Some properties of the lattice of finite Moore families

NATHALIE CASPARD

LACL, UPEC et CAMS, EHESS, France

Trecolococo, Cirm, Luminy, 17-19 novembre 2010

Outline

2 Lower bounded lattices and the doubling operation

DEFINITION

Moore family

A Moore family \mathcal{M} on S: any subset of 2^S which is \cap -stable and contains S.

• $M_1, M_2 \in \mathcal{M} \Longrightarrow M_1 \cap M_2 \in \mathcal{M}.$

•
$$S \in \mathcal{M}$$
.

The elements of \mathcal{M} are called the *closed* sets.

DEFINITION

Moore family

A Moore family \mathcal{M} on S: any subset of 2^S which is \cap -stable and contains S.

• $M_1, M_2 \in \mathcal{M} \Longrightarrow M_1 \cap M_2 \in \mathcal{M}.$

•
$$S \in \mathcal{M}$$
.

The elements of \mathcal{M} are called the *closed* sets.

- Closure system
- Intersection ring (of sets)
- Protopology
- Intersection semilattice,

• ...

Numbers of finite closure systems on S

Known up to |S|=7.

- **1** 2,
- **2** 7,
- **6**1,
- **4** 2480,
- **1**.385.552 (see Higuchi),
- **③** 75.973.751.474 (Habib & Nourine, Discrete Maths, 2005)
- 14.087.648.235.707.352.472 (Colomb, Irlande & Raynaud, LNCS, 2010)

Some cryptomorphic notions

Folklore : closure operators on S (Moore/Birkhoff)

Any map ϕ on 2^S which is :

- $\bullet \text{ isotone } (A \subseteq B \Longrightarrow \phi(A) \subseteq \phi(B)),$
- extensive $(A \subseteq \phi(A))$,
- idempotente $(\phi^2(A) = \phi(A))$.

Some cryptomorphic notions

Folklore : closure operators on S (Moore/Birkhoff)

Any map ϕ on 2^S which is :

- isotone $(A \subseteq B \Longrightarrow \phi(A) \subseteq \phi(B)),$
- extensive $(A \subseteq \phi(A))$,
- idempotente $(\phi^2(A) = \phi(A))$.
- for any ϕ , \mathcal{M}_{ϕ} = fixed points of ϕ ,

Folklore : closure operators on S (Moore/Birkhoff)

Any map ϕ on 2^S which is :

- isotone $(A \subseteq B \Longrightarrow \phi(A) \subseteq \phi(B)),$
- extensive $(A \subseteq \phi(A))$,
- idempotente $(\phi^2(A) = \phi(A))$.
- for any ϕ , \mathcal{M}_{ϕ} = fixed points of ϕ ,
- for any $\mathcal{M}, \phi_{\mathcal{M}}$ is such that $\phi_{\mathcal{M}}(X) = \bigcap \{ M \in \mathcal{M} : X \subseteq M \}$

Other kinds of families

Example : Families \mathcal{O} on S containing the emptyset and the union of any subset of \mathcal{O} .

Sperner Villages on S (Demetrovics & Hua, 1991)

A Sperner village on S: set \mathcal{V} of Sperner families on Ssatisfying some particular properties. (A *Sperner family* \mathcal{F} on S is such that two distinct elements of \mathcal{F} are incomparable for set inclusion.)

Complete implicational systems Σ on S (Armstrong, 1974)

Any binary relation Σ on 2^S satisfying the following three properties :

- $A \longrightarrow B$ and $B \longrightarrow C \in \Sigma$ imply $A \longrightarrow C \in \Sigma$,
- $A \supseteq B$ implies $A \longrightarrow B \in \Sigma$,
- $A \longrightarrow B$ and $C \longrightarrow D \in \Sigma$ imply $(A \cup C) \longrightarrow (B \cup D) \in \Sigma$.

Complete implicational systems Σ on S (Armstrong, 1974)

Any binary relation Σ on 2^S satisfying the following three properties :

• $A \longrightarrow B$ and $B \longrightarrow C \in \Sigma$ imply $A \longrightarrow C \in \Sigma$,

•
$$A \supseteq B$$
 implies $A \longrightarrow B \in \Sigma_{2}$

• $A \longrightarrow B$ and $C \longrightarrow D \in \Sigma$ imply $(A \cup C) \longrightarrow (B \cup D) \in \Sigma$.

