Stronger reduction criteria for
Local First Search

Marcos E. Kurbdn! Peter Niebert? Hongyang Qu? Walter Vogler?

! Formal Methods and Tools Group, University of Twente, EWI INF - PO Box 217,
7500 AE, Enschede, The Netherlands, mkurban@cs.utwente.nl
2 Laboratoire d’Informatique Fondamentale de Marseille, Université de Provence
39, rue Joliot-Curie / F-13453 Marseille Cedex 13,
{niebert,hongyang}@cmi.univ-mrs.fr
3 Institut fiir Informatik, Universitit Augsburg, D-86135 Augsburg,
Walter.Vogler@Informatik.Uni-Augsburg.DE

Abstract. Local First Search (LFS) is a partial order technique for
reducing the number of states to be explored when trying to decide
reachability of a local (component) property in a parallel system; it is
based on an analysis of the structure of the partial orders of executions
in such systems. Intuitively, LFS is based on a criterion that allows to
guide the search for such local properties by limiting the “concurrent
progress” of components.

In this paper, we elaborate the analysis of the partial orders in ques-
tion and obtain related but significantly stronger criteria for reductions,
show their relation to the previously established criterion, and discuss
the algorithmics of the proposed improvement. Our contribution is both
fundamental in providing better insights into LF'S and practical in pro-
viding an improvement of high potential.

1 Introduction

Partial order methods [15,5,8,7,12,16,9, 10, 13, 4, 6] exploit the structural prop-
erty of independence that occurs naturally in asynchronous parallel systems. The
basic observation exploited by partial order methods is the commutation of pairs
of independent transitions which, by definition, lead to the same state indepen-
dent of their order of execution. This structural information can be applied in
order to remove redundant transitions or, if the property in question permits,
even states, without changing the validity of the property. Independence is typ-
ically derived from distribution, i.e. transitions of distinct processes in a system
may commute (unless they access shared variables or synchronize). This commu-
tation of independent transitions gives rise to a notion of equivalent executions,
and the equivalence classes are called Mazurkiewicz traces.

Among these methods, Local First Search (LFS) [11,1] is specialized for the
complete search for local properties, i.e. properties that can only be modified by
dependent transitions. The definition and justification of LFS highly depend on
the characterization of equivalent executions as labelled partial orders. In [11],

it is shown that prime traces, i.e. partial orders with a single maximal element,
suffice to search for local properties; in turn, to approximate all prime traces,
it suffices to consider only traces (partial orders) with a logarithmic number
of maximal elements (compared to the overall parallelism in the system); this
number is called LFS-bound.

In [11], a first method for exploiting this criterion was given, which however
did not guarantee that the number of states actually explored would be inferior
to the global number of states. In [1] in contrast, the LFS-bound is combined
with ideas from McMillan unfoldings [4] to obtain a breadth first search based
algorithm that is complete and never explores the same state twice. For a number
of benchmarks, it was observed that (asymptotically) LFS with the unfolding
approach gives decent reductions where the stubborn set method [16], the ample
set [12] and related methods fail.

In the current work, we revisit the LFS correctness theorem and derive a
hierarchy of criteria, peak rest compliance (pr-compliance), peak width sequence
compliance (pws-compliance), a recursive LFS-bound and finally the previously
published logarithmic LFS-bound. These criteria characterize subsets of traces,
ordered by inclusion: pr-compliance defines the smallest set of traces and the log-
arithmic LFS-bound the biggest. We prove that any prime trace can be reached
through a sequence of prefixes such that each one is pr-compliant, and for that
matter pws-compliant, and satisfies the LFS-bounds. On the whole, we thus
obtain a modular proof of the original theorem and stronger reduction crite-
ria. Efficient exploration algorithms have been implemented using the technique
from [1].

The paper is structured as follows. Section 2 presents the necessary back-
ground on Marzurkiewicz trace theory. Section 3 explains the basic concepts
of the LFS technique. Section 4 introduces pr-compliance based on a tree like
recursive decomposition of traces, and a proof of the preservation of local prop-
erties is given. In Section 5, we derive a simplified version of pr-compliance,
pws-compliance, which is computationally less expensive. In Section 6 in turn,
we derive a recursive LFS-bound from pws-compliance and the previously pub-
lished logarithmic bound from the recursive bound. In Section 7, we explain
the complexity and steps needed to implement a pws-compliance procedure. In
Section 8, we report experimental results obtained with our prototype imple-
mentation and conclude in Section 9.

2 Basic Concepts

The theory of Marzurkiewicz traces is built on the concept of a concurrent al-
phabet, which is a tuple (X,) with X a finite set of actions and I an irreflexive
symmetric binary relation on Y. I is called the independence relation of the al-
phabet, and we will refer to D = (X' x X)\I as the dependence relation of such
an alphabet. We will assume that (X, I) is fixed for this paper.

