
The Implementation of Mazurkiewicz Traces in
POEM

Peter Niebert and Hongyang Qu

Laboratoire d’Informatique Fondamentale de Marseille
CMI, 39, rue Joliot Curie, 13453 Marseille Cedex 13, France

{niebert,hongyang}@cmi.univ-mrs.fr

Abstract. We present the implementation of the trace theory in a new
model checking tool framework, POEM, that has a strong emphasis on
Partial Order Methods. A tree structure is used to store trace systems,
which allows sharing common prefixes among traces and therefore, re-
duces memory cost. This structure is easy to extend to incorporate ad-
ditional features. Two applications are shown in the paper: An extended
structure to support an adequate order for Local First Search, and an
acceleration of event zone based state space search for timed automata.

1 Introduction

POEM (Partial Order Environment of Marseille) is a new model checking tool
(framework) that has a strong emphasis on Partial Order Methods [17, 8, 15, 9,
12, 16, 7, 13, 11]. The motivation for adding POEM to the world of model checkers
is based on the authors work on algorithms that have a common basis concerning
concurrency, but which are not reflected in a single existing tool. Moreover, by
allowing commonly used specification languages as input languages and allowing
decent connections to analysis backends, we aim to build a platform that allows
direct comparisons of different algorithms on the same model.

The purpose of POEM is to allow the application of certain partial order ori-
ented algorithms to a number of input languages with different sets of features,
while allowing at the same time basic analysis algorithms. This gives a basic
structure of POEM derived tools as “compilers” consisting of a frontend (syn-
tactic and semantic analysis), a middle (model transformation), and a backend
which passes the model to the aimed analysis algorithm and allows to interpret
results. For instance, “if2c” consists of a frontend for (a variant of) Verimag’s
IF2.0 [3] language, static analysis for identifying the transitions and dependency,
and finally a backend generating C-code for exploration. This kind of architecture
is frequently used in model checkers and originally introduced in Spin [10]. The
implementation language of POEM is Objective Caml (OCaml). This choice is
due to the advantages of functional programming languages for compiler writing,
the efficiency of OCaml and the availability of non-functional features.

We also intend to build POEM to be a common framework for several input
languages and analysis methods:

– On the specification language side, we consider modeling languages for dis-
crete concurrent models, such as Promela [10], Petri net based languages [?]
but also timed automata specifications, in particular IF2.0 and UppAal [1].
These together with, for now, safety specifications or simply reachability.

– On the analysis side, we consider state exploration with partial order based
reduction methods and symbolic state exploration for timed automata.

The goal driving the design of POEM is to have as much reuse of code as possible
given these different front ends and backends. It is achieved in the following ways:

1. Given that most of the mentioned specification languages use some kind of
interleaving model of automata with shared variables and certain kinds of
communication, POEM uses a common data structure as an abstract speci-
fication language (it does not have a concrete syntax) that allows compara-
tively easy translation of specification languages into a unique metalanguage.

2. Since many partial order methods are based on Mazurkiewicz trace the-
ory [4, Chapter 2], such as [15,?,2, 11], a well designed and implemented
trace structure can be reused by such methods. and thus, save time in soft-
ware development.

This paper focuses on the design and the implementation details of traces in
POEM, and presents how to extend it to implement Local First Search [2,
13]. Moreover, We show the improvement of time consuming of Event Zone
approach [11] by combining it with the trace structure.

This paper is structured as follows. Section 2 gives the introduction of the
trace theory. Section 3 explains the design and the implementation of basic trace
structure in POEM. Section 4 describes the theory and the implementation of the
extension to the structure for implementing Local First Search. The combination
of event zone approcah and the trace structure, as well as the experiment to
show effect of improvement, is presented in Section 5. We conclude the paper in
Section 6.