- For a given Σ , $\phi_{\Sigma} : \phi_{\Sigma}(A) = \bigcup \{ x \in S : A \longrightarrow x \in \Sigma \}$
- For a given closure operator ϕ , $\Sigma_{\phi} = \{X \longrightarrow Y : Y \subseteq \phi(X)\}.$

Congruences on $(2^S, \cup)$

Any equivalence relation θ on 2^S such that, for all $A, B, C \subseteq S$, $A\theta B$ implies $(A \cup C)\theta(B \cup C)$.

- For a given closure operator ϕ , θ_{ϕ} is such that $A\theta_{\phi}B$ iff $\phi(A) = \phi(B)$.
- Given a congruence θ on 2^S , ϕ_{θ} is such that $\phi_{\theta}(A) = \bigcup \{ B \subseteq S : B\theta A \}$

Some cryptomorphic notions

Congruences on $(2^S, \cup)$

Any equivalence relation θ on 2^S such that, for all $A, B, C \subseteq S$, $A\theta B$ implies $(A \cup C)\theta(B \cup C)$.

- For a given closure operator ϕ , θ_{ϕ} is such that $A\theta_{\phi}B$ iff $\phi(A) = \phi(B)$.
- Given a congruence θ on 2^S , ϕ_{θ} is such that $\phi_{\theta}(A) = \bigcup \{ B \subseteq S : B\theta A \}$

Set representations of finite lattices

- Any Moore family can be ordered as a lattice,
- Any lattice is the lattice of the fixed points of a closure operator.

SET REPRESENTATIONS OF FINITE LATTICES

Examples of particular Moore families

Topologies

Any Moore family which contains \emptyset and is \cup -stable.

Examples of particular Moore families

Topologies

Any Moore family which contains \emptyset and is \cup -stable.

Convex geometries

Any Moore family containing \emptyset and such that : "for every closed set M different from S there exists $x \notin M$ such that $M + \{x\}$ is a closed set".

Examples of particular Moore families

Topologies

Any Moore family which contains \emptyset and is \cup -stable.

Convex geometries

Any Moore family containing \emptyset and such that : "for every closed set M different from S there exists $x \notin M$ such that $M + \{x\}$ is a closed set".

- -> Set representations of *meet-distributive lattices*,
 - -> Families of fixed points of anti-exchange closures.
 - -> path-independent choice functions in microeconomics.

The lattice $(\mathbb{M}_n, \subseteq)$ of Moore families on a finite set S

Lattice structure

Ordered with set inclusion, \mathbb{M}_n is a lattice since :

- $\bullet\,$ it is an $\cap\mbox{-semilattice}$
- with a maximum (2^S)

The lattice $(\mathbb{M}_n, \subseteq)$ of Moore families on a finite set S

Lattice structure

Ordered with set inclusion, \mathbb{M}_n is a lattice since :

- $\bullet\,$ it is an $\cap\mbox{-semilattice}$
- with a maximum (2^S)

Lattice operations :

- $\mathcal{M} \wedge \mathcal{M}' = \mathcal{M} \cap \mathcal{M}',$
- $\mathcal{M} \vee \mathcal{M}' = \{ M \cap M' : M \in \mathcal{M} \text{ and } M' \in \mathcal{M}' \}.$

The lattice $(\mathbb{M}_n, \subseteq)$ of Moore families on a finite set S

12/43

Covering relation of the lattice $(\mathbb{M}_n, \subseteq)$

Characterization

The following are equivalent :

•
$$\mathcal{M} \prec \mathcal{M}'$$
,

• $\mathcal{M}' = \mathcal{M} + \{Q\}$, with Q an \cap -irreducible element of \mathcal{M}' .

Covering relation of the lattice $(\mathbb{M}_n, \subseteq)$

Characterization

The following are equivalent :

•
$$\mathcal{M} \prec \mathcal{M}'$$
,

• $\mathcal{M}' = \mathcal{M} + \{Q\}$, with Q an \cap -irreducible element of \mathcal{M}' .

NB. "Q" for "Quasi-closed set" (of \mathcal{M}).

Atoms and join-irreducibles of $(\mathbb{M}_n, \subseteq)$

Clearly :

The following are equivalent :

- \mathcal{M} is an atom of \mathbb{M}_n ,
- there exists $A \subset S$ such that $\mathcal{M} = \mathcal{M}_A = \{A, S\}.$

Atoms and join-irreducibles of $(\mathbb{M}_n, \subseteq)$

Clearly :

The following are equivalent :

- \mathcal{M} is an atom of \mathbb{M}_n ,
- there exists $A \subset S$ such that $\mathcal{M} = \mathcal{M}_A = \{A, S\}.$

Now :

 $\mathcal{F} = \bigvee_{A \in \mathcal{F} \setminus \{S\}} \mathcal{M}_A$ (any Moore family is join of some \mathcal{M}_A 's).

< //>
</ >
</ >

Sac

Atoms and join-irreducibles of $(\mathbb{M}_n, \subseteq)$

Clearly :

The following are equivalent :

- \mathcal{M} is an atom of \mathbb{M}_n ,
- there exists $A \subset S$ such that $\mathcal{M} = \mathcal{M}_A = \{A, S\}.$

Now :

 $\mathcal{F} = \bigvee_{A \in \mathcal{F} \setminus \{S\}} \mathcal{M}_A \text{ (any Moore family is join of some } \mathcal{M}_A\text{'s)}.$ So :

Theorem

The lattice $(\mathbb{M}_n, \subseteq)$ is atomistic.

MEET-IRREDUCIBLES OF $(\mathbb{M}_n, \subseteq)$

Implicational Moore family

For all distinct $A, B \subseteq S$, $\mathcal{M}_{A,B} = \{X \subseteq S : A \not\subseteq X \text{ or } B \subseteq X\}$

MEET-IRREDUCIBLES OF $(\mathbb{M}_n, \subseteq)$

Implicational Moore family

For all distinct
$$A, B \subseteq S$$
,
 $\mathcal{M}_{A,B} = \{X \subseteq S : A \not\subseteq X \text{ or } B \subseteq X\}$
 $= \{X \subseteq S : A \subseteq X \text{ implies } B \subseteq X\}.$

MEET-IRREDUCIBLES OF $(\mathbb{M}_n, \subseteq)$

Implicational Moore family

For all distinct
$$A, B \subseteq S$$
,
 $\mathcal{M}_{A,B} = \{X \subseteq S : A \not\subseteq X \text{ or } B \subseteq X\}$
 $= \{X \subseteq S : A \subseteq X \text{ implies } B \subseteq X\}.$

Characterization

The following are equivalent :

• \mathcal{M} is meet-irreducible in \mathbb{M}_n ,

•
$$\exists A \subset S, i \notin A$$
 such that
 $\mathcal{M} = \mathcal{M}_{A,i}$
 $= \{X \subseteq S : A \subseteq X \text{ implies } i \in X\}$

MEET-IRREDUCIBLES OF $(\mathbb{M}_n, \subseteq)$

Implicational Moore family

For all distinct
$$A, B \subseteq S$$
,
 $\mathcal{M}_{A,B} = \{X \subseteq S : A \not\subseteq X \text{ or } B \subseteq X\}$
 $= \{X \subseteq S : A \subseteq X \text{ implies } B \subseteq X\}.$

Characterization

The following are equivalent :

• \mathcal{M} is meet-irreducible in \mathbb{M}_n ,

•
$$\exists A \subset S, i \notin A$$
 such that
 $\mathcal{M} = \mathcal{M}_{A,i}$
 $= \{X \subseteq S : A \subseteq X \text{ implies } i \in X\}.$

Note : $\mathcal{M}_{A,i} \prec \mathcal{M} \iff \mathcal{M} = \mathcal{M}_{A,i} + \{A\}.$

A STRONG CONSTRUCTIVE PROPERTY

Theorem (N.C., 1998)

The lattice $(\mathbb{M}_n, \subseteq)$ is lower bounded.

Outline

2 Lower bounded lattices and the doubling operation

Lower bounded lattices

Definition (MCKENZIE, 1972)

A homomorphism $\alpha : L \to L'$ is called *lower bounded* if the inverse image of each element of L' is either empty or has a minimum.

A lattice is *lower bounded* if it is the lower bounded homomorphic image of a free lattice.

Upper bounded lattices

Definition (MCKENZIE, 1972)

A homomorphism $\alpha: L \to L'$ is called *upper bounded* if the inverse image of each element of L' is either empty or has a maximum.

A lattice is *upper bounded* if it is the upper bounded homomorphic image of a free lattice.

BOUNDED LATTICES

Definition (MCKENZIE, 1972)

A lattice is *bounded* if it is lower and upper bounded.