A transition system over X' is a triple T = (S, —, s¢) with S a set of states,
S0 € S the initial state, and —C S x X' x S a transition relation. For (s, a,s’) €—

we also write s — s'. We only consider deterministic transition systems, i.e.
systems such that s % s; and s 5 sy implies s; = sy. Moreover, we only
consider systems that respect the independence relation in the following way: If
s 5 s LA s2 and a I b then there exists s} with s LA s) 2 5.

A word over X is a — possibly empty — finite sequence of symbols from J;
the set of words is X*, ranged over by w,v,w, etc.; the empty sequence will be
denoted by €. When used on words, = will denote the usual prefix ordering on
words.

Let =1 be the least congruence on the monoid generated by X* and concate-
nation such that Va,b € X : (a,b) € I = ab =y ba. The equivalence classes of
=; will be called traces, the equivalence class of u will be denoted by [u] and the
set of all traces by [X*]. Since = is a congruence, concatenation carries over to
traces: [u][v] = [uv] is well-defined. Similarly, the prefiz relation < carries over,
i.e. [u] < [v] iff there exists [w] with [u][w] = [v].

For a transition system T, let L(T) C X* denote the words u = a4 . .. a, such
that there exists a path sg = $1...8,-1 = s, and let o(u) = s, denote the
state reached by the word. Obviously, if v € L(T) and v =y «’ then v’ € L(T)
and o(u) = o(u’). We therefore also write o([u]) := o(u).

A property of a transition system T is a subset P C S. An action a is visible
for P iff there exist s; € P and s, € S\ P such that s; > s or 55 — 1 (i.e. a
may “change” the validity of P). A property P is a local property iff, for all pairs
of actions a and b both visible for P, we have a D b. Typically, a local property
is a property of a single variable or a single process in a parallel product.

Local properties have an interesting link with traces, as has been observed
n [11]: if some state satisfies local property P, then such a state can be reached
by a trace which seen as a partial order has exactly one maximal element; cf.
Section 3.

3 Local First Search

The aim of “Local First Search” is to optimize the search for local properties
in transition systems. It is based on the following parameters of a concurrent
alphabet.

Definition 1. We say that (X,I) has parallel degree m if m is the maximal
number of pairwise independent actions in X, i.e.

m =max{|A4| | AC ¥ and a,b € A,a # b= alb}.

We say that (X, 1) has communication degree cd if cd is the mazimal num-
ber of pairwise independent actions such that all of them depend on a common
action, i.e.

cd=max{|B| | BCX,3c€X: (Vb €B: —cIb) and (¥b,b €B : b # b = bIV)}.

Intuitively, the parallel degree might correspond to the number of processes
of a concurrent system, whereas the communication degree is related to synchro-
nisation, e.g. systems based on binary channels have a communication degree 2.

The main idea of Local First Search (LFS) is better understood by viewing
traces as partial orders. This is based on the well known one-to-one correspon-
dence [3, Chapter 2] between traces and the class of finite X-labeled partial
orders (E, <, \) such that

(1) For any e, f € E with A(e) D A(f) we have e < f or f <e.
(2) < is equal to the transitive closure of < N{(e, f) | A(e) D A(f)}.

We will refer to such partial orders as a (X, I')-Ipo or Ipo for short. Any of them
can be seen as an abstract representation of an execution. In this representation,
two elements are unordered if and only if the actions labelling them could have
occurred in any relative order (or in parallel). Correspondingly, any two such
elements are labeled with independent actions.

By a linearisation we mean a word over E which contains each element of
E once and where an element e occurs before f whenever e < f. We obtain a
labeled linearisation from such a word, if we replace each element by its label.
The relation between traces and lpo’s is simply that the set of all labelled lin-
earisations of an lpo is a trace and each trace, as described above, induces such
a lpo.

If we have an lpo (E, <, \), we call subset F' of E an interval iff for alle, f € F
and g € F with e < g < f also g € F. We identify an interval F’ with the labeled
partial order it induces by restricting < and A\ appropriately. Note that F' is a
(X, I)-lpo again. For a linearisation v of F' we define set(v) by set(v) = F.

The downward closure of F C Eis | F={ec€ FE | 3f € F : e < f}, and
we write | fif FF={f}.

Element e of an lpo is an immediate predecessor of f and f an immediate
successorof e iff e < fandVg: e<g< f = g=-eor g= f. We now
define notions for (E,<,)\) some of which correspond to the parallel and the
communication degree of a concurrent alphabet.

Definition 2. Let (E,<,)\) be an lpo. An element e € E is maximal if there is
no f € E such that e < f. We define max(E) as the set of maximal elements of
E and call E prime, if max(FE) has just one element.
The width of E (denoted by width(E)) is the maximal number of pairwise
incomparable elements, i.e. maz{|A] | ACEAVe,f€A:e< f=e=f}.
The communication degree of E is the maximal number of immediate prede-
cessors of an element of E.

The following proposition first relates these notions to the concurrent alpha-
bet; the proof of this relation can be found in [11]. The last claim is easy to
see.

