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Lattices are considered in signature {∨,∧, 0}

Σl = axioms of modular lattices +

+ ∀xy ∃z [x ∧ y ∧ z = 0]&[(x ∧ y) ∨ z = x ].

If L ∈ ModΣl , then L is a sectionally complemented modular
lattice (a SCML for short);
if L ∈ ModΣl has 1, then it is a complemented modular lattice
(a CML for short);

Herrmann, Semenova Existence varieties



Preliminaries
Existence varieties

Regular rings
SCML-s

Lattices are considered in signature {∨,∧, 0}

Σl = axioms of modular lattices +

+ ∀xy ∃z [x ∧ y ∧ z = 0]&[(x ∧ y) ∨ z = x ].

If L ∈ ModΣl , then L is a sectionally complemented modular
lattice (a SCML for short);
if L ∈ ModΣl has 1, then it is a complemented modular lattice
(a CML for short);

Herrmann, Semenova Existence varieties



Preliminaries
Existence varieties

Regular rings
SCML-s

Lattices are considered in signature {∨,∧, 0}

Σl = axioms of modular lattices +

+ ∀xy ∃z [x ∧ y ∧ z = 0]&[(x ∧ y) ∨ z = x ].

If L ∈ ModΣl , then L is a sectionally complemented modular
lattice (a SCML for short);

if L ∈ ModΣl has 1, then it is a complemented modular lattice
(a CML for short);

Herrmann, Semenova Existence varieties



Preliminaries
Existence varieties

Regular rings
SCML-s

Lattices are considered in signature {∨,∧, 0}

Σl = axioms of modular lattices +

+ ∀xy ∃z [x ∧ y ∧ z = 0]&[(x ∧ y) ∨ z = x ].

If L ∈ ModΣl , then L is a sectionally complemented modular
lattice (a SCML for short);
if L ∈ ModΣl has 1, then it is a complemented modular lattice
(a CML for short);

Herrmann, Semenova Existence varieties



Preliminaries
Existence varieties

Regular rings
SCML-s

Λ-algebras are considered in signature {Λ,+,−, ·, 0};

Rings are considered in signature {+,−, ·, 0};

ΣΛ = axioms of Λ-algebras + ∀x ∃y [xyx = x ].

If A ∈ ModΣΛ, then A is a (von Neumann) regular algebra.
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Let R be a regular ring.

L(R) is the lattice of principal right ideals of R.
L(R) is a SCML.
If R is Artinian, then L(R) is a finite height CML.
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(X , ϕ) is a combinatorial geometry, if it has the exchange property:

a ∈ ϕ(Y ∪ {b}) → b ∈ ϕ(Y ∪ {a})

for any a, b ∈ X and any Y ⊆ X .

Closure lattices of combinatorial geometries are often modular.

Let VD be a vector space over a division ring D.
Sub(VD) is the subspace lattice.
Sub(VD) ∼= L

(
End(VD)

)
, End(VD) is a regular ring.
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Sub(VD) is a subdirectly irreducible Arguesian SCL:

∀ x0 x1 x2 y0 y1 y2

∧
i<3

(xi ∨ yi ) ≤
(
x0 ∧ (x1 ∨ c)

)
∨

(
y0 ∧ (y1 ∨ c)

)
,

where

ci = (xj ∨ xk) ∧ (yj ∨ yk), {i , j , k} = {0, 1, 2},
c = (c0 ∨ c1) ∧ c2.

If dim VD < ω, then Sub(VD) is simple finite height.
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A partial converse is true:

Theorem (von Neumann, 1939; Jónsson, 1960)

Let L be a simple Arguesian CL of finite height n > 3. Then there
is a division ring D such that L ∼= Sub(Dn

D).
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Problem (Dilworth)

Is the class of lattices embeddable into CML-s (SCML-s) a variety?

Due to the Maltsev theorem, this class is a quasivariety.

Theorem (Jónsson, 1960)

The following are equivalent for a SCML:

1 L ∈ S
(
Cl(X , ϕ)

)
for a projective geometry (X , ϕ);

2 L ∈ S
(
Sub(A)

)
for an Abelian group A;

3 L ∈ S
(∏

i∈I Sub(Vi )
)
, Vi is a vector space for all i ∈ I ;

4 L is Arguesian.
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Let K ⊆ ModΣ.

S∃(K) = ModΣ ∩ S(K)

Definition

K ⊆ ModΣ is an ∃-variety, if it is closed under H, S∃, and P.

Theorem

Let K ⊆ ModΣ.

1 V∃(K) = HS∃P(K) is the smallest ∃-variety containing K;
moreover, TV∃(K) = VT(K).

2 The reduct of any free algebra from VT(K) belongs to
Ps∃(K).

3 Any SI algebra from V∃(K) belongs to HS∃Pu(K).

4 Any ∃-variety is generated by its finitely generated SI-s.
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Free algebras exist in ∃-varieties.

Any ∃-variety can be defined by positive sentences as well as by
Horn sentences.

Problem

Can an ∃-variety be defined by positive Horn sentences?

Herrmann, Semenova Existence varieties



Preliminaries
Existence varieties

Regular rings
SCML-s

Free algebras exist in ∃-varieties.
Any ∃-variety can be defined by positive sentences as well as by
Horn sentences.

Problem

Can an ∃-variety be defined by positive Horn sentences?

Herrmann, Semenova Existence varieties



Preliminaries
Existence varieties

Regular rings
SCML-s

Free algebras exist in ∃-varieties.
Any ∃-variety can be defined by positive sentences as well as by
Horn sentences.