2 Basic trace theory

Let Σ be an alphabet, (Σ∗, ◦) the free monoid. We write letters a, b, c ∈ Σ, and
words u, v, w, . . . ∈ Σ∗. The concatenation of a word u and a letter a is denoted
by u ◦ a. Let I ⊆ Σ × Σ be an irreflexive and symmetric independence relation,
and D = Σ × Σ − I. For two words u, v ∈ Σ∗, write u ≡I v if there exist words
w1, w2 and letters a, b such that (a, b) ∈ I, u = w1abw2 and v = w1baw2, i.e.
if u is obtained from v by exchanging the order of two adjacent independent
letters. Let ≡ be the reflexive and transitive closure of the relation ≡I . We say
that u and v are trace equivalent [4, Chapter 2] over (Σ, I) if u ≡ v. That is, u
is trace equivalent to v if u can be obtained from v by repeatedly commuting
adjacent independent letters. ≡ is a congruence with respect to concatenation
and we call the quotient monoid Σ/ ≡ the trace monoid of (Σ, I). We write
[u] = {v | u ≡ v} for the equivalence classes and for the traces.

2

Let <alph be the lexicographical order defined over Σ. For any two different
letters a, b ∈ Σ, either a <alph b or b <alph a. We also extend <alph for words,
i.e. for two words u and v, u <alph v iff u = wau′ and v = wbv′ and a <alph b.
Thus, a lexicographically least representive t of a trace [u] is defined as follows:

t ∈ [u] and for any word v ∈ [u] with t '= v, t <alph v.

For a trace u, we concider occurrences of letters such that u = a1a2 . . . an.
Let E = {a1, a2, . . . , an} be the set of occurrences of letters in u, and λ the
function mapping occurrences to letters. Let (E,≺, λ) be a finite (Σ-labeled)
partial order such that for any two occurrences ai, aj ∈ E (i < j), ai ≺ aj iff

– either λ(ai) D λ(aj) or
– there exists a sequence ak1 . . . akm with i < k1 < · · · < km < j and

(λ(ai) D λ(ak1)) ∧ (λ(ak1) D λ(ak2)) ∧ · · · ∧ (λ(akm) D λ(aj)).

Therefore, traces can be viewed as partial orders based on the one-to-one cor-
respondence [4, Chapter 2]. An element e ∈ E is maximal if there is no f ∈ E
such that e ≺ f .

3 The basic data structure for trace systems

We aimed to design a data structure that uses memory as small as possible.
Prefix sharing is a key idea to reduce the memory cost, i.e. for any two traces
that have a common prefix w, only one copy of w is allowed to be allocated in
memory. Therefore, it is natural to choose to a tree structure to build a trace
system. Any node in a tree, except the root, is associated with an action and
has a predecessor (father). A node may or may not have successors (children).
A path in a tree starting at the root, to the node associated with action a1, then
to the node a2, until the node an, represents the trace a1a2 . . . an.

Figure 1 illustrates the tree structure. A node has three fields: “predeces-
sor” is a pointer to its predecessor, “lastaction” is the associated action, and
“children” is a pointer to a link list such that each element in the list has two
fields: “first” points to a child node and “rest” points to the next element. This
structure is easy to be extended to facilitate complex trace systems by adding
more fields into a node. We will see in Section 4 a kind of extension.

In this trace structure, a trace t = a1a2 . . . an is accessed through its last
node an and following the predecessor pointer of each node of the trace. A trace
system is generated from an initial trace t0, which includes only the root node
— an artificial node respresenting an empty trace, by extending t0 one action
after another. Algorithm 1 describes the general steps to extend a trace t by an
action a. In the algorithm, a stack S and three stack functions are used: POP (S)
gets rid of the top element of S; TOP (S) accesses the top element; PUSH(a, S)
puts the action a onto the top of S. In order to generating a lexicographical least
trace t′ = t ◦ a where t = a1 . . . an, the extension is done in three steps in the
algorithm:

3

children

extension

first rest

extension

first rest

predecessor

children

lastaction

predecessor

lastaction

children

Fig. 1. The basic data structure

1. Find an i (0 ≤ i ≤ n) such that ai D a and for any i < j ≤ n, ¬(aj D a).
Note that i = 0 means all actions in t are independent of a and i = n means
they are dependent on a.

2. Find a k (k ≥ i) such that for any i < j < k, aj ≤ a and ak > a.
3. Insert a between ak−1 and ak. Moreover, the actions ak, . . . , an are inserted

into the trace again as ak+1, . . . , an+1.