Proposition 3. Let (E, <, \) be an lpo. Then |max(E)| < width(E) and width(E)
is at most the parallel degree of (X, I) and the communication degree of E is at
most cd.

For an interval F C E we have width(F) < width(FE).

From the definition of local properties, one gets immediately the following: If
a system can reach a state satisfying such a property, then a satisfying state can
be reached with a prime trace corresponding to a prime Ipo (the proof can be seen
in [1]). The following fundamental result of LFS shows that one can construct all
prime lpo’s by restricting attention to lpo’s with a bounded number of maximal
elements; this implies that checking for satisfaction of a local property can be
performed on a restricted state space.

Theorem 4 (LFS theorem [11]). Let (E,<,\) be an lpo of width m with at
most cd maximal elements. Then there exists a linearisation w of E such that,
for every prefiz v of w, set(v) has at most 1 maximal element if cd = 1, and at
most | (ed — 1)logeq(m) + 1| mazimal elements if cd > 1.

This theorem provides a filter for excluding traces in the search of states
satisfying local properties. The best known way of exploiting this filter in a
search procedure is given in [1]. For guidance purposes, it is also outlined below.
Let us first consider a kind of “unfolding” of transition system 7' that respects
traces, the trace system of T

Definition 5 (Trace system). Let T = (S, —,s0) be a transition system re-
specting (X, I). Then the trace system of T is the transition system T S(T') whose
states are the traces associated to words in L(T), with the empty trace [e] as ini-
tial state and such that the transition relation is —= {([u], a, [ua]) | va € L(T')}.

Based on o([u]) we can lift properties of T' to properties of 7S(T'), and we
can restrict the test for a local property to the search for a suitable prime trace.

The next notion, originating from McMillan prefixes [10], is needed to avoid
the exploration of an infinite number of traces.

Definition 6 (Adequate order). A partial order T on the whole set of traces
1s called adequate if

(Ady) it is well-founded;

(Ads) it refines the prefiz order, i.e. [u] X [v] implies [u] C [v];

(Ads) it is a right congruence, i.e. [u] C [v] implies [u.z] C [v.2] for any z € X*.

In practice, only adequate orders that refine the length order, i.e. |u| < |v|
implies [u] C [v], are used. Together with the filter of Theorem 4, adequate
orders are used to cut the search in the state space, as is shown in the following
algorithm that refines breadth first search.

Algorithm 1 guarantees that each state of the system is explored at most once
(i.e. for at most one Mazurkiewicz trace leading to it), while preserving reach-
ability of local properties. In practice, it considerably reduces the set of states
explored. The correctness proof of the algorithm and a detailed explanation was
presented in [1], and this proof relies on Theorem 4 as a module. What is impor-
tant here is the consequence that the LFS-criterion in the algorithm, which is
“bounding the set of maximal elements of trace [ua] by |(c¢d —1)logeq(m)+1]7,
can be replaced by other criteria similar to Theorem 4 without changing the
correct functioning. The aim of this paper is to provide more restrictive criteria
or tighter filters for Ipo’s that suffice to guarantee reachability of all prime lpo’s
but exclude a lot of traces or lpo’s violating the criterion.

Algorithm 1 Computation of a finite locally complete subsystem

Table — {(so, [€])}, Next_Level — {(so, [€])}
while Next_Level # () do
Current_Level «— Next_Level; Next_Level « ()
for all (s, [u]) € Current_Level, a € X, s’ € S such that s = s’ do
if s’ € P then
Return(ua)
else
if [ua] respects LFS-criterion then
if (s, [v]) € Table then
if |ua|] = |v| and (s',[v]) € Next_Level and [ua] C [v] then
Table < (Table \ {(s’, [v])}) U {(s’, [ua])}
Next_Level «— (Next_Level \ {(s',[v])}) U {(s', [ua])}
end if
else
Table «— Table U {(s’, [ua])}
Next_Level «— Next_Level U {(s’, [ua])}
end if
end if
end if
end for
end while
Return unreachable

4 A new approach for tighter constraints

We will show in this section that, for building up prime lpo’s, it is sufficient to
consider peak-rest-compliant lpo’s, which we define below. We will discuss in
the succeeding sections in some detail how one can check this condition, and
how one can weaken it to make the check more efficient; in the course of this
discussion we will also prove that each peak-rest-compliant Ipo obeys the bound
on the number of maximal elements given in Theorem 4.

Definition 7. Let (E,<,\) be an Ipo. Let e1,...,e; € max(FE) be different,
k>0, and F = max(E) \ {e1,...,ex} with F £ (. Define E; = (] e;) \U{l [|
e; #femax(E)} fori=1,....,k and Exy1 = (| F)\U{le: | i=1,...,k}.

Then (E1,...,Ery1) is a peak-rest-decomposition of E, and in case that F
is a singleton a peak-decomposition. We call E1, ..., Ey, and also Eiy1 in the
latter case, peaks of E.

