Existence varieties of regular rings and complemented modular lattices

Christian Herrmann¹ Marina Semenova²

¹TU Darmstadt, Germany ²Institute of Mathematics SB RAS, Russia

Luminy, November 2010

Lattices are considered in signature $\{\vee,\wedge,0\}$

2

<ロト < 団 > < 団 > < 団 > < 団 >

Lattices are considered in signature $\{\vee,\wedge,0\}$

$$\begin{split} \Sigma_I &= \text{axioms of modular lattices } + \\ &+ \forall xy \, \exists z \, [x \wedge y \wedge z = 0] \& [(x \wedge y) \lor z = x]. \end{split}$$

(4 同) 4 ヨ) 4 ヨ)

Lattices are considered in signature $\{\vee,\wedge,0\}$

$$\begin{split} \Sigma_I &= \text{axioms of modular lattices } + \\ &+ \forall xy \, \exists z \, [x \wedge y \wedge z = 0] \& [(x \wedge y) \lor z = x]. \end{split}$$

If $L \in Mod \Sigma_I$, then L is a sectionally complemented modular lattice (a SCML for short);

伺 ト イヨト イヨト

Lattices are considered in signature $\{\vee,\wedge,0\}$

$$\begin{split} \Sigma_I &= \text{axioms of modular lattices } + \\ &+ \forall xy \, \exists z \, [x \land y \land z = 0] \& [(x \land y) \lor z = x]. \end{split}$$

If $L \in \mathbf{Mod} \Sigma_I$, then L is a sectionally complemented modular lattice (a SCML for short); if $L \in \mathbf{Mod} \Sigma_I$ has 1, then it is a complemented modular lattice (a CML for short);

A-algebras are considered in signature $\{\Lambda, +, -, \cdot, 0\}$;

2

<ロト < 団 > < 団 > < 団 > < 団 >

 $\label{eq:lambda} \begin{array}{l} \mbox{Λ-algebras are considered in signature $\{\Lambda,+,-,\cdot,0$;} \\ \mbox{$Rings are considered in signature $\{+,-,\cdot,0$;} \end{array}$

- 4 同 2 4 日 2 4 日 2

A-algebras are considered in signature $\{\Lambda, +, -, \cdot, 0\}$; Rings are considered in signature $\{+, -, \cdot, 0\}$;

$$\Sigma_{\Lambda} = axioms of \Lambda$$
-algebras $+ \forall x \exists y [xyx = x].$

- 4 同 2 4 日 2 4 日 2

 $\label{eq:lambda} \begin{array}{l} \mbox{Λ-algebras are considered in signature $\{\Lambda,+,-,\cdot,0$;} \\ \mbox{$Rings are considered in signature $\{+,-,\cdot,0$;} \end{array}$

$$\Sigma_{\Lambda} = \text{axioms of } \Lambda \text{-algebras} + \forall x \exists y \ [xyx = x].$$

If $A \in \mathbf{Mod} \Sigma_{\Lambda}$, then A is a (von Neumann) regular algebra.

(4 同) 4 ヨ) 4 ヨ)

Let R be a regular ring.

2

<ロト < 団 > < 団 > < 団 > < 団 >

Let *R* be a regular ring. $\mathbb{L}(R)$ is the lattice of principal right ideals of *R*.

3

⇒ >

・ 同 ト ・ ヨ ト ・

Let R be a regular ring. $\mathbb{L}(R)$ is the lattice of principal right ideals of R. $\mathbb{L}(R)$ is a SCML.

3

▲ □ ▶ ▲ □ ▶ ▲

Let R be a regular ring. $\mathbb{L}(R)$ is the lattice of principal right ideals of R. $\mathbb{L}(R)$ is a SCML. If R is Artinian, then $\mathbb{L}(R)$ is a finite height CML.

・ 同 ト ・ ヨ ト ・

$$\mathsf{a} \in \varphi(\mathsf{Y} \cup \{b\}) \rightarrow b \in \varphi(\mathsf{Y} \cup \{a\})$$

for any $a, b \in X$ and any $Y \subseteq X$.

・ 同 ト ・ ヨ ト ・ ヨ ト

$$a \in \varphi(Y \cup \{b\}) \rightarrow b \in \varphi(Y \cup \{a\})$$

for any $a, b \in X$ and any $Y \subseteq X$.