CHARACTERIZATION OF BOUNDED LATTICES

Theorem (DAY, 1979)

Let L be a lattice. The following are equivalent :

- L is bounded,
- *it can be constructed starting from* <u>2</u> *by a finite sequence of interval doublings.*

GENERALIZATION TO LOWER PSEUDO-INTERVAL DOUBLINGS

500

GENERALIZATION TO LOWER PSEUDO-INTERVAL DOUBLINGS

GENERALIZATION TO LOWER PSEUDO-INTERVAL DOUBLINGS

CHARACTERIZATION OF LOWER BOUNDED LATTICES

Theorem (DAY, 1979)

Let L be a lattice. The following are equivalent :

- L is lower bounded,
- it can be constructed starting from <u>2</u> by a finite sequence of lower pseudo-intervals.

Another characterization of lower bounded lattices

Theorem (DAY, 1979)

Let L be a lattice. The following are equivalent :

- L is lower bounded,
- the strong dependence relation δ_d is cycle-free.

Another characterization of lower bounded lattices

Theorem (DAY, 1979)

Let L be a lattice. The following are equivalent :

- L is lower bounded,
- the strong dependence relation δ_d is cycle-free.

What is the definition of δ_d ?

Two dependence relations on the JOIN-IRREDUCIBLES OF A LATTICE

The strong dependence relation δ_d (Day, 1979)

 $j\delta_d j'$ if j = j' or if $\exists x \in L$ with $j < j' \lor x$ and $j \nleq j'^- \lor x$.

- Inspired from a relation owed to Pudlak and Tuma.
- Provides a characterization of lower bounded lattices.
- Used by Freese, Jezek & Nation in the study of free lattices.

Two dependence relations on the JOIN-IRREDUCIBLES OF A LATTICE

The strong dependence relation δ_d (Day, 1979)

 $j\delta_d j'$ if j = j' or if $\exists x \in L$ with $j < j' \lor x$ and $j \nleq j'^- \lor x$.

- Inspired from a relation owed to Pudlak and Tuma.
- Provides a characterization of lower bounded lattices.
- Used by Freese, Jezek & Nation in the study of free lattices.

The dependence relation δ (Monjardet, 1990)

 $j\delta j'$ if j = j' or if $\exists x \in L$ with $j < j' \lor x, j \not\leq x$ and $j' \not\leq x$.

For the study of consensus problems in lattices.

On the dependence relations

Clearly : $\delta_d \subseteq \delta$.

On the dependence relations

Clearly : $\delta_d \subseteq \delta$.

Moreover :

Lemma (N.C, Monjardet, 1998)

The following two conditions are equivalent :

• L is atomistic,

•
$$\delta_d = \delta$$
 in L .

On the dependence relations

Clearly : $\delta_d \subseteq \delta$.

Moreover :

Lemma (N.C, Monjardet, 1998)

The following two conditions are equivalent :

• L is atomistic,

•
$$\delta_d = \delta$$
 in L .

So:

 $\delta_d = \delta$ in \mathbb{M}_n .

FINALLY THE RESULT :

Recalling :

- In $(\mathbb{M}_n, \subseteq)$, the dependence relations δ_d and δ are equal,
- A lattice L is lower bounded $\iff \delta_d$ is cycle-free in L,

FINALLY THE RESULT :

Recalling:

- In $(\mathbb{M}_n, \subseteq)$, the dependence relations δ_d and δ are equal,
- A lattice L is lower bounded $\iff \delta_d$ is cycle-free in L,

Moreover :

Proposition (N.C., 1998)

In $\mathbb{M}_n : \mathcal{M}_A \delta \mathcal{M}_B$ if and only if $A \subseteq B \subset S$.

Hence the result.

FINALLY THE RESULT :

Recalling :

- In $(\mathbb{M}_n, \subseteq)$, the dependence relations δ_d and δ are equal,
- A lattice L is lower bounded $\iff \delta_d$ is cycle-free in L,

Moreover :

Proposition (N.C., 1998)

In $\mathbb{M}_n : \mathcal{M}_A \delta \mathcal{M}_B$ if and only if $A \subseteq B \subset S$.

Hence the result.

It is not bounded since it is not semidistributive.