A peak is defined by a maximal element e; it consists of all elements that
are below e, but not below any other maximal element. From this, it is clear
that there exists a peak-decomposition, which is unique up to the ordering of its
components; further, peaks are disjoint, elements of different peaks are unordered
and a label appearing in one peak is independent of any label appearing in
another peak — and this even holds for Fi,..., E;y1 in the general case. From
this, we see that the sum over the width(E;) is at most width(E).

Note that, in the general case, Ej41 could contain more elements than just
the union of the peaks of the maximal elements in F', namely some elements
that are below more than one maximal element of F'.

Definition 8. Anlpo (E, <, \) is called peak-rest-compliant or pr-compliant for
short if it has at most cd mazimal elements or it has a peak-rest-decomposition
(B1,...,Exq1) with 1 < k < cd such that width(Ey41) < width(E;) for i =
1,...,k and Ex41 is pr-compliant as well.

Intuitively, a pr-compliant lpo has at most ¢d maximal elements or it is an
initial part of an Ipo with at most cd maximal elements and needed to build up
the latter Ipo; in the latter case, the idea is that k of the peaks of the latter Ipo
have already been built and that Ej; will lead to the next peak. This idea will
be formalized in the proof of our first main theorem, which we present now.

Theorem 9. Let (E,<,\) be an lpo with at most cd maximal elements. Then
there exists a linearisation w of E such that for each prefiz v of w, set(v) is
pr-compliant.

Proof. The proof will be by induction on the size of E, the case of ' = () being
trivial. We assume that the claim has been shown for all smaller Ipo’s and make
the following distinction of cases.

i) E has just one maximal element e. Then by Proposition 3, E \ {e} has at
most cd maximal elements, namely the immediate predecessors of e. Choose a
suitable linearisation u of E \ {e} by induction, and then we are done by setting
w = ue.

ii) Let max(E) = {e1,...,exr1} with 1 < k < cd. Let (Ey,...,Erq1) be
the peak-decomposition of E ordered according to decreasing width. Choose
linearisations v for | (Ey U...U E)) and v’ for Ei41 by induction. Since these
sets are a partition of F with no element of the latter below any element of the
first, w = wu’ is a linearisation of E; we have to check all prefixes of w.

Let v be a prefix of w; if v is a prefix of u, we are done by induction, oth-
erwise v = uv’ with v’ a prefix of u'. Let F' = set(uv’). Clearly, e1,...,ex € F
are still maximal; so let max(F) = {ey,...,ex, f1,..., fi}, where | > 1 and
max(set(v')) = {f1,..., fi}. Let (F1,..., Fry1) be the peak-rest-decomposition
of F induced by the maximal elements ey, ..., e, and the set {f1,..., fi}.

Since each e < e; for some ¢ € {1,...,k} occurs in u, we have Fy11 C
set(v') C Eyt1, which implies width(Fj11) < width(Ej4+1) by Proposition 3. Vice
versa, for each f € set(v') C Ej41, we cannot have f <e; for any i € {1,...,k},
hence we must have Fy1 = set(v’), which implies that Fj1 is pr-compliant by
choice of u’.

Fori=1,...,k, we have E; C F;: any e € F; occurs in u, hence e € F'; we
do not have e < ¢; for j # i and we cannot have e < f; for some j = 1,...,1
since f; < ep41. Thus, we have width(E;) < width(F;) by Proposition 3.

Hence, due to the chosen ordering of the E;, we have width(Fj11) < width(Ex11)
< width(E;) < width(F;) for all i = 1,...,k, and we are done. O

5 The peak-width-sequence criterion

In this section, we present a criterion that is slightly weaker than pr-conformance
but avoids the recursive checks of the rest in a peak-rest-decomposition for pr-
conformance. For this, we need the following notion for sequences of numbers,
which is rather technical but easy to check.

Definition 10 (n-cumulative sequence). For n > 2, a decreasing sequence
of natural numbers my > mo > ... > my with m; > 1 is called n-cumulative,
if I < n or there exists a j with 1 < j < n such that m;_; > Zézj my and
mj, ..., my is n-cumulative.

Definition 11. Let m; > mo > ... > my be the widths of the peaks of an Ipo
(E, <, \); then the lpo is called peak-width-sequence-compliant or pws-compliant
for short if this sequence is cd-cumulative.

Together with Theorem 9, the following theorem demonstrates that we can
restrict ourselves to pws-compliant Ipo’s if we want to build up all Ipo’s with at
most cd maximal elements incrementally.

Theorem 12. Fach pr-compliant lpo is pws-compliant.

Proof. Let (E,<,)\) be a pr-compliant lpo and (F4i,..., Ex+1) the respective
peak-rest-decomposition with the peaks ordered by decreasing size. The proof
is by induction on the size of E. Let (Fgy1,...,F;) be the peak-decomposition
of Ej41, again with the peaks ordered by decreasing size. Since no element of
Ej41 is below any element outside of Fyy1, (E1, ..., Ex, Frt1, ..., F) is the
peak-decomposition of E. Since (Fj41, ..., F}) is ed-cumulative by induction and
k < cd, it remains to check that width(Ey) > Zé:kﬂ width(F;). This follows

from Zé-:kﬂ width(F;) < width(Eg41), which is satisfied since the F} are the
peaks of Ej11, and width(Eyy1) < width(E}) according to Definition 8. O

The difference between pws-compliance and pr-compliance is that the width
of the rest in a peak-rest-decomposition might be larger than the sum of the peak
widths for the peaks in this rest; in such case, the Ipo could be pws-compliant
without being pr-compliant. Hence, pr-conformance may give a stronger restric-
tion of the visited part of the state space. But algorithmically, checking for pr-
conformance requires to identify the rest of a suitable peak-rest-decomposition,
and this would presumably involve to determine all peaks and their widths first.
Then one has additionally to compute the width of the rest, where the lat-
ter might be even larger than the union of the respective peaks. For the re-
cursive checks for pr-conformance, the peaks of the rest and their widths are
already given, but the problems with finding and checking a suitable peak-rest-
decomposition of the rest occur repeatedly.

To test pws-compliance, we have to construct the peaks of the given Ipo and
to determine their widths m; > mg > ... > my; this sequence is cd-cumulative
if — viewed from the end — there are never cd — 1 indices in a row where the

cumulative sum is larger than the next (smaller) number. It is easy to check this
in linear time by one scan from right to left, building the cumulative sums on
the way.

6 Deriving the LFS bounds

In this section, we derive the classical LFS-bound as presented in [11], as well
as some slight improvements, from the pws-criterion. Moreover, this is the first
published proof of the LFS-bound for the general case (communication degree
not limited to 2).

We begin by introducing a recursive formula for the bound that gives a rela-
tion of length and sum of n-cumulative sequences. Then, we derive the previously
published logarithmic bound for the recursive formula.

Definition 13 (recursive bound). For n > 2 and m > 1 let L(n,m) be
inductively defined by

L(n,m) = m form <n
L(n,m)=n—1+L(n,|™]) form>n

Lemma 14.
For 1 <k <n and m >1 we have k + L(n, [T]) <n+ L(n, [Z]).

Proof. By induction on m. We assume that the statement is already proven for

all m’ < m with m’ > 1. For an easier case analysis observe that L(n,m) =
m

n— 1+ L(n,|[™]) also for m = n. This allows us to distinguish the following
three cases: (a) || <[] <n,(b) [Z] <n<[F]and (¢)n < [2] < |7

For (a), we have to show that k 4+ || < n + []. Due to properties of
|.] this follows from k + T < n+ 7 or equivalently nk +n < n? + ko or

2 (n — k) < n(n — k). This follows, since k <n and 7+ <n by [7*] <n.

For (b), we have that L@J = || <n < |2]. Therefore, we have to show

that k+n—1+[] <n —7— | %] which follows from & — 1+ 7% < . This is
equivalent to n(k — 1) + ¢ < k% or n(k — 1) < Z2(k — 1). The latter follows
since £ > 1 and n < 7 by the assumption n < |7].

For (c), we have to show that k+n—1+L(n, L%J) <n+n—1+L(n, LL%J).

n

Since L%J =&l = LL%J |, this follows immediately from induction for m’ =

2] < m. O

Proposition 15. Let my > mg > ... > my be n-cumulative (n > 2) and m =
22:1 m;. Then for the length | of the sequence we have | < L(n,m).

Proof. The proof is by induction on I.
For the case m < n (in accordance with the first defining equation of L), we
use | < m (since m; > 1 for each of the [summands m;) and m = L(m,n).

Now, for m > n, let j be the first position in the sequence, such that m;_; >
Ei::j my =: m’. Then j < n. Since m; > ... > my (as a suffix of an n-cumulative
sequence) is itself n-cumulative of length I” = [—(j—1), it holds by induction that
I < L(n,m') and consequently | < j—1+L(n,m’). Sincem’ <mj;_1 <... < my,
we have that m’ < L%J By Lemma 14 and the monotonicity of L in the second
argument, we finally obtain [<n — 14 L(n, [7'|) = L(n,m) as desired. O

Corollary 16. Let (E,<,\) be an lpo of width m with at most cd > 2 mazimal
elements. Then there exists an linearisation w of E such that, for every prefix v
of w, set(v) has at most L(cd, m) mazimal elements.

Proof. We choose w as linearisation according to Theorem 9. Let v be a prefix
of w; then set(v) is by choice pr-compliant and according to Theorem 12 also
pws-compliant, and width(set(v)) < width(E) = m (Proposition 3). The peaks
of set(v) are mutually independent and hence the sum of their widths is bounded
by m (antichains of the peaks freely combine to antichains of set(v)). Hence, the
number of peaks of set(v) is bounded by L(cd, m) according to Proposition 15
and monotonicity of L(n,m) in m. O

The recursive formula L is an improvement over the originally published
bound of Theorem 4, as shown by the following statement.

