Finite Coxeter lattices: some trong PROPERTIES

Nathalie Caspard and Claude Le Conte de Poly-Barbut
LACL, UPEC, France and CAMS, EHESS, France

8FCC, Orsay, June-July 2010

MY COLLEAGUE (AND FRIEND)

Fig.: C. le Conte de Poly-Barbut, CAMS, EHESS, Paris.

Sketch of The Talk

(1) Bounded lattices and the interval doubling operation
(2) Finite Coxeter groups and lattices

- Definition and classification
- The lattice structure of Coxeter groups
(3) Finite Coxeter lattices are bounded : the proof
- The class $\mathcal{H} \mathcal{H}$ of lattices
- All lattices of $\mathcal{H} \mathcal{H}$ are bounded
- Finite Coxeter lattices are in $\mathcal{H} \mathcal{H}$

Outline

(1) Bounded lattices and the interval doubling operation
(2) Finite Coxeter groups and lattices

- Definition and classification
- The lattice structure of Coxeter groups

3 Finite Coxeter lattices are bounded : the proof

- The class $\mathcal{H} \mathcal{H}$ of lattices
- All lattices of $\mathcal{H} \mathcal{H}$ are bounded
- Finite Coxeter lattices are in $\mathcal{H} \mathcal{H}$

Bounded lattices

Definition (McKenzie, 1972)

A lattice is lower bounded if it is the lower bounded homomorphic image of a free lattice.

A homomorphism $\alpha: L \rightarrow L^{\prime}$ is called lower bounded if the inverse image of each element of L^{\prime} is either empty or has a minimum.

Bounded lattices

Definition (McKenzie, 1972)

A lattice is lower bounded if it is the lower bounded homomorphic image of a free lattice.

A homomorphism $\alpha: L \rightarrow L^{\prime}$ is called lower bounded if the inverse image of each element of L^{\prime} is either empty or has a minimum.

An upper bounded lattice is defined dually.
A lattice is bounded if it is lower and upper bounded.

CHARACTERIZATION OF BOUNDED LATTICES

Theorem (DAY, 1979)

Let L be a lattice. The following are equivalent:

- L is bounded,
- L can be constructed starting from $\underline{2}$ by a finite sequence of interval doublings.

Characterization of Bounded lattices

Theorem (DAY, 1979)

Let L be a lattice. The following are equivalent :

- L is bounded,
- L can be constructed starting from $\underline{2}$ by a finite sequence of interval doublings.

What is an Interval doubling?

Interval doubling construction (Day, 1970)

An example of a bounded lattice

An example of a bounded lattice

An example of a bounded lattice

Perm(3) is Bounded

PERM(4) : BOUNDED TOO

PERM(5) : BOUNDED AGAIN

IN FACT...

Theorem (2000)

IN FACT...

Theorem (2000)

Permutohedron is bounded

And in fact...
Theorem (2004)
All finite Coxeter lattices are bounded

Outline

(1) Bounded lattices and the interval doubling operation
(2) Finite Coxeter groups and lattices

- Definition and classification
- The lattice structure of Coxeter groups

3 Finite Coxeter lattices are bounded : the proof

- The class $\mathcal{H} \mathcal{H}$ of lattices
- All lattices of $\mathcal{H} \mathcal{H}$ are bounded
- Finite Coxeter lattices are in $\mathcal{H} \mathcal{H}$

What is a Coxeter group?

Definition

A Coxeter group : group W with a set of generators $S \subset W$, satisfying relations of the form :

$$
\left(s s^{\prime}\right)^{m\left(s, s^{\prime}\right)}=e
$$

with :

- $m(s, s)=1$ for any $s \in S$ (all generators have order 2),
- $m\left(s, s^{\prime}\right)=m\left(s^{\prime}, s\right) \geq 2$ for $s \neq s^{\prime}$ in S.

Definition and classification

Classification of finite irreducible Coxeter GROUPS

(1) Four infinite families :

- A_{n} (symmetric groups),
- B_{n},
- D_{n},
- and I_{n} (dihedral groups).

Classification of Finite irreducible Coxeter GROUPS

(1) Four infinite families :

- A_{n} (symmetric groups),
- B_{n},
- D_{n},
- and I_{n} (dihedral groups).
(2) and six isolated groups : $E_{6}, E_{7}, E_{8}, F_{4}, H_{3}$ and H_{4}.

The lattice structure of Coxeter groups

THE (RIGHT) WEAK ORDER ON A COXETER GROUP

Definition

$w<_{R} w^{\prime}$ if there exist $s_{1}, \ldots, s_{r} \in S$ with

- $w^{\prime}=w s_{1} \ldots s_{r}$ and
- $\ell\left(w^{\prime}\right)=\ell(w)+r$

THE (RIGHT) WEAK ORDER ON A COXETER GROUP

Definition

$w<_{R} w^{\prime}$ if there exist $s_{1}, \ldots, s_{r} \in S$ with

- $w^{\prime}=w s_{1} \ldots s_{r}$ and
- $\ell\left(w^{\prime}\right)=\ell(w)+r$

Theorem (Björner, 1984)
The (right) weak order on any finite Coxeter group is a (autodual) lattice.

Outline

(1) Bounded lattices and the interval doubling operation
(2) Finite Coxeter groups and lattices

- Definition and classification
- The lattice structure of Coxeter groups

3 Finite Coxeter lattices are bounded : the proof

- The class $\mathcal{H} \mathcal{H}$ of lattices
- All lattices of $\mathcal{H} \mathcal{H}$ are bounded
- Finite Coxeter lattices are in $\mathcal{H} \mathcal{H}$

Hat, ANTIHAT AND 2-FACET

Definition

- a Hat $(y, x, z)^{\wedge}$:

Hat, ANTIHAT AND 2-FACET

Definition

- a Hat $(y, x, z)^{\wedge}$:

- an antiHat $(y, x, z)^{\vee}$:

Hat, ANTIHAT AND 2-FACET

Definition

- a Hat $(y, x, z)^{\wedge}$:

- an antiHat $(y, x, z)^{\vee}$:

- a 2-facet $F^{y, x, z}$:

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET LABELLING

Fig.: Example of A 2-FAcet Labelling

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET LABELLING

Fig.: Example of A 2-FAcet Labelling

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET LABELLING

Fig.: Another example of a 2-FAcet Labelling

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET LABELLING

Fig.: Another example of a 2-FAcet Labelling

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

Definition

Function r from a 2-facet labelling onto \mathbb{R}

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

Definition

Function r from a 2 -facet labelling onto \mathbb{R} such that :
So : $r\left(t_{1}\right)<r\left(t_{2}\right)<r\left(t_{3}\right)$
and $r\left(t_{6}\right)<r\left(t_{5}\right)<r\left(t_{4}\right)$
and $r\left(t_{1}\right), r\left(t_{6}\right)<r\left(t_{7}\right)$

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

Here $r\left(t_{1}\right)<r\left(t_{5}\right), r\left(t_{3}\right)$

The class $\mathcal{H} \mathcal{H}$ of lattices

2-FACET RANK FUNCTION ON A 2-FACET LABELLING

Here $r\left(t_{1}\right)<r\left(t_{5}\right), r\left(t_{3}\right)$ and $r\left(t_{2}\right)<r\left(t_{6}\right), r\left(t_{3}\right)$

ON SEMIDISTRIBUTIVITY

Definition

A lattice is semidistributive if, for all $x, y, z \in L$:

- $x \wedge y=x \wedge z$ implies $x \wedge y=x \wedge(y \vee z)$
- $x \vee y=x \vee z$ implies $x \vee y=x \vee(y \wedge z)$

The class $\mathcal{H} \mathcal{H}$ of lattices

ON SEMIDISTRIBUTIVITY

Definition

A lattice is semidistributive if, for all $x, y, z \in L$:

- $x \wedge y=x \wedge z$ implies $x \wedge y=x \wedge(y \vee z)$
- $x \vee y=x \vee z$ implies $x \vee y=x \vee(y \wedge z)$

Proposition (Day, Nation, Tschantz, 1989)

Bounded lattices are semidistributive.

The class $\mathcal{H} \mathcal{H}$ of lattices

Definition

A finite lattice L is in the class $\mathcal{H} \mathcal{H}$ if it satisfies:

The class $\mathcal{H} \mathcal{H}$ of lattices

Definition

A finite lattice L is in the class $\mathcal{H} \mathcal{H}$ if it satisfies :
(1) L is semidistributive,

The class $\mathcal{H} \mathcal{H}$ of lattices

The class $\mathcal{H} \mathcal{H}$ of lattices

Definition

A finite lattice L is in the class $\mathcal{H} \mathcal{H}$ if it satisfies :
(1) L is semidistributive,
(2) there exists a 2-facet labelling T on the (covering) arcs of L and a 2-facet rank function r on T,

The class $\mathcal{H} \mathcal{H}$ OF lattices

Definition

A finite lattice L is in the class $\mathcal{H} \mathcal{H}$ if it satisfies :
(1) L is semidistributive,
(2) there exists a 2-facet labelling T on the (covering) arcs of L and a 2 -facet rank function r on T,
(3 to every hat $(y, x, z)^{\wedge}$ of L is associated an anti-hat $\left(y^{\prime}, y \wedge z, z^{\prime}\right)_{\vee}$ of L such that $[y \wedge z, x]$ is a 2-facet,

The class $\mathcal{H} \mathcal{H}$ of lattices

Definition

A finite lattice L is in the class $\mathcal{H} \mathcal{H}$ if it satisfies :
(1) L is semidistributive,
(2) there exists a 2-facet labelling T on the (covering) arcs of L and a 2 -facet rank function r on T,
(3 to every hat $(y, x, z)^{\wedge}$ of L is associated an anti-hat $\left(y^{\prime}, y \wedge z, z^{\prime}\right)_{\vee}$ of L such that $[y \wedge z, x]$ is a 2-facet,
(1) to every anti-hat $(y, x, z)_{\vee}$ of L is associated a hat $\left(y^{\prime}, y \vee z, z^{\prime}\right)^{\wedge}$ of L such that $[x, y \vee z]$ is a 2-facet.

