FINITE COXETER LATTICES: SOME TRONG PROPERTIES

NATHALIE CASPARD AND CLAUDE LE CONTE DE POLY-BARBUT

LACL, UPEC, France and CAMS, EHESS, France

8FCC, Orsay, June-July 2010

My colleague (and friend)

FIG.: C. le Conte de Poly-Barbut, CAMS, EHESS, Paris.

< 17 ►

QQ

Sketch of the talk

1 Bounded lattices and the interval doubling operation

2 Finite Coxeter groups and lattices

- Definition and classification
- The lattice structure of Coxeter groups

3 Finite Coxeter lattices are bounded : the proof

- The class \mathcal{HH} of lattices
- \bullet All lattices of $\mathcal{H}\mathcal{H}$ are bounded
- \bullet Finite Coxeter lattices are in \mathcal{HH}

(二)、(同)、(三)、(三)、

Outline

Bounded lattices and the interval doubling operation

2 Finite Coxeter groups and lattices

- Definition and classification
- The lattice structure of Coxeter groups

Finite Coxeter lattices are bounded : the proof The class HH of lattices

- All lattices of \mathcal{HH} are bounded
- Finite Coxeter lattices are in \mathcal{HH}

BOUNDED LATTICES

Definition (MCKENZIE, 1972)

A lattice is *lower bounded* if it is the lower bounded homomorphic image of a free lattice.

A homomorphism $\alpha: L \to L'$ is called *lower bounded* if the inverse image of each element of L' is either empty or has a minimum.

BOUNDED LATTICES

Definition (MCKENZIE, 1972)

A lattice is *lower bounded* if it is the lower bounded homomorphic image of a free lattice.

A homomorphism $\alpha: L \to L'$ is called *lower bounded* if the inverse image of each element of L' is either empty or has a minimum.

An *upper bounded* lattice is defined dually.

A lattice is *bounded* if it is lower and upper bounded.

CHARACTERIZATION OF BOUNDED LATTICES

Theorem $(\overline{\text{DAY}, 1979})$

Let L be a lattice. The following are equivalent :

• L is bounded,

• L can be constructed starting from <u>2</u> by a finite sequence of interval doublings.

CHARACTERIZATION OF BOUNDED LATTICES

Theorem (DAY, 1979)

Let L be a lattice. The following are equivalent :

• L is bounded,

• L can be constructed starting from <u>2</u> by a finite sequence of interval doublings.

What is an INTERVAL DOUBLING?

AN EXAMPLE OF A BOUNDED LATTICE

Bounded lattices and the interval doubling operation Finite Coxeter groups and lattices Finite Coxeter lattic

AN EXAMPLE OF A BOUNDED LATTICE

AN EXAMPLE OF A BOUNDED LATTICE

PERM(3) IS BOUNDED

Perm(4) : bounded too

Perm(5) : bounded again

IN FACT...

Theorem (2000)

Permutohedron is bounded

▲□▶ ▲@▶ ▲≧▶ ▲≧▶

Sac

IN FACT...

Theorem (2000)

Permutohedron is bounded

AND IN FACT...

Theorem (2004)

All finite Coxeter lattices are bounded

Sac

4 A D b 4 D b

Outline

1 Bounded lattices and the interval doubling operation

2 Finite Coxeter groups and lattices

- Definition and classification
- The lattice structure of Coxeter groups

3 Finite Coxeter lattices are bounded : the proof \bullet The class $\mathcal{H}\mathcal{H}$ of lattices

- The class \mathcal{HH} of lattices
- All lattices of \mathcal{HH} are bounded
- Finite Coxeter lattices are in \mathcal{HH}

Definition and classification

WHAT IS A COXETER GROUP?

Definition

A COXETER GROUP : group W with a set of generators $S \subset W$, satisfying relations of the form :

$$(ss')^{m(s,s')} = e$$

with :

- m(s,s) = 1 for any $s \in S$ (all generators have order 2),
- $m(s,s') = m(s',s) \ge 2$ for $s \ne s'$ in S.

