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Introduction and definitions Lower bounded lattices and the doubling operation

Definition

Moore family

A Moore family M on S : any subset of 2S which is ∩-stable
and contains S.

M1,M2 ∈M =⇒ M1 ∩M2 ∈M.

S ∈M.

The elements of M are called the closed sets.

Closure system
Intersection ring (of sets)
Protopology
Intersection semilattice,
...
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Introduction and definitions Lower bounded lattices and the doubling operation

Numbers of finite closure systems on S

Known up to |S|=7.
1 2,
2 7,
3 61,
4 2480,
5 1.385.552 (see Higuchi),
6 75.973.751.474 (Habib & Nourine, Discrete Maths, 2005)
7 14.087.648.235.707.352.472 (Colomb, Irlande & Raynaud,

LNCS, 2010)
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Some cryptomorphic notions

Folklore : closure operators on S (Moore/Birkhoff)

Any map φ on 2S which is :
isotone (A ⊆ B =⇒ φ(A) ⊆ φ(B)),
extensive (A ⊆ φ(A)),
idempotente (φ2(A) = φ(A)).

for any φ,Mφ = fixed points of φ,
for any M, φM is such that
φM(X) =

⋂
{M ∈M : X ⊆ M}
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Some cryptomorphic notions

Other kinds of families
Example : Families O on S containing the emptyset and the
union of any subset of O.

Sperner Villages on S (Demetrovics & Hua, 1991)

A Sperner village on S : set V of Sperner families on S
satisfying some particular properties.
(A Sperner family F on S is such that two distinct elements of
F are incomparable for set inclusion.)
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Some cryptomorphic notions

Complete implicational systems Σ on S (Armstrong, 1974)

Any binary relation Σ on 2S satisfying the following three
properties :

A −→ B and B −→ C ∈ Σ imply A −→ C ∈ Σ,
A ⊇ B implies A −→ B ∈ Σ,
A −→ B and C −→ D ∈ Σ imply (A∪C) −→ (B ∪D) ∈ Σ.

- For a given Σ, φΣ : φΣ(A) =
⋃
{x ∈ S : A −→ x ∈ Σ}

- For a given closure operator φ, Σφ = {X −→ Y : Y ⊆ φ(X)}.
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Some cryptomorphic notions

Congruences on (2S ,∪)

Any equivalence relation θ on 2S such that, for all A,B, C ⊆ S,
AθB implies (A ∪ C)θ(B ∪ C).
- For a given closure operator φ, θφ is such that AθφB iff
φ(A) = φ(B).
- Given a congruence θ on 2S , φθ is such that
φθ(A) =

⋃
{B ⊆ S : BθA}

Set representations of finite lattices
- Any Moore family can be ordered as a lattice,
- Any lattice is the lattice of the fixed points of a closure
operator.
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Set representations of finite lattices

∅

S

2 3

23 34

234

1

12

123

Fig.: A Moore family on S = {1, 2, 3, 4}
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Examples of particular Moore families

Topologies

Any Moore family which contains ∅ and is ∪-stable.

Convex geometries

Any Moore family containing ∅ and such that : ”for every closed
set M different from S there exists x 6∈ M such that M + {x} is
a closed set”.
——–> Set representations of meet-distributive lattices,
——–> Families of fixed points of anti-exchange closures.
——–> path-independent choice functions in microeconomics.
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Introduction and definitions Lower bounded lattices and the doubling operation

The lattice (Mn,⊆) of Moore families on a
finite set S

Lattice structure
Ordered with set inclusion, Mn is a lattice since :

it is an ∩-semilattice
with a maximum (2S)

Lattice operations :
M∧M′ = M∩M′,
M∨M′ = {M ∩M ′ : M ∈M and M ′ ∈M′}.
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The lattice (Mn,⊆) of Moore families on a
finite set S

Example (|S|=2)

{∅, S}

{1, S}

2S

{S}

{∅, 2, S}

{2, S}

{∅, 1, S}
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Introduction and definitions Lower bounded lattices and the doubling operation

Covering relation of the lattice (Mn,⊆)

Characterization
The following are equivalent :

M≺M′,
M′ = M+ {Q}, with Q an ∩-irreducible element of M′.