First part of the theorem

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

How do we prove this?

First part of the theorem

All lattices of $\mathcal{H} \mathcal{H}$ are bounded

How do we prove this?

Technical proof : not presented here.

Second part of the theorem
 Finite Coxeter lattices are in $\mathcal{H} \mathcal{H}$

How do we prove this?

A strong Result

Proposition (L.C.D.P.-B., 1994)

Finite Coxeter lattices are semidistributive.

Reflections of Coxeter groups

Definition

Set of the reflections of the Coxeter group W : the conjugates of the generators.

$$
T_{W}=\left\{t \in W: \exists s \in S, \exists w \in W \text { such that } t=w s w^{-1}\right\}
$$

Reflections of Coxeter groups

Definition

Set of the reflections of the Coxeter group W : the conjugates of the generators.

$$
T_{W}=\left\{t \in W: \exists s \in S, \exists w \in W \text { such that } t=w s w^{-1}\right\}
$$

Two labellings of the arcs : the g-labelling

Reflections of Coxeter groups

Definition

Set of the reflections of the Coxeter group W : the conjugates of the generators.

$$
T_{W}=\left\{t \in W: \exists s \in S, \exists w \in W \text { such that } t=w s w^{-1}\right\}
$$

Two labellings of the arcs : the g-labelling and the r-labelling

PROPERTIES OF THE REFLECTIONS

Proposition (L.C.d.P.-B.)
Two "opposite" arcs of a 2-facet of a Coxeter lattice are labelled by the same reflection.

PROPERTIES OF THE REFLECTIONS

Proposition (L.C.d.P.-B.)

Two "opposite" arcs of a 2-facet of a Coxeter lattice are labelled by the same reflection.

Finite Coxeter lattices are in $\mathcal{H} \mathcal{H}$

PROPERTIES OF THE REFLECTIONS

Proposition (L.C.d.P.-B.)

Two "opposite" arcs of a 2-facet of a Coxeter lattice are labelled by the same reflection.

Corollary

The r-labelling on the arcs of any finite Coxeter lattice is a 2-facet labelling.

Properties of the length Function

Theorem

The length function ℓ on every Coxeter lattice L_{W} is a 2-facet rank function when defined on the r-labelling of the arcs of L_{W}.

Properties of THE LENGTH FUNCTION

Theorem

The length function ℓ on every Coxeter lattice L_{W} is a 2-facet rank function when defined on the r-labelling of the arcs of L_{W}.

Theorem

Every Coxeter lattice is in the class $\mathcal{H} \mathcal{H}$ and therefore is bounded.

Two AdDITIONAL RESULTS

Theorem

Let L_{W} be a Coxeter lattice and W_{H} a parabolic subgroup of W. There exists an interval doubling series that leads from the lattice $L_{W_{H}}$ to the lattice L_{W}.

TWO ADDITIONAL RESULTS

Theorem

Let L_{W} be a Coxeter lattice and W_{H} a parabolic subgroup of W. There exists an interval doubling series that leads from the lattice $L_{W_{H}}$ to the lattice L_{W}.

Proposition

There exists a particular interval doubling series from a given Coxeter lattice generated by n generators to the Coxeter lattice of the same family, generated by $n+1$ generators.

N．Caspard，The lattice of permutations is bounded，International Journal of Algebra and Computation 10（4），481－489（2000）．

N．Caspard，A characterization for all interval doubling schemes of the lattice of permutations， Discr．Maths．and Theoretical Comp．Sci．3（4），177－188（1999）．

N．Caspard，C．Le Conte de Poly－Barbut et M．Morvan，Cayley lattices of finite Coxeter groups are bounded，Advances in Applied Mathematics，33（1），71－94（2004）．

A．Day，A simple solution to the word problem for lattices，Canad．Math．Bull．13，253－254 （1970）．

A．Day，characterisations of finite lattices that are bounded－homomorphic images or sublattices of free lattices，Canadian J．Math．31，69－78（1979）．

A．Day，J．B．Nation and S．Tschantz，Doubling Convex Sets in Lattices and a Generalized Semidistributivity Condition，Order 6，175－180（1989）．

W．Geyer，The generalized doubling construction and formal concept analysis，Algebra Universalis 32，341－367（1994）．

R．McKenzie，Equational bases and non－modular lattice varieties，Trans．Amer．Math．Soc 174， 1－43（1972）．