Bounded lattices and the interval doubling operation Finite Coxeter groups and lattices Finite Coxeter lattices

Definition and classification

CLASSIFICATION OF FINITE IRREDUCIBLE COXETER GROUPS

• Four infinite families :

- A_n (symmetric groups),
- B_n ,
- D_n ,
- and I_n (dihedral groups).

Bounded lattices and the interval doubling operation Finite Coxeter groups and lattices Finite Coxeter latti

Definition and classification

CLASSIFICATION OF FINITE IRREDUCIBLE COXETER GROUPS

- A_n (symmetric groups),
- B_n ,
- D_n ,
- and I_n (dihedral groups).
- **2** and six isolated groups : E_6, E_7, E_8, F_4, H_3 and H_4 .

Bounded lattices and the interval doubling operation Finite Coxeter groups and lattices Finite Coxeter lattic

The lattice structure of Coxeter groups

The (right) weak order on a Coxeter group

Definition

 $w <_R w'$ if there exist $s_1, ..., s_r \in S$ with

• $w' = ws_1...s_r$ and

•
$$\ell(w') = \ell(w) + r$$

The lattice structure of Coxeter groups

The (right) weak order on a Coxeter group

Definition

 $w <_R w'$ if there exist $s_1, ..., s_r \in S$ with

•
$$w' = ws_1...s_r$$
 and

•
$$\ell(w') = \ell(w) + r$$

Theorem (Björner, 1984)

The (right) weak order on any finite Coxeter group is a (autodual) lattice.

(二)、(同)、(三)、(三)、

Outline

1 Bounded lattices and the interval doubling operation

2 Finite Coxeter groups and lattices

- Definition and classification
- The lattice structure of Coxeter groups

3 Finite Coxeter lattices are bounded : the proof

- The class \mathcal{HH} of lattices
- \bullet All lattices of $\mathcal{H}\mathcal{H}$ are bounded
- \bullet Finite Coxeter lattices are in \mathcal{HH}

The class \mathcal{HH} of lattices

HAT, ANTIHAT AND 2-FACET

Definition

• a *Hat*
$$(y, x, z)^{\wedge}$$
 :

The class \mathcal{HH} of lattices

HAT, ANTIHAT AND 2-FACET

Definition

• a *Hat*
$$(y, x, z)^{\wedge}$$
 :

• an antiHat
$$(y, x, z)^{\vee}$$

Bounded lattices and the interval doubling operation Finite Coxeter groups and lattices Finite Coxeter lattice

The class \mathcal{HH} of lattices

HAT, ANTIHAT AND 2-FACET

Definition

• an antiHat
$$(y, x, z)^{\vee}$$

• a 2-facet $F^{y,x,z}$:

2-FACET LABELLING

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三三 - のへで

2-FACET LABELLING

4 □ ▶

Sac

26/46

Bounded lattices and the interval doubling operation Finite Coxeter groups and lattices Finite Coxeter lattice 000

The class \mathcal{HH} of lattices

2-FACET LABELLING

2-FACET LABELLING

The class \mathcal{HH} of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

Sac

Function r from a 2-facet labelling onto $\mathbb R$

The class \mathcal{HH} of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

QR

Function r from a 2-facet labelling onto $\mathbb R$ such that :

So:
$$r(t_1) < r(t_2) < r(t_3)$$

and $r(t_6) < r(t_5) < r(t_4)$
and $r(t_1), r(t_6) < r(t_7)$

The class \mathcal{HH} of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

The class \mathcal{HH} of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

Here $r(t_1) < r(t_5), r(t_3)$

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 三三 のへで

The class \mathcal{HH} of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

Here $r(t_1) < r(t_5), r(t_3)$ and $r(t_2) < r(t_6), r(t_3)$

The class \mathcal{HH} of lattices

ON SEMIDISTRIBUTIVITY

Definition

A lattice is *semidistributive* if, for all $x, y, z \in L$:

- $x \wedge y = x \wedge z$ implies $x \wedge y = x \wedge (y \lor z)$
- $x \lor y = x \lor z$ implies $x \lor y = x \lor (y \land z)$

• • • • • • • • •

The class \mathcal{HH} of lattices

ON SEMIDISTRIBUTIVITY

Definition

A lattice is *semidistributive* if, for all $x, y, z \in L$:

•
$$x \wedge y = x \wedge z$$
 implies $x \wedge y = x \wedge (y \lor z)$

•
$$x \lor y = x \lor z$$
 implies $x \lor y = x \lor (y \land z)$

Proposition (DAY, NATION, TSCHANTZ, 1989)

Bounded lattices are semidistributive.

The class \mathcal{HH} of lattices

The class \mathcal{HH} of lattices

Definition

The class \mathcal{HH} of lattices

The class \mathcal{HH} of lattices

Definition

A finite lattice L is in the class \mathcal{HH} if it satisfies :

 $\bullet L is semidistributive,$

The class \mathcal{HH} of lattices

The class \mathcal{HH} of lattices

Definition

- $\bullet L is semidistributive,$
- **2** there exists a 2-facet labelling T on the (covering) arcs of L and a 2-facet rank function r on T,

The class \mathcal{HH} of lattices

The class \mathcal{HH} of lattices

Definition

- L is semidistributive,
- **2** there exists a 2-facet labelling T on the (covering) arcs of L and a 2-facet rank function r on T,
- **3** to every hat $(y, x, z)^{\wedge}$ of L is associated an anti-hat $(y', y \wedge z, z')_{\vee}$ of L such that $[y \wedge z, x]$ is a 2-facet,

The class \mathcal{HH} of lattices

The class \mathcal{HH} of lattices

Definition

- L is semidistributive,
- **2** there exists a 2-facet labelling T on the (covering) arcs of L and a 2-facet rank function r on T,
- So to every hat $(y, x, z)^{\wedge}$ of L is associated an anti-hat $(y', y \wedge z, z')_{\vee}$ of L such that $[y \wedge z, x]$ is a 2-facet,
- to every anti-hat $(y, x, z)_{\vee}$ of L is associated a hat $(y', y \lor z, z')^{\wedge}$ of L such that $[x, y \lor z]$ is a 2-facet.

All lattices of \mathcal{HH} are bounded

First part of the theorem

All lattices of $\mathcal{H}\mathcal{H}$ are bounded

How do we prove this?

Sac

All lattices of \mathcal{HH} are bounded

First part of the theorem

All lattices of $\mathcal{H}\mathcal{H}$ are bounded

How do we prove this? Technical proof : not presented here.

(a)

Sac

Bounded lattices and the interval doubling operation Finite Coxeter groups and lattices Finite Coxeter lattic

Finite Coxeter lattices are in \mathcal{HH}

Second part of the theorem

Finite Coxeter lattices are in \mathcal{HH}

How do we prove this?

▲□▶ < /i>

QC

Bounded lattices and the interval doubling operation Finite Coxeter groups and lattices Finite Coxeter lattice

Proposition (L.C.D.P.-B., 1994)

Finite Coxeter lattices are semidistributive.

Finite Coxeter lattices are in \mathcal{HH}

Reflections of Coxeter groups

Definition

Set of the *reflections* of the Coxeter group W : the conjugates of the generators.

 $T_W = \{t \in W : \exists s \in S, \exists w \in W \text{ such that } t = wsw^{-1}\}$

Finite Coxeter lattices are in \mathcal{HH}

Reflections of Coxeter groups

Definition

Set of the *reflections* of the Coxeter group W : the conjugates of the generators.

 $T_W = \{t \in W : \exists s \in S, \exists w \in W \text{ such that } t = wsw^{-1}\}$

Finite Coxeter lattices are in \mathcal{HH}

Reflections of Coxeter groups

Definition

Set of the *reflections* of the Coxeter group W : the conjugates of the generators.

