtOMS AND JOIN-IRREDUCIBLES OF $\left(\mathbb{M}_{n}, \subseteq\right)$

Clearly :

The following are equivalent :

- \mathcal{M} is an atom of \mathbb{M}_{n},
- there exists $A \subset S$ such that $\mathcal{M}=\mathcal{M}_{A}=\{A, S\}$.

Now :
$\mathcal{F}=\bigvee_{A \in \mathcal{F} \backslash\{S\}} \mathcal{M}_{A}$ (any Moore family is join of some $\mathcal{M}_{A}{ }^{\prime}$ s).

ATOMS AND JOIN-IRREDUCIBLES OF $\left(\mathbb{M}_{n}, \subseteq\right)$

Clearly :

The following are equivalent :

- \mathcal{M} is an atom of \mathbb{M}_{n},
- there exists $A \subset S$ such that $\mathcal{M}=\mathcal{M}_{A}=\{A, S\}$.

Now :
$\mathcal{F}=\bigvee_{A \in \mathcal{F} \backslash\{S\}} \mathcal{M}_{A}$ (any Moore family is join of some $\mathcal{M}_{A}{ }^{\prime}$ s).
So :

Theorem

The lattice ($\mathbb{M}_{n}, \subseteq$) is atomistic.

lac|

Meet-IRreducibles of $\left(\mathbb{M}_{n}, \subseteq\right)$

Implicational Moore family

For all distinct $A, B \subseteq S$,

$$
\mathcal{M}_{A, B}=\{X \subseteq S: A \nsubseteq X \text { or } B \subseteq X\}
$$

Meet-IRreducibles of $\left(\mathbb{M}_{n}, \subseteq\right)$

Implicational Moore family

For all distinct $A, B \subseteq S$,

$$
\begin{aligned}
\mathcal{M}_{A, B} & =\{X \subseteq S: A \nsubseteq X \text { or } B \subseteq X\} \\
& =\{X \subseteq S: A \subseteq X \text { implies } B \subseteq X\}
\end{aligned}
$$

MeET-IRREDUCIBLES OF $\left(\mathbb{M}_{n}, \subseteq\right)$

Implicational Moore family

For all distinct $A, B \subseteq S$,

$$
\begin{aligned}
\mathcal{M}_{A, B} & =\{X \subseteq S: A \nsubseteq X \text { or } B \subseteq X\} \\
& =\{X \subseteq S: A \subseteq X \text { implies } B \subseteq X\} .
\end{aligned}
$$

Characterization

The following are equivalent :

- \mathcal{M} is meet-irreducible in \mathbb{M}_{n},
- $\exists A \subset S, i \notin A$ such that

$$
\begin{aligned}
\mathcal{M} & =\mathcal{M}_{A, i} \\
& =\{X \subseteq S: A \subseteq X \text { implies } i \in X\}
\end{aligned}
$$

MeET-IRREDUCIBLES OF $\left(\mathbb{M}_{n}, \subseteq\right)$

Implicational Moore family

For all distinct $A, B \subseteq S$,

$$
\begin{aligned}
\mathcal{M}_{A, B} & =\{X \subseteq S: A \nsubseteq X \text { or } B \subseteq X\} \\
& =\{X \subseteq S: A \subseteq X \text { implies } B \subseteq X\} .
\end{aligned}
$$

Characterization

The following are equivalent :

- \mathcal{M} is meet-irreducible in \mathbb{M}_{n},
- $\exists A \subset S, i \notin A$ such that

$$
\begin{aligned}
\mathcal{M} & =\mathcal{M}_{A, i} \\
& =\{X \subseteq S: A \subseteq X \text { implies } i \in X\} .
\end{aligned}
$$

Note $: \mathcal{M}_{A, i} \prec \mathcal{M} \Longleftrightarrow \mathcal{M}=\mathcal{M}_{A, i}+\{A\}$.

A strong constructive properry

Theorem (N.C., 1998)

The lattice $\left(\mathbb{M}_{n}, \subseteq\right)$ is lower bounded.

lacl

Outline

(1) Introduction and definitions

(2) Lower bounded lattices and the doubling operation

LOWER BOUNDED LATTICES

Definition (McKenzie, 1972)

A homomorphism $\alpha: L \rightarrow L^{\prime}$ is called lower bounded if the inverse image of each element of L^{\prime} is either empty or has a minimum.