Closure lattices of combinatorial geometries are often modular.

$$a \in \varphi(Y \cup \{b\}) \rightarrow b \in \varphi(Y \cup \{a\})$$

for any $a, b \in X$ and any $Y \subseteq X$.

Closure lattices of combinatorial geometries are often modular.

Let $V_{\mathbb{D}}$ be a vector space over a division ring \mathbb{D} .

$$a \in \varphi(Y \cup \{b\}) \rightarrow b \in \varphi(Y \cup \{a\})$$

for any $a, b \in X$ and any $Y \subseteq X$.

Closure lattices of combinatorial geometries are often modular.

Let $V_{\mathbb{D}}$ be a vector space over a division ring \mathbb{D} . Sub $(V_{\mathbb{D}})$ is the subspace lattice.

$$a \in \varphi(Y \cup \{b\}) \rightarrow b \in \varphi(Y \cup \{a\})$$

for any $a, b \in X$ and any $Y \subseteq X$.

Closure lattices of combinatorial geometries are often modular.

Let $V_{\mathbb{D}}$ be a vector space over a division ring \mathbb{D} . Sub $(V_{\mathbb{D}})$ is the subspace lattice. Sub $(V_{\mathbb{D}}) \cong \mathbb{L}(\operatorname{End}(V_{\mathbb{D}}))$, End $(V_{\mathbb{D}})$ is a regular ring.

伺下 イヨト イヨト

 $\operatorname{Sub}(V_{\mathbb{D}})$ is a subdirectly irreducible Arguesian SCL:

2

<ロト < 団 > < 団 > < 団 > < 団 >

 $\operatorname{Sub}(V_{\mathbb{D}})$ is a subdirectly irreducible Arguesian SCL:

$$\forall x_0 x_1 x_2 y_0 y_1 y_2 \quad \bigwedge_{i<3} (x_i \lor y_i) \leq (x_0 \land (x_1 \lor c)) \lor (y_0 \land (y_1 \lor c)),$$

where

$$c_i = (x_j \lor x_k) \land (y_j \lor y_k), \quad \{i, j, k\} = \{0, 1, 2\}, \ c = (c_0 \lor c_1) \land c_2.$$

2

- 《圖》 《문》 《문》

 $\operatorname{Sub}(V_{\mathbb{D}})$ is a subdirectly irreducible Arguesian SCL:

$$\forall x_0 x_1 x_2 y_0 y_1 y_2 \quad \bigwedge_{i<3} (x_i \lor y_i) \leq (x_0 \land (x_1 \lor c)) \lor (y_0 \land (y_1 \lor c)),$$

where

$$c_i = (x_j \lor x_k) \land (y_j \lor y_k), \quad \{i, j, k\} = \{0, 1, 2\},\ c = (c_0 \lor c_1) \land c_2.$$

If dim $V_{\mathbb{D}} < \omega$, then $\operatorname{Sub}(V_{\mathbb{D}})$ is simple finite height.

(4 同) 4 ヨ) 4 ヨ)

A partial converse is true:

2

<ロト < 団 > < 団 > < 団 > < 団 >

A partial converse is true:

Theorem (von Neumann, 1939; Jónsson, 1960)

Let L be a simple Arguesian CL of finite height $n \ge 3$.

-∰ ► < ≣ ►

A partial converse is true:

Theorem (von Neumann, 1939; Jónsson, 1960)

Let L be a simple Arguesian CL of finite height $n \ge 3$. Then there is a division ring \mathbb{D} such that $L \cong \operatorname{Sub}(\mathbb{D}^n_{\mathbb{D}})$.

-∰ ► < ≣ ►

Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

2

・ロト ・部ト ・ヨト ・ヨト

Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

Due to the Maltsev theorem, this class is a quasivariety.

・ 同 ト ・ ヨ ト ・

Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

Due to the Maltsev theorem, this class is a quasivariety.

Theorem (Jónsson, 1960)

Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

Due to the Maltsev theorem, this class is a quasivariety.

Theorem (Jónsson, 1960)

The following are equivalent for a SCML:

• $L \in S(Cl(X, \varphi))$ for a projective geometry (X, φ) ;

Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

Due to the Maltsev theorem, this class is a quasivariety.