Problem

Can an ∃-variety be defined by positive Horn sentences?

Herrmann, Semenova Existence varieties



Preliminaries
Existence varieties

Regular rings
SCML-s

Generators

Regular rings

Theorem

V∃
(
Fn×n | n0 < n < ω, F is a quotient field of Λ

)
is the ∃-variety

of regular Λ-algebras.

Corollary

1 V∃
(
Fn×n

p | n0 < n < ω, p is prime
)

is the ∃-variety of regular
rings.

2 Free regular rings are residually finite.

3 The equational theory of regular rings with quasi-inversion as
a fundamental operation is decidable.
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Generators

Theorem

Let R be a SI non-Artinian regular Λ-algebra.

There is a field F :
V∃(R) = V∃

(
F n×n | n0 < n < ω

)
.

Corollary

Any ∃-variety of regular Λ-algebras is generated by its simple
Artinian members.

Corollary

Free regular Λ-algebras are residually Artinian.

Goodearl, Menal, and Moncasi (1993) proved the latter statement
for algebras with unit.
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For an ∃-variety V of regular rings,
C (V) is the class of simple Artinian members of V.

By the Wedderburn-Artin theorem, C (V) consists of matrix rings
over division rings.
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Generators

For a class C of simple Artinian regular rings and for n > 0:

D ∈ Dn(C) if and only if Dn×n ∈ C .

Definition

C is closed, if the following holds:

1 Dn(C) is a universal class of division rings for all n > 0;

2 Dn(C) ⊆ Dm(C) for all n > m > 0;

3 if n = mk > 0, F ∈ Dn(C), and D ∈ S(F k×k) is a division
ring, then D ∈ Dm(C);

4 p is a prime;
if for any n > 0, there is D ∈ Dn(C) with char D = p, then
F ∈

⋂
n>0 Dn(C) for any F with char F = p;

5 D1(C) is the class of all division rings.
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Theorem

Let C be a class of simple Artinian regular rings.
C is closed if and only if C = C (V) for an ∃-variety of regular rings.
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Sectionally complemented modular lattices

Theorem

Let L be a SI modular SCL of infinite height. There is a unique
prime field F such that V∃(L) = V∃

(
L(Fn×n) | n0 < n < ω

)
.

Corollary

Any ∃-variety of SCML is generated by its simple finite height
members.
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Corollary

1 V∃
(
L(Fn×n

p ) | n0 < n < ω, p is prime
)

is the variety of
Arguesian SCL.

2 Free Arguesian SCL are residually finite.

3 Equational theory of Arguesian lattices with sectional
complementation as a fundamental operation is decidable.

Corollary

Equational theory of modular lattices with sectional
complementation is decidable.

Herrmann, Semenova Existence varieties



Preliminaries
Existence varieties

Regular rings
SCML-s

Generators

Corollary

1 V∃
(
L(Fn×n

p ) | n0 < n < ω, p is prime
)

is the variety of
Arguesian SCL.

2 Free Arguesian SCL are residually finite.

3 Equational theory of Arguesian lattices with sectional
complementation as a fundamental operation is decidable.

Corollary

Equational theory of modular lattices with sectional
complementation is decidable.

Herrmann, Semenova Existence varieties



Preliminaries
Existence varieties

Regular rings
SCML-s

Generators

Corollary

1 V∃
(
L(Fn×n

p ) | n0 < n < ω, p is prime
)

is the variety of
Arguesian SCL.

2 Free Arguesian SCL are residually finite.

3 Equational theory of Arguesian lattices with sectional
complementation as a fundamental operation is decidable.

Corollary

Equational theory of modular lattices with sectional
complementation is decidable.

Herrmann, Semenova Existence varieties



Preliminaries
Existence varieties

Regular rings
SCML-s

Generators

Corollary

1 V∃
(
L(Fn×n

p ) | n0 < n < ω, p is prime
)

is the variety of
Arguesian SCL.

2 Free Arguesian SCL are residually finite.

3 Equational theory of Arguesian lattices with sectional
complementation as a fundamental operation is decidable.

Corollary

Equational theory of modular lattices with sectional
complementation is decidable.

Herrmann, Semenova Existence varieties



Preliminaries
Existence varieties

Regular rings
SCML-s

Generators

For an ∃-variety V of Arguesian SCL, C (V) is the class of its
simple Arguesian finite height members.

By the von-Neumann-Jónsson coordinatization theorem, any
L ∈ C (V) with ht L > 3 is of the form L(Dn

D).
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For a class C of simple Arguesian finite height SCL and for n > 0:

D ∈ Dn(C) if and only if L(Dn
D) ∈ C .
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Definition

C is closed, if the following holds:

1 Dn(C) is a universal class of division rings for all n > 0;

2 Dn(C) ⊆ Dm(C) for all n > m > 0;

3 if n = mk > 0, F ∈ Dn(C), and D ∈ S(F k×k) is a division
ring, then D ∈ Dm(C);

4 p is a prime;
if for any n > 0, there is D ∈ Dn(C) with char D = p, then
F ∈

⋂
n>0 Dn(C) for any F with char F = p;

5 if D ∈ D2(C) and |F | 6 |D|, then F ∈ D2(C);
if Mk ∈ C for k < ω, then Mn ∈ C for all 2 < n 6 k;

6 D1(C) is the class of all division rings.
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Problem

Is the class of lattices embeddable into SCML-s a variety?

Corollary

If L embeds into a SCML, then Id(L) does.
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