A lattice is lower bounded if it is the lower bounded homomorphic image of a free lattice.

lad

UPPER BOUNDED LATTICES

Definition (McKenzie, 1972)

A homomorphism $\alpha: L \rightarrow L^{\prime}$ is called upper bounded if the inverse image of each element of L^{\prime} is either empty or has a maximum.

A lattice is upper bounded if it is the upper bounded homomorphic image of a free lattice.

lacl

Bounded lattices

Definition (McKenzie, 1972)

A lattice is bounded if it is lower and upper bounded.

The interval doubling construction (Day, 1970)

lacl

The interval doubling construction (DAy, 1970)

[acl

The interval doubling construction (DAy, 1970)

[ac]

The interval doubling construction (DAy, 1970)

$24 / 43$

The interval doubling construction (DAy, 1970)

CHARACTERIZATION OF BOUNDED LATTICES

Theorem (DAY, 1979)

Let L be a lattice. The following are equivalent :

- L is bounded,
- it can be constructed starting from $\underline{2}$ by a finite sequence of interval doublings.

[acl

GENERALIZATION TO LOWER PSEUDO-INTERVAL DOUBLINGS

[acl

GENERALIZATION TO LOWER PSEUDO-INTERVAL DOUBLINGS

lacl

GENERALIZATION TO LOWER PSEUDO-INTERVAL DOUBLINGS

CHARACTERIZATION OF LOWER BOUNDED LATTICES

Theorem (DAY, 1979)

Let L be a lattice. The following are equivalent :

- L is lower bounded,
- it can be constructed starting from $\underline{2}$ by a finite sequence of lower pseudo-intervals.

[acl

ANOTHER CHARACTERIZATION OF LOWER BOUNDED LATTICES

Theorem (DAY, 1979)

Let L be a lattice. The following are equivalent :

- L is lower bounded,
- the strong dependence relation δ_{d} is cycle-free.

|ad

ANOTHER CHARACTERIZATION OF LOWER BOUNDED LATTICES

Theorem (DAY, 1979)

Let L be a lattice. The following are equivalent :

- L is lower bounded,
- the strong dependence relation δ_{d} is cycle-free.

What is the definition of δ_{d} ?

[acl

TWO DEPENDENCE RELATIONS ON THE JOIN-IRREDUCIBLES OF A LATTICE

The strong dependence relation $\delta_{d}($ Day, 1979)

$$
j \delta_{d} j^{\prime} \text { if } j=j^{\prime} \text { or if } \exists x \in L \text { with } j<j^{\prime} \vee x \text { and } j \not \leq j^{\prime-} \vee x .
$$

- Inspired from a relation owed to Pudlak and Tuma.
- Provides a characterization of lower bounded lattices.
- Used by Freese, Jezek \& Nation in the study of free lattices.

Two Dependence relations on THE JOIN-IRREDUCIBLES OF A LATTICE

The strong dependence relation $\delta_{d}($ Day, 1979)

$$
j \delta_{d} j^{\prime} \text { if } j=j^{\prime} \text { or if } \exists x \in L \text { with } j<j^{\prime} \vee x \text { and } j \not \leq j^{\prime}-\vee x .
$$

- Inspired from a relation owed to Pudlak and Tuma.
- Provides a characterization of lower bounded lattices.
- Used by Freese, Jezek \& Nation in the study of free lattices.

The dependence relation δ (Monjardet, 1990)

$$
j \delta j^{\prime} \text { if } j=j^{\prime} \text { or if } \exists x \in L \text { with } j<j^{\prime} \vee x, j \not \leq x \text { and } j^{\prime} \not \leq x .
$$

For the study of consensus problems in lattices.

On THE DEPENDENCE RELATIONS

Clearly : $\delta_{d} \subseteq \delta$.

On THE DEPENDENCE RELATIONS

Clearly : $\delta_{d} \subseteq \delta$.
Moreover :

Lemma (N.C, Monjardet, 1998)

The following two conditions are equivalent :

- L is atomistic,
- $\delta_{d}=\delta$ in L.