Theorem (Jónsson, 1960)

- $L \in S(Cl(X, \varphi))$ for a projective geometry (X, φ) ;
- **2** $L \in \mathbf{S}(\mathrm{Sub}(A))$ for an Abelian group A;

Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

Due to the Maltsev theorem, this class is a quasivariety.

Theorem (Jónsson, 1960)

- $L \in S(Cl(X, \varphi))$ for a projective geometry (X, φ) ;
- **2** $L \in \mathbf{S}(\mathrm{Sub}(A))$ for an Abelian group A;
- **③** $L \in \mathbf{S}(\prod_{i \in I} \operatorname{Sub}(V_i))$, V_i is a vector space for all *i* ∈ *I*;

Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

Due to the Maltsev theorem, this class is a quasivariety.

Theorem (Jónsson, 1960)

- **1** $L \in \mathbf{S}(Cl(X, \varphi))$ for a projective geometry (X, φ) ;
- **2** $L \in \mathbf{S}(\mathrm{Sub}(A))$ for an Abelian group A;
- **③** $L \in \mathbf{S}(\prod_{i \in I} \operatorname{Sub}(V_i))$, V_i is a vector space for all $i \in I$;
- I is Arguesian.

Let $\mathcal{K} \subseteq \textbf{Mod} \Sigma$.

Herrmann, Semenova Existence varieties

・ロン ・回と ・ ヨン ・ ヨン

æ

Let $\mathcal{K} \subseteq \mathsf{Mod}\,\Sigma$. $\mathsf{S}_{\exists}(\mathcal{K}) = \mathsf{Mod}\,\Sigma \cap \mathsf{S}(\mathcal{K})$

Herrmann, Semenova Existence varieties

2

<ロト < 団 > < 団 > < 団 > < 団 >

Let $\mathcal{K} \subseteq \mathsf{Mod}\,\Sigma$. $\mathsf{S}_{\exists}(\mathcal{K}) = \mathsf{Mod}\,\Sigma \cap \mathsf{S}(\mathcal{K})$

Definition

 $\mathcal{K} \subseteq \mathbf{Mod} \Sigma$ is an \exists -variety, if it is closed under $\mathbf{H}, \mathbf{S}_{\exists}$, and \mathbf{P} .

- 4 同 2 4 日 2 4 日 2

Let $\mathcal{K} \subseteq \mathsf{Mod}\,\Sigma$. $\mathsf{S}_{\exists}(\mathcal{K}) = \mathsf{Mod}\,\Sigma \cap \mathsf{S}(\mathcal{K})$

Definition

 $\mathcal{K} \subseteq \mathbf{Mod} \Sigma$ is an \exists -variety, if it is closed under $\mathbf{H}, \mathbf{S}_{\exists}$, and \mathbf{P} .

Theorem

Let $\mathcal{K} \subseteq \mathbf{Mod} \Sigma$.

2

- 4 同 2 4 日 2 4 日 2

Let $\mathcal{K} \subseteq \mathsf{Mod}\,\Sigma$. $\mathsf{S}_{\exists}(\mathcal{K}) = \mathsf{Mod}\,\Sigma \cap \mathsf{S}(\mathcal{K})$

Definition

 $\mathcal{K} \subseteq \mathbf{Mod} \Sigma$ is an \exists -variety, if it is closed under $\mathbf{H}, \mathbf{S}_{\exists}$, and \mathbf{P} .

Theorem

Let $\mathfrak{K} \subseteq \mathbf{Mod} \Sigma$.

Q $V_{\exists}(\mathcal{K}) = HS_{\exists}P(\mathcal{K})$ is the smallest \exists -variety containing \mathcal{K} ;

▲□ ► < □ ► </p>

ヨート
Let $\mathcal{K} \subseteq \mathsf{Mod}\,\Sigma$. $\mathsf{S}_{\exists}(\mathcal{K}) = \mathsf{Mod}\,\Sigma \cap \mathsf{S}(\mathcal{K})$

Definition

 $\mathcal{K} \subseteq \mathbf{Mod} \Sigma$ is an \exists -variety, if it is closed under $\mathbf{H}, \mathbf{S}_{\exists}$, and \mathbf{P} .

Theorem

Let $\mathcal{K} \subseteq \mathbf{Mod} \Sigma$.

 V_∃(𝔅) = HS_∃P(𝔅) is the smallest ∃-variety containing 𝔅; moreover, TV_∃(𝔅) = VT(𝔅).

- 4 同 ト - 4 三 ト - 4

ヨート

Let $\mathcal{K} \subseteq \mathsf{Mod}\,\Sigma$. $\mathsf{S}_{\exists}(\mathcal{K}) = \mathsf{Mod}\,\Sigma \cap \mathsf{S}(\mathcal{K})$

Definition

 $\mathcal{K} \subseteq \mathbf{Mod} \Sigma$ is an \exists -variety, if it is closed under \mathbf{H} , \mathbf{S}_{\exists} , and \mathbf{P} .

Theorem

Let $\mathfrak{K} \subseteq \mathbf{Mod} \Sigma$.

- V_∃(𝔅) = HS_∃P(𝔅) is the smallest ∃-variety containing 𝔅; moreover, TV_∃(𝔅) = VT(𝔅).
- The reduct of any free algebra from VT(𝔅) belongs to P_{s∃}(𝔅).

Let $\mathcal{K} \subseteq \mathsf{Mod}\,\Sigma$. $\mathsf{S}_{\exists}(\mathcal{K}) = \mathsf{Mod}\,\Sigma \cap \mathsf{S}(\mathcal{K})$

Definition

 $\mathcal{K} \subseteq \mathbf{Mod} \Sigma$ is an \exists -variety, if it is closed under \mathbf{H} , \mathbf{S}_{\exists} , and \mathbf{P} .

Theorem

Let $\mathfrak{K} \subseteq \mathbf{Mod} \Sigma$.

- V_∃(𝔅) = HS_∃P(𝔅) is the smallest ∃-variety containing 𝔅; moreover, TV_∃(𝔅) = VT(𝔅).
- The reduct of any free algebra from VT(𝔅) belongs to P_{s∃}(𝔅).
- **3** Any SI algebra from $V_{\exists}(\mathcal{K})$ belongs to $HS_{\exists}P_u(\mathcal{K})$.

イロト イポト イヨト イヨト

Let $\mathcal{K} \subseteq \mathsf{Mod}\,\Sigma$. $\mathsf{S}_{\exists}(\mathcal{K}) = \mathsf{Mod}\,\Sigma \cap \mathsf{S}(\mathcal{K})$

Definition

 $\mathcal{K} \subseteq \mathbf{Mod} \Sigma$ is an \exists -variety, if it is closed under $\mathbf{H}, \mathbf{S}_{\exists}$, and \mathbf{P} .

Theorem

Let $\mathfrak{K} \subseteq \mathbf{Mod} \Sigma$.

- V_∃(𝔅) = HS_∃P(𝔅) is the smallest ∃-variety containing 𝔅; moreover, TV_∃(𝔅) = VT(𝔅).
- One reduct of any free algebra from VT(𝔅) belongs to P_{s∃}(𝔅).
- **3** Any SI algebra from $\mathbf{V}_{\exists}(\mathcal{K})$ belongs to $\mathbf{HS}_{\exists}\mathbf{P}_{u}(\mathcal{K})$.
- Any \exists -variety is generated by its finitely generated SI-s.

- 4 同 2 4 回 2 4 回 2 4

Free algebras exist in \exists -varieties.

・ロン ・回と ・ ヨン ・ ヨン

2

Free algebras exist in \exists -varieties.

Any \exists -variety can be defined by positive sentences as well as by Horn sentences.

3

・ 同 ト ・ 三 ト ・

Free algebras exist in \exists -varieties.

Any \exists -variety can be defined by positive sentences as well as by Horn sentences.

Problem

Can an ∃-variety be defined by positive Horn sentences?