NB. ”Q” for ”Quasi-closed set” (of M).
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Atoms and join-irreducibles of (Mn,⊆)

Clearly :
The following are equivalent :

M is an atom of Mn,
there exists A ⊂ S such that M = MA = {A,S}.

Now :
F =

∨
A∈F\{S}MA (any Moore family is join of some MA’s).

So :

Theorem
The lattice (Mn,⊆) is atomistic.
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Meet-irreducibles of (Mn,⊆)

Implicational Moore family
For all distinct A,B ⊆ S,
MA,B = {X ⊆ S : A 6⊆ X or B ⊆ X}

= {X ⊆ S : A ⊆ X implies B ⊆ X}.

Characterization
The following are equivalent :

M is meet-irreducible in Mn,
∃A ⊂ S, i 6∈ A such that
M = MA,i

= {X ⊆ S : A ⊆ X implies i ∈ X}.

Note : MA,i ≺M ⇐⇒ M = MA,i + {A}.
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A strong constructive property

Theorem (N.C., 1998)

The lattice (Mn,⊆) is lower bounded.

16/43



Introduction and definitions Lower bounded lattices and the doubling operation

Outline

1 Introduction and definitions

2 Lower bounded lattices and the doubling operation
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Lower bounded lattices

Definition (McKenzie, 1972)

A homomorphism α : L → L′ is called lower bounded if the
inverse image of each element of L′ is either empty or has a
minimum.

A lattice is lower bounded if it is the lower bounded
homomorphic image of a free lattice.
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Upper bounded lattices

Definition (McKenzie, 1972)

A homomorphism α : L → L′ is called upper bounded if the
inverse image of each element of L′ is either empty or has a
maximum.

A lattice is upper bounded if it is the upper bounded
homomorphic image of a free lattice.
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Bounded lattices

Definition (McKenzie, 1972)

A lattice is bounded if it is lower and upper bounded.
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The interval doubling construction (Day,
1970)

a

b c d

e
f g h

i j

k

21/43



Introduction and definitions Lower bounded lattices and the doubling operation

The interval doubling construction (Day,
1970)

a

b c d

e
f g h

i j

k

22/43



Introduction and definitions Lower bounded lattices and the doubling operation
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1

0

j

c

f g

a

b c d

e
f g

i j

k

h ×
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The interval doubling construction (Day,
1970)

1

0

j

c

f g

c0
c1

f0
f1

g0
g1

j0
j1

a

b c d

e
f g

i j

k

h ×
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The interval doubling construction (Day,
1970)

a

b c d

e
f g h

i j

k

c0
c1

f0
f1

g0
g1

j0
j1

a

b

e

i

h

dc0

c1

f0
f1g0

g1

j0 j1

k
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Characterization of bounded lattices

Theorem (Day, 1979)

Let L be a lattice. The following are equivalent :
L is bounded,
it can be constructed starting from 2 by a finite sequence of
interval doublings.
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Generalization to lower pseudo-interval
doublings

a

d

h

b c

e
f g

i j

k
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Generalization to lower pseudo-interval
doublings

a

d

h

i0

f0 g0

c0b0

e0

i1

g1f1
e1

b1 c1

a0

a1

b c

e
f g

i j

k
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Generalization to lower pseudo-interval
doublings

i0

f0 g0

c0b0

e0

i1

g1f1
e1

b1 c1

a0

a1

k

h

j
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d
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g1f1
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e
f g

i j
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Characterization of lower bounded lattices

Theorem (Day, 1979)

Let L be a lattice. The following are equivalent :
L is lower bounded,
it can be constructed starting from 2 by a finite sequence of
lower pseudo-intervals.
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Another characterization of lower bounded
lattices

Theorem (Day, 1979)

Let L be a lattice. The following are equivalent :
L is lower bounded,
the strong dependence relation δd is cycle-free.

What is the definition of δd ?
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Two dependence relations on the
join-irreducibles of a lattice

The strong dependence relation δd (Day, 1979)

jδdj
′ if j = j

′
or if ∃x ∈ L with j < j′ ∨ x and j 6≤ j

′− ∨ x.