INDUCED PROPERTIES OF THE LATTICE $(\mathbb{M}_n, \subseteq)$

Corollary

- Lower Bounded,
- **2** Join SemiDistributive $(x \lor y = x \lor y \Longrightarrow x \lor y = x \lor (y \land z)),$
- Join PseudoComplemented (∀x, {t : t ∨ x = 1} has a minimum),
- Atomistic,

- Ranked (and $r(\mathcal{M}) = |\mathcal{M}| 1$).

$$(1) \Longrightarrow (2) \Longrightarrow (3).$$

(1)+(4) \Longrightarrow (5) and moreover (5)=(2)+(6).

35/43

ANNEX : RECALLING ABOUT THE ARROW RELATIONS...

\dots AND THE A-TABLE OF A LATTICE

37/43

\dots AND THE A-TABLE OF A LATTICE

	a	z	t	v	w
y	1	×	×	×	×
z		×	Ļ	×	¢
t		↓	×	Ĵ	×
u		Ĵ	Ĵ	×	×

Examples of classes of lattices characterized by means of the arrow relations and/or the dependence relations

Proposition

- Boolean,
- Semi-distributive,
- Distributive,
- Lower (resp. upper) bounded,
- Meet-(resp. join-)distributive,
- Atomistic,
- Coatomistic.

QUASI-CLOSED SETS AND CRITICAL SETS OF A MOORE FAMILY

Quasi-closed set and critical set

- A subset $Q \subset S$ is a *quasi-closed set* of a Moore family \mathcal{M} if $Q \notin \mathcal{M}$ and $\mathcal{M} + \{Q\} \in \mathbb{M}_n$. - Q is called a *F*-quasi-closed set if $\phi(Q) = F$.

QUASI-CLOSED SETS AND CRITICAL SETS OF A MOORE FAMILY

Quasi-closed set and critical set

- A subset $Q \subset S$ is a *quasi-closed set* of a Moore family \mathcal{M} if $Q \notin \mathcal{M}$ and $\mathcal{M} + \{Q\} \in \mathbb{M}_n$.

- Q is called a *F*-quasi-closed set if $\phi(Q) = F$.

- A subset $Q \subset S$ is a *critical set* of \mathcal{M} if there exists $F \in \mathcal{M}$ such that Q is a minimal F-quasi-closed set.

na n

QUASI-CLOSED SETS AND CRITICAL SETS OF A MOORE FAMILY

Quasi-closed set and critical set

- A subset $Q \subset S$ is a *quasi-closed set* of a Moore family \mathcal{M} if $Q \notin \mathcal{M}$ and $\mathcal{M} + \{Q\} \in \mathbb{M}_n$.

- Q is called a *F*-quasi-closed set if $\phi(Q) = F$.

- A subset $Q \subset S$ is a *critical set* of \mathcal{M} if there exists $F \in \mathcal{M}$ such that Q is a minimal F-quasi-closed set.

Canonical basis of a Moore family (Guigues-Duquenne, 1986)

Let \mathcal{M} be a Moore family on S and ϕ its associated closure. The set $\{\mathcal{M}_{C,\phi(C)}: C \text{ is a critical set of } \mathcal{M}\}$ is called the *canonical basis* of \mathcal{M} .

CHARACTERIZATION RESULT : AN EXTENSION TO A 1987 RESULT OF BUROSCH, DEMETROVICS AND KATONA

Theorem (N.C., 1998)

Let $\{(C_i, F_i)\}_{i=1}^m$ be a set of *m* ordered pairs of subsets of *S*. There exists a Moore family \mathcal{M} on *S* such that the C_i 's are all critical sets of \mathcal{M} and the F_i 's are all respective $\phi_{\mathcal{M}}(C_i)$ if and only if the following hold :

- $\forall i \leq m, C_i \subset F_i \subseteq S$,
- $\forall i, j \leq m, (C_i \subset C_j \text{ implies } F_i \subset C_j),$
- $\forall i, j \leq m, (C_i \subseteq F_j \text{ implies } F_i \subseteq F_j).$

3 ×

Sac

Characterizing δ and δ_d with the arrow relations

Proposition

•
$$j\delta j' \iff \exists m \in M : j \uparrow m \text{ and } j' \not\leq m.$$

In particular : $\delta_d \subseteq \delta$.

Some results

Proposition

In any lattice L, the following are equivalent :

• *L* is atomistic,

$$\delta_d = \delta.$$

Some results

Proposition

In any lattice L, the following are equivalent :

- \bullet L is atomistic,