[acl

On THE DEPENDENCE RELATIONS

Clearly : $\delta_{d} \subseteq \delta$.
Moreover :

Lemma (N.C, Monjardet, 1998)

The following two conditions are equivalent :

- L is atomistic,
- $\delta_{d}=\delta$ in L.

So :
Corollary
$\delta_{d}=\delta$ in \mathbb{M}_{n}.

[acl

Finally The Result :

Recalling :

- In $\left(\mathbb{M}_{n}, \subseteq\right)$, the dependence relations δ_{d} and δ are equal,
- A lattice L is lower bounded $\Longleftrightarrow \delta_{d}$ is cycle-free in L,

Finally THE RESULT :

Recalling :

- In $\left(\mathbb{M}_{n}, \subseteq\right)$, the dependence relations δ_{d} and δ are equal,
- A lattice L is lower bounded $\Longleftrightarrow \delta_{d}$ is cycle-free in L,

Moreover :
Proposition (N.C., 1998)
In $\mathbb{M}_{n}: \mathcal{M}_{A} \delta \mathcal{M}_{B}$ if and only if $A \subseteq B \subset S$.
Hence the result.

Finally The Result :

Recalling :

- In $\left(\mathbb{M}_{n}, \subseteq\right)$, the dependence relations δ_{d} and δ are equal,
- A lattice L is lower bounded $\Longleftrightarrow \delta_{d}$ is cycle-free in L,

Moreover :
Proposition (N.C., 1998)
In $\mathbb{M}_{n}: \mathcal{M}_{A} \delta \mathcal{M}_{B}$ if and only if $A \subseteq B \subset S$.
Hence the result.
It is not bounded since it is not semidistributive.

Induced properties of The lattice $\left(\mathbb{M}_{n}, \subseteq\right)$

Corollary

(1) Lower Bounded,
(2) Join SemiDistributive

$$
(x \vee y=x \vee y \Longrightarrow x \vee y=x \vee(y \wedge z)),
$$

(3) Join PseudoComplemented $\forall x,\{t: t \vee x=1\}$ has a minimum),
(1) Atomistic,
(0) Meet Distributive $(=J S D+L S M)$,
(0) Lower SemiModular $(x \prec x \vee y \Longrightarrow x \wedge y \prec y)$,
(1) Ranked (and $r(\mathcal{M})=|\mathcal{M}|-1)$.
$(1) \Longrightarrow(2) \Longrightarrow(3)$.
$(1)+(4) \Longrightarrow(5)$ and moreover $(5)=(2)+(6)$.

Annex : RECALLING ABOUT THE ARROW RELATIONS...

$$
j \downarrow m: j \wedge m=j^{-}
$$

$j \uparrow m: j \vee m=m^{+}$

lacl

... And THE A-TABLE OF A LATTICE

[acl

... And THE A-TABLE OF A LATTICE

	a	z	t	v	w
y	\downarrow	\times	\times	\times	\times
z		\times	\downarrow	\times	\downarrow
t		\downarrow	\times	\downarrow	\times
u		\downarrow	\downarrow	\times	\times

EXAMPLES OF CLASSES OF LATTICES CHARACTERIZED BY MEANS OF THE ARROW RELATIONS AND/OR THE DEPENDENCE RELATIONS

Proposition

- Boolean,
- Semi-distributive,
- Distributive,
- Lower (resp. upper) bounded,
- Meet-(resp. join-)distributive,
- Atomistic,
- Coatomistic.

|cac|

QUASI-CLOSED SETS AND CRITICAL SETS OF A Moore Family

Quasi-closed set and critical set

- A subset $Q \subset S$ is a quasi-closed set of a Moore family \mathcal{M} if $Q \notin \mathcal{M}$ and $\mathcal{M}+\{Q\} \in \mathbb{M}_{n}$.
- Q is called a F-quasi-closed set if $\phi(Q)=F$.

[acl

QUASI-CLOSED SETS AND CRITICAL SETS OF A Moore Family

Quasi-closed set and critical set

- A subset $Q \subset S$ is a quasi-closed set of a Moore family \mathcal{M} if $Q \notin \mathcal{M}$ and $\mathcal{M}+\{Q\} \in \mathbb{M}_{n}$.
- Q is called a F-quasi-closed set if $\phi(Q)=F$.
- A subset $Q \subset S$ is a critical set of \mathcal{M} if there exists $F \in \mathcal{M}$ such that Q is a minimal F-quasi-closed set.