同 ト イ ヨ ト イ

Generators

Regular rings

Herrmann, Semenova Existence varieties

イロト イヨト イヨト イヨト

æ

Generators

Regular rings

Theorem

 $\mathbf{V}_{\exists}(\mathbb{F}^{n \times n} \mid n_0 < n < \omega, \mathbb{F} \text{ is a quotient field of } \Lambda) \text{ is the } \exists \text{-variety of regular } \Lambda \text{-algebras.}$

3

▲□ ► < □ ► </p>

Generators

Regular rings

Theorem

 $\mathbf{V}_{\exists}(\mathbb{F}^{n \times n} \mid n_0 < n < \omega, \mathbb{F} \text{ is a quotient field of } \Lambda) \text{ is the } \exists\text{-variety of regular } \Lambda\text{-algebras.}$

Corollary

V_∃(𝔽^{n×n}_p | n₀ < n < ω, p is prime) is the ∃-variety of regular rings.</p>

▲ 同 ▶ → 三 ▶

Generators

Regular rings

Theorem

 $\mathbf{V}_{\exists}(\mathbb{F}^{n \times n} \mid n_0 < n < \omega, \mathbb{F} \text{ is a quotient field of } \Lambda) \text{ is the } \exists\text{-variety of regular } \Lambda\text{-algebras.}$

Corollary

- V_∃(𝔽^{n×n}_p | n₀ < n < ω, p is prime) is the ∃-variety of regular rings.</p>
- **2** Free regular rings are residually finite.

▲ 同 ▶ → 三 ▶

Generators

Regular rings

Theorem

 $\mathbf{V}_{\exists}(\mathbb{F}^{n \times n} \mid n_0 < n < \omega, \mathbb{F} \text{ is a quotient field of } \Lambda) \text{ is the } \exists\text{-variety of regular } \Lambda\text{-algebras.}$

Corollary

- V_∃(𝔽^{n×n}_p | n₀ < n < ω, p is prime) is the ∃-variety of regular rings.</p>
- **2** Free regular rings are residually finite.
- The equational theory of regular rings with quasi-inversion as a fundamental operation is decidable.

▲ 同 ▶ → 三 ▶

Generators

Theorem

Let R be a SI non-Artinian regular Λ -algebra.

2

Generators

Theorem

Let R be a SI non-Artinian regular Λ -algebra. There is a field F: $V_{\exists}(R) = V_{\exists}(F^{n \times n} \mid n_0 < n < \omega).$

3

イロト イポト イヨト イヨト

Generators

Theorem

Let R be a SI non-Artinian regular Λ -algebra. There is a field F: $V_{\exists}(R) = V_{\exists}(F^{n \times n} \mid n_0 < n < \omega).$

Corollary

Any \exists -variety of regular Λ -algebras is generated by its simple Artinian members.

イロン イボン イヨン イヨン

-

Generators

Theorem

Let R be a SI non-Artinian regular Λ -algebra. There is a field F: $V_{\exists}(R) = V_{\exists}(F^{n \times n} \mid n_0 < n < \omega).$

Corollary

Any \exists -variety of regular Λ -algebras is generated by its simple Artinian members.

Corollary

Free regular Λ -algebras are residually Artinian.

- 4 同 2 4 日 2 4 日 2

Generators

Theorem

Let R be a SI non-Artinian regular Λ -algebra. There is a field F: $V_{\exists}(R) = V_{\exists}(F^{n \times n} \mid n_0 < n < \omega).$

Corollary

Any \exists -variety of regular Λ -algebras is generated by its simple Artinian members.

Corollary

Free regular Λ -algebras are residually Artinian.

Goodearl, Menal, and Moncasi (1993) proved the latter statement for algebras with unit.

イロト イポト イヨト イヨト

Generators

For an \exists -variety \mathcal{V} of regular rings, $C(\mathcal{V})$ is the class of simple Artinian members of \mathcal{V} .

3

・ 同 ト ・ 三 ト ・

Generators

For an \exists -variety \mathcal{V} of regular rings, $C(\mathcal{V})$ is the class of simple Artinian members of \mathcal{V} .

By the Wedderburn-Artin theorem, $C(\mathcal{V})$ consists of matrix rings over division rings.

A ≥ <</p>

For a class C of simple Artinian regular rings and for n > 0:

 $D \in \mathbf{D}_n(\mathbb{C})$ if and only if $D^{n \times n} \in \mathbb{C}$.

3

- 4 同 2 4 日 2 4 日 2

For a class C of simple Artinian regular rings and for n > 0:

 $D \in \mathbf{D}_n(\mathbb{C})$ if and only if $D^{n \times n} \in \mathbb{C}$.

Definition

 \mathcal{C} is closed, if the following holds:

For a class C of simple Artinian regular rings and for n > 0:

 $D \in \mathbf{D}_n(\mathbb{C})$ if and only if $D^{n \times n} \in \mathbb{C}$.

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

Q $\mathbf{D}_n(\mathcal{C})$ is a universal class of division rings for all n > 0;

For a class C of simple Artinian regular rings and for n > 0:

 $D \in \mathbf{D}_n(\mathbb{C})$ if and only if $D^{n \times n} \in \mathbb{C}$.

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

- **Q** $\mathbf{D}_n(\mathcal{C})$ is a universal class of division rings for all n > 0;
- **2** $\mathbf{D}_n(\mathcal{C}) \subseteq \mathbf{D}_m(\mathcal{C})$ for all $n \ge m > 0$;

For a class C of simple Artinian regular rings and for n > 0:

 $D \in \mathbf{D}_n(\mathbb{C})$ if and only if $D^{n \times n} \in \mathbb{C}$.

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

- **Q** $\mathbf{D}_n(\mathcal{C})$ is a universal class of division rings for all n > 0;
- **2** $\mathbf{D}_n(\mathcal{C}) \subseteq \mathbf{D}_m(\mathcal{C})$ for all $n \ge m > 0$;
- if n = mk > 0, $F \in D_n(C)$, and $D \in S(F^{k × k})$ is a division ring, then $D \in D_m(C)$;

For a class C of simple Artinian regular rings and for n > 0:

 $D \in \mathbf{D}_n(\mathbb{C})$ if and only if $D^{n \times n} \in \mathbb{C}$.

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

- **Q** $\mathbf{D}_n(\mathcal{C})$ is a universal class of division rings for all n > 0;
- **2** $\mathbf{D}_n(\mathfrak{C}) \subseteq \mathbf{D}_m(\mathfrak{C})$ for all $n \ge m > 0$;
- If n = mk > 0, F ∈ D_n(C), and D ∈ S(F^{k×k}) is a division ring, then D ∈ D_m(C);

• p is a prime; if for any n > 0, there is $D \in \mathbf{D}_n(\mathcal{C})$ with char D = p, then $F \in \bigcap_{n>0} \mathbf{D}_n(\mathcal{C})$ for any F with char F = p;

For a class C of simple Artinian regular rings and for n > 0:

 $D \in \mathbf{D}_n(\mathbb{C})$ if and only if $D^{n \times n} \in \mathbb{C}$.

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

- **Q** $\mathbf{D}_n(\mathcal{C})$ is a universal class of division rings for all n > 0;
- **2** $\mathbf{D}_n(\mathfrak{C}) \subseteq \mathbf{D}_m(\mathfrak{C})$ for all $n \ge m > 0$;
- If n = mk > 0, F ∈ D_n(C), and D ∈ S(F^{k×k}) is a division ring, then D ∈ D_m(C);
- p is a prime; if for any n > 0, there is $D \in \mathbf{D}_n(\mathcal{C})$ with char D = p, then $F \in \bigcap_{n>0} \mathbf{D}_n(\mathcal{C})$ for any F with char F = p;
- **(a)** $D_1(\mathcal{C})$ is the class of all division rings.

Generators

Theorem

Let \mathcal{C} be a class of simple Artinian regular rings. \mathcal{C} is closed if and only if $\mathcal{C} = C(\mathcal{V})$ for an \exists -variety of regular rings.

▲□ ► ▲ □ ► ▲

Generators

Sectionally complemented modular lattices

2

- 《圖》 《문》 《문》

Generators

Sectionally complemented modular lattices

Theorem

Let L be a SI modular SCL of infinite height.

Generators

Sectionally complemented modular lattices

Theorem

Let L be a SI modular SCL of infinite height. There is a unique prime field \mathbb{F} such that $V_{\exists}(L) = V_{\exists}(\mathbb{L}(\mathbb{F}^{n \times n}) \mid n_0 < n < \omega)$.

-∰ ► < ≣ ►

Generators

Sectionally complemented modular lattices

Theorem

Let L be a SI modular SCL of infinite height. There is a unique prime field \mathbb{F} such that $V_{\exists}(L) = V_{\exists}(\mathbb{L}(\mathbb{F}^{n \times n}) \mid n_0 < n < \omega)$.

Corollary

Any \exists -variety of SCML is generated by its simple finite height members.

-∰ ► < ≣ ►

Generators

Corollary

● V_∃(L(𝔽^{n×n}) | n₀ < n < ω, p is prime) is the variety of Arguesian SCL.

2

▲□ ► < □ ► </p>

Corollary

- V_∃(L(𝔽^{n×n}) | n₀ < n < ω, p is prime) is the variety of Arguesian SCL.
- **2** Free Arguesian SCL are residually finite.

・ 同 ト ・ ヨ ト ・

3

Corollary

- V_∃(L(𝔽^{n×n}) | n₀ < n < ω, p is prime) is the variety of Arguesian SCL.</p>
- In the second second
- Equational theory of Arguesian lattices with sectional complementation as a fundamental operation is decidable.

< 🗇 > < 🖃 >

Corollary

- V_∃(L(𝔽^{n×n}) | n₀ < n < ω, p is prime) is the variety of Arguesian SCL.</p>
- In the second second
- Equational theory of Arguesian lattices with sectional complementation as a fundamental operation is decidable.

Corollary

Equational theory of modular lattices with sectional complementation is decidable.

・ 同 ト ・ ヨ ト ・

For an \exists -variety \mathcal{V} of Arguesian SCL, $C(\mathcal{V})$ is the class of its simple Arguesian finite height members.

・ 同 ト ・ 三 ト ・

⇒ >
For an \exists -variety \mathcal{V} of Arguesian SCL, $C(\mathcal{V})$ is the class of its simple Arguesian finite height members.

By the von-Neumann-Jónsson coordinatization theorem, any $L \in C(\mathcal{V})$ with ht $L \ge 3$ is of the form $\mathbb{L}(D_D^n)$.

Generators

For a class C of simple Arguesian finite height SCL and for n > 0:

 $D \in \mathbf{D}_n(\mathbb{C})$ if and only if $\mathbb{L}(D_D^n) \in \mathbb{C}$.

イロト イポト イヨト イヨト

3

Generators

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

2

- 《圖》 《문》 《문》

Generators

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

Q $\mathbf{D}_n(\mathcal{C})$ is a universal class of division rings for all n > 0;

3

⇒ >

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

- **Q** $\mathbf{D}_n(\mathcal{C})$ is a universal class of division rings for all n > 0;
- **2** $\mathbf{D}_n(\mathcal{C}) \subseteq \mathbf{D}_m(\mathcal{C})$ for all $n \ge m > 0$;

・ 同 ト ・ ヨ ト ・

⇒ >

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

- **Q** $\mathbf{D}_n(\mathcal{C})$ is a universal class of division rings for all n > 0;
- **2** $\mathbf{D}_n(\mathfrak{C}) \subseteq \mathbf{D}_m(\mathfrak{C})$ for all $n \ge m > 0$;
- If n = mk > 0, $F \in D_n(C)$, and $D \in S(F^{k × k})$ is a division ring, then $D \in D_m(C)$;

/∄ ▶ ∢ ∃ ▶

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

- **Q** $\mathbf{D}_n(\mathcal{C})$ is a universal class of division rings for all n > 0;
- **2** $\mathbf{D}_n(\mathcal{C}) \subseteq \mathbf{D}_m(\mathcal{C})$ for all $n \ge m > 0$;
- if n = mk > 0, $F \in D_n(C)$, and $D \in S(F^{k × k})$ is a division ring, then $D \in D_m(C)$;

• *p* is a prime; if for any n > 0, there is $D \in \mathbf{D}_n(\mathcal{C})$ with char D = p, then $F \in \bigcap_{n>0} \mathbf{D}_n(\mathcal{C})$ for any *F* with char F = p;

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

- **Q** $\mathbf{D}_n(\mathcal{C})$ is a universal class of division rings for all n > 0;
- **2** $\mathbf{D}_n(\mathcal{C}) \subseteq \mathbf{D}_m(\mathcal{C})$ for all $n \ge m > 0$;
- If n = mk > 0, $F \in D_n(C)$, and $D \in S(F^{k × k})$ is a division ring, then $D \in D_m(C)$;