Note that in Algorithm 1, a variable t represents both a trace conceptually and
its last node when we access the trace.

Algorithm 1 Extending a trace t by an action a using a stack S
1: et ← t, pos ← 0, S ← empty
2: while t "= root and ¬(t.lastaction D a) do
3: pos ← pos + 1, PUSH(t.lastaction, S), t ← t.predecessor
4: end while
5: while pos > 0 and a < TOP (S) do
6: POP (S), pos ← pos − 1
7: end while
8: for all i such that 0 ≤ i ≤ pos do
9: et ← et.predecessor

10: end for
11: PATH SUCCESSOR(et, a)
12: while S is not empty do
13: eptr ← TOP (S), POP (S), et ← PATH SUCCESSOR(et, eptr)
14: end while
15: return et

The function PATH SUCCESSOR in Algorithm 2 inserts a node with a
given action into its father’s children list. The list is sorted in the ascending

4

order on children’s associated actions. When there is a node in the list that has
been associated with the action already, this node is returned by the function.
Otherwise, a new node is created, inserted into the list and returned. In this
way, prefix sharing is maintained.

Algorithm 2 Function PATH SUCCESSOR(t : trace, a : action)
1: tl ← t.children, previous ← NULL
2: while tl "= NULL and tl.first.lastaction < a do
3: previous ← tl, tl ← tl.rest
4: end while
5: if tl "= NULL and tl.first.lastaction = a then
6: return tl.first
7: end if
8: new t.predecessor ← t, new t.lastaction ← a, new t.children ← NULL
9: new child.rest ← tl, new child− > first = new t

10: if previous "= NULL then
11: previous.rest ← new child
12: else
13: t.children ← new child
14: end if
15: return new t

COMPLEXITY ANALYSIS?

Proposition 1. Algorithm 1 and 2 1) maintain the lexicographical least repre-
sentive for every feasible trace and 2) preserve prefix sharing.

Proof. 1)
2) !

4 Extending trace systems for Local First Search

Local First Search (LFS) [2, 13] is a partial order method to seach for local
properties. For a property ϕ, a visible action causes the system to move from
a state not satisfying ϕ to a state satisfying it, or vice versa. When all visible
actions are pairwise dependent, such a property is a local property. In [13], it
is shown that prime traces, i.e. traces with a single maximal element, suffice to
search for local properties; in turn, to approximate all prime traces, it suffices to
consider only traces with a logarithmic number of maximal elements (compared
to the overall parallelism in the system); this number is called LFS -bound.

LFS uses a breadth-first search algorithm, which is described as follows. Con-
sider a state in the search queue is explored with an enabled action in this state.
Let t be the trace leading to the state and a the action. If the number of maximal
elements of t ◦ a succeed the LFS-bound, then the trace t ◦ a is abandoned; else,
a state s reached by t ◦ a is generated. If s is not seen by other traces, it is put

5

into the queue. Otherwise, let u be the trace reaching s with u '= t ◦ a. We need
to compare u and t◦a with respect to a total adequate order and use the smaller
trace to explore s. The adequate order used in POEM is described as follows.

4.1 The adequate order for POEM

An adequate order on Σ∗/ ≡ is a partial order ,⊆ (Σ∗/ ≡ ×Σ∗/ ≡) such that
the following properties are satisfied:

– [u] , [uv], i.e. it refines the prefix relation on traces;
– [u] , [v] implies [uw] , [vw];
– , is well-founded, i.e. there is no infinite strictly descending chain [u1] "

[u2] "

The most straight forward partial orders are:

– The prefix relation itself, i.e. [u] , [v] iff there exists v1 with [v] = [uv1].
– The length order : [u] , [v] iff |u| , |v|.

The first order is included in the second order. For application purposes, let us
just say here that the bigger the order (in ordering more pairs), the better. The
ideal case is that of total adequate orders. Total adequate orders were proposed
in [5, 6].

Here we propose a new adequate order for the implementation in POEM.
The difference compared to previously proposed orders is that it is based on
interleavings rather than partial orders and is thus potentially better suited for
use with Local First Search.

The order is constructed in several steps based on some total order ≤alph

on Σ. Moreover, let |[u]| = |u| denote the length of u, and let |[u]|a = |u|a
denote the number of occurrences of a in u (a property invariant under ≡).
The Parikh vector [14] p(u) of u or [u] is the function p(u) : Σ −→ N such
that p(u)(a) := |u|a. The ≤alph-induced lexicographical order on Parik-vectors
is defined as follows: u <p v: iff

– either |u| < |v|
– or |u| = |v| and for some b ∈ Σ it holds that

• |u|b < |v|b and
• for all a ∈ Σ with a <alph b it holds that |u|a = |v|a.

If neither u <p v nor v <p u then obviously p(u) = p(v).
On the other hand, <alph induces a lexicographical order on Σ∗, here simply

denoted by <lex: u <lex v if either |u| < |v| or |u| = |v| and u = u1au2, v = u1bv2

with u1, u2, v2 ∈ Σ∗ and a, b ∈ Σ with a <lex b.
<lex is a total order on Σ∗, which allows us to identify unique representatives

of traces: Let lex([u]) denote the v ≡ u such that for all w ≡ u it holds that
v ≤lex w.

6

Lemma 1. Let u = lex([u]) be the unique representant of [u]. Then for a ∈ Σ
we get lex([ua]) = w1aw2 such that u = w1w2 and for all b with |w2|b > 0 we
have a I b.

Proof. First note that there is a unique decomposition of lex([ua]) with lex([ua]) =
w1aw2 with [u] = [w1w2] and for all b with |w2|b > 0 we have a I b. By definition,
u ≤lex w1w2 and hence ua ≤lex w1w2a, but on the other hand w1aw2 ≤lex ua.
Let u = u1u2 such that |u1| = |w1|. We obtain from the above inequalities that
u1 ≤lex w1 ≤lex u1, hence u1 = w1. Hence, [u2] = [w2] and by the definition of
lex, it is easy to see that u2 = lex([u2]) and w2 = lex([w2]). Hence u2 = w2. !

Based on the unique representatives lex([v]), we define ,⊆ (Σ∗/ ≡ ×Σ∗/ ≡)
as follows:

[u] , [v] iff

– either u <p v (Parikh order).
– or p(u) = p(v) and lex([u]) ≤lex lex([v])

Proposition 2. , is a total adequate order

Proof. First observe that <p is an adequate order.
Second, observe that ≤lex is total on Σ∗ such lex([u]) ≤lex lex([v]) defines a

total order on traces, in particular those with the same Parikh vector. Hence ,
is total. Wellfoundedness of , results from the fact that <p is wellfounded, that
the number of traces with the same Parikh vector is finite (permutations) and
that lex([u]) ≤lex lex([v]) defines a total order on traces.

[u] , [uv] is also obvious since either v = ε (the empty sequence, obviously
, is reflexive) or |u| < |uv|.

The difficult step is to prove that [u] # [v] implies [uw] # [vw] in the case
that p(u) = p(v) (otherwise, the fact that <p is adequate is sufficient). It is
sufficient to check that [u] # [v] implies [ua] # [va] and use induction for the
general case.

So let [u] # [v], p(u) = p(v) and for simplicity assume that u = lex([u]) and
v = lex([v]), i.e. u and v are the lexicographically least representatives of [u] and
[v] respectively. Let u = wbu′ and v = wcv′ with b <alph c.

Obviously p([ua]) = p([va]). Let lex([ua]) = u1au2 with u = u1u2 and
lex([va]) = v1av2 with v = v1v2 according to Lemma 1.

Now we have to compare the different decompositions of v1v2 = wcv′. If
|v1| ≤ |w| then let u = v1u′

2 the according decomposition of u where p(v2) =
p(u′

2) and hence ua ≡ v1au′
2 (the importance of the same Parikh-vector here is

that a commutes with all letters in u′
2) and we obtain u1au2 ≤lex v1au′

2 and we
know that u′

2 <lex v2 hence u1au2 <lex v1av2. If |v1| > |w| then v1 = wcv′1 and
we obtain u1au2 ≤lex ua = wbu′a <lex wcv′1av2 = v1av2. !

4.2 The extended data structure

In order to support the adequate order, the basic trace structure needs to be
extended. Figure 2 depicts the extension, where a node has three additional fields:

7

“parikh vector sum” records the number of actions in the trace that is from the
root to the current node, “parikh vector” points a dynamically allocated memory
to store the parikh vector, “peak vector” has the same structure as parikh vector.
The parikh vector has a field “length” and an array “vector”. The length field
records the length of the array, and each element in the array is the number
of occurrences of an action in the trace. The array in the peak vector stores
maximal actions in the trace.

peak_vector

length vector

length vector

parikh_vector_sum

parikh_vector

Fig. 2. The extension to the basic data structure

LFS requires to compare two traces with respect to the adequate order during
state space search. In a comparison, one trace is an “old” one that has been
explored, while the other is the “new” one currently being explored, i.e. it is
created by appending an action to a trace. The procedure of comparison is
shown in Algorithm 3 according to the definition of the adequate order:

1. Compare the length of two traces. If they are equal, go to the next step.
2. Compare their parikh vectors. If they are still equal, go to the next step.
3. Compare the lexicographical representives of these traces.

Note that a temporary trace stored in a stack is generated for t2 ◦ a during
the comparison. If the result shows t1 # t2 ◦a, the temporary trace is discarded.
Otherwise, it is written into the tree structure. In this case, it is easy to know
that 1 and t2 ◦ a have the same length, and therefore, the last node of t1 is in
the search queue waiting for process. Removing this node, naming it as x, from
the queue first and then appending a new node, say y, for t2 ◦ a to the end of
queue cause difficulties on maintenance of the queue. During the implementation
of LFS, we chose to reuse the space of x for y, and afterwards, remove x from
the children list of the father node of x.

5 Trace systems in Event Zone approach

Event zone automata [11] are a partial order based approach to reduce one source
of clock explosion, interleaving semantics. It uses vectors of event (action) oc-
currences, namely, event zones, instead of classical clock zones, to express clock
constraints. The independence relation in event zone approach is based on read-
ing and writing of shared variables: If for some clock x, transition a resets x

8

Algorithm 3 Compare two traces t1 and t2 ◦ a w.r.t. the adequate order
Return Value: 1 ⇒ [t1] > [t2 ◦ a]; 0 ⇒ [t1] = [t2 ◦ a]; −1 ⇒ [t1] < [t2 ◦ a]
if t1.parikh vector sum > t2.parikh vector sum + 1 then

return 1
else if t1.parikh vector sum < t2.parikh vector sum + 1 then

return -1
end if
generate a new parikh vector new pv for t2 ◦ a
for all i such that i ≥ 0 ∧ i ≤ t1.parikh vector.length ∧ i ≤ new pv.length do

if t1.parikh vector.vector[i].act < new pv.vector[i].act then
return -1

else if t1.parikh vector.vector[i].act > new pv.vector[i].act then
return 1

end if
if t1.parikh vector.vector[i].num < new pv.vector[i].num then

return -1
else if t1.parikh vector.vector[i].num > new pv.vector[i].num then

return 1
end if

end for
temp trace ← t2 ◦ a
while t1.predecessor "= temp trace.predecessor do

t1 ← t1.predecessor, temp trace ← temp trace.predecessor
end while
if t1.lastaction < temp trace.lastaction then

return -1
else if t1.lastaction > temp trace.lastaction then

return 1
else

return 0
end if

9

and transition b has a condition on x or if both a and b reset x, then they
must be dependent. Based on Mazurkiewicz trace theory and the independence
relation, event zone approach successfully avoids zone splitting in a typical situ-
ation: transitions a resetting clock x and b resetting y are independent, and both
enabled in a state. Executing the sequence ab and ba results two incomparable
clock zones, while only one event zone.

Event zone approach also uses a breath-first search algorithm. The one im-
plemented in [11] works as follows. When an enabled action a in a state s in
the search queue is explored, let s′ be the state reached by a, and Z the event
zone after executing a. Z is computed according to the trace leading to s′. If
the symbolic state (s′,Z is not visited by other traces, it is put into the queue.
Otherwise, the trace to s′ is discarded.

Event zone approach has been improved during implementing it in POEM.
The improvement came from the following proposition [11].

Proposition 3. A trace has a unique canonical equivalent event zone.

In the implementation of event zone in [11], two equivalent traces are detected
by testing equivalence of their symbolic states. Compute event zones, which is
highly time consuming, has to be done before performing this testing, which thus
slow down the state space search. Due to Propositon 3, one of two equivalent
traces can be removed without loss of event zones. The trace structure in POEM
supports automatic detection of equivalent trace by a minor modification of
Algorithm 1 and 2: PATH SUCCESSOR sets a flag is old trace if it finds out
that there is a node in the children list that has been associated with the given
action, and Algorithm 1 sets another flag to indicate an equivalent trace is found
by checking whether each calling of PATH SUCCESSOR sets is old trace.

In order to demonstrate the effect of improvement, we made two experiments
to compare the time cost before and after applying the improvement. The ex-
periments were carried out in a machine with two 2.8GHz Xeon CPUs, 2GB
memory and Fedora core 4 Linux.

The first experiment is a timed version of dining philosophers. There are a
group of philosophers and a timestopper process. The automata of a philosopher
and the timestopper are shown in Figure 3, respectively 1. Each philosopher has
five states: think, hungry, leftfork, eat and dropthefork. The timestopper has two
states: onestate and finalstate. This process is used to stop the execution of the
system when time progresses to a limit. hungernoticed, patience, starved, eat-
ingtime, concentrated and timelimit are constant; foodless, myclock and time
are local clocks; myindex is the process id; afork and done are program vari-
ables. Figure 4 shows the results generated by POEM. The data under the title
“Testing” were obtained by testing if the current trace has been seen before; The
data with “No Testing” were obtained without such testing.

The second experiment was performed on the following example. A multi
lane highway with cars on each lane and a rabbit who wants to cross. The rabbit
has some freedom of going slower or faster and so do the cars. Can - with the
1 Figure 3 and 6 were produced by UppAal.

10

think

foodless <= starved

hungry
foodless <= starved and
myclock <= patience

leftfork
myclock <= patience and
foodless <= starved

eat
myclock <= eatingtime

dropotherfork

myclock <= patience

myclock >= concentrated
myclock := 0

afork[myindex] == 1
afork[myindex] := 0,
myclock := 0

afork[(myindex+1)%num] == 1
afork[(myindex+1)%num] := 0,
myclock := 0, foodless := 0

myclock >= eatingtime
afork[myindex] := 1,
foodless := 0,
myclock := 0

afork[(myindex+1)%num] := 1,
myclock := 0 myclock >= patience

myclock := 0,
afork[myindex] := 1

onestate
time<=timelimit

finalstate
time<=timelimit

time==timelimit
done := 1

Fig. 3. The automata of a philosopher (left) and the timestopper (right)

Number of Memory Time
philosophers Testing No Testing

2 16m 0.03s 0.02s
3 16m 0.05s 0.05s
4 17m 0.31s 0.52s
5 22m 5.01s 9.58s
6 72m 78.12s 173.33s
7 540m 1168.92s 2840.52s

Fig. 4. Results of the philosophers

Number of Memory Time
lanes Testing No Testing

1 16m 0.03s 0.03s
2 16m 0.03s 0.03s
3 16m 0.03s 0.04s
4 17m 0.09s 0.12s
5 19m 1.27s 2.31s
6 36m 10.79s 22.96s
7 118m 87.46s 211.78s
8 466m 554.34 1490.43s

Fig. 5. Results of the highway

11

help of the car drivers - the rabbit reach the other side of the highway alive? To
model this by a network of timed automata, we choose to model the highway as
a checker board of lanes and positions on lanes as indicated in the picture, cars
move in the horizontal direction and the rabbit in the vertical direction. Each
car and the rabbit is realised by an individual automaton. The freedom of going
slower or faster is modeled by a time interval in which the rabbit can advance
by one lane and an interval in which the car can advance for one unit length on
a discretized highway. If a car and the rabbit are in the same field of the checker
board at the same time, an accident occurs. Figure 6 shows the automaton for
the rabbit and an instance of the automata for cars. The results are listed in

running

myclock < 3 arrived

mypos==numberoflanes and myclock >1
rabbitlane[mypos]:=0, mypos:=mypos+1, rabbitlane[mypos]:=1

(mypos < numberoflanes) and myclock >1 and (hw[mypos+1]!=rabbitcolumn)
rabbitlane[mypos]:=0, mypos:=mypos+1, rabbitlane[mypos]:=1, myclock:=0

running

myclock <= upperperiod done

(hw[myindex+1] == (lengthoflanes-1)) and myclock >= lowerperiod and
((rabbitlane[myindex+1] == 0) or ((hw[myindex+1]+1) != rabbitcolumn

hw[myindex+1]:= hw[myindex+1]+1

(hw[myindex+1]<(lengthoflanes-1)) and myclock >= lowerperiod and
((rabbitlane[myindex+1]==0) or ((hw[myindex+1]+1) != rabbitcolumn))
hw[myindex+1]:= hw[myindex+1]+1, myclock:=0

Fig. 6. The automata of the rabbit (up) and a car (down)

Figure 5. The advantage of testing known traces in this experiment was more
explicit than the first one.

6 Conclusion

References

1. G. Behrmann, A. David, K. G. Larsen, O. Moeller, P. Pettersson, and W. Yi.
Uppaal - present and future. In Proc. of 40th IEEE Conference on Decision and
Control. IEEE Computer Society Press, 2001.

2. S. Bornot, Rèmi Morin, Peter Niebert, and Sarah Zennou. Black box unfolding
with local first search. In TACAS, LNCS 2280, pages 386–400. Springer, 2002.

3. M. Bozga, S. Graf, and L. Mounier. If-2.0: A validation environment for component-
based real-time systems. In CAV, LNCS 2404, pages 343–348. Springer, 2002.

4. Volker Diekert and Grzegorz Rozemberg, editors. The Book of Traces. World
Scientific Publishing Co. Pte. Ltd., 1995.

12

5. J. Esparza and S. Römer. An unfolding algorithm for synchronous products of
transition systems. In CONCUR, LNCS 1664, pages 2–20. Springer, 1999.

6. J. Esparza, S. Romer, and W. Vogler. An improvement of mcmillan’s unfolding
algorithm. In TACAS, LNCS 1055, pages 87–106. Springer, 1996.

7. J. Esparza, S. Römer, and W. Vogler. An improvement of mcmillan’s unfolding
algorithm. Formal Methods in System Design, 20(3):285–310, 2002.

8. Javier Esparza, Stefan Romer, and Walter Vogler. An improvement of McMillan’s
unfolding algorithm. In Tools and Algorithms for Construction and Analysis of
Systems, pages 87–106, 1996.

9. Patrice Godefroid and Pierre Wolper. A partial approach to model checking. In
Logic in Computer Science, pages 406–415, 1991.

10. Gerard Holzmann and Doron Peled. Partial order reduction of the state space. In
First SPIN Workshop, Montrèal, Quebec, 1995.

11. G.J. Holzmann. The Spin Model Checker, Primer and Reference Manual. Addison-
Wesley, Reading, Massachusetts, 2003.

12. D. Lugiez, P. Niebert, and S. Zennou. A partial order semantics approach to
the clock explosion problem of timed automata. Theoretical Computer Science,
345(1):27–59, 2005.

13. K. L. McMillan. A technique of state space search based on unfolding. Form.
Methods Syst. Des., 6(1):45–65, 1995.

14. P. Niebert, M. Huhn, S. Zennou, and D. Lugiez. Local first search: a new
paradigm in partial order reductions. In CONCUR, LNCS 2154, pages 396–410.
Springer, 2001.

15. R. J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
16. Doron Peled. All from one, one for all: on model checking using representatives.

In CAV, pages 409–423, 1993.
17. W. Penczek and R. Kuiper. Traces and logic. In Diekert and Rozemberg [4].
18. Antti Valmari. Stubborn sets for reduced state space generation. In Applications

and Theory of Petri Nets, pages 491–515, 1989.

13