- Inspired from a relation owed to Pudlak and Tuma.
- Provides a characterization of lower bounded lattices.
- Used by Freese, Jezek & Nation in the study of free lattices.

The dependence relation δ (Monjardet, 1990)

jδj′ if j = j
′
or if ∃x ∈ L with j < j′ ∨ x, j 6≤ x and j′ 6≤ x.

For the study of consensus problems in lattices.
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On the dependence relations

Clearly : δd ⊆ δ.

Moreover :

Lemma (N.C, Monjardet, 1998)

The following two conditions are equivalent :
L is atomistic,
δd = δ in L.

So :

Corollary
δd = δ in Mn.
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Finally the result :

Recalling :

In (Mn,⊆), the dependence relations δd and δ are equal,
A lattice L is lower bounded ⇐⇒ δd is cycle-free in L,

Moreover :

Proposition (N.C., 1998)

In Mn : MAδMB if and only if A ⊆ B ⊂ S.

Hence the result.

It is not bounded since it is not semidistributive.
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Induced properties of the lattice (Mn,⊆)

Corollary
1 Lower Bounded,
2 Join SemiDistributive

(x ∨ y = x ∨ y =⇒ x ∨ y = x ∨ (y ∧ z)),
3 Join PseudoComplemented (∀x, {t : t ∨ x = 1} has a

minimum),
4 Atomistic,
5 Meet Distributive (= JSD + LSM),
6 Lower SemiModular (x ≺ x ∨ y =⇒ x ∧ y ≺ y),
7 Ranked (and r(M) = |M| − 1).

(1) =⇒ (2) =⇒ (3).

(1)+(4) =⇒ (5) and moreover (5)=(2)+(6).
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Annex : recalling about the arrow
relations...

m m+

m

jj−

j

j−

j

m

m+

j ↓ m : j ∧m = j−

j ↑ m : j ∨m = m+

j l m
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... And the A-table of a lattice

y

a

u

w

x

z t

v

a z t v w
y l × × × ×
z × ↓ × l
t ↓ × l ×
u l l × ×
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Examples of classes of lattices characterized
by means of the arrow relations and/or the
dependence relations

Proposition
Boolean,
Semi-distributive,
Distributive,
Lower (resp. upper) bounded,
Meet-(resp. join-)distributive,
Atomistic,
Coatomistic.
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Quasi-closed sets and critical sets of a
Moore family

Quasi-closed set and critical set
- A subset Q ⊂ S is a quasi-closed set of a Moore family M if
Q 6∈ M and M+ {Q} ∈ Mn.
- Q is called a F -quasi-closed set if φ(Q) = F .

- A subset Q ⊂ S is a critical set of M if there exists F ∈M
such that Q is a minimal F -quasi-closed set.

Canonical basis of a Moore family (Guigues-Duquenne, 1986)

Let M be a Moore family on S and φ its associated closure.
The set {MC,φ(C) : C is a critical set of M} is called the
canonical basis of M.
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Characterization result : an extension to a
1987 result of Burosch, Demetrovics and
Katona

Theorem (N.C., 1998)

Let {(Ci, Fi)}m
i=1 be a set of m ordered pairs of subsets of S.

There exists a Moore family M on S such that the Ci’s are all
critical sets of M and the Fi’s are all respective φM(Ci) if and
only if the following hold :

∀i ≤ m,Ci ⊂ Fi ⊆ S,
∀i, j ≤ m, (Ci ⊂ Cj implies Fi ⊂ Cj),
∀i, j ≤ m, (Ci ⊆ Fj implies Fi ⊆ Fj).
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Characterizing δ and δd with the arrow
relations

Proposition
1 jδj′ ⇐⇒ ∃m ∈ M : j ↑ m and j′ 6≤ m.
2 jδdj

′ ⇐⇒ ∃m ∈ M : j ↑ m and j
′ ↓ m.

In particular : δd ⊆ δ.
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Some results

Proposition
In any lattice L, the following are equivalent :

1 L is atomistic,
2 ∀ j ∈ J, ∀ m ∈ M, j 6≤ m implies j ↓ m,
3 δd = δ.
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