Proposition 17.
For2 <n and 1 <m we have L(n,m) < |(n — 1) log,, m]| + 1.

Proof. By induction on m. For m < n by definition L(n,m) = m. Observe that

log,, m is concave in m and has for m = 1 and m = n the same value as %_11,

thus %_11 < log,, m for 1 <m < n. Hence, m < (n—1)log, m + 1 which implies
m < [(n—1)log, m] + 1 and we are done.

Now for m > n we get L(n,m) =n—1+ L(n, []). By induction, we obtain
that L(n,m) < (n—1)+ [(n—1)(logn |2])] +1 = [(n—=1)(1 +log, [2])| +1 =
[(n —1)(lognn|[])] +1 < [(n—1)(lognm)] + 1, as desired. O

Now, we can see how the original Theorem 4 is the end of a chain of reasoning
in our present paper: We simply have to combine Corollary 16 with Proposition
17.

Concluding, we have seen how pr-compliance implies pws-compliance and
pws-compliance induces a new recursive bound, which itself implies the original
logarithmic bound.

7 Complexity and algorithmics of the new criteria

Pws-compliance may filter out significantly more traces than the LFS-bound,

which means less states need to be stored. But its overhead, i.e. the cost of

testing pws-compliance of each explored trace, has an impact on execution time.
The check for pws-compliance of a trace can be decomposed as follows:

10

— At first, the peaks need to be extracted as subtraces of the trace. Due to the
characterization of dependency graphs at the beginning of Section 3, this
task can be carried out in time at most O(m?), where m is the length of the
trace. Depending on the representation of dependency, this can be improved
to O(m - log m).

— Then, for the partial order of each peak, its width has to be computed.
Computing the width of a partial order is a problem that is known to be
equivalent to that of finding a maximal matching in a bipartite graph [14].
The matching problem can then be solved with Hopcroft and Karp’s algo-
rithm [2] in O(n?2), where n is the size of the bipartite graph. This is in turn,
twice the size of the peak.

— At last, the resulting widths have to be ordered and the test for an n-
decreasing sequence has to be done. This is largely subsumed in the com-
plexity of the previous task.

On the whole, the worst-case complexity of the pws-compliance test is thus
subsumed by the O(n?2) of the matching algorithm. First experiments indicate
however, that often the peaks are small compared to the length of the trace.

Exploring a transition system that has very long paths to some state is thus
costly, the time complexity can only be limited by O(n%) where n is the number
of actually visited states (after reduction). Our filtering may lead to an expo-
nential reduction of the size of the state space; in such cases, this at first sight
high complexity pays well off with a significant speed up and even with dramatic
space savings, as the experiments of the next section suggest.

It is conceivable that the pws-compliance test can be accelerated by a number
of improvements:

— avoiding the execution of the test when it is not necessary (e.g. when the
number of peaks is lower than the communication degree, ...);

— a caching technique that allows to avoid executing the test in certain cases;

— an incremental way of computing pws-compliance using some memory.

8 First experimental results

We have conducted first experiments with a new prototype using Algorithm 1.
In one version, we use the bound of Proposition 15, which is slightly tighter
than the previously published bound of Theorem 4. In another version, we use
pws-compliance according to Theorem 12. In each parametric experiment, we
compare the number of states, the memory consumption and the running time
for exhaustive exploration on a machine with 2GB memory. We only give data
for cases not running out of memory, which sometimes means that we can treat
bigger problem instances with one or the other reduction method.

The first experiment concerns a version of Dijkstra’s dining philosophers with
5 states, which each choose nondeterministically, which fork they pick up first
(Figure 1 at left). This is an example, where typical partial order techniques
like stubborn sets [16] or ample sets [12] fail to achieve significant reduction; in

11

drop left

O

Fig. 1. An instance of the philosophers / the “comb” process as Petri net

fact, experimentally, Spin’s partial order reduction does not remove any states.
It turns out, that already the bound-based algorithm obtains a decent reduc-
tion and is a bit faster than the pws-compliant based reduction, which only
has a slight advantage in states and memory on this series. Observe the sub-
exponential growth with reduction, whereas growth is cleanly exponential with-
out reduction.

N No reduction LFS bound PWS compliant SPIN PO red
states| time|memory| states| time|memory| states| time|[memory| states| time|memory
()] (m) ()] (m) ()] (m) ()| (m)
2 13| 0.01 4.1 13| 0.01 4.6 13| 0.01 4.8 13| 0.00 2.6
3 51| 0.01 4.1 49 0.01 4.7 49| 0.01 4.8 51| 0.00 2.6
4 193 0.01 4.1 191] 0.01 4.7 147] 0.01 4.9 193] 0.01 2.6
5 723| 0.01 4.1 651| 0.01 4.7 441 0.01 4.9 723 0.02 2.6
6 2701| 0.02 4.4 1937 0.02 4.8 1552 0.02 5.0 2701| 0.02 2.7
7 10083| 0.05 5.4 5041 0.05 5.4 4694 0.06 5.4| 10083| 0.09 3.1
8 37633 0.22 9.3| 25939 0.25 8.8] 11825 0.27 5.5 37633 0.35 7.9
9 | 140451 1.02 25.6| 70225| 0.76 17.3| 26269 0.78 9.3| 140451| 1.59 43.8
10| 524173 4.52 91.6| 173031 2.13 38.1] 63561 2.34 16.5| 524173 7.03 74.1
11]1956243| 21.06| 357.5| 392701 5.28 84.9] 139788| 5.92 32.6/1956243| 31.03 325.1
12|7300801[106.49| 1422.5] 830415| 12.33 183.5] 340179| 15.86 79.5|7300801[127.40 1030.1
13 — — —|1652587| 26.99 378.3| 808390| 39.75 191.8 — — —
14 — — —|[3121147| 56.44| 743.9|1817375| 97.03| 441.5 — — —
15 — — —[5633381[111.55| 1399.0{3815044(213.60 948.4 — — —
16 — — — — — —|7492734]966.79| 1911.7 — — —

Fig. 2. Results of the philosophers example

The second example “comb” (indicated as Petri net in Figure 1 at right) is an
artificial series of “best-case reductions” for the pws-criterion. While exponential
without reduction, and while Spin’s partial order reduction does fail to eliminate
any states, it is clearly sub-exponential using the LFS-bound and it is not difficult
to understand that it has cubic growth under pws-compliant reduction. Observe
the jumps in state memory and time for the LFS-bound reduction: They occur
when the LFS-bound increases.

12

« Comb »

m Spin PO & LFS ¥ pws-
States i
red bound comp. Memory(MB) Time(s)
10 000 000 s 1000
N
1,000 000 & 100
N
100 000 10
&
10 000 1
1000 ® 0
100 T T T T T I T T T I T T T T T N T T I T T I T T O T T T T T T I T I T I TTTIT77T]
5 10 15 20 25 30 5 10 15 20 25 30 5 10 15 20 25 30

Fig. 3. Results of the comb example

The third example is a series of instances of an asynchronous version' of the
Sieve of Erastosthenes, where IV is the number of iterations of the sieve.

This is an example where the partial order methods like the ample set method
are good at. Indeed, while LF'S with bound is faster and less memory-consuming
in our prototype than Spin without reduction, Spin with reduction is the fastest.
However, pws-compliance does give a significantly better reduction with respect
to memory, although it is the slowest. Here, the complexity of the pws-criterion
is the bottle neck and almost all processor time is used for evaluating it.

N No reduction LFS bound PWS compliant SPIN PO red
states| time|memory| states| timelmemory| states time|memory| states| time|memory
®| (m) e ())| (m) ® ()
1 340(0.01 4.1 198| 0.01 4.7 198 0.01 4.8 188| 0.00 2.3
2 1912] 0.01 4.3 1456| 0.01 4.8 910 0.02 4.9 630| 0.00 2.3
3 8632| 0.04 5.4 4560| 0.05 5.5 2874 0.08 5.2 2134| 0.00 2.5
4| 63984| 0.39 15.5] 18252| 0.19 8.5| 14392 0.88 7.5 10599| 0.04 3.6
5| 178432| 1.30 40.7| 35072 0.46 12.9| 26644 2.35 10.5| 25048| 0.13 6.2
6(1097296(10.31 259.2| 361736| 9.10 99.8| 63212 16.95 20.3| 109880| 0.70 21.7
712978208(34.12 772.2| 707120(19.75 206.7| 112964| 49.07 35.2|1076639| 9.32 243.5
8 — — —[2072162|75.71 650.1| 304386| 229.57 95.0(4311167|86.52| 1801.0
9 — — — — — —[1158208|1380.12 395.1 — —

Fig. 4. Results of the sieve example

But the running time of the pws-compliance test should be read with care:
This is a first implementation without any optimization. In fact, we are positively
surprised that the pws-compliance test is practical!

9 Conclusions and future work

In this paper, we report on an improvement concerning both the theoretical basis
and practice of Local First Search, a recent partial order reduction technique.

L Our prototype does not allow rendezvous yet, so to compare, we had to modify this
example for Promela/Spin, see appendix.

13

The theory not only gives a better insight into previously published results,
but also yields a stronger reduction method than previously known, using peak-
width-sequence compliance. As regards the LFS-bound, pws-compliance can be
used in a chain of reasoning that derives it.

We have also built an ambitious prototype implementation of the algorithm
that starts to yield results. The first observations reported here are partially
ambiguous and more experimental evidence would be desirable, but they clearly
show the potential of the method. Problems with a high degree of independence
are a good measure to see this. In treating them, established reduction methods
fail to deliver the degree of space economy partial order semantics can yield. In
this cases our method performs at its best, yielding robust space savings.

The sieve example shows that there is a space-time tradeoff between Spin’s
reductions and those of our prototype. Our method seems to be very strong in
space savings, but the time complexity should be improved. This is a priority
topic to be addressed: for instance, if the pws-sequence could be computed in a
more incremental fashion by investing some memory, the algorithm could become
much faster.

Apart from this topic and the need to stabilize and improve the prototype,
we will study the performance of the algorithm on realistic case studies. We
believe that in particular in the field of AI planning, the dependency analysis
proposed by our algorithm could turn out to be very promising.

References

1. BorNOT, S., MORIN, R., NIEBERT, P., AND ZENNOU, S. Black box unfolding with
local first search. LNCS, 2280 (2002), 386—400.

2. CorMEN, T., LEISERSON, C., AND RIVEST, R. Introduction to Algorithms. MIT
Press, 1990.

3. DIEKERT, V., AND ROZEMBERG, G., Eds. The Book of Traces. World Scientific
Publishing Co. Pte. Ltd., 1995.

4. EsPARZA, J., ROMER, S., AND VOGLER, W. An improvement of McMillan’s unfold-
ing algorithm. In Tools and Algorithms for Construction and Analysis of Systems
(1996), pp. 87-106.

5. GODEFROID, P. Using partial orders to improve automatic verification methods.
In CAV ’90: Proceedings of the 2nd International Workshop on Computer Aided
Verification (London, UK, 1991), Springer-Verlag, pp. 176-185.

6. GODEFROID, P., PELED, D., AND STASKAUSKAS, M. Using partial-order methods
in the formal validation of industrial concurrent programs. IEEE Trans. Softw.
Eng. 22,7 (1996), 496-507.

7. GODEFROID, P.; AND PIROTTIN, D. Refining dependencies improves partial-order
verification methods (extended abstract). In Computer Aided Verification: Proc. of
the 5th International Conference CAV’93, C. Courcoubetis, Ed. Springer, Berlin,
Heidelberg, 1993, pp. 438-449.

8. GODEFROID, P., AND WOLPER, P. A partial approach to model checking. In Logic
in Computer Science (1991), pp. 406—415.

9. HoLzMANN, G., AND PELED, D. Partial order reduction of the state space. In
First SPIN Workshop (Montreal, Quebec, 1995).

14

10.

11.

12.

13.
14.

15.

16.

McMinLan, K. L. A technique of state space search based on unfolding. Form.
Methods Syst. Des. 6,1 (1995), 45-65.

NIEBERT, P., HUHN, M., ZENNOU, S., AND LUGIEZ, D. Local first search: a new
paradigm in partial order reductions. LNCS, 2154 (July 2001), 396-410.

PELED, D. All from one, one for all: on model checking using representatives. In
CAV (1993), pp. 409-423.

PENCZEK, W., AND KUIPER, R. Traces and logic. In Diekert and Rozemberg [3].
REICHMEIDER, P. F. The Equivalence of Some Combinatorial Matching Theorems.
Polygonal Pub House, 1985.

VALMARI, A. Stubborn sets for reduced state space generation. In Applications
and Theory of Petri Nets (1989), pp. 491-515.

VALMARI, A. On-the-fly verification with stubborn sets. In CAV (1993), pp. 397—
408.

Appendix: Sieve of Erastosthenes in Promela for N = 2

#define len 2 active proctype middlel () {
#define lenplusone 3 int myval, nextval;
#define MAX 6 atomic{r[0]==1 -> r[0]=0;}
myval=q[0]; w[0]=1;
int r[lenplusone] = 0; do
int w[lenplusone] = 1; true -> atomic{r[0]==
int q[lenplusone] = 0; -> r[0]=0;}
int count; nextval=q[0]; w[0]=1;
if
active proctype left () { :: (nextval % myval) != 0 ->
count=2; atomic{w[1]==1 -> w[1]=0;}
do q[1]=nextval; r[1]=1;
:: count <= MAX -> :: else -> nextval=nextval;
atomic{ w[0]== fi
-> w[0]=0;} od
ql[0]l=count; r[0]=1; }
count++ active proctype middle2 () {
:: count>MAX -> break; int myval, nextval;
od atomic{r[1]==1 -> r[1]=0;}
} myval=q[1]; w[1]=1;
do
active proctype right () { 11 true -> atomic{ r[1]==
int next; -> r[1] = 0;}
do nextval=q[1]; w[1]=1;
:: true -> if
atomic{r[len]== :: (nextval % myval) != 0 —>
-> r[len]=0;} atomic{ w[2]==1 -> w[2] = 0;}
next=q[len]; q[2]=nextval; r[2]=1;
wllen]=1; :: else -> nextval=nextval;
od fi
} od
}

15