 $T_W = \{t \in W : \exists s \in S, \exists w \in W \text{ such that } t = wsw^{-1}\}$

Two labellings of the arcs : the *g*-labelling and the *r*-labelling s = ws $t = wsw^{-1}$ w

Bounded lattices and the interval doubling operation Finite Coxeter groups and lattices Finite Coxeter lattic

Finite Coxeter lattices are in \mathcal{HH}

PROPERTIES OF THE REFLECTIONS

Proposition (L.C.d.P.-B.)

Two "opposite" arcs of a 2-facet of a Coxeter lattice are labelled by the same reflection.

Finite Coxeter lattices are in \mathcal{HH}

PROPERTIES OF THE REFLECTIONS

Proposition (L.C.d.P.-B.)

Two "opposite" arcs of a 2-facet of a Coxeter lattice are labelled by the same reflection.

Finite Coxeter lattices are in \mathcal{HH}

PROPERTIES OF THE REFLECTIONS

Proposition (L.C.d.P.-B.)

Two "opposite" arcs of a 2-facet of a Coxeter lattice are labelled by the same reflection.

Corollary

The r-labelling on the arcs of any finite Coxeter lattice is a 2-facet labelling.

Sac

Bounded lattices and the interval doubling operation Finite Coxeter groups and lattices Finite Coxeter lattic

Finite Coxeter lattices are in \mathcal{HH}

PROPERTIES OF THE LENGTH FUNCTION

Theorem

The length function ℓ on every Coxeter lattice L_W is a 2-facet rank function when defined on the r-labelling of the arcs of L_W .

Bounded lattices and the interval doubling operation Finite Coxeter groups and lattices Finite Coxeter lattic

Finite Coxeter lattices are in \mathcal{HH}

PROPERTIES OF THE LENGTH FUNCTION

Theorem

The length function ℓ on every Coxeter lattice L_W is a 2-facet rank function when defined on the r-labelling of the arcs of L_W .

Theorem

Every Coxeter lattice is in the class $\mathcal{H}\mathcal{H}$ and therefore is bounded.

Finite Coxeter lattices are in \mathcal{HH}

Two additional results

Theorem

Let L_W be a Coxeter lattice and W_H a parabolic subgroup of W. There exists an interval doubling series that leads from the lattice L_{W_H} to the lattice L_W .

Finite Coxeter lattices are in \mathcal{HH}

Two additional results

Theorem

Let L_W be a Coxeter lattice and W_H a parabolic subgroup of W. There exists an interval doubling series that leads from the lattice L_{W_H} to the lattice L_W .

Proposition

There exists a particular interval doubling series from a given Coxeter lattice generated by n generators to the Coxeter lattice of the same family, generated by n + 1 generators.

Finite Coxeter lattices are in \mathcal{HH}

ANY QUESTION?

Finite Coxeter lattices are in \mathcal{HH}

- N. Caspard, The lattice of permutations is bounded, International Journal of Algebra and Computation 10(4), 481–489 (2000).
- N. Caspard, A characterization for all interval doubling schemes of the lattice of permutations, Discr. Maths. and Theoretical Comp. Sci. 3(4), 177–188 (1999).
- N. Caspard, C. Le Conte de Poly-Barbut et M. Morvan, Cayley lattices of finite Coxeter groups are bounded, Advances in Applied Mathematics, 33(1), 71-94 (2004).
 - A. Day, A simple solution to the word problem for lattices, *Canad. Math. Bull.* **13**, 253–254 (1970).

4 m b 4 m b 4 m b 4 m b

Finite Coxeter lattices are in \mathcal{HH}

A. Day, characterisations of finite lattices that are bounded-homomorphic images or sublattices of free lattices, *Canadian J. Math.* **31**, 69–78 (1979).

W. Geyer, The generalized doubling construction and formal concept analysis, Algebra Universalis **32**, 341–367 (1994).

R. McKenzie, Equational bases and non-modular lattice varieties, Trans. Amer. Math. Soc 174, 1–43 (1972).

(a)

 $\mathcal{O} \mathcal{O} \mathcal{O}$