QUASI-CLOSED SETS AND CRITICAL SETS OF A Moore family

Quasi-closed set and critical set

- A subset $Q \subset S$ is a quasi-closed set of a Moore family \mathcal{M} if $Q \notin \mathcal{M}$ and $\mathcal{M}+\{Q\} \in \mathbb{M}_{n}$.
- Q is called a F-quasi-closed set if $\phi(Q)=F$.
- A subset $Q \subset S$ is a critical set of \mathcal{M} if there exists $F \in \mathcal{M}$ such that Q is a minimal F-quasi-closed set.

Canonical basis of a Moore family (Guigues-Duquenne, 1986)

Let \mathcal{M} be a Moore family on S and ϕ its associated closure. The set $\left\{\mathcal{M}_{C, \phi(C)}: C\right.$ is a critical set of $\left.\mathcal{M}\right\}$ is called the canonical basis of \mathcal{M}.

[^0]
Characterization result : an extension to a 1987 Result of Burosch, Demetrovics and KATONA

Theorem (N.C., 1998)

Let $\left\{\left(C_{i}, F_{i}\right)\right\}_{i=1}^{m}$ be a set of m ordered pairs of subsets of S. There exists a Moore family \mathcal{M} on S such that the C_{i} 's are all critical sets of \mathcal{M} and the F_{i} 's are all respective $\phi_{\mathcal{M}}\left(C_{i}\right)$ if and only if the following hold :

- $\forall i \leq m, C_{i} \subset F_{i} \subseteq S$,
- $\forall i, j \leq m,\left(C_{i} \subset C_{j}\right.$ implies $\left.F_{i} \subset C_{j}\right)$,
- $\forall i, j \leq m,\left(C_{i} \subseteq F_{j}\right.$ implies $\left.F_{i} \subseteq F_{j}\right)$.

N. Caspard and B. Monjardet, The lattice of Moore families and closure operators on a finite set : a survey, Electronic Notes in Discrete Mathematics, 2 (1999).
N. Caspard et B. Monjardet, The lattice of closure systems, closure operators and implicational systems on a finite set : a survey, Discrete Applied Mathematics, 127(2), 241-269 (2003).
A. Day, A simple solution to the word problem for lattices, Canad. Math. Bull. 13, 253-254 (1970).
A. Day, characterisations of finite lattices that are bounded-homomorphic images or sublattices of free lattices, Canadian J. Math. 31, 69-78 (1979).
A. Day, J.B. Nation and S. Tschantz, Doubling Convex Sets in Lattices and a Generalized Semidistributivity Condition, Order 6, 175-180 (1989).
W. Geyer, The generalized doubling construction and formal concept analysis, Algebra Universalis 32, 341-367 (1994).
R. McKenzie, Equational bases and non-modular lattice varieties, Trans. Amer. Math. Soc 174, 1-43 (1972).
B. Monjardet, Arrowian characterizations of latticial federation consensus functions, Mathematical Social Sciences 20(1), 51-71 (1990).

Characterizing δ and δ_{d} With the arrow RELATIONS

Proposition

(1) $j \delta j^{\prime} \Longleftrightarrow \exists m \in M: j \uparrow m$ and $j^{\prime} \not \leq m$.
(2) $j \delta_{d} j^{\prime} \Longleftrightarrow \exists m \in M: j \uparrow m$ and $j^{\prime} \downarrow m$.

In particular : $\delta_{d} \subseteq \delta$.

Some resulis

Proposition

In any lattice L, the following are equivalent :
(1) L is atomistic,
(2) $\forall j \in J, \forall m \in M, j \not \leq m$ implies $j \downarrow m$,
(3) $\delta_{d}=\delta$.

[acl

Some resulis

Proposition

In any lattice L, the following are equivalent :
(1) L is atomistic,
(2) $\forall j \in J, \forall m \in M, j \not \leq m$ implies $j \downarrow m$,
(3) $\delta_{d}=\delta$.

[^0]:

