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Bounded lattices

Definition (McKenzie, 1972)

A lattice is lower bounded if it is the lower bounded
homomorphic image of a free lattice.

A homomorphism α : L → L′ is called lower bounded if the
inverse image of each element of L′ is either empty or has a
minimum.

An upper bounded lattice is defined dually.

A lattice is bounded if it is lower and upper bounded.
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Characterization of bounded lattices

Theorem (Day, 1979)

Let L be a lattice. The following are equivalent :
L is bounded,
L can be constructed starting from 2 by a finite sequence of
interval doublings.

What is an interval doubling ?
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An example of a bounded lattice
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Perm(3) is bounded
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Perm(4) : bounded too
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Perm(5) : bounded again
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In fact...

Theorem (2000)

Permutohedron is bounded

And in fact...

Theorem (2004)

All finite Coxeter lattices are bounded
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Definition and classification

What is a Coxeter group ?

Definition

A Coxeter group : group W with a set of generators S ⊂ W ,
satisfying relations of the form :

(ss′)m(s,s′) = e

with :

- m(s, s) = 1 for any s ∈ S (all generators have order 2),
- m(s, s′) = m(s′, s) ≥ 2 for s 6= s′ in S.
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Definition and classification

Classification of finite irreducible Coxeter
groups

1 Four infinite families :
An (symmetric groups),
Bn,
Dn,
and In (dihedral groups).

2 and six isolated groups : E6, E7, E8, F4,H3 and H4.
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The lattice structure of Coxeter groups

The (right) weak order on a Coxeter group

Definition
w <R w′ if there exist s1, ..., sr ∈ S with

w′ = ws1...sr and
`(w′) = `(w) + r

Theorem (Björner, 1984)

The (right) weak order on any finite Coxeter group is a
(autodual) lattice.
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The class HH of lattices

Hat, antihat and 2-facet

Definition
a Hat (y, x, z)∧ :

y z

x

an antiHat (y, x, z)∨ :
y z

x

a 2-facet F y,x,z :

y ∧ z

x

zy
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The class HH of lattices

2-facet labelling
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Fig.: Example of a 2-facet labelling
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The class HH of lattices
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The class HH of lattices

2-facet rank function on a 2-facet labelling

Definition

r(t1)

r(t3)

r(t2)

r(t4)

r(t5)

r(t7)

r(t6)r(t1)

r(t6)

Function r from a 2-facet labelling onto R
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The class HH of lattices

2-facet rank function on a 2-facet labelling

Definition

r(t1)

r(t3)

r(t2)

r(t4)

r(t5)

r(t6)

r(t7)

r(t6)r(t1)

Function r from a 2-facet labelling onto R such that :

So : r(t1) < r(t2) < r(t3)
and r(t6) < r(t5) < r(t4)
and r(t1), r(t6) < r(t7)
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The class HH of lattices

2-facet rank function on a 2-facet labelling
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The class HH of lattices

2-facet rank function on a 2-facet labelling
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Here r(t1) < r(t5), r(t3)
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The class HH of lattices

2-facet rank function on a 2-facet labelling
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Here r(t1) < r(t5), r(t3) and r(t2) < r(t6), r(t3)
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The class HH of lattices

On semidistributivity

Definition
A lattice is semidistributive if, for all x, y, z ∈ L :

x ∧ y = x ∧ z implies x ∧ y = x ∧ (y ∨ z)
x ∨ y = x ∨ z implies x ∨ y = x ∨ (y ∧ z)

Proposition (Day, Nation, Tschantz, 1989)

Bounded lattices are semidistributive.
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The class HH of lattices

The class HH of lattices

Definition

A finite lattice L is in the class HH if it satisfies :

1 L is semidistributive,
2 there exists a 2-facet labelling T on the (covering) arcs of L

and a 2-facet rank function r on T ,
3 to every hat (y, x, z)∧ of L is associated an anti-hat

(y′, y ∧ z, z′)∨ of L such that [y ∧ z, x] is a 2-facet,
4 to every anti-hat (y, x, z)∨ of L is associated a hat

(y′, y ∨ z, z′)∧ of L such that [x, y ∨ z] is a 2-facet.
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All lattices of HH are bounded

First part of the theorem
All lattices of HH are bounded

How do we prove this ?

Technical proof : not presented here.
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Finite Coxeter lattices are in HH

Second part of the theorem
Finite Coxeter lattices are in HH

How do we prove this ?
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Finite Coxeter lattices are in HH

A strong result

Proposition (L.C.d.P.-B., 1994)

Finite Coxeter lattices are semidistributive.
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Finite Coxeter lattices are in HH

Reflections of Coxeter groups

Definition
Set of the reflections of the Coxeter group W : the conjugates of
the generators.

TW = {t ∈ W : ∃s ∈ S,∃w ∈ W such that t = wsw−1}

Two labellings of the arcs : the g-labelling

w

ws

s
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Finite Coxeter lattices are in HH

Reflections of Coxeter groups

Definition
Set of the reflections of the Coxeter group W : the conjugates of
the generators.

TW = {t ∈ W : ∃s ∈ S,∃w ∈ W such that t = wsw−1}

Two labellings of the arcs : the g-labelling and the r-labelling

w

ws

s

t = wsw−1
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Finite Coxeter lattices are in HH

Properties of the reflections

Proposition (L.C.d.P.-B.)

Two ”opposite” arcs of a 2-facet of a Coxeter lattice are labelled
by the same reflection.

t1

t2

t3

t4

t2

t3

t4

t1

Corollary
The r-labelling on the arcs of any finite Coxeter lattice is a
2-facet labelling.
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Finite Coxeter lattices are in HH

Properties of the length function

Theorem
The length function ` on every Coxeter lattice LW is a 2-facet
rank function when defined on the r-labelling of the arcs of LW .

Theorem
Every Coxeter lattice is in the class HH and therefore is
bounded.
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Two additional results

Theorem
Let LW be a Coxeter lattice and WH a parabolic subgroup of W .
There exists an interval doubling series that leads from the
lattice LWH

to the lattice LW .

Proposition
There exists a particular interval doubling series from a given
Coxeter lattice generated by n generators to the Coxeter lattice
of the same family, generated by n + 1 generators.
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Any question ?
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