• *p* is a prime; if for any n > 0, there is $D \in \mathbf{D}_n(\mathcal{C})$ with char D = p, then $F \in \bigcap_{n>0} \mathbf{D}_n(\mathcal{C})$ for any *F* with char F = p;

③ if $D \in \mathbf{D}_2(\mathbb{C})$ and |F| ≤ |D|, then $F \in \mathbf{D}_2(\mathbb{C})$;

・ 同 ト ・ ヨ ト ・ ヨ ト

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

- **Q** $\mathbf{D}_n(\mathcal{C})$ is a universal class of division rings for all n > 0;
- **2** $\mathbf{D}_n(\mathcal{C}) \subseteq \mathbf{D}_m(\mathcal{C})$ for all $n \ge m > 0$;
- If n = mk > 0, $F \in D_n(C)$, and $D \in S(F^{k × k})$ is a division ring, then $D \in D_m(C)$;

• *p* is a prime; if for any n > 0, there is $D \in \mathbf{D}_n(\mathbb{C})$ with char D = p, then $F \in \bigcap_{n>0} \mathbf{D}_n(\mathbb{C})$ for any *F* with char F = p;

◎ if $D \in \mathbf{D}_2(\mathbb{C})$ and $|F| \leq |D|$, then $F \in \mathbf{D}_2(\mathbb{C})$; if $M_k \in \mathbb{C}$ for k < ω, then $M_n \in \mathbb{C}$ for all $2 < n \leq k$;

(4 同) 4 ヨ) 4 ヨ)

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

- **Q** $\mathbf{D}_n(\mathcal{C})$ is a universal class of division rings for all n > 0;
- **2** $\mathbf{D}_n(\mathcal{C}) \subseteq \mathbf{D}_m(\mathcal{C})$ for all $n \ge m > 0$;
- If n = mk > 0, $F \in D_n(C)$, and $D \in S(F^{k × k})$ is a division ring, then $D \in D_m(C)$;

• *p* is a prime; if for any n > 0, there is $D \in \mathbf{D}_n(\mathbb{C})$ with char D = p, then $F \in \bigcap_{n>0} \mathbf{D}_n(\mathbb{C})$ for any *F* with char F = p;

◎ if $D \in \mathbf{D}_2(\mathbb{C})$ and $|F| \leq |D|$, then $F \in \mathbf{D}_2(\mathbb{C})$; if $M_k \in \mathbb{C}$ for k < ω, then $M_n \in \mathbb{C}$ for all $2 < n \leq k$;

(4 同) 4 ヨ) 4 ヨ)

Definition

 $\ensuremath{\mathfrak{C}}$ is closed, if the following holds:

- **Q** $\mathbf{D}_n(\mathcal{C})$ is a universal class of division rings for all n > 0;
- **2** $\mathbf{D}_n(\mathcal{C}) \subseteq \mathbf{D}_m(\mathcal{C})$ for all $n \ge m > 0$;
- If n = mk > 0, $F \in D_n(C)$, and $D \in S(F^{k × k})$ is a division ring, then $D \in D_m(C)$;

• *p* is a prime; if for any n > 0, there is $D \in \mathbf{D}_n(\mathcal{C})$ with char D = p, then $F \in \bigcap_{n>0} \mathbf{D}_n(\mathcal{C})$ for any *F* with char F = p;

- **◎** if $D \in \mathbf{D}_2(\mathbb{C})$ and $|F| \leq |D|$, then $F \in \mathbf{D}_2(\mathbb{C})$; if $M_k \in \mathbb{C}$ for k < ω, then $M_n \in \mathbb{C}$ for all $2 < n \leq k$;
- **O** $D_1(\mathcal{C})$ is the class of all division rings.

イロト イポト イヨト イヨト

Generators

Theorem

Let C be a class of simple Arguesian finite height SCL. C is closed if and only if C = C(V) for an \exists -variety of Arguesian SCL.

| 4 同 🕨 🖌 🖌 🖌

Generators

Problem

Is the class of lattices embeddable into SCML-s a variety?

Herrmann, Semenova Existence varieties

2

- 《圖》 《문》 《문》

Generators

Problem

Is the class of lattices embeddable into SCML-s a variety?

Corollary

If L embeds into a SCML, then Id(L) does.

・ 同 ト ・ ヨ ト ・

B) - B